WorldWideScience

Sample records for residual stresses optical

  1. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-02-01

    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  2. Optical properties and residual stress of YbF3 thin films deposited at different temperatures.

    Science.gov (United States)

    Wang, Ying; Zhang, Yue-guang; Chen, Wei-lan; Shen, Wei-dong; Liu, Xu; Gu, Pei-fu

    2008-05-01

    The influence of deposition temperature on the optical properties, microstructure, and residual stress of YbF(3) films, deposited by electron-beam evaporation, has been investigated. The increased refractive indices and surface roughness of YbF(3) films indicate that the film density and columnar structure size increase with deposition temperature. At the same time, higher packing density reduces absorption of moisture. The residual stress is related to deposition temperature and to substrate. For the samples deposited on BK7, the residual stress mainly comes from intrinsic stress, however, for those on fused silica, thermal stress is the dominant factor of total residual stress.

  3. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials.

  4. Arc-discharge effects on residual stress and refractive index in single-mode optical fibers.

    Science.gov (United States)

    Wang, Pengfei; Jenkins, Micah H; Gaylord, Thomas K

    2016-03-20

    Arc-discharge effects on the residual stress and refractive index in single-mode optical fibers are investigated using a previously developed three-dimensional concurrent stress-index measurement method. Using commercial optical fibers and a commercial fusion splicer, the residual stress and refractive index perturbations caused by weak electrical arc discharges in single-mode fibers were measured. Refractive index changes greater than 10-4 and longitudinal perturbation lengths of less than 500 μm were shown to be possible. The subsequent prospects for arc-induced long-period fiber gratings are analyzed, and a typical transmission resonance is predicted to have a depth of 56 dB and a bandwidth of 0.08 nm at a wavelength of 1585 nm. The results of this investigation will be useful in modeling device performance and optimization of arc-induced long-period fiber grating fabrication.

  5. Residual stress measurement in carbon coatings of optical fibers from the fiber bending curvature and coating thickness difference

    Science.gov (United States)

    Shiue, Sham-Tsong; Lin, Hung-Chien; Shen, Ting-Ying; Ouyang, Hao

    2005-06-01

    The residual stress measurement in carbon coatings of optical fibers is theoretically and experimentally investigated. A simple formula used to measure the residual stresses in the thin film deposited on a cylindrical substrate with the bending curvature is proposed. During a temperature drop, the carbon-coated optical fiber is bent due to the nonuniform deposition of coating materials. The axial residual stresses in carbon coatings of optical fibers can be measured from the fiber bending curvature and coating thickness difference. Furthermore, if Young's modulus of carbon coatings is known, the thermal expansion coefficient of carbon coatings can be determined.

  6. Stresses and residual stresses optical measurements systems evaluation; Avaliacao de sistemas opticos de medicao de tensoes e tensoes residuais em dutos

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto Filho, Flavio Tito; Goncalves Junior, Armando Albertazzi [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Metrologia e Automatizacao (LABMETRO)

    2004-07-01

    There is always a constant concern about the pipelines' integrity. An important control parameter is the level of total mechanical stresses acting over the pipeline. However, the loading and residual stresses acting on a pipeline are not measured in the field as much as necessary. Technical difficulties and the high cost of the nowadays techniques and the hostile measurement conditions are the main reason for that. An alternative method has been developed at the Universidade Federal de Santa Catarina (UFSC) since 1992. A new optical measurement device is used to measure strains, mechanical stresses and residual stresses acting over the structure. A metrological and functional evaluation of this system is the main focus of this paper. (author)

  7. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  8. Residual stresses within sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; XU Bin-shi; WANG Hai-dou

    2005-01-01

    Some important developments of residual stress researches for coating-based systems were studied. The following topics were included the sources of residual stresses in coatings: error analysis of Stoney's equation in the curvature method used for the measurement of coating residual stress, the modeling of residual stress and some analytical models for predicting the residual stresses in coatings. These topics should provide some important insights for the fail-safe design of the coating-based systems.

  9. Residual thermal stresses in injection molded products

    NARCIS (Netherlands)

    Zoetelief, W.F.; Douven, L.F.A.; Ingen Housz, A.J.

    1996-01-01

    Nonisothermal flow of a polymer melt in a cold mold cavity introduces stresses that are partly frozen-in during solidification. Flow-induced stresses cause anisotropy of mechanical, thermal, and optical properties, while the residual thermal stresses induce warpage and stress-cracking. In this study

  10. Experimental determination of residual stress

    Science.gov (United States)

    Ferguson, Milton W.

    1991-01-01

    Residual stresses in finished parts have often been regarded as factors contributing to premature part failure and geometric distortions. Currently, residual stresses in welded structures and railroad components are being investigated. High residual stresses formed in welded structures due primarily to the differential contractions of the weld material as it cools and solidifies can have a profound effect on the surface performance of the structure. In railroad wheels, repeated use of the brakes causes high residual stresses in the rims which may lead to wheel failure and possible derailment. The goals of the study were: (1) to develop strategies for using x-ray diffraction to measure residual stress; (2) to subject samples of Inconel 718 to various mechanical and heat treatments and to measure the resulting stress using x-ray diffraction; and (3) to measure residual stresses in ferromagnetic alloys using magnetoacoustics.

  11. Influences of Y2O3 dopant content on residual stress,structure, and optical properties of ZrO2 thin films

    Institute of Scientific and Technical Information of China (English)

    Qiling Xiao; Shuying Shao; Jianda Shao; Zhengxiu Fan

    2009-01-01

    Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 contents (from 0 to 12 mol%) are deposited on BK7 glass substrates by electron-beam evaporation method. The effects of different Y2O3 dopant contents on residual stress, structure, and optical properties of ZrO2 thin films are investigated. The results show that residual stress in YSZ thin films varies from tensile to compressive with the increase of Y2O3 molar content. The addition of Y2O3 is beneficial to the crystallization of YSZ thin film and transformation from amorphous to high temperature phase, and the refractive index decreases with the increase of Y2O3 molar content. Moreover, the variations of residual stress and the shifts of refractive index correspond to the evolution of structures induced by the addition of Y2O3.

  12. The effect of a homogenizing optic on residual stresses and shear strength of laser brazed ceramic/steel-joints

    Science.gov (United States)

    Südmeyer, I.; Rohde, M.; Besser, H.; Grein, M.; Liesching, B.; Schneider, J.

    2011-03-01

    Oxide and non oxide ceramics (Al2O3, SiC) were brazed to commercial steel with active filler alloys using a CO2-laser (l = 10.64 μm). Two different laser intensity profiles were used for heating up the compound: A laser output beam presenting a Gaussian profile and a homogenized, nearly top head profile were applied for joining the compounds in an Argon stream. The temperature distribution with and without the homogenizing optic was measured during the process and compared to the results of a finite element model simulating the brazing process with the different laser intensity profiles. Polished microsections were prepared for characterization of the different joints by scanning electron micrographs and EDXanalysis. In order to evaluate the effects of the different laser intensity profiles on the compound, the shear strengths of the braze-joints were determined. Additionally residual stresses which were caused by the gradient of thermal expansion between ceramic and metal were determined by finite element modeling. The microsections did not exhibit differences between the joints, which were brazed with different laser profiles. However the shear tests proved, that an explicit increase of compound strength up to 34 MPa of the ceramic/metal joints can be achieved with the top head profile, whereas the joints brazed with the Gaussian profile achieved only shear strength values of 24 MPa. Finally tribological pin-on-disc tests proved the capability of the laser brazed joints with regard to the application conditions.

  13. Interferometric Measurement Of Residual Stress

    Science.gov (United States)

    Danyluk, Steven; Andonian, A. T.

    1990-01-01

    Stress averaged through thickness of plate measured nondestructively. Theory of elasticity combined with laser interferometric technique into technique for measurement of residual stresses in solid objects - usually in thin, nominally-flat plates. Measurements particularly useful in inspection of wafers of single-crystal silicon for making solar cells or integrated circuits, because stresses remaining after crystal-growing process cause buckling or fracture. Used to predict deflections of plates caused by known applied loads under specified boundary condition, or to infer applied loads that cause known deflections. Also used to relate known deflections to residual stresses equivalent to stresses produced by fictitious applied loads.

  14. Residual stresses in welded plates

    Science.gov (United States)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  15. Electromechanical Apparatus Measures Residual Stress

    Science.gov (United States)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  16. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    Science.gov (United States)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  17. Performance evaluation of a radial in-plane digital speckle pattern interferometer using a diffractive optical element for residual stress measurement

    Science.gov (United States)

    Albertazzi, A., Jr.; Viotti, M. R.; Kapp, W. A.

    2010-08-01

    A digital speckle pattern (DSP) interferometer using a special diffractive optical element (DOE) was developed by the authors. A collimated laser beam is diffracted by the DOE in such a way that the first diffraction orders produce a circular double illuminated measurement area. Due to natural symmetry of the illumination scheme, the interferometer reaches pure radial in-plane sensitivity. It is demonstrated and verified that the resulting interferometer is not sensitive to laser wavelength variations at all. Its configuration is presented as well as its performance evaluation for residual stress measurements using the blind hole-drilling method.

  18. Neutron residual stress measurements in linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, Michael [ANTSO, PMB1 Menai, NSW, 2234 (Australia)]. E-mail: michael.law@ansto.gov.au; Gnaepel-Herold, Thomas [Department of Materials Science and Engineering, NCNR and University of Maryland (United States); Luzin, Vladimir [Department of Materials Science and Engineering, NCNR and University of Maryland (United States); Bowie, Graham [cNCNR and State University of New York at Stoneybrook (United States): Blue Scope Steel (Australia)

    2006-11-15

    Residual stresses in gas pipelines are generated by manufacturing and construction processes and may affect the subsequent pipe integrity. In the present work, the residual stresses in eight samples of linepipe were measured by neutron diffraction. Residual stresses changed with some coating processes. This has special implications in understanding and mitigating stress corrosion cracking, a major safety and economic problem in some gas pipelines.

  19. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  20. Residual stress in high modulus carbon fibers

    Science.gov (United States)

    Chen, K. J.; Diefendorf, R. J.

    1982-01-01

    The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.

  1. Residual stresses of thin, short rectangular plates

    Science.gov (United States)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  2. Modeling of Residual Stresses In Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2006-01-01

    -depth knowledge of the residual stresses in toughened glass near holes and edges where the total stress state is a combination of contact stresses and residual stresses. The present paper, presenting the derivation and results for a model predicting the residual stresses in a glass plate far from edges and holes......, is a step towards such a model. The model is based on the Instant Freeze concept with a few modifications. Current work, using a partial differential equation approach for the modeling and state-of-the-art in modeling residual stresses in glass is briefly presented, and a short description of the toughening...

  3. Thermal Residual Stresses in Multilayered Coatings

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Binshi XU; Haidou WANG; Yixiong WU

    2005-01-01

    The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult to obtain a closed-form solution of residual stresses within multilayered coatings (e.g. functionally graded coatings, FGCs). In this paper,an analytical model is developed to predict the distribution of residual stresses within multilayered coatings. The advantage of this model is that the solution of residual stresses is independent of the number of layers. Specific results are obtained by calculating elastic thermal stresses in ZrO2/NiCoCrAIY FGCs, which consist of different material layers. Furthermore, the residual stress distribution near the edges and the stress-induced failure modes of coating are also analyzed. The topics discussed provide some insights into the development of a methodology for designing fail-safe coating systems.

  4. Laser cutting of thick sheet metals: Residual stress analysis

    Science.gov (United States)

    Arif, A. F. M.; Yilbas, B. S.; Aleem, B. J. Abdul

    2009-04-01

    Laser cutting of tailored blanks from a thick mild steel sheet is considered. Temperature and stress field in the cutting sections are modeled using the finite element method. The residual stress developed in the cutting section is determined using the X-ray diffraction (XRD) technique and is compared with the predictions. The structural and morphological changes in the cut section are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature and von Mises stress increase sharply in the cutting section, particularly in the direction normal to the cutting direction. The residual stress remains high in the region close to the cutting section.

  5. Residual stresses in injection molded products

    NARCIS (Netherlands)

    Jansen, K.M.B.

    2015-01-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature

  6. Residual stress distribution in rabbit limb bones.

    Science.gov (United States)

    Yamada, Satoshi; Tadano, Shigeru; Fujisaki, Kazuhiro

    2011-04-29

    The presence of the residual stresses in bone tissue has been noted and the authors have reported that there are residual stresses in bone tissue. The aim of our study is to measure the residual stress distribution in the cortical bone of the extremities of vertebrates and to describe the relationships with the osteon population density. The study used the rabbit limb bones (femur, tibia/fibula, humerus, and radius/ulna) and measured the residual stresses in the bone axial direction at anterior and posterior positions on the cortical surface. The osteons at the sections at the measurement positions were observed by microscopy. As a result, the average stresses at the hindlimb bones and the forelimb bones were 210 and 149 MPa, respectively. In the femur, humerus, and radius/ulna, the residual stresses at the anterior position were larger than those at the posterior position, while in the tibia, the stress at the posterior position was larger than that at the anterior position. Further, in the femur and humerus, the osteon population densities in the anterior positions were larger than those in the posterior positions. In the tibia, the osteon population density in the posterior position was larger than that in the anterior position. Therefore, tensile residual stresses were observed at every measurement position in the rabbit limb bones and the value of residual stress correlated with the osteon population density (r=0.55, P<0.01).

  7. Dynamic residual stress in thermal sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Yang Yuanyuan

    2005-01-01

    With the modified Almen method, the forming and development process of residual stress in a thermal sprayed coating has been obtained. The test results identify that the residual stress in a coating is depend on coating material properties, technique and coating thickness. The paper pays much attention to the hysteresis between the coating temperature and residual stress in the coating or between the applied stress and the strain of the coating, and confirms that the fact is resulted from the"Gas Fix" character of a thermal sprayed coating.

  8. Axial residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1978-01-01

    A method of measuring axial residual stresses in boron fibers is presented. With this method, the axial residual stress distribution as a function of radius is determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diam fibers are similar, being compressive at the surface and changing monotonically to a region of tensile stress within the boron. At approximately 25% of the original radius, the stress reaches a maximum tensile stress of about 860 MN sq m and then decreases to a compressive stress near the tungsten boride core. Data are presented for 203-micron diam B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102-micron diam B/W and boron on carbon (B/C) show that the residual stresses are similar in the outer regions of the fibers, but that large differences near and in the core are observed. Fracture of boron fibers is discussed.

  9. Modeling of Residual Stresses In Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2006-01-01

    The motivation for this work is the need for more extended guidelines considering structural design of glass structures. Realistic models predicting the strength of bolted connections are a step towards improvement of such guidelines. Improvement of guidelines for bolted connections require in......-depth knowledge of the residual stresses in toughened glass near holes and edges where the total stress state is a combination of contact stresses and residual stresses. The present paper, presenting the derivation and results for a model predicting the residual stresses in a glass plate far from edges and holes......, is a step towards such a model. The model is based on the Instant Freeze concept with a few modifications. Current work, using a partial differential equation approach for the modeling and state-of-the-art in modeling residual stresses in glass is briefly presented, and a short description of the toughening...

  10. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  11. Residual Stress Analysis in Thick Uranium Films

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, A M; Foreman, R J; Gallegos, G F

    2004-12-06

    Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.

  12. Residual stresses in Inconel 718 engine disks

    Directory of Open Access Journals (Sweden)

    Dahan Yoann

    2014-01-01

    Full Text Available Aubert&Duval has developed a methodology to establish a residual stress model for Inconel 718 engine discs. To validate the thermal, mechanical and metallurgical parts of the model, trials on lab specimens with specific geometry were carried out. These trials allow a better understanding of the residual stress distribution and evolution during different processes (quenching, ageing, machining. A comparison between experimental and numerical results reveals the residual stresses model accuracy. Aubert&Duval has also developed a mechanical properties prediction model. Coupled with the residual stress prediction model, Aubert&Duval can now propose improvements to the process of manufacturing in Inconel 718 engine disks. This model enables Aubert&Duval customers and subcontractors to anticipate distortions issues during machining. It could also be usedt to optimise the engine disk life.

  13. Residual stresses in rubber formed thermoplastic composites

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko; Brucato, V.

    2003-01-01

    The rubber pressing process is applied for the rapid production of thermoplastic composite products. However, rubber pressed products show geometrical distortions, such as warpage, due to processinduced residual stresses. An experimental study is performed to measure the curvature after rubber

  14. Residual stress in Ni-W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2006-01-01

    In the present work, the residual stress in Ni–W layers electrodeposited from electrolytes based on NiSO4 and Na2WO4, is investigated. Citrate, glycine and triethanolamine were used as complexing agents, enabling complex formation between the nickel ion and tungstate. The results show that the type...... of complexing agent and the current efficiency have an influence on the residual stress. In all cases, an increase in tensile stress in the deposit with time after deposition was observed. Pulse plating could improve the stress level for the electrolyte containing equal amounts of citrate...

  15. Measurment Of Residual Stress In Ferromagnetic Materials

    Science.gov (United States)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  16. Measurment Of Residual Stress In Ferromagnetic Materials

    Science.gov (United States)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  17. Residual stress simulation of circumferential welded joints

    Directory of Open Access Journals (Sweden)

    Melicher R.

    2007-11-01

    Full Text Available Residual stresses are an important consideration in the component integrity and life assessment of welded structure. The welding process is very complex time dependent physical phenomenon with material nonlinearity. The welding is a thermal process with convection between fluid flow and welding body, between welding bodyand environment. Next type of boundary conditions is radiation and thermo-mechanical contact on the outer surface of gas pipe in the near of weld. The temperature variation so obtained is utilised to find the distribution of the stress field.In this paper, a brief review of weld simulation and residual stress modelling using the finite element method (FEM by commercial software ANSYS is presented. Thermo-elastic-plastic formulations using a von Mises yield criterion with nonlinear kinematics hardening has been employed. Residual axial and hoop stresses obtained from the analysis have been shown. The commercial FEM code ANSYS was used for coupled thermalmechanical analysis.

  18. Effect of residual stress on peak cap stress in arteries.

    Science.gov (United States)

    Vandiver, Rebecca

    2014-10-01

    Vulnerable plaques are a subset of atherosclerotic plaques that are prone to rupture when high stresses occur in the cap. The roles of residual stress, plaque morphology, and cap stiffness on the cap stress are not completely understood. Here, arteries are modeled within the framework of nonlinear elasticity as incompressible cylindrical structures that are residually stressed through differential growth. These structures are assumed to have a nonlinear, anisotropic, hyperelastic response to stresses in the media and adventitia layers and an isotropic response in the intima and necrotic layers. The effect of differential growth on the peak stress is explored in a simple, concentric geometry and it is shown that axial differential growth decreases the peak stress in the inner layer. Furthermore, morphological risk factors are explored. The peak stress in residually stressed cylinders is not greatly affected by changing the thickness of the intima. The thickness of the necrotic layer is shown to be the most important morphological feature that affects the peak stress in a residually stressed vessel.

  19. Residual stress measurements in carbon steel

    Science.gov (United States)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  20. Mechanically induced residual stresses: Modelling and characterisation

    Science.gov (United States)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  1. Microstructure and Residual Stress of Shot Coating

    Science.gov (United States)

    Itoh, Yoshiyasu; Suyama, Shoko; Fuse, Toshiaki

    A shot coating process for metalizing at the surface of ceramics has been newly developed as the shot peening treatment. However, microstructure and residual stress of shot coatings, which have an important effect on the adherent strength of coatings and the strength of ceramic substrates, have not always been clarified. An experimental investigation on the microstructure and residual stress was carried out for the shot coating of aluminum on zinc-oxide substrate by comparison with the atmospheric plasma sprayed aluminum coatings. As a result, low porosity, low oxide content and flat surface could be obtained from the aluminum coatings formed by shot coating process in comparison with the atmospheric plasma sprayed aluminum coatings. Also, it was confirmed by the X-ray diffraction technique that the residual stress of shot coated aluminum over zinc-oxide substrate was high compressive in comparison with the atmospheric plasma spraying process.

  2. Laser ultrasonic diagnostics of residual stress.

    Science.gov (United States)

    Karabutov, Alexander; Devichensky, Anton; Ivochkin, Alexander; Lyamshev, Michael; Pelivanov, Ivan; Rohadgi, Upendra; Solomatin, Vladimir; Subudhi, Manomohan

    2008-11-01

    Ultrasonic NDE is one of the most promising methods for non-destructive diagnostics of residual stresses. However the relative change of sound velocity, which is directly proportional to applied stress, is extremely small. An initial stress of 100 MPa produces the result of deltaV/V approximately 10(-4). Therefore measurements must be performed with high precision. The required accuracy can be achieved with laser-exited ultrasonic transients. Radiation from a Nd-YAG laser (pulse duration 7 ns, pulse energy 100 microJ) was absorbed by the surface of the sample. The exited ultrasonic transients resembled the form of laser pulses. A specially designed optoacoustic transducer was used both for the excitation and detecting of the ultrasonic pulses. The wide frequency band of the piezodetector made it possible to achieve the time-of-flight measurements with an accuracy of about 0.5 ns. This technique was used for measuring of plane residual stress in welds and for in-depth testing of subsurface residual stresses in metals. Plane stress distribution for welded metallic plates of different thicknesses (2-8 mm) and the subsurface stress distribution for titanium and nickel alloys were obtained. The results of conventional testing are in good agreement with the laser ultrasonic method.

  3. Residual contact stresses in cryotechnical environments

    Science.gov (United States)

    Cretegny, J. F.; Demonicault, J. M.

    Two examples were chosen to show the use of residual stress measurements in the evaluation and comprehension of possible ruptures of parts subjected to the working conditions of cryogenic turbomachines which induce wear of the surfaces in dry contact. The examples concern the ball bearings and spline of the liquid hydrogen pump of the Vulcain engine to be used on Ariane 5. The Ariane program is introduced and tribological problems of the cryogenic technique are discussed. The utility of the residual stress measurements is assessed.

  4. Residual stresses in bilayer dental ceramics.

    Science.gov (United States)

    Taskonak, Burak; Mecholsky, John J; Anusavice, Kenneth J

    2005-06-01

    It is clinically observed that lithia-disilicate-based all-ceramic fixed partial dentures (FPD) can fail because of the fragmentation of the veneering material. The hypothesis of this study is that the global residual stresses within the surface of those veneered FPDs may be responsible for partial fragmentation of the veneering ceramic. Bilayer and monolithic ceramic composites were prepared using a lithia disilicate based (Li2OSiO2) glass-ceramic core and a glass veneer. A four-step fracture mechanics approach was used to analyze residual stress in bilayered all-ceramic FPDs. We found a statistically significant increase in the mean flexural strengths of bilayer specimens compared with monolithic glass specimens (p < or = 0.05). There was a statistically significant difference between the mean longitudinal and transverse indentation-induced crack sizes in bilayer specimens (p < or = 0.05), which indicates the existence of residual stress. Global residual stresses in the veneer layer, calculated using a fracture mechanics equation, were determined to be responsible for the increased strength and observed chipping, i.e., spallation in bilayer ceramic composites.

  5. Residual Stresses and Other Properties of Teardrops

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-26

    The Department of Energy’s 3013 Standard for packaging plutonium-bearing materials for storage up to fifty years specifies a minimum of two individually welded, nested containers herein referred to as the 3013 outer and the 3013 inner.1 Stress corrosion cracking (SCC) is a potential failure mechanism for 3013 inner containers.2,3 The bagless transfer container (BTC), a 3013 inner container used by Hanford and Savanna River Site (SRS) made from 304L stainless steel (SS), poses the greatest concern for SCC.4,5 The Surveillance and Monitoring Program (SMP) use stressed metal samples known as teardrops as screening tools in SCC studies to evaluate factors that could result in cracks in the 3013 containers.6,7 This report provides background information on the teardrops used in the Los Alamos National Laboratory (LANL) SMP studies including method of construction, composition and variability. In addition, the report discusses measurements of residual stresses in teardrops and compares the results with residual stresses in BTCs reported previously.4 Factors affecting residual stresses, including teardrop dimensions and surface finish, are also discussed.

  6. Influences of Annealing on Residual Stress and Structure of HfO2 Films

    Institute of Scientific and Technical Information of China (English)

    SHEN Yan-Ming; SHAO Shu-Ying; DENG Zhen-Xia; HE Hong-Bo; SHAO Jian-Da; FAN Zheng-Xiu

    2007-01-01

    HfO2 films are deposited on BK7 glass substrates by electron beam evaporation. The influences of annealing between 100℃ and 400℃ on residual stresses and structures of HfO2 films are studied. It is found that little differences of spectra, residual stresses and structures are obtained after annealing at lower temperatures. After annealing at higher temperatures, the spectra shift to short wavelength, the residual stress increases with the increasing annealing temperature. At the same time, the crystallite size increases and interplanar distance decreases. The variations of optical spectra and residual stress correspond to the evolutions of structures induced by annealing.

  7. The Research of Welding Residual Stress Based Finite Element Method

    Directory of Open Access Journals (Sweden)

    Qinghua Bai

    2013-06-01

    Full Text Available Welding residual stress was caused by local heating during the welding process, tensile residual stress reduce fatigue strength and corrosion resistance, Compressive residual stress decreases stability limit. So it will produce brittle fracture, reduce working life and strength of workpiece; Based on the simulation of welding process with finite element method, calculate the welding temperature field and residual stress, and then measure residual stress in experiments, So as to get the best welding technology and welding parameters, to reduce welding residual stress effective, it has very important significance.

  8. Quantification of residual stress from photonic signatures of fused silica

    Science.gov (United States)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William T.

    2014-02-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  9. Local residual stress measurements on nitride layers

    NARCIS (Netherlands)

    Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission

  10. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  11. Patterns of residual stresses due to welding

    Science.gov (United States)

    Botros, B. M.

    1983-01-01

    Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.

  12. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  13. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  14. Residual stress distribution in injection molded parts

    Directory of Open Access Journals (Sweden)

    P. Postawa

    2006-08-01

    Full Text Available Purpose: The paper presents the results of the investigations of influence of the amorphous polystyrene (PSprocessing on the diversity of the internal stresses observed in the injection moulded piece.Design/methodology/approach: For the tests, the standardized mould piece designed for the investigations ofthe processing shrinkage of thermoplastics materials has been used. The samples have been prepared using theDesign of Experiment (DoE theory.The state of internal stresses has been analysed by means of photoelastic method (used stress viewer equipmenton the basis of the layout and size of the isochromatics (fields with the same colour, which determine the mouldpiece’s areas where the same value for the difference of main tensions. In the article the results of investigationsof influence of 5 chosen processing parameters such as injection temperature Tw, mould temperature Tf,clamping pressure pd, cooling time tch and the injection speed vw on the changes in isochromatics layout as adeterminant for diversity of internal stresses in injection moulded pieces have been presented.Findings: The performed investigations of the influence of injection conditions on the state of internal stressesreached for injection mould pieces were to determine the parameters of injection at which the achieved state ofthe stresses in the mould piece (described by the difference of main tensions will show the lowest values.Practical implications: Effects of examinations of influence of processing conditions on residual stress ininjection molded parts (presented in the article could find practical application in polymer industry, both smalland large enterprises.Originality/value: New approach to fast estimation of value of residual stresses were present in the paper.

  15. Measurement of residual stresses using fracture mechanics weight functions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y. [Bettis Atomic Power Laboratory, West Mifflin, PA (United States)

    2001-07-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  16. Residual stresses and vector hysteresis modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ktena, Aphrodite, E-mail: aktena@teiste.gr

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  17. Residual stresses and vector hysteresis modeling

    Science.gov (United States)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  18. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    Science.gov (United States)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  19. Residual stress around the cortical surface in bovine femoral diaphysis.

    Science.gov (United States)

    Yamada, Satoshi; Tadano, Shigeru

    2010-04-01

    Residual stress in living tissue plays an important role in mechanical strength. We have reported that residual stress exists in the bone tissue of a rabbit's tibiofibula. The purpose of this study is to measure the residual stress around the outer cortical region of bovine femoral diaphysis and to discuss the distribution of the stress. This work proposed the sin(2) psi method of X-ray diffraction to the measurement of residual stresses in bone tissue. In this method, residual stress can be estimated from the variation in the interplanar spacings orientated to a number of directions without the lattice strain in the stress direction. Four-point bending tests of strip specimens taken from bovine femoral diaphysis were carried out during X-ray irradiation in advance. In the proximal, middle, and distal sections of bovine femoral diaphyses, the residual stresses at the cortical surface were measured using characteristic Mo-Kalpha X-rays. The bending tests of strip specimens with X-ray irradiation showed that the method could reliably estimate residual stresses in the bone tissue. The residual stress of the bone axial direction was larger than that of the circumferential direction. The stresses in the middle part of five diaphyses along the bone axial direction were tensile. The maximum stress was 162 MPa at the lateral position and the minimum was 78 MPa at the posterior position. The residual stress in the bone axial direction varies around the circumferential region. In addition, the bone axial distributions of residual stresses were different in the proximal, middle, and distal sections of the individual femur. Furthermore, it was confirmed that residual stress in the bone tissue was released by the cutting out of the specimen. The residual stresses in bone tissue could be measured by this method. The results show that residual stress in the bone axial direction at the cortical surface in bovine femoral diaphysis is tensile and varies around the circumferential

  20. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...... forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved....

  1. Measurements of residual stress in fracture mechanics coupons

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Hill, Michael R [U.C. DAVIS; Nav Dalen, John E [HILL ENGINEERING

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  2. Residual Stresses Modeled in Thermal Barrier Coatings

    Science.gov (United States)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  3. Residual stress in bone structure and tissue of rabbit's tibiofibula.

    Science.gov (United States)

    Tadano, Shigeru; Okoshi, Taro

    2006-01-01

    This paper presents an X-ray diffraction method of measuring the residual stress/strain in bone tissue of rabbit's tibia. To derive the residual stress, bone powder of the diameter less than 40 micrometers was used as a control specimen at non-stressed state. From the X-ray measurements, it was clear that the distribution of residual stress existed in the bone tissue. The tensile residual stress at bone axial direction occurred in the proximal-medial region of rabbit's tibia. The compressive stress occurred in the other regions. In addition, the mechanism to generate the residual stress was investigated by sequential cutting of the tibiofibula system from bone structure scale to bone tissue scale. The remodeling is a phenomenon that the bone structure adapts functionally to mechanical environment. The residual stress will become a mechanical trigger to induce the remodeling.

  4. Thermal evolution of residual stress in IN718 alloy subjected to laser peening

    Science.gov (United States)

    Xu, Suqiang; Huang, Shu; Meng, Xiankai; Sheng, Jie; Zhang, Haifeng; Zhou, Jianzhong

    2017-07-01

    The thermal relaxation behaviors of residual stresses induced by laser peening (LP) in IN718 alloy were investigated using an integrated numerical simulation and experimental approach. LP and heat treatments (HT) were carried out after which the X-ray diffraction (XRD) technique was employed in measuring the residual stresses. Micro-structures were observed using an optic microscope (OM) and transmission electron microscope (TEM). Dislocations induced by LP were also observed by TEM and characterized using the XRD technique. The effects of the applied temperature and the exposure time on residual stress and micro-structures were investigated. The results show that the extent of the residual stresses relaxation increased accordingly with the increase in the applied temperature. The relaxation rate was initially high and tended to stabilize for a longer exposure time. Grain size evolution during the process was subsequently discussed. Furthermore, a conceivable mechanism of residual stresses thermal relaxation behavior was obtained.

  5. Residual stress in quenched 7075 aluminum alloy thick plates

    Institute of Scientific and Technical Information of China (English)

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  6. Residual Stress Determination from a Laser-Based Curvature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  7. Residual stress profiling of an aluminum alloy by laser ultrasonics

    Institute of Scientific and Technical Information of China (English)

    PAN Yondong; QIAN Menglu; XU Weijiang; M. OURAK

    2004-01-01

    A residual-stress profile along the thickness of an aluminum alloy sheet is determined by laser-ultrasonic technique. Surface acoustic waves are generated by a Nd:YAG pulse laser and detected by a Heterodyne interferometer on a lateral free surface of the sheet. The distribution of residual stress is determined by measuring the relative variation of the wavevelocities at different location of the sample along its thickness. This technique is validated by three different residual stress profiles obtained experimentally.

  8. Analytical and Experimental Study of Residual Stresses in CFRP

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available Fiber Bragg Grating sensors (FBGs have been utilized in various engineering and photoelectric fields because of their good environment tolerance. In this research, residual stresses of carbon fiber reinforced polymer composites (CFRP were studied using both experimental and analytical approach. The FBGs were embedded inside middle layers of CFRP to study the formation of residual stress during curing process. Finite element analysis was performed using ABAQUS software to simulate the CFRP curing process. Both experimental and simulation results showed that the residual stress appeared during cooling process and the residual stresses could be released when the CFRP was machined to a different shape.

  9. Blocks and residual stresses in shaped sapphire single crystals

    Science.gov (United States)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul‧pina, I. L.; Nikolaev, V. I.

    2017-01-01

    The formation of blocks and residual stresses in shaped sapphire crystals grown from the melt by the Stepanov method (EFG) has been studied. The probability of block formation is higher for the growth along the c axis compared to that grown in the a-axis direction. The distribution of residual stress in sapphire crystals of tubular, rectangular and round cross section was measured by the conoscopy method. It was found that the magnitude of the residual stress increases from the center to the periphery of the crystal and reaches up to about 20 MPa. Residual stress tensor components for solid round rod and tubular single crystals were determined by numerical integration.

  10. A finite element model for residual stress in repair welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T. [Oak Ridge National Lab., TN (United States)

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  11. Residual stresses and durability in cold drawn eutectoid steel wires

    Science.gov (United States)

    Atienza, J. M.; Elices, M.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A.

    2007-04-01

    Prestressing steel wires have excellent mechanical properties but there is a need to improve their durability in aggressive environments. In this work, the influence of residual stresses on the environmentally assisted cracking of these wires is studied. A good correlation has been found between residual stresses at the surface of the wires and the time to rupture during stress corrosion test proposed by the International Federation of Prestressing. Wires with the same microstructure, surface quality and mechanical properties show very different behaviour in aggressive environments depending on their residual stress state. Research shows that environmentally assisted cracking can be improved significantly by acting on the surface residual stresses produced by wire drawing. In addition, in this study a post-drawing treatment to generate compressive residual stresses at the surface of the wires is proposed.

  12. Numerical Simulation of Multi-repaired Weld Residual Stress

    Institute of Scientific and Technical Information of China (English)

    ZHU Yuan-xiang; ZHAO Xue-rong; ZHANG Xiao-fei; HU Lun-ji

    2004-01-01

    In order to understand the change regulation of residual stress during multi-repaired welding to provide theoretical guidance for correct repaired welding procedure and improvement of joint properties, and to simulate the magnitude and distribution of residual stress using the finite element method (FEM).A model of temperature field of weld-repaired using FEM, which was simplified, was established. The weld stress consists of thermal stress and organization stress. Models of the thermal stress and organization stress were described. ANSYS, a software of finite element, was applied to calculate the stress, BHW35 steel was taken as an example, the simulated and experimental results for the 1st, 3rd and 5th weld-repaired were analyzed, the simulated results are in good agreement with experimental results. It can be concluded that the residual stress in the weld center changes little,and the high residual stress exists in HAZ.And in the same place, the more repaired weld, the higher residual stress,and the area of residual stress becomes wider.

  13. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  14. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  15. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  16. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    Science.gov (United States)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  17. Residual stress measurement in silicon sheet by shadow moire interferometry

    Science.gov (United States)

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.

    1987-01-01

    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  18. Study and practice of decreasing residual stress with residual heat of casting

    Institute of Scientific and Technical Information of China (English)

    Tong Siyi; Liu Lin

    2008-01-01

    A new technique for reducing the residual stress within a casting by using of the residual heat in the casting is presented. The new technique has been applied by Guangxi Yuchai Machinery Company Limited and the result shows remarkably applicable. The casting's residual stress can be reduced to less than 60 MPa while the saving in energy can be about 101.1 kW·h per ton of castings, as compared with traditional technique.

  19. Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave

    Science.gov (United States)

    Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai

    Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.

  20. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.;

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... residual elastic strains between subsets of grains are predicted numerically and verified by neutron diffraction. Subsequently, the measured residual strain profiles in the test samples are modified by the intergranular strains and compared to the engineering predictions of the FE technique. Results...

  1. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Sriram Krishnamurthy

    2016-05-01

    Full Text Available Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E

  2. Simulation of Residual Stresses at Holes in Tempered Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Poulsen, Peter Noe;

    2010-01-01

    This work presents a full 3D numerical study of the residual stresses in tempered (toughened) glass near holes using Narayanaswamy’s model for the tempering process. It is the objective of the paper to elucidate the influence on the minimal residual compressive stresses at holes from variations in......: the far-field stress, plate thickness, hole diameter and the interaction between holes and edges and corners. The work presents novel results for the sensitivity of the residual stresses to geometric features and provides a design tool for estimating residual stresses at holes for different geometries....... An example of how to extrapolate the results in terms of far-field stresses is given....

  3. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  4. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  5. Residual stresses and their effects in composite laminates

    Science.gov (United States)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  6. Residual stresses in cross-ply composite tubes

    Science.gov (United States)

    Cohen, D.; Hyer, M. W.

    1984-01-01

    The residual thermal stresses in 4-layer cross-ply tubes are studied. The tubes considered has a small radius to wall-thickness ratios and so elasticity solutions were used. The residual thermal stress problem was considered to be axisymmetric and three elasticity solutions were derived and the results compared with the results using classical lamination theory. The comparison illustrates the limitations of classical lamination theory. The three elasticity solutions derived were: plane stress, plane strain, and generalized plane strain, the latter being the most realistic. Residual stresses in both the hoop and axial direction is significant. Stacking arrangement effects the residual stress to some extent, as do the material properties of the individual lamina. The benefits of hybrid construction are briefly discussed.

  7. Water aging reverses residual stresses in hydrophilic dental composites.

    Science.gov (United States)

    Park, J W; Ferracane, J L

    2014-02-01

    Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties.

  8. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.

    2011-04-28

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  9. Measuring depth profiles of residual stress with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  10. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  11. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    Science.gov (United States)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  12. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  13. Cold compression residual stress reduction in aluminium alloy 7010

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, D.A. [Limerick Univ. (Ireland). Materials Research Centre; Robinson, J.S. [Dept. of Materials Science and Technology, Univ. of Limerick (Ireland); Cudd, R.L. [HDA Forgings Ltd., Redditch, Worchestershire (United Kingdom)

    2000-07-01

    7010 is one of the high strength aluminium alloys used mainly as plate and forgings in the aerospace industry. Its high strength is achieved through a quenching operation where the material is rapidly cooled from the solution heat treatment temperature (475 C) to room temperature. As with all rapid quenching operations, residual stresses develop, leaving the material unsuitable for further machining operations and for service. Regular shaped forgings are generally cold compressed after quenching to relieve residual stresses. The effect of friction, increasing/decreasing the amount of cold compression and applying cold compression in 'bites' on residual stress magnitudes is unknown. This paper aims to study the effect that these variables have on final residual stress patterns through use of a finite element model. (orig.)

  14. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    Science.gov (United States)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  15. Residual stress in glass: indentation crack and fractography approaches.

    Science.gov (United States)

    Anunmana, Chuchai; Anusavice, Kenneth J; Mecholsky, John J

    2009-11-01

    To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Soda-lime-silica glass bar specimens (4 mm x 2.3 mm x 28 mm) were prepared and annealed at 650 degrees C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24h were statistically significant (p=0.003). This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime-silica glass. The indentation method may be useful for estimating residual stress in glass.

  16. Corner Crack Propagation in the Presence of Residual Stresses (Preprint)

    Science.gov (United States)

    2006-05-01

    used to produce compressive residual stresses in regions of a component, such as a bolt hole or blade attachment, that were prone to crack...plasticity burnishing (LPB), have been developed more recently to provide ways of inducing deeper compressive residual stresses while limiting surface...experiments performed for this work were designed to simulate fastener holes like those found in turbine engine components. A double-edge notch tension

  17. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  18. Expanded austenite, crystallography and residual stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    compositions and (b) unravelling of the contributions of stress-depth and composition-depth profiles in expanded austenite layers are summarised and discussed. It is shown through simulation of line profiles that the combined effects of composition gradients, stress gradients and stacking fault gradients can...

  19. Ultrasonic evaluation of residual stresses in flat glass tempering by an original double interferometric detection.

    Science.gov (United States)

    Devos, D; Duquennoy, M; Roméro, E; Jenot, F; Lochegnies, D; Ouaftouh, M; Ourak, M

    2006-12-22

    In industrial thermal tempering of glass, the knowledge of the homogeneity of compressive residual stress field on the glass product is fundamental to guarantee the quality of the tempered glass product. In this paper, we use the acoustoelasticity phenomenon in order to estimate the residual stress distribution by using acoustic surface wave. We present an experimental setup based on a double interferometric detection in which an aspheric lens is associated with a beam splitter and a YAG laser whose power is 100 mW. This relative high power enables us to carry out measurements on surface flat glass although optical reflection coefficient is typically weak (glass tempering.

  20. Residual stresses in non-symmetrical carbon/epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, S.; Akkerman, R.; Lamers, E.A.D.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The result

  1. Evolution of residual stress and crack morphologies during 3D FIB tomographic analysis of alumina.

    Science.gov (United States)

    Elfallagh, F; Inkson, B J

    2008-05-01

    Three-dimensional focused ion beam (FIB) tomography is increasingly being used for 3D characterization of microstructures in the 50 nm-20 microm range. FIB tomography is a destructive, invasive process, and microstructural changes may potentially occur during the analysis process. Here residual stress and crack morphologies in single-crystal sapphire samples have been concurrently analyzed using Cr3+ fluorescence spectroscopy and FIB tomography. Specifically, maps of surface residual stress have been obtained from optically polished single-crystal alumina [surface orientation (1 ī 0 2)], from FIB milled surface trenches, from Vickers micro-indentation sites (loads 50 g-300 g), and from Vickers micro-indentation sites during FIB serial sectioning. The residual stress maps clearly show that FIB sputtering generates residual stress changes. For the case of the Vickers micro-indentations, FIB sputtering causes significant changes in residual stress during the FIB tomographic serial sectioning. 3D reconstruction of the crack distribution around micro-indentation sites shows that the cracks observed are influenced by the location of the FIB milled surface trenches due to localized stress changes.

  2. Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry.

    Science.gov (United States)

    Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine

    2014-01-01

    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  3. An Optimal Cure Process to Minimize Residual Void and Optical Birefringence for a LED Silicone Encapsulant

    Directory of Open Access Journals (Sweden)

    Min-Jae Song

    2014-05-01

    Full Text Available Silicone resin has recently attracted great attention as a high-power Light Emitting Diode (LED encapsulant material due to its good thermal stability and optical properties. In general, the abrupt curing reaction of the silicone resin for the LED encapsulant during the curing process induces reduction in the mechanical and optical properties of the LED product due to the generation of residual void and moisture, birefringence, and residual stress in the final formation. In order to prevent such an abrupt curing reaction, the reduction of residual void and birefringence of the silicone resin was observed through experimentation by introducing the multi-step cure processes, while the residual stress was calculated by conducting finite element analysis that coupled the heat of cure reaction and cure shrinkage. The results of experiment and analysis showed that it was during the three-step curing process that the residual void, birefringence, and residual stress reduced the most in similar tendency. Through such experimentation and finite element analysis, the study was able to confirm that the optimization of the LED encapsulant packaging process was possible.

  4. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  5. Propagation of dissection in a residually-stressed artery model.

    Science.gov (United States)

    Wang, Lei; Roper, Steven M; Hill, Nicholas A; Luo, Xiaoyu

    2017-02-01

    This paper studies dissection propagation subject to internal pressure in a residually-stressed two-layer arterial model. The artery is assumed to be infinitely long, and the resultant plane strain problem is solved using the extended finite element method. The arterial layers are modelled using the anisotropic hyperelastic Holzapfel-Gasser-Ogden model, and the tissue damage due to tear propagation is described using a linear cohesive traction-separation law. Residual stress in the arterial wall is determined by an opening angle [Formula: see text] in a stress-free configuration. An initial tear is introduced within the artery which is subject to internal pressure. Quasi-static solutions are computed to determine the critical value of the pressure, at which the dissection starts to propagate. Our model shows that the dissection tends to propagate radially outwards. Interestingly, the critical pressure is higher for both very short and very long tears. The simulations also reveal that the inner wall buckles for longer tears, which is supported by clinical CT scans. In all simulated cases, the critical pressure is found to increase with the opening angle. In other words, residual stress acts to protect the artery against tear propagation. The effect of residual stress is more prominent when a tear is of intermediate length ([Formula: see text]90[Formula: see text] arc length). There is an intricate balance between tear length, wall buckling, fibre orientation, and residual stress that determines the tear propagation.

  6. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    Science.gov (United States)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  7. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    Science.gov (United States)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  8. Determination of residual stresses in sintered ceramics. A hypoelastic model

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, F. (Advanced Materials Engineering Centre, Halifax, NS (Canada)); Murphy, J.G. (General Compiste Technology, Halifax, NS (Canada))

    1991-04-01

    The ceramic firing cycles necessary for sintering often produce high thermal gradients. Such thermal cycles, especially in materials with low thermal conductivity, can cause different densification rates. The result of such mechanical nonuniformity is the formation of residual stress patterns in the materials. The magnitude of these stresses is sufficient to cause microcracks to occur. In this study, a practical and versatile methodology used in evaluating the residual stresses resulting from mechanical nonuniformity in slip cast ceramics will be discussed. The analysis uses the commercial finite element program ABAQUS in conjunction with a hypoelastic material constitutive model. The qualitative results obtained from the preliminary finite element method (FEM) investigations illustrate that this numerical methodology can be used to emulate the sintering mechanism, and estimate the residual stresses caused by sintering processes. (orig.).

  9. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  10. Residual Stress Analysis of Aircraft Part using Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun Joo; Seong, Baek Seok; Sim, Cheul Muu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A precise measurement of the residual stress magnitude and distribution is an important factor to evaluate the lifetime or safety of the materials, because the residual stress affects the material properties, such as the strength, fatigue, etc. In the case of a fighter jet, the lifetime and safety of the parts of the landing gear are more important than that of a passenger airplane because of its frequent take offs and landings. In particular in the case of training a fighter jet, a precise evaluation of life time for the parts of the landing gear is strongly required for economic reason. In this study, the residual stress of a part of the landing gear of the training fighter jet which is used to fix the landing gear to the aircraft body was investigated. The part was used for 2000 hours of flight, which corresponds to 10 years. During this period, the fighter jet normally takes off and lands more than 2000 times. These frequent take off and landing can generate residual stress and cause a crack in the part. By measuring the neutron diffraction peaks, we evaluated the residual stress of the landing gear part

  11. Residual circulation and tidal stress in the Gulf of California

    Science.gov (United States)

    Salas-De-León, David Alberto; Carbajal-PéRez, Noel; Monreal-Gómez, Maria Adela; Barrientos-MacGregor, Gerardo

    2003-10-01

    Results of a three-dimensional nonlinear barotropic shelf model are used to study the effect of the M2 tidal stress on the residual current in the Gulf of California. The tidal stress summarizes the nonlinear interactions and forces the residual circulation. It is calculated following the method developed by [1975]. The vertical structure of the tidal stress reveals clearly the zones where the interaction between tidal currents and the basin geometry is strong. The highest values of tidal stress were found over the Salsipuedes sill and in the Ballenas Channel in the central archipelago and in the Colorado River Delta. Relatively high values of tidal stress were also found in deeper layers in the southern part. The high tidal stress values coincide well with the anomalous cold-water patches observed in the archipelago area, attributed to tidal mixing. The calculated residual currents show a maximum of about 15 cm s-1 in the upper layers in the archipelago area. At subsurface layers an anticyclonic circulation is observed. Divergence patterns in the upper layers suggest that M2 tide residuals contribute, to significant upward movements of water, on the west side of Tiburón island. This barotropic process may contribute to the generation of the observed cold patches.

  12. Prompt optical emission from residual collisions in GRB outflows

    CERN Document Server

    Li, Zhuo

    2007-01-01

    The prompt $\\gamma$-ray emission in $\\gamma$-ray bursts is believed to be produced by internal shocks within a relativistic unsteady outflow. The recent detection of prompt optical emission accompanying the prompt $\\gamma$-ray emission appears to be inconsistent with this model since the out flowing plasma is expected to be highly optically thick to optical photons. We show here that fluctuations in flow properties on short, $\\sim1$ ms, time scale, which drive the $\\gamma$-ray producing collisions at small radii, are expected to lead to "residual" collisions at much larger radii, where the optical depth to optical photons is low. The late residual collisions naturally account for the relatively bright optical emission. The apparent simultaneity of $\\gamma$-ray and optical emission is due to the highly relativistic speed with which the plasma expands. Residual collisions may also account for the X-ray emission during the early "steep decline" phase, where the radius is inferred to be larger than the $\\gamma$-r...

  13. Residual stresses in injection molded shape memory polymer parts

    Science.gov (United States)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  14. Finite element calculation of residual stress in dental restorative material

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  15. Residual stress analysis of 7075 aluminum alloy after vacuum electron beam welding

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Xie Ruijun; Guo Guifang

    2007-01-01

    The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress; the residual stress in thickness direction is very small.

  16. On Taylor-Series Approximations of Residual Stress

    Science.gov (United States)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  17. Prediction of Large Structure Welding Residual Stress by Similitude Principles

    Institute of Scientific and Technical Information of China (English)

    Shude Ji; Liguo Zhang; Xuesong Liu; Jianguo Yang

    2009-01-01

    On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding residual stress between the simulative component and the practical component was attained. In order to verify the correctness of the relation, the investigation was done from the view of the welding experiment and the numerical simulation about the simulative component and the practical component. The results show that the distribution of welding residual stress of the simulative component is the same as that of the practical component. The ratio of welding residual stress attained by the experiment or the simulation method between the practical runner and the simulative component was compared with the ratio obtained by the similitude principles. Moreover, the error is less than 10%. This provides a new idea to predict the welding stress distribution of large practical structure by the contractible physical model, which is important for the welding experiment and the numerical simulation.

  18. Advanced holographic nondestructive testing system for residual stress analysis

    CERN Document Server

    Kniazkov, Anatoli; Dovgalenko, George; Salamo, Gregory; Latychevskaia, Tatiana; 10.1117/12.347399

    2013-01-01

    The design and operating of a portable holographic interferometer for residual stress analysis by creating a small scratch along with a new mathematical algorithm of calculations are discussed. Preliminary data of the stress investigations on aluminum and steel alloys have been obtained by the automatic processing of the interference pattern using a notebook computer. A phase-shift compensation technique in real-time reflection interferometry is used to measure the out-of-plane stress release surface displacement surrounding a small scratch (25 um depth and 0.5 mm width) in a plate with residual stress of around 50 MPa. Comparison between theoretical models for a rectangular and triangular shaped scratch with the experimental data are presented.

  19. Residual stress characterization with an ultrasonic/magnetic technique

    Science.gov (United States)

    Namkung, M.; Heyman, J. S.

    1984-01-01

    A potentially useful new technique for residual stress characterization in ferromagnetic material is described. The unique feature of this technique is the measurement of small changes in ultrasonic wave velocity by the application of external dc magnetic field in the material under various stress conditions. It was found, in steel, that the fractional change in the natural velocity Delta W/W of waves propagating along the external field direction is affected by the uniaxial stress applied in the same axis. External compression lowers the slope of the Delta W/W curve in the low field region, while external tension generally does the opposite. For most cases, the slope in this region falls below zero under external compression. The result of measurements in specimens with residual stress shows exactly the same tendency.

  20. Process induced residual stresses and distortions in pultrusion

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Nielsen, Michael Wenani;

    2013-01-01

    In the present study, a coupled 3D transient Eulerian thermo-chemical analysis together with a 2D plane strain Lagrangian mechanical analysis of the pultrusion process, which has not been considered until now, is carried out. The development of the process induced residual stresses and strains...... regions where compression stresses are obtained. The separation between the heating die and the part due to shrinkage is also investigated using a mechanical contact formulation at the die-part interface. The proposed approach is found to be efficient and fast for the calculation of the residual stresses...... together with the distortions are predicted during the pultrusion in which the cure hardening instantaneous linear elastic (CHILE) approach is implemented. At the end of the process, tension stresses prevail for the inner region of the composite since the curing rate is higher here as compared to the outer...

  1. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging.

    Science.gov (United States)

    Montalto, L; Paone, N; Scalise, L; Rinaldi, D

    2015-06-01

    The assessment of the stress state of scintillating crystals is an important issue for producers as well as users of such materials, because residual stress may arise during growth process. In this paper, a measurement system, based on the use of a photoelastic, conoscopic optical setup, is proposed for the assessment of stress state in scintillating crystals. Local stress values can be measured on the crystal in order to observe their spatial distribution. With the proposed system, it is possible to vary the dimensions of the inspected measurement volume. It has been validated with reference to a known stress state induced in a birefringent crystal sample and it has been tested for the case of loaded and unloaded samples, showing sub-millimetric spatial resolution and stress uncertainty ≤0.25 MPa. The proposed measurement system is a valid method for the inspection of scintillating crystals required by producers and users of such materials.

  2. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Science.gov (United States)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  3. The impact of the residual stress on the EUV pellicle

    Science.gov (United States)

    Park, Eun-Sang; Choi, Jae-Keun; Kim, Min-Ha; Hwang, Sollee; Shamsi, Zahid Hussain; Kim, Dai-Gyoung; Oh, Hye-Keun

    2016-05-01

    High resolution patterning on the chip could be achieved by extreme ultraviolet lithography (EUVL). However, the defect on the mask becomes more important issue with very short wavelength (13.5 nm). Using the pellicle which could protect the mask from the defects can support high volume manufacturing (HVM). Most of the materials considered for pellicle have relatively high extinction coefficient in EUV region. Therefore, the thickness of the pellicle should be ~ nm thin. The stress of the pellicle is dependent not only on the temperature but also on the mechanical properties of the pellicle. The stress induced by the gravity was small compared to the thermal stress. However, the residual stress should be also considered since it is dependent on the pellicle manufacturing environment and this stress is comparable with the thermal stress. Our result shows the importance of the lowering the pellicle fabrication temperature in terms of the extending the lifetime during the scanning process.

  4. Thermal residual stress analysis of coated diamond grits

    Institute of Scientific and Technical Information of China (English)

    Zi-qian Huang; Bo Xiang; Yue-hui He; Bai-yun Huang

    2009-01-01

    Residual stresses of coated diamond grits were analyzed by a finite element unit cell model.Diamond grits coated with four types of metals, W, Mo, Ti, and Cr, were considered.The numerical results show that compressive stress occurs in the diamond particles and tensile stress occurs in the metal matrix; compressive stress is concentrated in the diamond sharp comer; interface stresses decrease by more than 1000 MPa with a metal interlayer; plastic deformation of the matrix begins near the sharp comer of diamond grits and extends toward the peripheral zone.Stress concentration dramatically decreases due to plastic deformation of the matrix.The deposition of transition metals on a diamond surface can dramatically promote the adhesion between diamond grits and the metal bond.

  5. Residual stress state in titanium alloy remelted using GTAW method

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2009-04-01

    Full Text Available Test materials comprised two-phase titanium alloy Ti6Al4V (Grade5. The surface of the tested alloy was remelted by means of TIG welding method using variable current-voltage parameters. The investigations aimed to determine surface geometry and residual stresses in the remelted surface layer in the investigated alloy.

  6. finite element model for predicting residual stresses in shielded ...

    African Journals Online (AJOL)

    eobe

    The generated residual stresses were measured using an X. E066 electrodes were used ... direction (σx) had a maximum value of 375MPa (tensile) and minimum value of ... method are in fair agreement with the experimental results. Based on ...

  7. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    Science.gov (United States)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  8. Numerical Simulation of Residual Stresses in Linear Friction Welded Joints

    Directory of Open Access Journals (Sweden)

    R. Nikiforov

    2015-09-01

    Full Text Available A thermo-mechanical model of linear friction welding has been developed. The temperature distribution during the heating process was determined using a one-dimensional model. The distribution of temperature and stress field during the forging phase was determined by solving the coupled problem in ANSYS. The model allows to predict the effect of welding parameters on the stress field, whereas modeling data are consistent with the residual stresses in welded joints of the Ti6Al4V alloy obtained during the experiment.

  9. Thermal residual stresses and stress distributions under tensile and compressive loadings of short fiber reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto-plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance.

  10. Residual stresses in continuous graphite fiber Al metal matrix composites

    Science.gov (United States)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  11. Determination of Mechanical Properties of Micromembranes with Compressive Residual Stress

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel model of a load-deflection method to determine the mechanical properties of micromembranes with compressive residual stress is described. Since thin film structures are frequently used in micro devices, characterisation of mechanical properties of thin films is desired by the design and fabrication of micromachines. In this paper, the mechanical properties of thin micromembranes under compressive stress are characterised, which are fabricated by bulk micromachining. The relation between the center deflection and the load pressure on a square membrane is deduced by modelling the membrane as an elastic plate having large deflection with clamped boundaries. According to the model, whether the membrane has initial deflection or not has no effect on the measurement result. The Young's modulus and residual stress are simultaneously determined. The mechanical properties of siliconoxide, silicon nitride membranes and composite membranes of polysilicon with silicon nitride are measured.

  12. Residual thermal stress of a mounted KDP crystal after cooling and its effects on second harmonic generation of a high-average-power laser

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Yu, Fuli

    2017-01-01

    Thermal problems are huge challenges for solid state lasers that are interested in high output power, cooling of the nonlinear optics is insufficient to completely solve the problem of thermally induced stress, as residual thermal stress remains after cooling, which is first proposed, to the best of our knowledge. In this paper a comprehensive model incorporating principles of thermodynamics, mechanics and optics is proposed, and it is used to study the residual thermal stress of a mounted KDP crystal after cooling process from mechanical perspective, along with the effects of the residual thermal stress on the second harmonic generation (SHG) efficiency of a high-average-power laser. Effects of the structural parameters of the mounting configuration of the KDP crystal on the residual thermal stress are characterized, as well as the SHG efficiency. The numerical results demonstrate the feasibility of solving the problems of residual thermal stress from the perspective on structural design of mounting configuration.

  13. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    Science.gov (United States)

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe.

  14. Thermal Stress and Residual Stress Control of Thermally Sprayed 80Ni20Cr Coating

    OpenAIRE

    Ishida, Tsuyoshi; Setoguchi, Katsuya; Hiraki, Kunihiro

    1999-01-01

    In order to find an effective method to control the residual coating stress after thermal spraying, an analysis and experiment were carried out on a cylindrical member of 80Ni20Cr/SUS304. Temperature measurements during the processes of thermal spraying, heating and cold thermal shock were carried out. Using these measured results, thermal stress analyses were perfomed by the finite element method(FEM) and a proposed simplified method for estimating the coating stress. Thermal stress of the c...

  15. Quantifying residual stress in nanoscale thin polymer films via surface wrinkling.

    Science.gov (United States)

    Chung, Jun Young; Chastek, Thomas Q; Fasolka, Michael J; Ro, Hyun Wook; Stafford, Christopher M

    2009-04-28

    Residual stress, a pervasive consequence of solid materials processing, is stress that remains in a material after external forces have been removed. In polymeric materials, residual stress results from processes, such as film formation, that force and then trap polymer chains into nonequilibrium stressed conformations. In solvent-cast films, which are central to a wide range of technologies, residual stress can cause detrimental effects, including microscopic defect formation and macroscopic dimensional changes. Since residual stress is difficult to measure accurately, particularly in nanoscale thin polymer films, it remains a challenge to understand and control. We present here a quantitative method of assessing residual stress in polymer thin films by monitoring the onset of strain-induced wrinkling instabilities. Using this approach, we show that thin (>100 nm) polystyrene films prepared via spin-coating possess residual stresses of approximately 30 MPa, close to the crazing and yield stress. In contrast to conventional stress measurement techniques such as wafer curvature, our technique has the resolution to measure residual stress in films as thin as 25 nm. Furthermore, we measure the dissipation of residual stress through two relaxation mechanisms: thermal annealing and plasticizer addition. In quantifying the amount of residual stress in these films, we find that the residual stress gradually decreases with increasing annealing time and plasticizer amounts. Our robust and simple route to measure residual stress adds a key component to the understanding of polymer thin film behavior and will enable identification of more effective processing routes that mitigate the detrimental effects of residual stress.

  16. Measurement of Residual Stress in a Welded Branch Connection and Effects on Fracture Behaviour

    Science.gov (United States)

    Law, M.; Luzin, V.; Kirstein, O.

    2010-11-01

    The branch analysed in this paper was not post weld heat treated, resulting in significant residual stresses. Assessment codes assume these to be at, or close to, yield. An integrity assessment of a welded branch connection was carried out using these high assumed residual stresses. The weld then had residual stresses determined by neutron diffraction, performed using ANSTO's residual stress diffractometer, Kowari. The maximum measured residual stress (290 MPa or 60% of yield) was much lower than the yield value assumed by assessment codes. Reanalysing with the actual residual stresses almost doubled the critical crack size, increasing the safety of the connection.

  17. Relating Residual Stress and Substructural Evolution During Tensile Deformation of an Aluminum-Manganese Alloy

    Science.gov (United States)

    Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev

    2017-08-01

    Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.

  18. Residual Stress Measurements After Proof and Flight: ETP-0403

    Science.gov (United States)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  19. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  20. Effect of Spraying Condition and Material Properties on the Residual Stress in Plasma Spraying

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Jianming GONG; Shandong TU

    2004-01-01

    The thermomechanical behavior and the distribution of residual stresses due to thermal spraying of NiCoCrAIY coating were studied by thermomechanical finite dement analysis. The effects of phase transformation due to solidifying process of coating particles, thickness and material properties of coating on the residual stresses were discussed.Results showed that residual stress decreases little with the stress relaxation due to the phase transformation. For the substrates with the same thickness, the residual stress increases with the increase in coating thickness. The state of residual stresses relates to the material properties of coating and substrate closely. The stress-induced failure model of coating is also discussed.

  1. Bioinjection treatment: effects of post-injection residual stress on left ventricular wall stress.

    Science.gov (United States)

    Lee, Lik Chuan; Wall, Samuel T; Genet, Martin; Hinson, Andy; Guccione, Julius M

    2014-09-22

    Injection of biomaterials into diseased myocardium has been associated with decreased myofiber stress, restored left ventricular (LV) geometry and improved LV function. However, its exact mechanism(s) of action remained unclear. In this work, we present the first patient-specific computational model of biomaterial injection that accounts for the possibility of residual strain and stress introduced by this treatment. We show that the presence of residual stress can create more heterogeneous regional myofiber stress and strain fields. Our simulation results show that the treatment generates low stress and stretch areas between injection sites, and high stress and stretch areas between the injections and both the endocardium and epicardium. Globally, these local changes are translated into an increase in average myofiber stress and its standard deviation (from 6.9 ± 4.6 to 11.2 ± 48.8 kPa and 30 ± 15 to 35.1 ± 50.9 kPa at end-diastole and end-systole, respectively). We also show that the myofiber stress field is sensitive to the void-to-size ratio. For a constant void size, the myofiber stress field became less heterogeneous with decreasing injection volume. These results suggest that the residual stress and strain possibly generated by biomaterial injection treatment can have large effects on the regional myocardial stress and strain fields, which may be important in the remodeling process.

  2. Numerical and Experimental Analyses of Residual Stresses in

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Hattel, Jesper; Lorentzen, Torben

    1999-01-01

    Butt-welding in one pass with SMAW of two 10mm mild steel plates is investigated. In order to predict the residual stress fields associated with the welding procedure, a finite element model in 3D has been developed in ABAQUS. This model applies a sequential thermal and mechanical numerical...... analysis. In order to evaluate and refine the model parameters for the thermal analysis, the numerical results from this analysis are compared with experimental measurements of the temperature. To evaluate the predicted stress/strain fields, the mechanical model has been validated experimentally. This has...

  3. Fatigue Strength and Residual Stress Analysis of Deep Rolled Crankshafts

    Directory of Open Access Journals (Sweden)

    Imran M Quraishi

    2012-12-01

    Full Text Available The endurance life of an engine crankshaft is closely related to its fatigue strength, in addition to other material properties and shape parameters. Deep rolling, moreover, enhances the fatigue limit by applying compressive residual stress within the fillet radius area as a major surface hardening technique. The objective of this paper isto maximize fatigue life of engine through crankshaft design optimization by quantifying fatigue strength for microalloyed steels versus Cr-Mo alloy steel, and to examine the effects of deep rolling load and rolled fillet geometry. Fatigue tests have been made with standard rotary bending test samples from both bar and forged blanks. Rig tests for actual crankshafts have been made to show how the fatigue strength correlates with different sample types. A correlation of stress distribution with bending moment was demonstrated by applying a strain gauging technique on crankshaft specimens. Therefore, an analysis of combined stresses could be made by considering the effect of static residual stress in addition to the applied dynamic bending stress. Optimum conditions for rolling load, fillet geometry and material were identified. Consequently, these results will be adapted to CAE analysis database to enable an optimization of safety factors.

  4. Stress Analysis and Evaluating of Stream Residual Tank

    Institute of Scientific and Technical Information of China (English)

    DAI; Shou-tong

    2013-01-01

    Entrusted by China Nuclear Engineer Lit.,we’ve analyzed and evaluated the stress of stream residual tank,one of the high level radioactive waste vitrification process equipments,which is classified asradiochemical ClassⅠ,anti-seismic TypeⅠ.The container consists of upper and bottom dished covers,barrel body,four cylinder shell supporting legs which are welded on the equipment’s foundation

  5. INTERFACE DEVICE FOR NONDESTRUCTIVE TESTING OF RESIDUAL SURFACE STRESSES

    Directory of Open Access Journals (Sweden)

    Gennady A. Perepelkin

    2016-01-01

    Full Text Available The paper considers the organization of connection of a personal computer with a device for nondestructive testing of residual surface stresses. The device works is based on the phenomenon of diffraction of ionizing radiation from the crystal lattice near the surface of the crystallites. Proposed software interface to the organization for each type of user: the device developers, administrators, users. Some aspects of the organization of communication microcontroller to a PC via USB-port

  6. Modelling Of Residual Stresses Induced By High Speed Milling Process

    Science.gov (United States)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  7. Residual stresses determination in textured substrates for plasma sprayed coatings

    Science.gov (United States)

    Capek, J.; Pala, Z.; Kovarik, O.

    2015-04-01

    In this contribution, we have striven to respond to the desire of obtaining the residual stress tensor in the both cold-rolled and hot-rolled substrates designated for deposition of thermal coatings by plasma spraying. Residual stresses play an important role in the coating adhesion to the substrate and, as such, it is a good practice to analyse them. Prior to spraying, the substrate is often being grit blasted. Residual stresses and texture were quantitatively assessed in both virgin and grit blasted sample employing three attitudes. Firstly without taking preferred orientation into account, secondly from measurements of interplanar lattice spacings of planes with high Miller indices using MoKα radiation. And eventually, by calculating anisotropic elastic constants as a weighted average between single-crystal and X-ray elastic constants with weighting being done according to the amount of textured and isotropic material in the irradiated volume. In the ensuing verification analyses, it was established that the latter approach is suitable for materials with either very strong or very weak presence of texture.

  8. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  9. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  10. FEM SIMULATION OF RESIDUAL STRESSES INDUCED BY LASER SHOCK WITH OVERLAPPING LASER SPOTS

    Institute of Scientific and Technical Information of China (English)

    Y.X. Hu; Z.Q. Yao

    2008-01-01

    The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single laser shock with square and round laser spot is predicted and validated by experimental results. With the Finite Element Method (FEM) model, effects of different overlapping rates and impact sequences on the distribution of residual stresses are simulated. The results indicate that: (1) Overlapping laser shock can increase the compressive residual stresses. However, it is not effective on the growth of plastically affected depth; (2) Overlapping rate should be optimized and selected carefully for the large area treatment. Appropriate overlapping rate is beneficial to obtain a homogeneous residual stress field; (3) The impact sequence has a great effect on the residual stress field. It can greatly attenuate the phenomenon of the "residual stress hole" to obtain a homogeneous residual stress field.

  11. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  12. Using of abrasive water jet for measurement of residual stress in railway wheels

    OpenAIRE

    Hlaváček, P. (Petr); Brumek, J.; Horsák, L.

    2012-01-01

    The paper provides a general introduction to methods of measurement of residual stresses on railway wheels. Determination of residual stress distribution is necessary for the prediction of wheel service life and possible catastrophic failure. Therefore experimental section is devoted to residual stress measurement using strain gauges according to standard EN 13262 + A1. During measurement, several segments of tested wheel were cut by abrasive water jet to detect changes of residual stresses o...

  13. Evaluation of residual stress relief of aluminum alloy 7050 by using crack compliance method

    Institute of Scientific and Technical Information of China (English)

    王秋成; 柯映林; 邢鸿燕; 翁泽宇; 杨芳儿

    2003-01-01

    High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.

  14. Principles of the measurement of residual stress by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G.A.; Ezeilo, A.N. [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Mechanical Engineering

    1996-11-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs.

  15. Phase composition and residual stresses in thermal barrier coatings

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Ashmarin, A. A.; Ryabenko, B. V.; Ivanova, S. V.

    2016-07-01

    X-ray study of the phase composition and residual stresses distribution in two-layer APS coatings showed that the ceramic layer consists of t-ZrO2 phase with tetragonal lattice and the metal underlayer γ-solid solution based on nickel. In the transition zone thickness of ∼ 100 pm as the distance from the surface was revealed a gradual transition from t-ZrO2 to γ-solid solution. Increase in the specific volume of the metal underlayer resulting TGO growing leads to the formation of this layer high compressive stresses up to 600 MPa. In this case, the ceramic layer contains tensile stress up to 200 MPa.

  16. Microstructural residual stress in particle-filled dental composite.

    Science.gov (United States)

    Prejzek, Ondřej; Spaniel, Miroslav; Mareš, Tomáš

    2015-01-01

    The main goal of this study is to develop a micromechanical model of a particle-filled dental composite focused on the residual stress (RS) field developed during the curing process in its microstructure. A finite element model of a representative volume element of filler and resin was developed, and volumetric shrinkage was simulated during the curing process. Four material models (von Mises plasticity model, Drucker-Prager plasticity model, von Mises plasticity model with stress relaxation and Drucker-Prager plasticity with stress relaxation) of the polymer resin were built to assess the influence of the material model on the resulting internal stress. The relationship between the curing process and the magnitude of the stress components will be described, and an analysis of the post-curing state of the material in particular microstructure locations will be conducted in this study. Obtained RS is comparable to the stresses developed in the material under the external load. The substantial dependence on the choice of material model for resin is to be observed, and the suitability of particular models is discussed.

  17. Residual stress and texture in Aluminum doped Zinc Oxide layers deposited by reactive radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Azanza Ricardo, C.L., E-mail: Cristy.Azanza@ing.unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Pastorelli, M.; D' Incau, M. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Aswath, P. [College of Engineering, University of Texas at Arlington, TX (United States); Scardi, P. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy)

    2016-04-30

    Aluminum doped Zinc Oxide thin films were deposited on standard soda-lime substrates by reactive radio frequency magnetron sputtering. Residual stress and texture were studied by X-ray diffraction, while X-ray Absorption Near Edge Spectroscopy provided information on the Al environment in the best performing thin films. The influence of deposition parameters on structural and microstructural properties is discussed. A correlation between microstructure and residual stress state with electrical and optical properties is proposed. - Highlights: • Al doped ZnO thin films were obtained by reactive radio frequency magnetron sputtering. • Correlation of stresses and texture with electrical and optical properties is shown. • Homogeneous and stress-free thin-films are the best performing ones. • XANES confirmed the doping mechanism and excluded some spurious phases.

  18. Effects of cutting and specimen size on neutron measurement of residual stresses

    Science.gov (United States)

    Law, M.; Luzin, V.; Kirstein, O.

    2010-11-01

    To perform neutron residual stress measurements it is often necessary to cut samples to a manageable size. The effects of cutting a girth welded pipe were investigated with analytical methods and finite element analysis. The effect of cutting on measured stresses was calculated. A simplified method of modelling residual stresses in welds, "chill modelling", is introduced. In ring slitting a cut is made in the axial direction and the deformation is maeesured. The change in elastic stress can be calculated and added to neutron diffraction measurements made on a cut ring to calculate the original stresses. Residual stress measurements were performed to validate the ring slitting correction using ANSTO's residual stress diffractometer Kowari.

  19. Neutron diffraction analysis of residual stresses near unannealed welds in anhydrous ammonia nurse tanks.

    Science.gov (United States)

    Becker, A T; Chumbley, L S; Goettee, D; Russell, A M

    2014-01-01

    Neutron diffraction analysis was employed to measure residual stresses near welds in used anhydrous ammonia nurse tanks. Tensile residual stresses contribute to stress corrosion cracking of nurse tanks, which can cause tanks to release toxic ammonia vapor. The analysis showed that tensile residual stresses were present in the tanks measured, and the magnitudes of these stresses approached the yield strength of the steel. Implications for agricultural safety and health are discussed.

  20. Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel.

    Science.gov (United States)

    Du, Hualong; Turner, Joseph A

    2016-04-01

    In this article, the effects of residual stress on the ultrasonic scattering in a quenched steel sample are investigated by calculating the change of spatial variance amplitudes of ultrasonic signals after removing residual stress via annealing. The experimental results show that the average spatial variance amplitude decreases by about 11.89% for a scan area on the quenched surface after removing residual stress. This quantity was used to estimate the residual stress based on the developed stress-dependent backscatter model. In addition, the residual stress on the whole scan area was mapped by calculating the change of the spatial variance amplitude for each subarea after annealing, respectively. Diffuse ultrasonic backscatter signals show a high sensitivity to residual stress such that this technique has potential as a non-destructive method for measuring residual stress.

  1. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M; Stolken, J; Vignes, R; Norton, M

    2009-11-02

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO{sub 2} lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO{sub 2} laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work they present the results of 351 nm, 3 ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO{sub 2} laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1 {approx} 40s square pulse CO{sub 2} laser exposures created over 0.5-1.25 kW/cm{sup 2} with a 1-3 mm 1/e{sup 2} diameter beam (T{sub max} {approx} 1500-3000 K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for T{sub max} {ge} 2000 K. The effect of cooling rate on fictive temperature caused by CO{sub 2} laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  2. Effects of LSP on micro-structures and residual stresses in a 4 mm CLAM steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xizhang, E-mail: chenxizhang@wzu.edu.cn [School of Mechanical and Electrical Engineering, Wenzhou University., Wenzhou 325035 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Fang, Yuanyuan [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Zhang, Shuyan; Kelleher, Joe F. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Zhou, Jianzhong [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China)

    2015-05-15

    The effects of laser shock processing (LSP) on the distribution of residual stress and micro-structure of China Low Activation Martensitic (CLAM) steel weldment were investigated via neutron diffraction and optical microscope (OM). A pair of 4 mm CLAM steel plates joined by GTA welding. Special attention is paid to the generation of high level compressive residual stresses introduced by LSP. Residual stress in longitudinal, normal and transversal direction at weldment surface and longitudinal stress through thickness are evaluated via neutron diffraction. Compressive residual stress after LSP occurred at more than 90% areas within the weld joint, it is almost double the areas of compressive stress compare to weldment surface before LSP. The maximum compressive normal residual stress becomes to −183 MPa after LSP from −63 MPa before LSP. The Modification of surface micro-structures including weld zone (WZ), heat affected zone (HAZ) and base metal (BM) are also discussed. Results to date demonstrate that laser shock processing has been a great potential method for the improvement of mechanical performance of components.

  3. Ares I-X Upper Stage Simulator Residual Stress Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  4. Method and apparatus for determination of material residual stress

    Science.gov (United States)

    Chern, Engmin J. (Inventor); Flom, Yury (Inventor)

    1993-01-01

    A device for the determination of residual stress in a material sample consisting of a sensor coil, adjacent to the material sample, whose resistance varies according to the amount of stress within the material sample, a mechanical push-pull machine for imparting a gradually increasing compressional and tensional force on the material sample, and an impedance gain/phase analyzer and personal computer (PC) for sending an input signal to and receiving an input signal from the sensor coil is presented. The PC will measure and record the change in resistance of the sensor coil and the corresponding amount of strain of the sample. The PC will then determine, from the measurements of change of resistance and corresponding strain of the sample, the point at which the resistance of the sensor coil is at a minimum and the corresponding value and type of strain of the sample at that minimum resistance point, thereby, enabling a calculation of the residual stress in the sample.

  5. Elasto-Plastic FEM Analysis of Residual Stress in Spun Tube

    Institute of Scientific and Technical Information of China (English)

    Fuan HUA; Yuansheng YANG; Dayong GUO; Wenhui TONG; Zhuangqi HU

    2004-01-01

    The residual stress distribution of Hastelloy C corrosion-resistant alloy tubes after power spinning was simulated with the elasto-plastic finite element method combining with the element birth and death technique, the influences of spinning parameters on the distribution of the residual stress were investigated in detail, and the formation mechanism of residual stress during tube spinning was discussed. Based on the calculation of the residual stress, the reasons for annealing cracks on the spun tube during interpass heat treatment were explored. The simulation results and the characteristics of annealing cracks show that the circumferential residual tensile stress is a main factor to cause the annealing cracks.

  6. Mechanism of biaxial pre-stress method on welding residual stress and hot cracks controlling

    Institute of Scientific and Technical Information of China (English)

    LIU Xuesong; ZHOU Guangtao; WANG Ping; LIU Haoyuan; FANG Hongyuan

    2009-01-01

    Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion as-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks

  7. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  8. USING LASER ULTRASONICS FOR NONDESTRUCTIVE RESIDUAL STRESS EVALUATION

    Institute of Scientific and Technical Information of China (English)

    贺玲凤; Shoichi Kobayashi

    2002-01-01

    A non-contact measuring technique of ultrasonic waves velocity is proposed, in which Rayleigh waves are detected by a laser Doppler velocimeter and the velocity is measured precisely by means of a sing-around unit and a digital oscilloscope. With the proposed technique, the acoustoelastic coefficient of Rayleigh waves in mild steel SS41 is obtained, which is in good agreement with that obtained by the contact method. Furthermore the non-contact technique is applied to evaluate the residual stress in a butt-welded steel plate, the result is reasonable.

  9. Influence of residual stresses on failure pressure of cylindrical pressure vessels

    Institute of Scientific and Technical Information of China (English)

    M. Jeyakumar; T. Christopher

    2013-01-01

    The utilization of pressure vessels in aerospace applications is manifold. In this work, finite element analysis (FEA) has been carried out using ANSYS software package with 2D axisym-metric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses. To find out the effect of residual stresses on failure pressure, first an elasto-plastic analysis is performed to find out the failure pressure of pressure vessel not having residual stresses. Then a thermo-mechanical finite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding. Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses. This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.

  10. Thermal Viscoelastic Analysis of Plastic Components Considering Residual Stress

    Science.gov (United States)

    Choi, Chel Woo; Jeoung, Kab Sik; Moon, Hyung-Il; Kim, Heon Young

    Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity, but plastic components may often become distorted after injection molding due to residual stress after the filling, packing, and cooling processes. In addition, plastic deteriorates depending on various temperature conditions and the operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in the time domain can be expressed by the Prony series using the ABAQUS commercial software package. This paper suggests a process for predicting post-production deformation under cyclic thermal loading. The process was applied to real plastic panels, and the deformation predicted by the analysis was compared to that measured in actual testing, showing the possibility of using this process for predicting the post-production deformation of plastic products under thermal loading.

  11. Model Of Relaxation Of Residual Stresses In Hot-Rolled Strips

    Directory of Open Access Journals (Sweden)

    Milenin A.

    2015-09-01

    Full Text Available Residual stresses in hot-rolled strips are of practical importance when the laser cutting of these strip is applied. The factors influencing the residual stresses include the non uniform distribution of elastic-plastic deformations, phase transformation occurring during cooling and stress relaxation during rolling and cooling. The latter factor, despite its significant effect on the residual stress, is scarcely considered in the scientific literature. The goal of the present study was development of a model of residual stresses in hot-rolled strips based on the elastic-plastic material model, taking into account the stress relaxation.

  12. Residual stress in composites with the thin-ring-slitting approach.

    Science.gov (United States)

    Park, J W; Ferracane, J L

    2006-10-01

    During polymerization, dental composites develop residual stresses that may compromise the marginal integrity and properties of the restorative. The objective of this study was to use the thin-walled ring-slitting method to measure and compare residual stresses. The hypotheses to be tested were that composites would generate different levels of residual stress based on their specific formulations and slitting times. Rings made from composites (Z100, Herculite, and Heliomolar) were cut at different times (10 min, 1 and 24 hrs) after being light-cured, and stress was measured. Residual stress was higher at the earlier cutting times, except for Heliomolar (alpha stress followed this order: Z100 > Herculite > Heliomolar. Early slitting was better to capture residual stress, and the thin-walled rings showed higher values than thick-walled rings and were better able to discriminate residual stress in composites.

  13. Modeling Residual Stress Development in Thermal Spray Coatings: Current Status and Way Forward

    Science.gov (United States)

    Abubakar, Abba A.; Arif, Abul Fazal M.; Al-Athel, Khaled S.; Akhtar, S. Sohail; Mostaghimi, Javad

    2017-08-01

    An overview of analytical and numerical methods for prediction of residual stresses in thermal spray coatings is presented. The various sources and mechanisms underlying residual stress development in thermal spray coatings are discussed, then the various difficulties associated with experimental residual stress measurement in thermal spray coatings are highlighted. The various analytical and numerical models used for prediction of residual stresses in thermal spray coatings are thoroughly discussed. While analytical models for prediction of postdeposition thermal mismatch stresses are fully developed, analytical quenching and peening stress models still require extensive development. Various schemes for prediction of residual stresses using the finite element method are identified. The results of the various numerical and analytical models are critically analyzed, and their accuracy and validity, when compared with experiments, are discussed. Issues regarding the accuracy and applicability of the models for predicting residual stresses in thermal spray coatings are highlighted, and several suggestions for future development of the models are given.

  14. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    Energy Technology Data Exchange (ETDEWEB)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  15. Focal Plane Wavefront Sensing using Residual Adaptive Optics Speckles

    CERN Document Server

    Codona, Johanan L

    2013-01-01

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance Strehl ratio or suppress residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly-changing residual atmospheric speckles at the 6.5m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor (WFS) measurements are used to estimate the residual wavefront, allowing ...

  16. Investigation of Manufacturing Residual Stresses in Cold Formed Truck Frame Rail Sections

    Directory of Open Access Journals (Sweden)

    Dr. Chinnaraj K.

    2014-04-01

    Full Text Available Series of manufacturing processes such as coiling-uncoiling, cold forming and hole cutting processes involved in the making of truck frame rail sections leave certain amount of manufacturing imperfections into the frame rail. As the manufacturing imperfections in the form of residual stresses play a significant role in determining the dynamic structural behavior of truck frame rail members, a careful assessment of residual stresses resulting from coiling-uncoiling and cold forming processes is needed. In the present investigation, non-linear Finite Element (FE simulation of coiling-uncoiling and cold forming processes were carried out and the resulting residual stresses in frame rail corner, flat web and flange sections were compared with the experimentally measured residual stress values using X-ray diffraction technique. It is observed that in corner sections, the numerically predicted residual stresses are in close agreement with the experimentally measured residual stresses in forming (transverse direction. In the direction perpendicular to forming (longitudinal direction, while the trends of numerical and experimental residual stresses are observed to follow the same pattern, some deviation in stress values are observed in the inner half of the corner sections. As the coiling-uncoiling process is the main cause for the residual stress presence in flat web and flange sections, the computed coiling-uncoiling residual stresses in longitudinal directions are compared with experimentally measured residual stresses in frame web sections and the trends are observed to be in good agreement.

  17. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    Energy Technology Data Exchange (ETDEWEB)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  18. Distribution of Inherent Strains and Residual Stresses in Medium Thickness Plate Weldment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A fundamental theory for the analysis of residual weldingstresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed.A new method of calculating inherent strains and longitudinal residual stresses is proposed.

  19. Residual stresses in angleplied laminates and their effects on laminate behavior

    Science.gov (United States)

    Chamis, C. C.

    1978-01-01

    NASA Lewis Research Center research in the field of composite laminate residual stresses is reviewed and summarized. The origin of lamination residual stresses, evidence of their presence, experimental methods for measuring them, and theoretical methods for predicting them are described. Typical results are presented which show the magnitudes of residual stresses in various laminates including hybrids and superhybrids, and in other complex composite components. Results are also presented which show the effects of lamination residual stresses on laminate warpage and on laminate mechanical properties including fracture stresses. Finally, the major findings and conclusions derived therefrom are summarized.

  20. Study on the Steel Rail Rolling Contact Stress with Consideration of Initial Residual Stress

    Directory of Open Access Journals (Sweden)

    Song Hua

    2015-01-01

    Full Text Available Based on ANSYS/LS-DYNA explicit analysis software, this paper established the three-dimensional finite element model of wheel/rail rolling contact in curve negotiation with consideration of the residual stress impact after rail straightening process. It used the dynain file method to apply the initial residual stress to the rails, and conducted numerical simulation to the process of dynamic wheel/rail rolling contact under the operation condition which is corresponding to the setting of taking velocity and axle load as the variables. The simulation results can show that with the increase of velocity, the equivalent stress on the outer rail railhead and at the rail web will increase accordingly; the equivalent stress on the inner rail railhead and at the rail web will decrease accordingly; and the equivalent stress on the rail flange will be basically the same. With the increase of axle load, all the equivalent stress on the railheads and rail web of the inner rail and the outer rail will increase accordingly while the equivalent stress on the rail flange will be basically the same.

  1. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  2. Evaluation of residual stresses in laser clad coating at the micrometer scale

    NARCIS (Netherlands)

    Furár, I.; Ocelík, V.; De Hosson, J.T.M.

    2011-01-01

    Residual stresses may have beneficial or detrimental effects to the materials properties and therefore precise knowledge and control of residual stresses are of high practical relevance. For the stress-relaxation measurement at a micro level we explored the slit milling (crack compliance) method usi

  3. Influence of Residual Stress on the Elastic-plastic Response to Indentation

    Institute of Scientific and Technical Information of China (English)

    SUN Yuan; WANG Qing-ming

    2008-01-01

    The indentation method is usefuI in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materials was studied by using the finite element method to find better indentation parameters which are strongly induced by the residual stress.The results show that load-depth curve,plastic pile-up,indentation shape,indentation contact stress and indentation residual stress are affected by different residual stress,and these parameters can be used to deduce the residual stress.Also,a special indentation equipment was developed to analyze the elastic-plastic properties of materials with different residual stress,and the experimental results show a good agreement with the FEM results.For practical application,the elastic-plastic indentation properties of materials with unknown residual stress could be obtained by the developed equipment to deduce the residual stress comprehensively.

  4. Effects of particle size on residual stresses of metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    YAN Yi-wu; GENG Lin; LI Ai-bin

    2006-01-01

    A finite element analysis was carried out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dimensional and random distribution multi-particle unit cell model and plane strain conditions were used. By incorporating the Taylor-based nonlocal plasticity theory, the effect of particle size on the nature, magnitude and distribution of residual stresses of the composites was studied. The magnitude thermal-stress-induced plastic deformation during cooling was also calculated. The results show similarities in the patterns of thermal residual stress and strain distributions for all ranges of particle size. However, they show differences in magnitude of thermal residual stress as a result of strain gradient effect. The average thermal residual stress increases with decreasing particle size, and the residual plastic strain decreases with decreasing particle size.

  5. Study on residual stresses of Ni-based WC coating by laser remelting based on XRD

    Science.gov (United States)

    Chen, Zhigang; Kong, Dejun; Wang, Ling; Zhu, Xiaoron; Zhao, Xiaobing

    2007-12-01

    The morphologies of Ni-based WC coating by flame spraying and laser cladding respectively were observed with scanning electric microscope (SEM), respectively, and residual stresses were measured with XRD (X-ray diffraction). At the same time, the spectra of WC coating were analyzed by XRD, and the forming mechanisms of residual stress were analyzed. Experimental results are shown that residual stresses of Ni-based WC coating by flame spraying are all tensile while those by laser cladding are compressive, chemical-physical reaction of the coating is the cause to result in material volume change, which makes residual stress into compressive from tensile; when residual stress is changed into compressive from tensile, micro-cracks on the coating surface greatly decrease, which is illustrated that the effect of residual stress on micro-crack is obvious; XRD spectra peak of WC coating is only contained Ni and W, and has no impurity and other reaction productions.

  6. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frutos, E. [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)] [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain); Multigner, M. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain); Gonzalez-Carrasco, J.L., E-mail: jlg@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)

    2010-07-15

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  7. Finite element formulation and analysis for an arterial wall with residual and active stresses.

    Science.gov (United States)

    Kida, Naoki; Adachi, Taiji

    2015-08-01

    In this study, for predicting arterial function and pathogenesis from a mechanical viewpoint, we develop a continuum mechanical model of an arterial wall that embodies residual and active stresses following a traditional anisotropic passive constitutive law. The residual and active stresses are incorporated into finite element methods based on a two-field variational principle described in the Lagrangian form. The linearisation of nonlinear weak-form equations derived from this variational principle is then described for developing an original finite element algorithm. Numerical simulations reveal the following: (i) residual stresses lead to a reduction in stress gradient regardless of the magnitude of external load; (ii) active stresses help homogenise stress distribution under physiological external load, but this homogeneity collapses under pathological external load; (iii) when residual and active stresses act together, the effect of the residual stresses is relatively obscured by that of the active stresses. We conclude that residual stresses have minor but persistent mechanical effects on the arterial wall under both physiological and pathological external loads; active stresses play an important role in the physiological functions and pathogenesis of arteries, and the mechanical effect of residual stresses is dependent on the presence/absence of active stresses.

  8. Residual stresses analysis of friction stir welding using one-way FSI simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Wook; Jang, Beom Seon [Seoul National University, Seoul (Korea, Republic of); Song, Ha Cheol [Mokpo National University, Muan (Korea, Republic of)

    2015-03-15

    When certain mechanisms, such as plastic deformations and temperature gradients, occur and are released in a structure, stresses remain because of the shape of the structure and external constraints. These stresses are referred to as residual stresses. The base material locally expands during heating in the welding process. When the welding is completed and cooled to room temperature, the residual stresses are left at nearly the yield strength level. In the case of friction stir welding, the maximum temperature is 80% to 90% of the melting point of the materials. Thus, the residual stresses in the welding process are smaller than those in other fusion welding processes; these stresses have not been considered previously. However, friction stir welding residual stresses are sometimes measured at approximately 70% or above. These residual stresses significantly affect fatigue behavior and lifetime. The present study investigates the residual stress distributions in various welding conditions and shapes of friction stir welding. In addition, the asymmetric feature is considered in temperature and residual stress distribution. Heat transfer analysis is conducted using the commercial computational fluid dynamics program Fluent, and results are used in the finite element structural analysis with the ANSYS Multiphysics software. The calculated residual stresses are compared with experimental values using the X-ray diffraction method.

  9. Residual stress distribution in a lamellar model of the arterial wall.

    Science.gov (United States)

    Haghighipour, Nooshin; Tafazzoli-Shadpour, Mohammad; Avolio, Albert

    2010-01-01

    Excessive wall circumferential stress in arteries caused by luminal pressure leads to endothelial damage and clinical consequences. In addition to circumferential stress, arterial wall contains residual stress with compressive and tensile components on intima and adventitia sides. The intimal compressive component compensates part of tensile stress induced by blood pressure, hence reduces severity of endothelial tension. The opening angle caused by radial cut of arterial ring defines residual stress. In this study, finite element modelling is used to evaluate residual stress in a lamellar model of human aorta with differing opening angle and elastic modulus. Results show non-linear residual stress profiles across wall thickness, influenced by structural and mechanical parameters. Elevation of opening angle from 50° to 90° leads to increase of intimal compressive component compensating up to 32.6% of the pressure-induced tensile stress. Results may be applied in study of endothelial injury caused by excessive stress in situations such as aging, hypertension and atherosclerosis.

  10. Several methods applied to measuring residual stress in a known specimen

    Energy Technology Data Exchange (ETDEWEB)

    Prime, M.B.; Rangaswamy, P.; Daymond, M.R.; Abelin, T.G.

    1998-09-01

    In this study, a beam with a precisely known residual stress distribution provided a unique experimental opportunity. A plastically bent beam was carefully prepared in order to provide a specimen with a known residual stress profile. 21Cr-6Ni-9Mn austenitic stainless steel was obtained as 43 mm square forged stock. Several methods were used to determine the residual stresses, and the results were compared to the known values. Some subtleties of applying the various methods were exposed.

  11. Finite Element Analysis and Experiment Research on Surface Residual Stress of Ceramics Grinding

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The theoretical model of residual stress of ceramics grinding has been established applying thermal elastoplastic mechanics theory. While grinding at the course of grinding wheel moved along workpiece surface the distributing regulation of residual stress can be simplified into thermal elastioplastic mechanical issue, under the action of the both moving centralized force and heat source. Calculating and evaluating of surface residual stress using current procedure of finite element analysis which has been...

  12. Synchrotron strain scanning for residual stress measurement in cold-drawn steel rods

    OpenAIRE

    Ruiz Hervías, Jesús; Atienza Riera, José Miguel; Elices Calafat, Manuel

    2011-01-01

    Cold-drawn steel rods and wires retain significant residual stresses as a consequence of the manufacturing process. These residual stresses are known to be detrimental for the mechanical properties of the wires and their durability in aggressive environments. Steel makers are aware of the problem and have developed post-drawing processes to try and reduce the residual stresses on the wires. The present authors have studied this problem for a number of years and have performed a detailed chara...

  13. Theoretical study on the influence of residual stress on adhesion-induced instability in MEMS

    Institute of Scientific and Technical Information of China (English)

    WANG ShiJi; LI Xian; CHEN ZhengHan

    2009-01-01

    Adhesion and residual stress play a critical role in the performance and reliability of MEMS.The influence of residual stress on the adhesion-induced instability in MEMS is examined within the framework of thin elastic plate theory.The results show that the adhesion-induced instability will be mitigated if the residual stress exists in certain component of MEMS.Moreover,we find that the influence is significant only when the residual stress is under a proper magnitude (β≤20).

  14. X-ray residual stress analysis on machined and tempered HPSN-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Immelmann, S.; Welle, E.; Reimers, W. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1997-11-15

    The residual stress state induced by grinding and tempering of hot pressed silicon nitride (HPSN) samples is studied by X-ray diffraction. The results reveal that the residual stress values at the surface of the samples as well as their gradient within the penetration depth of the X-rays depend on the sintering aid and thus, on the glassy phase content of the HPSN. Tempering of the ground HPSN reduces the residual stress values due to microplastic deformation, whereas an oxidation of the glassy phase leads to the formation of compressive residual stresses. (orig.) 35 refs.

  15. Residual Stress Distribution in PVD-Coated Carbide Cutting Tools-Origin of Cohesive Damage

    Directory of Open Access Journals (Sweden)

    B. Breidenstein

    2012-09-01

    Full Text Available PVD-coatings for cutting tools mean a substantial progress for tool lifetime and cutting conditions. Such tools, however, hold the risk of cost intensive sudden process breaks as a result of cohesive damage. This damage mechanism does not consist of a coating adhesion problem, but it can be traced back to the residual stress distribution in coating and substrate. This paper shows how residual stresses develop during the process chain for the manufacturing of PVDcoated carbide cutting tools. By means of different methods for residual stress determination it is shown that the distribution of residual stresses within the tool finally is responsible for the risk of cohesive tool damage.

  16. RGB photoelasticity applied to the analysis of membrane residual stress in glass

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2012-02-01

    The measurement of residual stresses is of great relevance in the glass industry. The analysis of residual stress in glass is usually made by photoelastic methods because glass is a photoelastic material. This paper considers the determination of membrane residual stresses in glass plates by automatic digital photoelasticity in white light (RGB photoelasticity). The proposed method is applied to the analysis of membrane residual stresses in some tempered glass. The proposed method can effectively replace manual methods based on the use of white light, which are currently provided by some technical standards.

  17. Finite element analysis of welding residual stress of aero engine blisk by controlling heat input

    Institute of Scientific and Technical Information of China (English)

    Zhang Xueqiu; Yang Jianguo; Chen Xuhui; Fang Hongyuan; Qu Shen; Wang Licheng

    2009-01-01

    In order to improve aero engine performance, it is necessary to reduce the welding residual stress of aero engine blisk. In this paper, finite element method was employed to simulate electron beam welding process of blisk, in accordance with the deducing formula (p = kh) , the heat input is changed with the weld depth to control welding residual stress of blisk. The calculation results show that welding residual stress of blisk can be controlled effectively by reducing the heat input on the conditions of meeting the demand of weld penetration and guaranteeing the welding quality, a new theoretical method and some numerical data are provided for controlling welding residual stress of blisk.

  18. Residual stresses in coating-based systems, part Ⅰ:Mechanisms and analytical modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiancheng; WU Yixiong; XU Binshi; WANG Haidou

    2007-01-01

    Thin films and multi-layered coatings comprised of different classes of materials are often used for various fimctional devices. The thermo-mechanical integrity of these systems is becoming a major concern and is strongly related to the residual stresses because of the fabrication processes. In this paper, the sources of the residual stresses in the coating-based systems and the concept of"misfit strain" were briefly reviewed. Analytical models were developed to predict the residual stresses in multi-layered film structures or coating-based systems using the force and moment balances. In addition, the residual stress distributions in the functionally and compositionally graded coatings were also analyzed.

  19. Residual Stresses in Microarc Oxidation Ceramic Coatings on Biocompatible AZ31 Magnesium Alloys

    Science.gov (United States)

    Gu, Yanhong; Xiong, Wenming; Ning, Chengyun; Zhang, Jing

    2012-06-01

    Ceramic coatings have been successfully prepared on biocompatible AZ31 magnesium alloy substrates using microarc oxidation (MAO) technique. Residual stresses attributed to the MgO constituent of the coatings at different oxidation voltages have been evaluated by x-ray diffraction using the sin2 ψ method. It is found that tensile residual stresses were present in the coatings, and they decreased from 1418 to 545 MPa as the oxidation voltages increased from 250 to 350 V. Correlations between the residual stresses and microstructural morphology have been discussed. The residual stress characteristics are attributed to the microcracks and the new phase formation during the MAO process.

  20. Residual stress delaying phase transformation in Y-TZP bio-restorations

    Science.gov (United States)

    Allahkarami, Masoud; Hanan, Jay C.

    2012-01-01

    Engineering favorable residual stress for the complex geometry of bi-layer porcelain-zirconia crowns potentially prevents crack initiation and improves the mechanical performance and lifetime of the dental restoration. In addition to external load, the stress field depends on initial residual stress before loading. Residual stress is the result of factors such as the thermal expansion mismatch of layers and compliance anisotropy of zirconia grains in the process of sintering and cooling. Stress induced phase transformation in zirconia extensively relaxes the residual stress and changes the stress state. The objective of this study is to investigate the coupling between tetragonal to monoclinic phase transformations and residual stress. Residual stress, on the surface of the sectioned single load to failure crown, at 23 points starting from the pure tetragonal and ending at a fully monoclinic region were measured using the micro X-ray diffraction sin2 ψ method. An important observation is the significant range in measured residual stress from a compressive stress of -400 MPa up to tensile stress of 400 MPa and up to 100% tetragonal to monoclinic phase transformation.

  1. Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites

    Science.gov (United States)

    Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi

    2012-01-01

    Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.

  2. The Effect of Welding Residual Stress for Making Artificial Stress Corrosion Crack in the STS 304 Pipe

    Directory of Open Access Journals (Sweden)

    Jae-Seong Kim

    2015-01-01

    Full Text Available The stress corrosion crack is one of the fracture phenomena for the major structure components in nuclear power plant. During the operation of a power plant, stress corrosion cracks are initiated and grown especially in dissimilar weldment of primary loop components. In particular, stress corrosion crack usually occurs when the following three factors exist at the same time: susceptible material, corrosive environment, and tensile stress (residual stress included. Thus, residual stress becomes a critical factor for stress corrosion crack when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. In this study, stress corrosion cracks were artificially produced on STS 304 pipe itself by control of welding residual stress. We used the instrumented indentation technique and 3D FEM analysis (using ANSYS 12 to evaluate the residual stress values in the GTAW area. We used the custom-made device for fabricating the stress corrosion crack in the inner STS 304 pipe wall. As the result of both FEM analysis and experiment, the stress corrosion crack was quickly generated and could be reproduced, and it could be controlled by welding residual stress.

  3. Thermal Stability of Residual Stresses in Ti-6Al-4V components

    Science.gov (United States)

    Stanojevic, A.; Angerer, P.; Oberwinkler, B.

    2016-03-01

    The need for light weight design while maintaining a high safety is essential for many components, especially in the aircraft industry. Therefore, it's important to consider every aspect to reduce weight, improve fatigue life and maintain safety of crucial components. Residual stresses are a major factor which can positively influence components and fulfil all three requirements. However, due to the inconstancy of the behaviour of residual stresses during the life time of a component, residual stresses are often neglected. If the behaviour of residual stresses could be described reliably over the entire life time of a component, residual stresses could be taken into account and components could be optimized even further. Mechanical and thermal loads are the main reason for relaxation of residual stresses. This work covers the thermal stability of residual stresses in Ti-6Al-4V components. Therefore, exposure tests at raised temperatures were performed on specimens with different surface conditions. Residual stresses were measured by x-ray diffraction before and after testing. Creep tests were also carried out to describe the creep behaviour and thereby the ability for residual stress relaxation. A correlation between the creep rate and amount of relaxed stress was found. The creep behaviour of the material was described by using a combination of the Norton Power law and the Arrhenius equation. The Zener-Wert-Avrami model was used to describe the residual stress relaxation. With these models a satisfying correlation between measured and calculated data was found. Hence, the relaxation of residual stresses due to thermal load was described reliably.

  4. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen;

    2014-01-01

    Due to the thermal expansion mismatch between the layers of a Solid Oxide Cell, residual stresses (thermal stresses) develop during the cooling after sintering. Residual stresses can induce cell curvature for asymmetric cells but more importantly they also result in more fragile cells. Depending...... on the loading conditions, the additional stress needed to break the cells can indeed be smaller due to the initial thermo-mechanical stress state. The residual stresses can for a bilayer cell be approximated by estimating the temperature at which elastic stresses start to build up during the cooling, i.......e. the reference temperature (Tref) or the strain difference based on the curvature. This approximation gives good results for bilayers with a defined cooling temperature profile, where the curvature of the bilayer defines a unique balance between the two unknown residual stress states in the two layers...

  5. Mapping residual stresses in PbWO$_{4}$ crystals using photo-elastic analysis

    CERN Document Server

    Lebeau, Michel; Majni, G; Paone, N; Pietroni, P; Rinaldi, D

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO/sub 4/slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residu...

  6. Experimental Research on Residual Stress in Surface of Silicon Nitride Ceramic Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ...

  7. Effect of the residual stresses on surface coercive force in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Garcia, J.A.; Carrizo, J.; Elbaile, L. E-mail: elbaile@pinon.ccu.uniovi.es; Santos, J.D

    2000-06-02

    The dependence of the coercivity H{sub c} on the applied stress {sigma} in the surfaces of various amorphous ribbons with positive magnetostriction is studied. The results obtained show that the behaviour of H{sub c}({sigma}) in the surfaces is the same as in the bulk and the minimum of H{sub c}({sigma}) does not depend on the residual stresses. The residual stresses affect the value of the coercive field but not its stress dependence.

  8. Determination of the residual stress tensor in textured zirconium alloy by neutron diffraction

    Science.gov (United States)

    Sumin, V. V.; Papushkin, I. V.; Vasin, R. N.; Venter, А. M.; Balagurov, А. М.

    2012-02-01

    Results of neutron diffraction studies of crystallographic texture and residual stress tensor components in cold-worked and annealed cylindrical components made from E-110 zirconium alloy are presented. Those components are used as plugs in the fuel elements of the VVER-type reactors; the resident residual stresses influence the durability and safety of the fuel elements. The experiments were carried out on the neutron diffractometers at Dubna (the IBR-2 pulsed reactor) and Berlin Helmholtz-Zentrum (the BER II research reactor). It is shown that the samples have fiber texture that is changed considerably with annealing. The type I residual stress tensors for both samples were calculated by the BulkPathGEO model. The cold worked component has 136-166 MPa tensile residual stress in the radial direction and zero stress along the axial direction. Residual stress values in the annealed component are close to zero.

  9. The effect of multiple bending of wire on the residual stresses of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    R. Kruzel

    2013-01-01

    Full Text Available Steel tire cord, springs and rope wires belong to the group of metal products from which the low residual stresses are required. In this paper the effect of multiple bending of wire on residual stresses of high carbon steel wires has been assessed. It was found that the application of the multi-roller straightening machine in the banding wire process enables to reduce the residual stresses in the drawn wires. It should be also noted that the value of the residual stresses depends on the type of straightener construction. The residual stresses on the basis of stress-strain curve has been determined. It has been stated that the application of seven-rolls straightener gives the best effect of straightening.

  10. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    Science.gov (United States)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-09-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  11. Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition

    Science.gov (United States)

    Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.

    2016-05-01

    Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.

  12. Effects of the Curing Process on the Residual Stress in Solar Cell Module

    Directory of Open Access Journals (Sweden)

    Zidu Li

    2016-03-01

    Full Text Available Panels using solar power require high reliability, and the residual stress in the solar panel has an important effect on its reliability and lifetime. The finite element method was adopted to simulate the impacts of the rectangular solar panel encapsulation process parameters, such as the elastic modulus, the thickness of adhesive, and the curing temperature on the residual stress in the solar cell module. The results show that the residual stress in the solar cell module increases linearly with the increase in these three factors. The residual strain is consistent with that of the stress. The generation mechanism and distribution evolution of stress are discussed in detail. Both the thickness and the elastic modulus of the silicone rubber have significant impact on the residual stress. However, the influence of the curing temperature is less observable.

  13. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang, E-mail: andy304312003@yahoo.com.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Hsieh, Chih-Chun, E-mail: jeromehsieh@gmail.com [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Lai, Hsuan-Han, E-mail: g099066020@mail.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Kuo, Che-Wei, E-mail: teancumxwei@facebook.com [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Wu, Paxon Ti-Yuan, E-mail: paxon1992911@gmail.com [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China)

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residual stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.

  14. Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation.

    Science.gov (United States)

    Zhang, Y; Allahkarami, M; Hanan, J C

    2012-02-01

    Residual stress plays a critical role in failure of ceramic dental crowns. The magnitude and distribution of residual stress in the crown system are largely unknown. Determining the residual stress quantitatively is challenging since the crown has such complex contours and shapes. This work explored the feasibility and validity of measuring residual stress of zirconia and porcelain in ceramic crowns by nanoindentation. Nanoindentation tests were performed on the cross-section of a crown for both porcelain and zirconia along four critical locations: the thickest, thinnest and medium porcelain thicknesses. Zirconia and porcelain pieces, chipped off from the crown and annealed at 400 °C, were used as reference samples. The residual stress was determined by comparing the measured hardness of the stressed sample with that of the reference sample. Nanoindentation impression images were acquired through a scanning probe microscope (SPM) equipped with a Hysitron Triboindenter. Zirconia showed large pile-up. Residual stress is determined along the thickness of crowns at the chosen locations for both porcelain and zirconia. The measured results were compared with the results from X-ray diffraction (XRD) and finite element modeling (FEM). Results show there are large amounts of residual stresses in the dental crown and their magnitude differs between locations due to the complex shape of the crown. The average residual stress readings were as high as -637 MPa and 323 MPa for zirconia and porcelain respectively.

  15. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    Science.gov (United States)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  16. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  17. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen

    2014-01-01

    . This methodology is however not valid for more layers, as several configurations of residual stresses in the layers can result in the same curvature. Therefore the development of residual stresses of co-sintered multilayer cells during the cooling after sintering is here studied by a finite element model...

  18. Analysis of the residual stress in Al2O3-SiC nanocomposites

    Institute of Scientific and Technical Information of China (English)

    王宏志; 高濂; 郭景坤

    1999-01-01

    The residual stress in Al2O3-SiC nanocomposites was measured by the X-ray diffraction method. A mode was established to calculate the residual stress, which accorded with the results measured by the XRD method. The strengthening and toughening mechanism was also discussed.

  19. Comparison of Residual Stress Distributions of Similar and Dissimilar Thick Butt-Weld Plates

    Science.gov (United States)

    Suzuki, Hiroshi; Katsuyama, Jinya; Morii, Yukio

    Residual stress distributions of 35 mm thick dissimilar metal butt-weld between A533B ferritic steel and Type 304 austenitic stainless steel (304SS) with Ni alloy welds and similar metal butt-weld of 304SS were measured using neutron diffraction. Effects of differences in thermal expansion coefficients (CTEs) and material strengths on the weld residual stress distributions were discussed by comparison of the residual stress distributions between the similar and dissimilar metal butt-welds. Residual stresses in the similar metal butt-weld exhibited typical distributions found in a thick butt-weld and they were distributed symmetrically on either side of the weld line. Meanwhile, asymmetric residual stress distributions were observed near the root of the dissimilar metal butt-weld, which was caused by differences in CTEs and yield strengths among both parent materials and weld metals. Transverse residual stress distribution of the dissimilar metal butt-weld was similar trend to that of the similar metal butt-weld, since effect of difference in CTEs were negligible, while magnitude of the transverse residual stress near the root depended on the yield strengths of each metal. In contrast, the normal and longitudinal residual stresses in the dissimilar metal butt-weld distributed asymmetrically on either side of weld line due to influence of differences in CTEs.

  20. Determination of residual stresses within plasma spray coating using Moiré interferometry method

    Science.gov (United States)

    Yi, Jiang; Bin-shi, Xu; Hai-dou, Wang; Ming, Liu; Yao-hui, Lu

    2011-01-01

    In this paper, residual stresses of the Ni-Cr-B-Si coatings prepared by supersonic plasma spray processing were measured by moiré interferometry and X-ray diffraction method. Moiré interferometry method was used in measuring the distribution of residual stresses of the Ni-Cr-B-Si coatings alongside the specimen thickness direction, then the distribution of residual stresses both in the substrate and the coating was also analyzed. Experimental results showed that residual stresses in the coating and the substrate are tensile and compressive separately; residual stresses of the coating are diminished with the increase of the distance from the coating surface and almost zero at the coating-substrate interface; the maximum of compressive residual stresses of the substrate are present to the vicinity of the coating-substrate interface. It could be concluded that residual stresses in the specimen would result from the dismatch of thermophysical properties between the coating and substrate during the spray process, and the distribution of residual stresses of the substrate would be influenced by the sandblasting prior to spraying.

  1. Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals

    Science.gov (United States)

    Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)

    1992-01-01

    The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.

  2. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  3. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    Science.gov (United States)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  4. Residual strain change resulting from stress corrosion in Carrara marble

    Science.gov (United States)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Residual stresses and strains have been shown to play a fundamental role in determining the elastic behavior of engineering materials, yet the effect of these strains on brittle and elastic behavior of rocks remains unclear. In order to evaluate the impact of stored elastic strains on fracture propagation in rock, we undertook a four-month-long three-point bending test on three large 1100 x 100 x 100 mm Carrara Marble samples. This test induced stable low stress conditions in which strains were concentrated at the tip of a saw cut and pre-cracked notch. A corrosive environment was created at the tip of the notch on two samples (M2 and M4) by dripping calcite saturated water (pH ~ 7.5-8). Sample M5 was loaded in the same way, but kept dry. Samples were unloaded prior to failure, and along with an additional non-loaded reference sample (M0), cored into cylindrical subsamples (ø = 50 mm, h = 100 mm) before being tested for changes in residual elastic strains at the SALSA neutron diffractometer at the Institute Laue-Langevin (ILL), Grenoble, France. Three diffraction peaks corresponding to crystallographic planes hkl (110), (104) and (006) were measured in all three spatial directions relative to the notch. Shifts in the diffraction peak position (d) with respect to a strain free state are indicative of intergranular strain, while changes in the width of the peak (FWHM) reflect changes in intragranular strain. We observe distinctly different patterns in residual and volumetric strains in hkℓ (104) and (006) for the dry M5 and wet tested samples (M2 and M4) indicating the presence of water changes the deformation mechanism, while (110) is strained in compression around 200 μstrain in all samples. A broadening of the diffraction peaks (006) and (110) in front of the crack tip is observed in M2 and M4, while M5 shows no changes in the peak width throughout the depth of the sample. We suggest water present at the crack tip increased the rate of corrosion, allowing a

  5. Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6

    Science.gov (United States)

    Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.

    2016-02-01

    The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.

  6. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  7. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    Science.gov (United States)

    Dutta, Shankar; Panchal, Abha; Kumar, Manoj; Pal, Ramjay; Bhan, R. K.

    2016-04-01

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 - 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  8. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic......A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...... material behaviour. Experimental strain release measurements and the analytical solution determine the residual stress state present in the material. A demonstration on neat epoxy is conducted and residual stress predictions of high accuracy and repeatability have been achieved. The precise determination...

  9. Analytical Method for Reduction of Residual Stress Using Low Frequency and Ultrasonic Vibrations

    Science.gov (United States)

    Aoki, Shigeru; Kurita, Katsumi; Koshimizu, Shigeomi; Nishimura, Tadashi; Hiroi, Tetsumaro; Hirai, Seiji

    Welding is widely used for construction of many structures. It is well known that residual stress is generated near the bead because of locally given heat. Tensile residual stress on the surface degrades fatigue strength. On the other hand, welding is used for repair of mold and die. In this case, reduction of residual stress is required because of protection from crack of welded part in mold and die. In this paper, a new method for reduction of residual stress of welded joint is proposed for repair welding of mold and die. In this method, low frequency and ultrasonic vibrations are used during welding. Thick plates are used as specimens of mold and die. Residual stresses are reduced when low frequency and ultrasonic vibrations are used during welding. Experimental results are examined by simulation method using an analytical model. One mass model considering plastic deformation is used as an analytical model. Experimental results are demonstrated by simulation method.

  10. Distribution Characteristics of Weld Residual Stress on Butt Welded Dissimilar Metal Plate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Park, Chi Yong [KEPCO Research Institute, Daejeon (Korea, Republic of); Kim, Maan Won [Korea Hydro and Nuclear Power Co., Seoul (Korea, Republic of); Park, Jai Hak [Chungbuk National University, Cheongju (Korea, Republic of)

    2010-09-15

    In this study, the weld residual stress distribution at a dissimilar-metal welded plate of low alloy carbon steel and stainless steel, which are widely used in nuclear power plants, was characterized. A plate mock-up with butt welding was fabricated using SA 508 low alloy steel and Type 304 stainless steel plates and the residual stresses were measured by the X-ray diffraction method after electrolytic polishing of the plate specimen. Finite element analysis was carried out in order to simulate the butt welding of dissimilar metal plate, and the calculated weld residual stress distribution was compared with that obtained from the measured data. The characteristics of the three-dimensional residual stress distribution in a butt weld of dissimilar metal plates were investigated by comparing the measured and calculated residual stress data.

  11. Prediction of residual stresses in electron beam welded Ti-6Al-4V plates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lianyong; Ge, Keke; Jing, Hongyang; Zhao, Lei; Lv, Xiaoqing [Tianjin Univ. (China); Han, Yongdian [Tianjin Univ. (China). Key Lab. of Advanced Joining Technology

    2017-05-01

    A thermo-metallurgical procedure based on the SYSWELD code was developed to predict welding temperature field, microstructure and residual stress in butt-welded Ti-6Al-4V plate taking into account phase transformation. The formation of martensite was confirmed by the CCT diagram and microstructure in the weld joint, which significantly affects the magnitude of residual stress. The hole drilling procedure was utilized to measure the values of residual stress at the top surface of the specimen, which are in well agreement with the numerical results. Both simulated and test results show that the magnitude and distribution of residual stress on the surface of the plate present a large gradient feature from the weld joint to the base metal. Moreover, the distribution law of residual stresses in the plate thickness was further analyzed for better understanding of its generation and evolution.

  12. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings

    CERN Document Server

    Genzel, C

    2003-01-01

    Physical vapour deposition (PVD) of thin hard coatings on TiN basis is usually performed at rather low temperatures (T sub D < 500 C) far from thermal equilibrium, which leads to high intrinsic residual stresses in the growing film. In contrast to the extrinsic thermal residual stresses which can easily be estimated from the difference of the coefficients of thermal expansion between the substrate and the coating, a theoretical prediction of the intrinsic residual stresses is difficult, because their amount as well as their distribution within the film depend in a very complex way on the deposition kinetics. By the example of strongly fibre-textured PVD (Ti, Cr)N coatings which have been prepared under defined variation of the deposition parameters in order to adjust the residual stress distribution within the coatings, the paper compares different X-ray diffraction techniques with respect to their applicability for detecting residual stresses which are non-uniform over the coating thickness. (orig.)

  13. Measurement of the residual stress in hot rolled strip using strain gauge method

    Science.gov (United States)

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar

    2017-07-01

    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  14. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Huang, Tingting; Yang, Chuanguang; Junjie, Lin; Lin, Jinxin

    2015-12-01

    Inconel-718 has received an extensive using in mold industry. The selective laser melting (SLM) is providing an ideal means for manufacturing mold insert with complex geometrical features and internal architecture. During the manufacturing of high quality mold inserts with conformal cooling channel, the parameters play a vital role in the SLM process. In the study, the Inconel-718 alloys were manufactured by SLM with 2×2 mm2, 3×3 mm2, 5×5 mm2, and 7×7 mm2 island scanning strategies. The microstructure, mechanical property, and residual stress were investigated by optical microscope, tensile test and Vickers micro-indentation, respectively. It can be found that the relative density increased with enlarging the island size; the results on the microstructure indicated that the cracks and more pores were detected in the 22-specimen; whilst the microstructures of all specimens were composed of fine dendritic grains, cellular, and columnar structures; the tensile testing suggested that the ultimate tensile strength and yield strength of all samples was similar; while the outcome of the residual stress showed that the value of residual stress was ranked in the following sequence: 22-specimen<55-specimen<77-specimen<33-specimen. Although the 22-specimen had lower residual stress compared with the other groups, the occurrence of cracks limited its processing application in SLM. Through integrated into account, the 55-scanning strategy is a promising candidate for manufacturing of mold inserts.

  15. Estimation of the Level of Residual Stress in Wires with a Magnetic Method

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available Residual stress present in wires after drawing process affects their magnetic properties. The paper presents a concept to estimate the level of residual stress on the basis of measurements of hysteresis loops. In order to describe the effect qualitatively the Jiles-Atherton-Sablik description is adapted. On the basis of variations in hysteresis loop shapes the average values of residual stress in wires for different single draft values are determined. It was found that the estimated average values by magnetic stresses are comparable with the results of numerical modeling and experimental studies.

  16. Residual stress analysis of an overlay weld on a dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Lee, Ho Jin; Lee, Bong Sang (Korea Atomic Energy Research Institute, Daejeon (Korea)); Jung, I.C.; Byeon, J.G.; Park, K.S. (Doosan Heavy Industries and Construction Co., Changwon (Korea)), e-mail: kskim5@kaeri.re.kr

    2009-07-01

    In recent years, a dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced a cracking due to a primary water stress corrosion (PWSCC). It is well known that one reason for the cracking is the residual stress by the weld. But, it is difficult to estimate the weld residual stress exactly due to many parameters of a welding. In this paper, the analysis of 3 FEM models is performed to estimate the weld residual stress on a dissimilar metal weld exactly

  17. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Hee [Korea Military Academy, Seoul (Korea, Republic of); Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Joung Soo [KAERI, Daejeon (Korea, Republic of)

    2013-07-15

    By using finite element analysis, we proposed an applicable finite element method of laser shock peening (LSP) and discussed various parameters, such as solution time, stability limit, dynamic yield stress, peak pressure, pressure pulse duration, laser spot size, and multiple LSP. The effects of parameters related to the finite element simulation of the LSP process on the residual stresses of 35CD4 30HRC steel alloy are discussed. Parametric sensitivity analyses were performed to establish the optimum processing variables of the LSP process. In addition, we evaluated the effects of initial residual stress, such as welding-induced residual stress field.

  18. Residual stress in sprayed Ni+5%Al coatings determined by neutron diffraction

    CERN Document Server

    Matejicek, J; Gnaeupel-Herold, T; Prask, H J

    2002-01-01

    Coatings of nickel-based alloys are used in numerous high-performance applications. Their properties and lifetimes are influenced by factors such as residual stress. Neutron diffraction is a powerful tool for nondestructive residual stress determination. In this study, through-thickness residual stress profiles in Ni+5%Al coatings on steel substrates were determined. Two examples of significantly different spraying techniques - plasma spraying and cold spraying - are highlighted. Different stress-generation mechanisms are discussed with respect to process parameters and material properties. (orig.)

  19. Simulation on Residual Stress of Shot Peening Based on a Symmetrical Cell Model

    Science.gov (United States)

    WANG, Cheng; HU, Jiacheng; GU, Zhenbiao; XU, Yangjian; WANG, Xiaogui

    2017-03-01

    The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge for the researchers of the symmetrical cell model, is still not established. Based on the dynamic stresses and the residual stresses outputted from the symmetrical cell model, the residual stresses corresponding to full coverage are evaluated by normal distribution analysis. The predicted nodal dynamic stresses with respect to four corner points indicate that the equi-biaxial stress state exists only for the first shot impact. Along with the increase of shot number, the interactions of multiple shot impacts make the fluctuation of the nodal dynamic stresses about an almost identical value more and more obvious. The mean values and standard deviations of the residual stresses gradually tend to be stable with the increase of the number of shot peening series. The mean values at each corner point are almost the same after the third peening series, which means that an equi-biaxial stress state corresponding to the full coverage of shot peening is achieved. Therefore, the mean values of the nodal residual stresses with respect to a specific transverse cross-section below the peened surface can be used to correlate the measured data by X-ray. The predicted residual stress profile agrees with the experimental results very well under 200% peening coverage. An effective correlation method is proposed for the nodal residual stresses predicted by the symmetrical cell model and the shot peening coverage.

  20. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  1. Residual stress determination of rail tread using a laser ultrasonic technique

    Science.gov (United States)

    Wang, Jing; Feng, Qibo

    2015-05-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields.

  2. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  3. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI2 films

    Science.gov (United States)

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G.

    2013-11-01

    The thermally evaporated layer structured BaI2 grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different six (hkl) orientations show stress free anisotropic band gaps (2.48-3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (-0.071 eV/GPa) found to be significantly higher than that calculated (-0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass me*=0.66m0 and the hole effective mass mh*=0.53m0 have been determined from the calculated band structure.

  4. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    CERN Document Server

    Fiori, F

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (ten...

  5. Residual stress analysis of the thermal barrier coating system by considering the plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Jae; Lee, Byung Chai [KAIST, Daejeon (Korea, Republic of); Lim, Jang Gyun; Kim, Moon Ki [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-06-15

    The residual stress is the key factor causing the reliability problem of thermal barrier coating (TBC). The failure of plasma spray coatings due to residual stresses is a serious and recurring problem of TBC. The difference of thermal expansion coefficient between the substrate and each coating combined with temperature evolution and temperature gradients during deposition process determine the residual stress for the whole TBC system. The magnitudes and distributions of the residual stresses are affected by deposition process and deposition characteristics. Most of FEA (finite element analysis) has been performed under the assumption that the multilayer coating system is stacked at once without considering the deposition process during plasma spraying. In this research, FEA for a coupled heat transfer and elastic-plastic thermal stress was performed to obtain the more detailed and reliable result of residual stress of the TBC system using the element activation/deactivation technique. The residual stress variation from the start of plasma spraying to cooling stage with room temperature was obtained systematically considering the deposition process. It can be used as reference data to improve the performance of TBC. In addition, the relationship between residual stress and coating conditions such as cooling rate and time is also examined thoroughly.

  6. Residual stress relaxation in typical weld joints and its effect on fatigue and crack growth

    Institute of Scientific and Technical Information of China (English)

    Liangbi LI; Zhengquan WAN; Zili WANG; Chunyan JI

    2009-01-01

    Many factors influence the fatigue and crack growth behavior of welded joints. Some structures often undergo fairly large static loading before they enter service or variable amplitude cyclic loading when they are in service. The combined effect of both applied stress and high initial residual stress is expected to cause the residual stresses relaxation. Only a few papers seem to deal with appropriate procedures for fatigue analysis and crack growth by considering the combined effect of variable amplitude cyclic loading with residual stresses relaxation. In this article, some typical welded connections in ship-shaped structures are investigated with 3-D elastic-plastic finite element analysis. The effect of residual stress relaxation, initial residual stress, and the applied load after variable amplitude cyclic loading is revealed, and a formula for predicting the residual stress at hot spot quantitatively is proposed. Based on the formula, an improved fatigue procedure is introduced. Moreover, crack growth of typical weld joints considering residual stresses relaxation is studied.

  7. Measurement and Analysis on Hardness and Residual Stress of Heavy Forging after Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hardness and residual stress in the forging for cold roller during low temperature tempering, and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were studied. The stress relaxation constant at low temperature tempering and the elasto-plastisity inversion temperature at high temperature tempering were found. The results are of great importance to determine rational tempering cooling process of heavy forgings.

  8. The role of residual stresses in the performance and durability of prestressing steel wires

    OpenAIRE

    Atienza Riera, José Miguel; Ruiz Hervías, Jesús; Elices Calafat, Manuel

    2012-01-01

    Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress field...

  9. Magnetic Properties and Residual Stress of electroplated Ni

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The charged Ni-63 ions are formed by dissolving metal Ni-63. To establish the coating conditions for Ni-63, non-radioactive metal Ni particles are dissolved in an acid solution and electroplated onto a Ni sheet. A continuous increase in the particle size versus the current density has also been recognized in the DC electrodeposition of nickel coating. The Ni metal is magnetic materials. The saturation of magnetizations for the perpendicular and the parallel direction are influenced by crystalline easy direction. In this research, a plating film with a face centered cubic (fcc) structure was obtained. At the same time, their thickness dependent crystalline easy direction and magnetic properties were investigated by main peak intensity of the X-ray diffraction (XRD) and saturation magnetization. The proposed model can also be applied for radioactive Ni-63 electroplating. Nanocrystalline nickel (Ni) coating were synthesized by direct current electrodeposition at current density from 10 to 25 mA/cm{sup 2} and pH=4. The basic composition of the bath, which was prepared by dissolving Ni metal particles in HCl, was 0.2 M Ni ions. The results showed that the surface roughness decreased as the saccharin addition of 2g/l. The experimental results showed that the increase in the current density had a considerable effect on the large residual stress of the Ni deposits. Crystal orientations of the films were estimated by the degree of high (200){sub N}i orientation in the XRD patterns and M-H curves.

  10. Experimental and numerical study of residual stress evolution in cold spray coating

    Science.gov (United States)

    Ghelichi, R.; Bagherifard, S.; MacDonald, D.; Fernandez-Pariente, I.; Jodoin, B.; Guagliano, M.

    2014-01-01

    Residual stresses are among the most important factors affecting the properties and service lifetime of materials and components. In the cold spray coating process there are two contradictory factors that influence the final residual stress state of the coated material; the impact of the high velocity micron-size particles induces compressive residual stresses, whereas the gas temperature can have an opposing annealing effect on the induced stresses. These two simultaneous phenomena can in turn change the residual stress profile, thus complicate the assessment of the final residual stress state. In this paper the residual stress evolution during cold spray coating process has been studied through experimental measurements and numerical simulations performed on several series of samples coated using different spray process parameters. A detailed finite element (FE) analysis of the process has been developed to calculate the stresses induced through impacts and then the annealing effect has been taken into account through an analytical model. The results of the experiments and numerical-analytical approach confirm the considerable effect of annealing on the eventual stress distribution in the coated samples.

  11. Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray

    Science.gov (United States)

    Rech, Silvano; Trentin, Andrea; Vezzù, Simone; Legoux, Jean-Gabriel; Irissou, Eric; Guagliano, Mario

    2011-01-01

    In this work, the influence of the substrate temperature on the deposition efficiency, on the coating properties and residual stress was investigated. Pure Al coatings were deposited on Al 6061 alloy substrates using a CGT Kinetics 3000 cold spray system. The substrate temperature was in a range between 20 (room temperature) and 375 °C and was kept nearly constant during a given deposition while all the other deposition parameters were unchanged. The deposited coatings were quenched in water (within 1 min from the deposition) and then characterized. The residual stress was determined by Almen gage method, Modified Layer Removal Method, and XRD in order to identify both the mean coating stress and the stress profile through the coating thickness from the surface to the coating-substrate interface. The residual stress results obtained by these three methods were compared and discussed. The coating morphology and porosity were investigated using optical and scanning electron microscopy.

  12. Influence of treatment by vibration in residual stress generated in the laser welding of HSLA and IF steels; Influencia do tratamento de vibracao nas tensoes residuais geradas na soldagem a laser de acos ARBL e IF

    Energy Technology Data Exchange (ETDEWEB)

    Chuvas, T.C.; Fonseca, M.P. Cindra, E-mail: chuvas@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Castello, D.A. [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    The stress relieving treatment by vibration is a new technology under development, which has many advantages over thermal methods. In this work was analyzed the surface residual stress generated in the laser welding of biphasic HSLA and IF steels, both used in the automotive industry. Residual stresses were measured by X-ray diffraction, by the sen{sup 2} {Psi} method. Residual stresses generated in the welding of the samples were tensile at all points measured. After welding, the samples were submitted to the mechanical vibration treatment. Some samples presented a significant reduction in the stress values. The welded joints were also characterized by optical microscopy. (author)

  13. Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need

    Directory of Open Access Journals (Sweden)

    Albert E. Patterson

    2017-04-01

    Full Text Available A useful and increasingly common additive manufacturing (AM process is the selective laser melting (SLM or direct metal laser sintering (DMLS process. SLM/DMLS can produce full-density metal parts from difficult materials, but it tends to suffer from severe residual stresses introduced during processing. This limits the usefulness and applicability of the process, particularly in the fabrication of parts with delicate overhanging and protruding features. The purpose of this study was to examine the current insight and progress made toward understanding and eliminating the problem in overhanging and protruding structures. To accomplish this, a survey of the literature was undertaken, focusing on process modeling (general, heat transfer, stress and distortion and material models, direct process control (input and environmental control, hardware-in-the-loop monitoring, parameter optimization and post-processing, experiment development (methods for evaluation, optical and mechanical process monitoring, imaging and design-of-experiments, support structure optimization and overhang feature design; approximately 143 published works were examined. The major findings of this study were that a small minority of the literature on SLM/DMLS deals explicitly with the overhanging stress problem, but some fundamental work has been done on the problem. Implications, needs and potential future research directions are discussed in-depth in light of the present review.

  14. The effect of residual stress on performance of high temperature coatings

    Science.gov (United States)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  15. Finite Element Simulation of Residual Stresses in Butt Welding of Two AISI 304 Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Gurinder Singh Brar

    2013-06-01

    Full Text Available Welding is one of the most reliable and efficient permanent metal joining processes in the industry. When two plates are joined by welding, a very complex thermal cycle is applied to the weldment. Thermal energy applied results in irreversible elastic-plastic deformation and consequently gives rise to the residual stresses in and around fusion zone and heat affected zone (HAZ. It is well established fact that structural integrity of components is substantially affected by the residual stresses when subjected to thermal and structural loads. Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of residual stresses. Using finite element based commercially available software, coupled thermal-mechanical three dimensional finite element model was developed by making an approximate geometry of the butt welded joint. Finite element analysis was performed to understand the complete nature of residual stresses in manual metal arc welded joint of AISI 304 stainless steel plate. Variation of residual stress in the plates in the heat affected zone was also being studied. The results obtained by finite element method agree well with those from X-ray diffraction method as published in literature for the prediction of residual stresses.

  16. Residual stresses in high-velocity oxy-fuel metallic coatings

    Science.gov (United States)

    Totemeier, T. C.; Wright, R. N.; Swank, W. D.

    2004-06-01

    X-ray based residual stress measurements were made on type 316 stainless steel and Fe3Al coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 µm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Differences in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3Al coatings. Deposition efficiency for both materials is maximized at an intermediate (˜600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.

  17. CALCULATION OF RESIDUAL STRESSES RESULTING FROM BENDING OF COLD FORMED STEEL BARS

    Directory of Open Access Journals (Sweden)

    Gökmen ATLIHAN

    2007-01-01

    Full Text Available In this study, the residual stresses in the forming of the seed capsule which used in manifacturing the ferforje was carried out. These residual stresses were made up in the process which bars with 8 mm diameter were converted to 6 x 6 mm2 square profiles. This process was actually a Rolling process performed at three levels. Plastic constant and strain hardening parameter were calculated at each level . Then, elasto-plastic stress analysis of the bar subjected to bending was analzed by means of Newton Cotes formulation. The load value that cause residual stresses on the steel bar was assumed to be constant in elasto-plastic analysis. Elastic, plastic and residual stresses under the load value were determined in each level and results were presented in the graphical format.

  18. Residual stresses in LENS[reg] components using neutron diffraction and contour method

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, P. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States)]. E-mail: partha@lanl.gov; Griffith, M.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Prime, M.B. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Rogge, R.B. [National Research Council of Canada, Chalk River Laboratories Chalk River, Ont., K0J 1J0 (Canada); Edwards, J.M. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Sebring, R.J. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States)

    2005-06-15

    During manufacturing of components by laser engineered net shaping (LENS[reg]), a solid freeform fabrication process, the introduction of residual stresses causes deformation or in the worst case, cracking. The origin is attributed to thermal transients encountered during solidification. In the absence of reliable predictive models for the residual stresses, measurements are necessary. Residual stresses were measured in LENS[reg] samples of 316 stainless steel and Inconel 718 having simple geometrical shapes by both neutron diffraction and the contour methods. The results by the two methods are compared and discussed in the context of the growth direction during the LENS[reg] process. Surprisingly, the residual stresses are practically uni-axial, with high stresses in the growth direction.

  19. Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel

    Science.gov (United States)

    Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.

    2016-09-01

    In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.

  20. Effect of CaO content on residual stress of CAS glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    XIE Jun; CHENG Jin-shu; LONG Xin-jiang; YANG Shu-zhen

    2006-01-01

    The mismatch in thermal expansion coefficient between crystalline phase and glass phase can result in large thermal stresses during thermal processing,as well as the low thermal conductivity,which is the most troublesome in the production of the CaO-Al2O3-SiO2 glass-ceramic. CaO content may influence the residual stress in the system. Therefore X-ray diffraction (XRD) 'sin2ψ' method was used to calculate the residual stress in samples containing various contents of CaO. The relationship between CaO content and residual stress in CAS system was investigated. Finally reasons causing such residual stress were analyzed.

  1. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    Science.gov (United States)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  2. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    Energy Technology Data Exchange (ETDEWEB)

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  3. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  4. Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings

    Science.gov (United States)

    Arabgol, Z.; Assadi, H.; Schmidt, T.; Gärtner, F.; Klassen, T.

    2014-01-01

    Residual stress in coatings has significant effect on their performance. In cold-sprayed coatings, in which particles impact the substrate at high velocity in solid state, in-plane residual stresses are usually conceived to be compressive. In this research, analysis of residual stresses in cold-sprayed deposits is performed by analytical and numerical modeling. The influence of various parameters such as the dimensions and elastic properties of the coating and the substrate on the residual stress are analyzed. In addition, the amount of heat input as a key parameter in the build-up of the residual stress is examined. It has been found that the heat input and the associated thermal history have a major influence on the final distortion and the residual stress, to an extent that the in-plane stress can in some cases change from compressive to tensile. Based on these results, a simple model is put forward for the prediction of the final state of the stress and distortion in cold-sprayed flat components.

  5. Residual stress characteristics of gradation coating components. Keisha sosei coating buzai no zanryu oryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Takahashi, M.; Miyazaki, M.; Kashiwaya, H. (Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.)

    1992-10-15

    Effect of the material characteristics and the coating layer thickness on residual stress was studied by using nondimensional thermal stress parameters. As for two layer composites, stress singularities at the edge of the interface of the direct bonding composites has decreased with the gradation composition. It is revealed that a residual stress, with bigger absolute value than two layer composites, has been working along the inner direction of the disk in gradation coating composite's layer surface. Dimensionless residual stress [delta], which works on the coating layer surface of the central part of gradation coating composite, has decreased with the increase of coating thickness ratio t/T(t; coating thickness, T; substrate thickness), and has been significant with the increase of Young's modulus ratio. The maximum residual stress that works on the coating surface in the central part of the gradation coating composite has been higher than the residual stress that works on the direct bonding surface of two layer composite. The dimensionless residual stress deformation in case of gradation coating composites has increased with the increase of coating thickness ratio and Young's modulus ratio. 7 refs., 12 figs.

  6. Residual Stress Evaluation of Weld Inlay Process on Reactor Vessel Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2015-10-15

    Weld overlay, weld inlay and stress improvement are mitigation technologies for butt joints. Weld overlay is done on pressurizer nozzles which are the highest potential locations occurring PWSCC due to high temperature in Korea. Reactor vessel nozzles are other big safety concerns for butt joints. Weld overlay and stress improvement should be so difficult to apply to those locations because space is too limited. Weld inlay should be one of the solutions. KEPCO KPS has developed laser welding system and process for reactor nozzles. Welding residual stress analysis is necessary for flaw evaluation. United States nuclear regulatory commission has calculated GTAW(Gas Tungsten Arc Welding) residual stress using ABAQUS. To confirm effectiveness of weld inlay process, welding residual stress analysis was performed. and difference between GTAW and LASER welding process was compared. Evaluation of weld inlay process using ANSYS and ABAQUS is performed. All of the both results are similar. The residual stress generated after weld inlay was on range of 450-500 MPa. Welding residual stresses are differently generated by GTAW and LASER welding. But regardless of welding process type, residual tensile stress is generated on inside surface.

  7. Effect of Residual Stress on Divergence Instability of Rectangular Microplate Subjected to Nonlinear Electrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Ghader Rezazadeh

    2007-07-01

    Full Text Available In this paper, the effect of residual stress on divergence instability of a rectangular microplate subjected to a nonlinear electrostatic pressure for different geometrical properties has been presented. After deriving the governing equation and using of Step-by-Step Linearization Method (SSLM, the governing nonlinear equation has been linearized. By applying the finite difference method (FDM to a rectangular mesh, the linearized equation has been discretized. The results show, residual stresses have considerable effects on Pull-in phenomena. Tensile residual stresses increase pull-in voltage and compressive decrease it. The effect of different geometrical properties on divergence instability has also been studied.

  8. Research on the residual stress of glass ceramic based on rotary ultrasonic drilling

    Science.gov (United States)

    Sun, Lipeng; Jin, Yuzhu; Chen, Jianhua

    2016-10-01

    In the process of machining, the glass ceramic is easy to crack and damage, etc. And the residual stress in the machined surface may cause the crack to different extent in the later stage. Some may even affect the performance of the product. The residual stress of rotary ultrasonic drilling and mechanical processing is compared in different machining parameters (spindle speed, feed rate). The effects of processing parameters and methods are researched, in order to reduce the residual stress in the mechanical processing of glass ceramic, and provide guidance for the actual processing.

  9. Experimental study of residual stresses relaxation in ring details during multicyclic loading

    Science.gov (United States)

    Korolev, A. V.; Korolev, A. A.; Balaev, A. F.; Savran, S. A.; Yakovishin, A. S.

    2016-11-01

    The paper presents the results of experimental studies of vibro-mechanical mechanism of residual stresses relaxation in ringed parts. There was described the mechanism of vibro-mechanical relaxation that includes machining of ringed parts among three rotating rolls under pressure. This leads to multicyclic loading due to which there occurs relaxation of residual stresses. To study the process of vibro-mechanical relaxation a complete factorial experiment was carried out. As a result of experiments we obtained empirical dependence of residual stresses on processing factors.

  10. A robust method to measure residual stress in micro-structure

    Institute of Scientific and Technical Information of China (English)

    KANG Yi-lan; QIU Wei; LEI Zhen-kun

    2007-01-01

    An experimental investigation on the residual stress in porous silicon micro-structure by means of micro-Raman spectroscopy is presented. It is shown by detecting the Raman peak shifts on the surfaces and cross-sections of electrochemical etched porous silicon samples with different porosities that serious residual stresses distribute complicatedly within the whole porous silicon structure. It is proved that micro-Raman spectroscopy is an effective method for residual stress testing on the micro-structures applied in optoelectronics and microelectronics.

  11. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  12. Discussion and calculation on welding residual longitudinal stress and plastic strain by finite element method

    Institute of Scientific and Technical Information of China (English)

    Hong-yuan FANG; Xue-qiu ZHANG; Jian-guo WANG; Xue-song LIU; Shen QU

    2009-01-01

    In recent years, some researchers have put forward the new viewpoint that the weld is merely formed during the cooling process, not concerned with the heating process. According to this view, it can be concluded that it is not the compressive but the tensile plastic strain that may remain in the weld. To analyze the formation mechanism of the longitudinal residual stress and plastic strain, finite element method (FEM) is employed in this paper to model the welding longitudinal residual stress and plastic strain. The calculation results show that both the residual compressive plastic strain and the tensile stress in the longitudinal direction can be found in the weld.

  13. Fracture toughness and evaluation of coating strength with an initial residual stress field

    Energy Technology Data Exchange (ETDEWEB)

    Byakova, A.V.; Gorbach, V.G. [Polytechnic Institute, Kiev (Ukraine)

    1994-09-01

    The effect of residual elastic stresses on the geometry of cracks which arise with contact and spontaneous failure of brittle coatings made of high-strength compounds is studied. Conditions are established for the correctness of fracture toughness K{sub lc} tests with indentation of a standard Vickers pyramid as applied to surface layers with an inhomogeneous structure and an initial residual stress field. Taking account of the anisotropy of fracture toughness established by experiment a reliable approach is suggested for evaluating the brittle strength of coatings in the presence of residual stresses.

  14. Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study

    Science.gov (United States)

    Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.

    2016-05-01

    A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.

  15. International Institute of Welding work on residual stress and its application to industry

    Energy Technology Data Exchange (ETDEWEB)

    Janosch, Jean-Jacques [Caterpillar France, 40 Avenue Leon-Blum, 38041 Grenoble (France)], E-mail: janosch_jean-jacques@cat.com

    2008-03-15

    This paper gives an overview of the International Institute of Welding (IIW) activity on residual stress and distortion prediction (RSDP) in welded structures. The overall goal of the activity is to define an IIW recommendation for prediction and determination of welding residual stress and distortion. The three main collaborative activities that were launched to support this goal (a modelling round robin, a measurement technique benchmark and definition of a compendium) are described. It is concluded that significant progress has been achieved by participants to improve the modelling approaches, and to optimize experimental technologies to calculate and measure accurately the residual stress distribution and distortion in welded assemblies.

  16. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, C., E-mail: csoriano@tekniker.es [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain); Leunda, J.; Lambarri, J.; Garcia Navas, V.; Sanz, C. [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain)

    2011-06-01

    A study of the laser surface hardening process of two austempered ductile iron grades, with different austempering treatments has been carried out. Hardening was performed with an infrared continuous wave Nd:YAG laser in cylindrical specimens. The microstructure of the laser hardened samples was investigated using an optical microscope, microhardness profiles were measured and surface and radial residual stresses were studied by an X-ray diffractometer. Similar results were achieved for both materials. A coarse martensite with retained austenite structure was found in the treated area, resulting in a wear resistant effective layer of 0.6 mm to 1 mm with a microhardness between 650 HV and 800 HV. Compressive residual stresses have been found at the hardened area being in agreement with the microhardness and microstructural variations observed. The achieved results point out that the laser surface hardening is a suitable method for improving the mechanical properties of austempered ductile irons.

  17. Influence of processing methods on residual stress evolution in coated conductors

    Science.gov (United States)

    Cheon, J. H.; Shankar, P. S.; Singh, J. P.

    2005-01-01

    Several processing methods are under study for deposition of different layers of YBa2Cu3O7-x- (YBCO-) coated conductors. The effect of these processing techniques on residual stress evolution in thin films of yttria-stabilized zirconia (YSZ) and YBCO was evaluated by measurement of the residual stresses using x-ray diffraction (XRD). The YSZ films (textured and nontextured) were deposited on Hastelloy C substrates by ion-beam-assisted deposition (IBAD), and the YBCO films were deposited on lanthanum aluminate (LaAlO3) substrates by pulsed laser deposition (PLD) and sol-gel techniques. The measured residual stresses in the YSZ films (both textured and nontextured) were more compressive than the calculated thermal mismatch stress between Hastelloy C and YSZ, apparently due to intrinsic compressive stresses induced in the YSZ films during IBAD processing. In addition, a lower compressive residual stress was measured in the textured YSZ film compared to the nontextured film because of a reduction in the intrinsic compressive stress in the textured film. PLD processing of YBCO films on LaAlO3 substrate resulted in a lower tensile residual stress (in the YBCO film) than the calculated thermal mismatch stress between YBCO and LaAlO3. This difference is attributed to the generation of intrinsic compressive stresses in the YBCO film during PLD, in a manner similar to IBAD. In comparison to IBAD and PLD, sol-gel processing apparently generated negligible intrinsic stresses, resulting in a good agreement between the measured residual stress in the YBCO film and the calculated thermal mismatch stress between YBCO and LaAlO3.

  18. Standard test method for determining residual stresses by the hole-drilling strain-gage method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining residual stress profiles near the surface of an isotropic linearly elastic material. The test method is applicable to residual stress profile determinations where in-plane stress gradients are small. The stresses may remain approximately constant with depth (“uniform” stresses) or they may vary significantly with depth (“non-uniform” stresses). The measured workpiece may be “thin” with thickness much less than the diameter of the drilled hole or “thick” with thickness much greater than the diameter of the drilled hole. Only uniform stress measurements are specified for thin workpieces, while both uniform and non-uniform stress measurements are specified for thick workpieces. 1.2 Stress Measurement Range: 1.2.1 The hole-drilling method can identify in-plane residual stresses near the measured surface of the workpiece material. The method gives localized measurements that indicate the...

  19. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    Directory of Open Access Journals (Sweden)

    Hamák I.

    2010-06-01

    Full Text Available Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  20. Influence of ion irradiation on internal residual stress in DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Karaseov, Platon A., E-mail: platon.karaseov@rphf.spbstu.r [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Podsvirov, Oleg A.; Karabeshkin, Konstantin V. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Vinogradov, Andrei Ya. [Ioffe Physicotechnical Institute RAS, Polytechnicheskaya 26, 195252 St. Petersburg (Russian Federation); Azarov, Alexander Yu. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Karasev, Nikita N. [State University of Information Technologies, Mechanics and Optics, Sablinskaya Str. 14, 197101 St. Petersburg (Russian Federation); Titov, Andrei I.; Smirnov, Alexander S. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation)

    2010-10-01

    The dependence of internal residual stress in thin diamond-like carbon films grown on Si substrate by PECVD technique on most important growth parameters, namely RF-power, DC bias voltage and substrate temperature, is described. Results show that compressive stress reaches the highest value of 2.7 GPa at low RF-power and DC bias. Increase of substrate temperature from 250 to 350 {sup o}C leads to nonlinear increase of stress value. Inhomogeneity of residual stress along the film surface disappears when film is deposited at temperatures above 275 {sup o}C. Post-growth film irradiation by P{sup +} and In{sup +} ions cause decrease of compressive stress followed by its inversion to tensile. For all ion energy combinations used residual stress changes linearly with normalized fluence up to 0.2 DPA with slope (8.7 {+-} 1.3) GPa/DPA.

  1. Birefringence and residual stress induced by CO2 laser mitigation of damage growth in fused silica

    Science.gov (United States)

    Gallais, L.; Cormont, P.; Rullier, J. L.

    2009-10-01

    We investigate the residual stress field created near mitigated sites and its influence on the efficiency on the CO2 laser mitigation of damage growth process. A numerical model of CO2 laser interaction with fused silica is developed that take into account laser energy absorption, heat transfer, thermally-induced stress and birefringence. Specific photoelastic methods are developed to characterize the residual stress near mitigated sites in fused silica samples. The stress distribution and quantitative values of stress levels are obtained for sites treated with the CO2 laser in various conditions of energy deposition (beam size, pulse duration, incident power). The results obtained also show that the presence of birefringence/residual stress around the mitigated sites has a critical effect on their laser damage resistance.

  2. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Sigdel, A.K. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Gennett, T.; Berry, J.J.; Perkins, J.D.; Ginley, D.S. [National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Packard, C.E., E-mail: cpackard@mines.edu [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2013-10-15

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter–material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity–growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  3. On the influence of residual stress on nano-mechanical characterization of thin coatings.

    Science.gov (United States)

    Sebastiani, M; Bemporad, E; Carassiti, F

    2011-10-01

    In the present paper, the effect of residual stress on the mechanical behavior of thin hard coatings has been investigated by a new methodology based on the combined use of focused ion beam (FIB) micro-machining techniques and nanoindentation testing. Surface elastic residual stress were determined by nanoindentation testing on Focused Ion Beam (FIB) milled micro-pillars. The average residual stress present in a 3.8 microm CAE-PVD TiN coating on WC-Co substrate was calculated by the comparison of two different sets of load-depth curves, the first one obtained at centre of stress relieved pillars, the second one on the undisturbed (residually stressed) surface. Results for stress measurement were in good agreement with the estimate obtained by XRD (sin2 psi method) analysis on the same sample, adopting the same elastic constants. In addition, nanoindentation on stress relieved pillars also allowed to perform a more accurate evaluation of elastic modulus and hardness of the coating. The effect of residual stress on crack propagation modes was quantitatively analyzed by high-load nanoindentation and application of energy methods for fracture toughness evaluation. It is found that compressive residual stress plays a relevant role in determining the fracture behavior and failure modes of the coating. Finally, Microstructural observations of the deformation mechanisms of the TiN coating were performed by TEM analysis on the cross section of the indentation, obtained by FIB lamella thinning. Results showed that plastic deformation at the nanoscale essentially occurs by formation of shear bands inside the columnar grains, independently of residual stress. A transition between intra-granular shear deformation and columnar grain sliding is also observed as a function of the applied load.

  4. Characterization of the Residual Stress State in Commercially Fully Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2010-01-01

    Toughened glass is often used in load carrying elements due to the relatively high tensile strength compared with float glass. The apparent tensile strength of toughened glass is a combination of the pure material strength and the residual stresses imposed by the toughening process. This paper...... is concerned with an experimental characterization of the residual stress state for toughened glass. Results for the variation of residual stresses within 32 square specimens with a side length of 300 mm are investigated. The specimens varied in thickness and one group was glass with low iron content....... The photoelastic constant was estimated from a four-point bending test. The experimental results revealed large variations in the residual stress state within each specimen and between groups of different thicknesses. The results are compared with a nonstandard fragmentation test, showing that the fragment size...

  5. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  6. THE COMPARISON OF THE RESIDUAL STRESSES BETWEEN CARBURIZED AND ONLY QUENCHED STEELS

    Directory of Open Access Journals (Sweden)

    Osman ASİ

    2001-02-01

    Full Text Available In this study, the residual stresses developing in carburized and only quenched steel of SAE 8620 (21NiCrMo2 which is widely used as a carburized steel (shafts, gears etc. was investigated. Carburizing programs was carried out in gas atmosphere for 45 minute at 940 °C. X-ray analysis was used to determine residual stress in the microstructures of the only quenched and carburized specimens. The results of x-ray analysis have shown that while the carburized specimens have a residual compressive stress at the surface -551N/mm 2 , the only quenched specimens have a residual compressive stress at the surface -125 N/mm 2 .

  7. Laser Treatment of HVOF Coating: Modeling and Measurement of Residual Stress in Coating

    Science.gov (United States)

    Arif, A. F. M.; Yilbas, B. S.

    2008-10-01

    High-velocity oxy-fuel (HVOF) coating of diamalloy 1005 (similar to Inconel 625 alloy) onto the Ti-6Al-4V alloy is considered and laser-controlled melting of the coating is examined. The residual stress developed after the laser treatment process is modeled using the finite element method (FEM). The experiment is conducted to melt the coating using a laser beam. The residual stress measurement in the coating after the laser treatment process is realized using the XRD technique. The morphological and metallurgical changes in the coating are examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the residual stress reduces at the coating-base material interface and the residual stress predicted agrees with the XRD measurements. A compact and crack-free coating is resulted after the laser treatment process.

  8. Calculation of residual stresses by means of a 3D numerical weld simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nicak, Tomas; Huemmer, Matthias [AREVA NP GmbH, Postfach 1109 (Germany)

    2008-07-01

    The numerical weld simulation has developed very fast in recent years. The problem complexity has increased from simple 2D models to full 3D models, which can describe the entire welding process more realistically. As recent research projects indicate, a quantitative assessment of the residual stresses by means of a 3D analysis is possible. The structure integrity can be assessed based on the weld simulation results superimposed with the operating load. Moreover, to support the qualification of welded components parametric studies for optimization of the residual stress distribution in the weld region can be performed. In this paper a full 3D numerical weld simulation for a man-hole drainage nozzle in a steam generator will be presented. The residual stresses are calculated by means of an uncoupled transient thermal and mechanical FE analysis. The paper will present a robust procedure allowing reasonable predictions of the residual stresses for complex structures in industrial practice. (authors)

  9. Modelling the Effects of Surface Residual Stresses on Fatigue Behavior of PM Disk Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A finite element based model will be developed and validated to capture the evolution of residual stresses and cold work at machined features of compressor and...

  10. A Novel Method to Decrease Micro-residual Stresses of Fibrous Composites by Adding Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    M. M. Shokrieh

    2013-12-01

    Full Text Available In this research, a novel method to decrease micro-residual stresses of fibrous composites by adding carbon nanotubes (CNTs is proposed in detail. The negative coefficient of thermal expansion and the high young’s modulus of CNTs can be utilized to counterbalance the process induced residual stresses in composites. To this end, first, the effects of adding CNTs to the matrix of fibrous composites in reducing the coefficient of thermal expansion (CTE and increasing of young’s modulus of matrix are studied theoretically. Then, a three phase micromechanical model (the energy method is used to model the effect of CNT in reducing the residual stresses of fibrous composites. The results show that by addition of CNTs, enhancements in properties of matrix are obtained and lead to decrease in micro-residual stresses of matrix and fiber up to 72%.

  11. EFFECT OF RESIDUAL STRESS ON THE MARTENSITIC TRANS- FORMATION OF SPUTTER-DEPOSITED SMA THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; D. Xu; B.C. Cai

    2002-01-01

    TiNi thin films were sputter-deposited on circular single-crystal silicon substrates un-der various sputtering parameters. The crystal structure and residual stress of the as-deposited films were determined by X-ray diffraction and substrate-curvature method.The phenomenon of stress-suppressed martensitic transformation was observed. It isconsidered that the residual stresses in SMA thin films based on circular substratesact as balanced biaxial tensile stresses. The status of equilibrant delays the align-ment of self-accommodated variants and the volume shrinkage during the martensitictransformation.

  12. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    Science.gov (United States)

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-04-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  13. An inverse finite element method for determining residual and current stress fields in solids

    Science.gov (United States)

    Tartibi, M.; Steigmann, D. J.; Komvopoulos, K.

    2016-11-01

    The life expectancy of a solid component is traditionally predicted by assessing its expected stress cycle and comparing it to experimentally determined stress states at failure. The accuracy of this procedure is often compromised by unforeseen extremes in the loading cycle or material degradation. Residually stressed parts may either have longer or shorter lifespans than predicted. Thus, determination of the current state of stress (i.e., the residual stress in the absence of external loading) and material properties is particularly important. Typically, the material properties of a solid are determined by fitting experimental data obtained from the measured deformation response in the stress-free configuration. However, the characterization of the mechanical behavior of a residually stressed body requires, in principle, a method that is not restricted to specific constitutive models. Complementing a recently developed technique, known as the reversed updated Lagrangian finite element method (RULFEM), a new method called estimating the current state of stress (ECSS) is presented herein. ECSS is based on three-dimensional full-field displacement and force data of a body perturbed by small displacements and complements the first step of the incremental RULFEM method. The present method generates the current state of stress (or residual stress in the absence of external tractions) and the incremental elasticity tensor of each finite element used to discretize the deformable body. The validity of the ECSS method is demonstrated by two noise-free simulation cases.

  14. An inverse finite element method for determining residual and current stress fields in solids

    Science.gov (United States)

    Tartibi, M.; Steigmann, D. J.; Komvopoulos, K.

    2016-08-01

    The life expectancy of a solid component is traditionally predicted by assessing its expected stress cycle and comparing it to experimentally determined stress states at failure. The accuracy of this procedure is often compromised by unforeseen extremes in the loading cycle or material degradation. Residually stressed parts may either have longer or shorter lifespans than predicted. Thus, determination of the current state of stress (i.e., the residual stress in the absence of external loading) and material properties is particularly important. Typically, the material properties of a solid are determined by fitting experimental data obtained from the measured deformation response in the stress-free configuration. However, the characterization of the mechanical behavior of a residually stressed body requires, in principle, a method that is not restricted to specific constitutive models. Complementing a recently developed technique, known as the reversed updated Lagrangian finite element method (RULFEM), a new method called estimating the current state of stress (ECSS) is presented herein. ECSS is based on three-dimensional full-field displacement and force data of a body perturbed by small displacements and complements the first step of the incremental RULFEM method. The present method generates the current state of stress (or residual stress in the absence of external tractions) and the incremental elasticity tensor of each finite element used to discretize the deformable body. The validity of the ECSS method is demonstrated by two noise-free simulation cases.

  15. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    Science.gov (United States)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  16. Residual Stress Analysis of Ceramic Thermal Barrier Coating Based on Thermal Spray Process

    Science.gov (United States)

    Arai, Masayuki; Wada, Eiji; Kishimoto, Kikuo

    Residual stress is generated in ceramic thermal barrier coatings (TBCs), which were sprayed by a plasma spray technology, due to the difference in coefficients of thermal expansion between the coating and the substrate. Previous experimental results obtained by the X-ray diffraction method indicated that the residual stress at the ceramic coating surface is tensile and could lead to TBC failure such as cracking and spalling of the ceramic coating. In this study, a numerical model that can predict the residual stress exactly is proposed by taking into account a thermal spray process. This numerical model is a layer-buildup model based on a shear-lag theory, and the residual stress contribution comes from two kinds of the following stress components: (1) quenching stress, which was generated in molten spray particles impinged onto the substrate, and (2) thermal stress, which was generated due to differences in thermal expansion between the deposited particle and the underlying substrate. It is shown herein that residual stress predicted by the proposed numerical model coincided with the experimental one obtained by the strain gage technique, with a good level of accuracy.

  17. Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prime, Michael Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeWald, Adrian T. [Hill Engineering, LLC, Rancho Cordova, CA (United States)

    2015-12-08

    This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.

  18. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    Science.gov (United States)

    2008-10-01

    thermal, and mechanical properties of metals. In addition, surface treatments such as shot peening (SP), low plasticity burnishing (LPB) and...plasticity burnishing (LPB), which are termed low cold work surface treatment processes, are more resistant to thermal relaxation of residual stresses than...analysis and LCF test results for peened bolt hole and dovetail configurations,” Proceedings of ASM’s Conference on Residual Stress – In Design

  19. X-ray residual stress measurement of laminated coating layers produced by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Masayuki (Faculty of Engineering, Tokushima Univ. (Japan)); Hanabusa, Takao (Faculty of Engineering, Tokushima Univ. (Japan)); Fujiwara, Haruo (Faculty of Engineering, Tokushima Univ. (Japan))

    1993-12-03

    The present paper describes residual stress in laminated layers deposited by thermal spraying on a low carbon steel substrate. Laminated layers were made of Al[sub 2]O[sub 3]-NiCr or Al[sub 2]O[sub 3]-NiAl with various combinations of mixing ratios. X-Ray diffraction was used to measure residual stress in the outermost surface layer. The results of finite-element method (FEM) thermal stress analysis were compared with the experimental results of X-ray measurements. From the X-ray stress measurements, tensile residual stress (100-300 MPa) was measured in the as-coated surface layers of all specimens. The effect of annealing on residual stress variation was also examined. In the case of the Al[sub 2]O[sub 3] (100%) layer of the Al[sub 2]O[sub 3]-NiCr system, residual stress of surface layers was not greatly affected by the method of lamination and did not change significantly upon annealing. In contrast, in the layer with mixed Al[sub 2]O[sub 3] and NiAl, residual stress in the as-coated layer was influenced by the mixing ratio of Al[sub 2]O[sub 3] and NiAl. Furthermore, residual stresses were gradually reduced in both the Al[sub 2]O[sub 3] and Ni phase following annealing. FEM calculation revealed that large compressive residual stress (about -2 GPa) was produced in the 100% Al[sub 2]O[sub 3] layer after a full annealing treatment. The value of residual stress depends on the difference between the thermal expansion coefficients of the laminated layers and the substrate. This result was exactly opposite to the experimental results for the fully annealed Al[sub 2]O[sub 3]-NiCr system. However, residual stresses in the mixed layer (Al[sub 2]O[sub 3]-NiAl) depended on the mixing ration of Al[sub 2]O[sub 3] and NiAl. This agrees qualitatively with the experimental results. (orig.)

  20. Residual stress characteristics in a non-circular drawing sequence of pearlitic steel wire

    Science.gov (United States)

    Baek, Hyun Moo; Hwang, Sun Kwang; Son, Il-Heon; Im, Yong-Taek

    2016-11-01

    In this paper, characteristics of residual stress in pearlitic steel wire drawn by a non-circular drawing (NCD) sequence with two processing routes, NCDA and NCDB, were experimentally and numerically investigated up to the 12th pass in comparison with conventional wire drawing (WD). For experimental investigation of the axial residual stress at the surface of the drawn wire, destructive (deflection) and non-destructive methods were employed. According to the experimental results, axial surface residual stress of the drawn wire by the NCD sequence was lower and more homogeneous compared to the conventional WD. Based on the elasto-plastic numerical simulation results from the surface to the center of the drawn wire using a commercial DEFORM-3D, an empirical relationship between residual stress and reduction of area was determined to predict the residual stress evolution in the multi-pass WD, NCDA, and NCDB, in that order. From the results of this investigation, it can be construed that the NCD sequence, especially the NCDB, might be helpful in improving the residual stress characteristics of pearlitic steel wire to improve its mechanical behavior and service life.

  1. Residual Stress Analysis of Laser-Drilled Thermal Barrier Coatings Involving Various Bond Coats

    Science.gov (United States)

    Guinard, C.; Montay, G.; Guipont, V.; Jeandin, M.; Girardot, J.; Schneider, M.

    2015-01-01

    The gas turbine combustion chamber of aero-engines requires a thermal barrier coating (TBC) by thermal spraying. Further heat protection is achieved by laser drilling of cooling holes. The residual stresses play an important role in the mechanical behaviour of TBC. It could also affect the TBC response to delamination during laser drilling. In this work, studies of the cracking behaviour after laser drilling and residual stress distribution have been achieved for different bond coats by plasma spray or cold spray. From interface crack length measured pulse-by-pulse after laser percussion drilling at 20° angle, the role of the various bond coats on crack initiation and propagation are investigated. It is shown that the bond coat drastically influences the cracking behaviour. The residual stresses profiles were also determined by the incremental hole-drilling method involving speckle interferometry. An original method was also developed to measure the residual stress profiles around a pre-drilled zone with a laser beam at 90°. The results are discussed to highlight the influence of TBCs interfaces on the resulting residual stresses distribution before laser drilling, and also to investigate the modification around the hole after laser drilling. It is shown that laser drilling could affect the residual stress state.

  2. Relaxation of residual stresses in 20%SiCw/6061Al composite as-extruded at high temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The residual stress in a 20%SiCw/6061Al composite as-extruded was investigated by using X-ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.

  3. Influence of Combination of Casimir Force and Residual Stress on the Behaviour of Micro- and Nano-Electromechanical Systems

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 周根树; 赵文轸; 顾海澄

    2002-01-01

    Casimir force and residual stresses actually appear in over-layers or films simultaneously. The study of the behaviour of micro- and nano-electromechanical systems in the presence of Casimir force and residual stress is of significance to the design of the relevant devices. We derive analytical expressions of the deflection of a bridge-shaped device under the mutual actions of Casimir force and residual stress in films. It is shown that the tensile residual stress enhances wavy behaviour of the deflection, while the compressive residual stress increases the deflection value and reduces the wavy behaviour.

  4. Influence of Combination of Casimir Force and Residual Stress on the Behaviour of Micro- and Nano-Electromechanical Systems

    Science.gov (United States)

    Zheng, Mao-Sheng; Gen, -Shu, Zhou; Zhao, Wen-Zhen; Gu, Hai-Cheng

    2002-06-01

    Casimir force and residual stresses actually appear in over-layers or films simultaneously. The study of the behaviour of micro- and nano-electromechanical systems in the presence of Casimir force and residual stress is of significance to the design of the relevant devices. We derive analytical expressions of the deflection of a bridge-shaped device under the mutual actions of Casimir force and residual stress in films. It is shown that the tensile residual stress enhances wavy behaviour of the deflection, while the compressive residual stress increases the deflection value and reduces the wavy behaviour.

  5. Experimental Study of Residual Stresses in Metal Parts Obtained by Selective Laser Melting

    Science.gov (United States)

    Protasov, C. E.; Safronov, V. A.; Kotoban, D. V.; Gusarov, A. V.

    High local temperature gradients occur at additive manufacturing by selective laser melting of powder. This gives rise to undesirable residual stresses, deformations, and cracks. To understand how to control the formation of the residual stresses, a reliable method is necessary for measuring their distribution in the fabricated part. It is proposed to cut the part into thin plates and to reconstruct the residual stresses from the measured deformation of the plates. This method is tested on beams with square cross-section built from stainless steel. The beams were cut by electrical discharge machining and chemically etched. The obtained stress profile in vertical transversal direction slightly increases from the top to the bottom of the beam. This dependency is confirmed by numerical modeling. The measured stress profile agrees with the known results by other authors.

  6. Measurement of Residual Stress Field of Hardfacing Metal with RE Oxide and Its Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 姚枚

    2003-01-01

    The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the expe rimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic trans formation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved.

  7. Study of residual stresses in tailor rolled blanked Al5J32-T4 sheets

    Institute of Scientific and Technical Information of China (English)

    KIM Dongok; KIM Jinpyeong; LEE Yong; KWAK Heeman; RYU Yongmun; HAN Beomsuck

    2006-01-01

    Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization.Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components.TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses.In spite of the advantages of the process, TRB leaves internal stresses in the panel.This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes.In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction.In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.

  8. Effect of fiber distribution on residual thermal stress in titanium matrix composite

    Institute of Scientific and Technical Information of China (English)

    马志军; 杨延清; 朱艳; 陈彦

    2004-01-01

    Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were discussed. In all the three models compressive stress was found in the radial direction and tensile stress in the tangential direction. It is pointed out that, in real composite system, hexagonal fiber geometry is superior because the distribution and the magnitude of the residual stress are similar to those in single fiber model. In square fiber geometry, it is easier to make the matrix crack due to the larger residual tangential stress. RTS becomes very large and changes violently when the fiber distance is less than 15μm or so, therefore too high fiber volume is apt to result in matrix crack.

  9. Annealing effects on residual stress of HfO2/SiO2 multilayers

    Institute of Scientific and Technical Information of China (English)

    Yanming Shen; Zhaoxia Han; Jianda Shao; Shuying Shao; Hongbo He

    2008-01-01

    HfO2/SiO2 multilayer films were deposited on BK7 glass substrates by electron beam evaporation method.The effects of annealing at the temperature between 200 and 400℃ on residual stresses have been studied.It is found that the residual stress of as-deposited HfO2/SiO2 multilayers is compressive.It becomes tensile after annealing at 200℃,and then the value of tensile stress increases as annealing temperature increases.And cracks appear in the film because tensile stress is too large when the sample is annealed at 400℃.At the same time,the crystallite size increases and interplanar distance decreases with the increase of annealing temperature.The variation of residual stresses is corresponding with the evolution of structures.

  10. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction.

  11. Spatial distribution of residual stresses in glass-ZrO2 sphero-cylindrical bilayers.

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich

    2016-07-01

    Residual stresses arising from inhomogeneous cooling after sintering have shown to play a preponderant role in the higher incidence of chippings observed for glass-zirconia dental prostheses. Still, current descriptions of their nature and distribution have failed to reconcile with clinical findings. Therefore, an axisymmetric sphero-cylindrical bilayer model was used in this study to determine the effect of the cooling rate on the final spatial distribution of residual stresses. Zirconia frameworks with two different radii (1.6 and 3.2mm) were CAD/CAM fabricated. Subsequent glass overlays with two different thickness ratios (1:1 and 2:1) were generated and heat pressed onto the zirconia substrates. The obtained structures were submitted to a last firing process and fast- (45°C/s) or slow-cooled (0.5°C/s) to room temperature. Unbonded bilayers were produced by firing glass overlays onto boron nitride coated zirconia. Thin sagittal and transversal sections were obtained from the specimens to assess residual stress distribution by means of light birefringence. The applied cooling rates did not affect distribution or magnitude of radial residual stresses (sagittal sections), whereas increased hoop stress magnitudes were measured (transversal sections) in fast-cooled specimens. A distinct stress nature was observed for the hoop stress component of unbonded overlays after fast cooling. Interaction between stress components seems to govern the final stress distribution, highlighting the importance of a multiaxial assessment of this problem in three-dimensional structures.

  12. Effects of stop-start features on residual stresses in a multipass austenitic stainless steel weld

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M., E-mail: Mark.Turski@magnesium-elektron.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Francis, J.A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)] [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hurrell, P.R. [Rolls-Royce Plc., Raynesway, Derby DE21 7XX (United Kingdom); Bate, S.K. [Serco Technical Services, Birchwood Park, Warrington, Cheshire WA3 6GA (United Kingdom); Hiller, S. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2012-01-15

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop-start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop-start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: Black-Right-Pointing-Pointer In this study the residual stress-field surrounding weld interruptions was measured. Black-Right-Pointing-Pointer Localised stresses were found to increase at weld interruptions. Black-Right-Pointing-Pointer Both ramped and abrupt weld interruptions were investigated. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses persisted for abrupt interruptions. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  13. Experimental evaluation of residual stresses produced by plain dents in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pascotto, Jorge [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Marques, Altino; Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2009-07-01

    A dent means a permanent plastic deformation of the circular cross-section of the pipe. Dents are potentially danger for structural integrity of onshore and offshore pipelines, because it causes a local stress and strain concentration. It is also expected that residual stresses are introduced by the non-uniform plastic deformation. A plain dent is a dent which causes a smooth change in the curvature of the pipe wall that contains no wall thickness reductions (such as a gouge or a crack) or other defects or imperfections (such as a weld). This work presents an experimental evaluation of residual stresses intensification due to plain dents introduced through the same indentation process, in samples made of the same steel line pipe, commonly used in the pipeline industry. The residual stresses were measured in the longitudinal and circumferential directions in preselected points by X-ray diffraction technique, before indentation. After the samples have been dented, the residual stresses were measured once more at the same points, for comparison. All samples presented a similar behavior of the residual stresses due to induced plain dents, and the X-ray diffraction technique shows itself as an efficient methodology of stress measurement in pipelines. (author)

  14. Analysis of Residual Stresses in Laser-Shock-Peened and Shot-Peened Marine Steel Welds

    Science.gov (United States)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2017-02-01

    Laser peening is now the preferred method of surface treatment in many applications. The magnitude and depth of the compressive residual stress induced by laser peening can be influenced strongly by the number of peen layers (the number of laser hits at each point) and by processing conditions including the use of a protective ablative layer. In this study, residual stresses have been characterized in laser and shot-peened marine butt welds with a particular focus at the fatigue crack initiation location at the weld toe. X-ray diffraction, synchrotron X-ray diffraction, incremental center-hole drilling, and the contour method were used for determination of residual stress. Results showed that the use of ablative tape increased the surface compressive stress, and the depth of compressive stress increased with an increase in number of peening layers. A key result is that variation of residual stress profile across laser peen spots was seen, and the residual stress magnitude varies between the center and edges of the spots.

  15. 3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates

    Institute of Scientific and Technical Information of China (English)

    Lixing HUO; Furong CHEN; Yufeng ZHANG; Li ZHANG; Fangjun LIU; Gang CHEN

    2004-01-01

    A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in aswelded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated.The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%~ 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3)The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results.Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.

  16. Longitudinal residual strain and stress-strain relationship in rat small intestine

    Directory of Open Access Journals (Sweden)

    Fan Yanhua

    2006-06-01

    Full Text Available Abstract Background To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. Methods The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards. Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH2O. Results Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p 0.5. The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. Conclusion Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous material. The longitudinal stiffness of the intestinal wall increased with luminal pressure. Longitudinal residual strains must be taken into account in studies of

  17. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel.

    Science.gov (United States)

    Sharma, Varun; Pandey, Pulak M

    2016-08-01

    The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation.

  18. Experimental measurements of surface damage and residual stresses in micro-engineered plasma facing materials

    Science.gov (United States)

    Rivera, David; Wirz, Richard E.; Ghoniem, Nasr M.

    2017-04-01

    The thermomechanical damage and residual stresses in plasma-facing materials operating at high heat flux are experimentally investigated. Materials with micro-surfaces are found to be more resilient, when exposed to cyclic high heat flux generated by an arc-jet plasma. An experimental facility, dedicated to High Energy Flux Testing (HEFTY), is developed for testing cyclic heat flux in excess of 10 MW/m2. We show that plastic deformation and subsequent fracture of the surface can be controlled by sample cooling. We demonstrate that W surfaces with micro-pillar type surface architecture have significantly reduced residual thermal stresses after plasma exposure, as compared to those with flat surfaces. X-ray diffraction (XRD) spectra of the W-(110) peak reveal that broadening of the Full Width at Half Maximum (FWHM) for micro-engineered samples is substantially smaller than corresponding flat surfaces. Spectral shifts of XRD signals indicate that residual stresses due to plasma exposure of micro-engineered surfaces build up in the first few cycles of exposure. Subsequent cyclic plasma heat loading is shown to anneal out most of the built-up residual stresses in micro-engineered surfaces. These findings are consistent with relaxation of residual thermal stresses in surfaces with micro-engineered features. The initial residual stress state of highly polished flat W samples is compressive (≈ -1.3 GPa). After exposure to 50 plasma cycles, the surface stress relaxes to -1.0 GPa. Micro-engineered samples exposed to the same thermal cycling show that the initial residual stress state is compressive at (- 250 MPa), and remains largely unchanged after plasma exposure.

  19. Optimization of Residual Stress of High Temperature Treatment Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    M. Susmikanti

    2015-12-01

    Full Text Available In a nuclear industry area, high temperature treatment of materials is a factor which requires special attention. Assessment needs to be conducted on the properties of the materials used, including the strength of the materials. The measurement of material properties under thermal processes may reflect residual stresses. The use of Genetic Algorithm (GA to determine the optimal residual stress is one way to determine the strength of a material. In residual stress modeling with several parameters, it is sometimes difficult to solve for the optimal value through analytical or numerical calculations. Here, GA is an efficient algorithm which can generate the optimal values, both minima and maxima. The purposes of this research are to obtain the optimization of variable in residual stress models using GA and to predict the center of residual stress distribution, using fuzzy neural network (FNN while the artificial neural network (ANN used for modeling. In this work a single-material 316/316L stainless steel bar is modeled. The minimal residual stresses of the material at high temperatures were obtained with GA and analytical calculations. At a temperature of 6500C, the GA optimal residual stress estimation converged at –711.3689 MPa at adistance of 0.002934 mm from center point, whereas the analytical calculation result at that temperature and position is -975.556 MPa . At a temperature of 8500C, the GA result was -969.868 MPa at 0.002757 mm from the center point, while with analytical result was -1061.13 MPa. The difference in residual stress between GA and analytical results at a temperatureof6500C is about 27 %, while at 8500C it is 8.67 %. The distribution of residual stress showed a grouping concentrated around a coordinate of (-76; 76 MPa. The residuals stress model is a degree-two polynomial with coefficients of 50.33, -76.54, and -55.2, respectively, with a standard deviation of 7.874.

  20. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  1. The Correlation Between the Percussive Sound and the Residual Stress/Strain Distributions in a Cymbal

    Science.gov (United States)

    Osamura, Kozo; Kuratani, Fumiyasu; Koide, Toshio; Ogawa, Wataru; Taniguchi, Hiroyasu; Monju, Yoshiyuki; Mizuta, Taiji; Shobu, Takahisa

    2016-12-01

    The artistic sound of a cymbal is produced by employing a special copper alloy as well as incorporating complicated and heterogeneous residual stress/strain distributions. In order to establish a modern engineering process that achieves high-quality control for the cymbals, it is necessary to investigate the distribution of the residual stresses/strains in the cymbal and their quantitative relation with the frequency characteristics of the sound generated from the cymbal. In the present study, we have successfully used synchrotron radiation to measure the distribution of residual strain in two kinds of cymbals—after spinforming as well as after hammering. The microstructure and the mechanical properties of the cymbals were measured as well their acoustic response. Based on our experimental data, the inhomogeneous residual stress/strain distributions in the cymbals were deduced in detail and their influence on the frequency characteristics of the sound produced by the cymbals was identified.

  2. Investigation of the Residual Stress State in an Epoxy Based Specimen

    NARCIS (Netherlands)

    Baran, I.; Jakobsen, Johnny; Andreasen, Jens H.; Akkerman, R.

    2015-01-01

    Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental observations. In

  3. Investigation of the Residual Stress State in an Epoxy Based Specimen

    NARCIS (Netherlands)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens H.; Akkerman, Remko

    2015-01-01

    Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental observations. In

  4. Residual stresses in the surface layer of laser-treated steels

    NARCIS (Netherlands)

    Brussel, B.A. van; Hosson, J.Th.M. De

    1993-01-01

    Although laser treatment of certain metals may enhance the wear performance in general it may result equally well in large residual stresses which affect the wear performance detrimentally. Tensile stresses generated in the surface layer may lead to severe cracking of the material. This paper

  5. Residual stress fields in sol-gel-derived thin TiO2 layers

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Haas, M. de; Hosson, J.Th.M. De

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these s

  6. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  7. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements.

    Science.gov (United States)

    Hingston, J A; Dunne, N J; Looney, L; McGuinness, G B

    2008-08-01

    Residual stresses resulting from the shrinkage of polymethyl methacrylate (PMMA) bone cement have been implicated in the formation of cracks in cement mantles following total hip arthroplasty. This study investigates whether two such cements, with differentiated solidification characteristics (i.e. working and setting times), display significant differences in their residual stress characteristics in an experiment designed to replicate the physical conditions of total hip arthroplasty. Experiments were performed using a representative femoral construct to measure and compare the temperatures and residual strains developed for standard PMMA cement mantles (CMW 1 Gentamicin) and slow curing cement mantles (SmartSet HV Gentamicin) during and following polymerization. These experimental results revealed no statistically significant difference (t-test, p > 0.05) for peak exotherm temperature and residual strain levels between the cements (measured after 3 h). The tailored polymerization characteristics of the slow-curing cement do not significantly affect residual stress generation, compared with the standard cement. It is often considered that residual stresses significantly relax following polymerization and before biomechanical loads are first applied during rehabilitation (up to 3 days later). This was examined for durations of 18 h to 3 days. Axial strains in the model femur and stem reduced by averages of 5.5 and 7.9 per cent respectively, while hoop strains in the stem exhibited larger reductions. An axisymmetric transient thermoelastic finite element model of the experiment was developed, allowing residual stresses to be predicted based on differential scanning calorimetry (DSC) measurements of the heat released throughout the exothermic curing reaction. The model predictions closely replicated the experimental measurements of both temperature and residual strain at 3 h, suggesting that residual strains can be fully accounted for by the thermal contraction

  8. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  9. Influence of residual stresses on the cutting behavior of porcelain stoneware tiles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga Gomes Delavi, D.; Garcia-Ten, J.; Saburit, A.; Escrig, A.; Nonic, A. de; Hotza, D.

    2016-07-01

    This study was undertaken to examine the influence of residual stresses on porcelain tile behaviour under cutting. To do so, two samples of glazed industrial porcelain tiles that exhibited different behaviour under cutting were selected. Using these industrial tiles, cutting tests were performed and the macroscopic residual stresses were determined by the strain relaxation incremental slotting method. The influence of the cooling rate on the arising residual stresses and their effect on tile cutting were also studied. For the porcelain tile with appropriate cutting behaviour, the residual stress profile in the body was symmetrical and could be fitted by just using the second- degree Legendre polynomial. This was the expected behaviour for homogenously cooled ceramic materials (same cooling rate at the proper surface as at the rib). For pieces with inappropriate cutting behaviour, it was necessary to use more terms of the series, which suggested that cooling had not been homogeneous. With regard to the influence of cooling, the temperature range in which residual stresses were generated was determined and it was verified that pieces with a greater level of stresses exhibited worse cutting behaviour. (Author)

  10. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    VAIDYA, RAJENDRA U [Los Alamos National Laboratory; KAUTZ, DOUGLAS D. [Los Alamos National Laboratory; GALLEGOS, DAVID E. [Los Alamos National Laboratory

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  11. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chaoqun; Li, Huan; Li, Jianxiong; Luo, Chuanguang; Ni, Yanbing [Tianjin University, Tianjin (China)

    2017-05-15

    This paper presented residual stress measurement on two circumferential Variable polarity plasma arc welding (VPPAW) joints and one circular closed Friction stir welding (FSW) joint on the propellant tank of 2219 aluminum alloy using the indentation strain-gauge method. Quite large tensile residual stresses were attached to the center and inner areas of the circular closed FSW joint. There were very large tensile stresses in some points of the two circumferential VPPAW joints, among these points, the maximum value was +253 MPa, which was about 63 % of the yield strength of 410 MPa measured in the base material. In addition, the peak of compressive residual stress was about -160 MPa. Above all, there were two typical peaks of residual stress in the circumferential VPPAW joints, one was located in the middle part while the other one was near the start/end position of the joints. Combining the result of residual stress measurement with the characteristics of the tank structure, it can be concluded that circular closed FSW joint around the flange was a weak spot on the propellant tank. And the most vulnerable point on the circular closed FSW joint has also been found.

  12. HPHT preparation and Micro-Raman characterization of polycrystalline diamond compact with low residual stress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    High quality grown polycrystalline diamond compact (PDC) with low residual stress was prepared using the infiltration method with nickel based alloys as the solvent under high temperature and high pressure (HPHT). Scanning electron microscopy (SEM) was used to observe the micro morphology of the diamond layer and the diamond/WC substrate interface. It was found that dense and interlaced microstructure with diamond-diamond (D-D) direct bonding formed in the diamond layer of PDC. Micro-Raman spectroscopy was used to measure the Raman shift of diamonds in the polycrystalline diamond (PCD) layer and the residual stress was calculated based on the Raman shift of diamonds. Experimental results show that the residual stress of PCD layer is compressive stress, and the range of the residual stress is from 0.075 to 0.250 GPa in the whole PCD layer, much lower than that of other reports (up to 1.400 GPa). Moreover, the distribution of the residual stress from the diamond surface layer to the inner cross-section is homogeneous.

  13. Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations

    Science.gov (United States)

    Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.

    2002-01-01

    The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.

  14. Weld-induced residual stresses in a prototype dragline cluster and comparison with design codes

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S.; Semetay, C.; Price, J.W.H.; Nied, H.F. [Concordia University, Montreal, PQ (Canada). Dept. of Mechanical & Industrial Engineering

    2010-02-15

    The Australian coal mining industry employs a large fleet of thin-walled Circular Hollow Section (CHS) welded draglines built of several clusters along the length of the main boom, which are often very heavily overlapped with co-eccentric multiple tubular structures. Heat treatment processes for relieving thermally generated weld-induced residual stresses are usually not employed owing to the high costs and potential dragline downtime. However, it is estimated that these weld-induced residual stresses are usually within a tolerable range and are not the major motivating factor in the initiation and propagation of fatigue-induced cracking. This paper presents the simulation of welding-induced residual stresses in a CHS T-Joint, which would form the first of the four lacings welded on to the main chord of a typical mining dragline cluster. The paper compares numerically generated residual stresses during the welding process in a single weld pass with the approach used in two Standards: (I) R6-Revision 4, Assessment of the Integrity of Structures Containing Defects and (ii) American Petroleum Institute API 579-1/ ASME FFS-1 2007. The comparison attests to the observation that while residual stresses in the fused area at some points could be higher than the yield stress, they are generally not capable of inducing cracks in their own right.

  15. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug [DOOSAN Heavy Industries and Construction Co. LTD, Reactor Design Team, 555 Guygok-dong Changwon (Korea, Republic of)

    2008-07-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  16. FEM Analysis and Measurement of Residual Stress by Neutron Diffraction on the Dissimilar Overlay Weld Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Lee, Ho Jin; Woo, Wan Chuck; Seong, Baek Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byeon, Jin Gwi; Park, Kwang Soo; Jung, In Chul [Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2010-10-15

    Much research has been done to estimate the residual stress on a dissimilar metal weld. There are many methods to estimate the weld residual stress and FEM (Finite Element Method) is generally used due to the advantage of the parametric study. And the X-ray method and a Hole Drilling technique for an experimental method are also usually used. The aim of this paper is to develop the appropriate FEM model to estimate the residual stresses of the dissimilar overlay weld pipe. For this, firstly, the specimen of the dissimilar overlay weld pipe was manufactured. The SA 508 Gr3 nozzle, the SA 182 safe end and SA376 pipe were welded by the Alloy 182. And the overlay weld by the Alloy 52M was performed. The residual stress of this specimen was measured by using the Neutron Diffraction device in the HANARO (High-flux Advanced Neutron Application ReactOr) research reactor, KAERI (Korea Atomic Energy Research Institute). Secondly, FEM Model on the dissimilar overlay weld pipe was made and analyzed by the ABAQUS Code (ABAQUS, 2004). Thermal analysis and stress analysis were performed, and the residual stress was calculated. Thirdly, the results of the FEM analysis were compared with those of the experimental methods

  17. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  18. Finite Element Analysis of Residual Stress and Distortion in an Eccentric Ring Induced by Quenching

    Institute of Scientific and Technical Information of China (English)

    YAOXin; ZHULi-hua; LIM.Victor

    2004-01-01

    The residual stresses and distortion induced by quenching in an eccentric ring were investigated in this study with finite element method. The ring was made of AISI 52100 steel. A fully coupled 3D temperature-displacement analysis was performed to simulate heat transfer, phase transformations, and mechanical stresses and strains during the heating and subsequent quenching processes. Commercial FEA package ABAQUS/Standard 6.4 was used for the analyses along with user subroutines developed by the authors to model the thermal and mechanical constitutive behavior. The simulation results show that transformation plasticity plays an important role on the residual stress distribution.

  19. Effect of Treatment Area on Residual Stress and Fatigue in Laser Peened Aluminum Sheets

    Science.gov (United States)

    Toparli, M. Burak; Smyth, Niall; Fitzpatrick, Michael E.

    2017-04-01

    Two 2.0-mm-thick aluminum sheets were laser peened and the resulting residual stresses were measured using incremental hole drilling, surface X-ray diffraction, and synchrotron X-ray diffraction techniques. Laser peening was applied to two samples using the same laser peening parameters, but one of the samples has a larger peened area. The aim of this research was to discover the effect of peen area on residual stress, for application in aerospace structures for fatigue life enhancement. It was found that a larger peened area has higher and deeper compressive stresses in the crack-opening direction, leading to greater enhancement of fatigue life.

  20. NUMERICAL SIMULATION OF CONTROLLING IN TITANIUM ALLOY SHEETS WELDING RESIDUAL STRESS BY TRAILING PEENING

    Institute of Scientific and Technical Information of China (English)

    X.S. Liu; H. Y. Fang; W.L. Xu; Z.B. Dong; D.Y. Yu

    2004-01-01

    It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy. Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively, and it is more effective to reduce residual stress to peen the weld than to peen the weld toe. It is a effective result that other technology and method used in welding can never achieved.

  1. Thermal residual stress analysis of diamond coating on graded cemented carbides

    Institute of Scientific and Technical Information of China (English)

    HUANG Zi-qian; HE Yue-hui; CAI Hai-tao; WU Cong-hai; XIAO Yi-feng; HUANG Bai-yun

    2008-01-01

    Finite element model was developed to analyze thermal residual stress distribution of diamond coating on graded and homogeneous substrates. Graded cemented carbides were formed by carburizing pretreatment to reduce the cobalt content in the surface layer and improve adhesion of diamond coating. The numerical calculation results show that the surface compressive stress of diamond coating is 950 MPa for graded substrate and 1 250 MPa for homogenous substrate, the thermal residual stress decreases by around 24% due to diamond coating. Carburizing pretreatment is good for diamond nucleation rate, and can increase the interface strength between diamond coating and substrate.

  2. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  3. Relaxation of Residual Stress and Reentanglement of Polymers in Spin-Coated Films

    Science.gov (United States)

    Damman, Pascal; Gabriele, Sylvain; Coppée, Séverine; Desprez, Sylvain; Villers, Didier; Vilmin, Thomas; Raphaël, Elie; Hamieh, Moustafa; Akhrass, Samer Al; Reiter, Günter

    2007-07-01

    Performing detailed studies of viscoelastic dewetting of thin polystyrene films on solid substrates, we demonstrate the existence of residual stress due to strongly out of equilibrium chain conformations and a reduced entanglement density resulting from film preparation by spin coating. The ratio of stress over elastic modulus was found to increase strongly with decreasing film thickness and increasing chain length. Full equilibration of chain conformations required long times comparable to bulk reptation times. However, for chains longer than about 3000 monomers, the residual stress relaxed faster, at a rate independent of chain length.

  4. Near-surface residual stresses and microstructural changes after turning of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Schlauer, Christian

    2003-07-01

    Nickel-based superalloys are precipitation hardened alloys with complex compositions. They are used in aircraft engines and land-based gas turbines in load bearing structural components that are exposed to high temperatures. Failure mechanisms in this environment are high and low cycle fatigue, creep, and corrosion. During manufacturing, residual stresses are often introduced into the material due to inhomogeneous plastic deformations, both intentionally and unintentionally. One such manufacturing process is metal cutting, which introduces residual stresses in the surface layer. The stress state in the near-surface zone of components is of special interest as the surface often experiences peak loads and cracks have their starting point there. In this thesis, near-surface residual stress distributions and microstructural changes are studied in the nickel-based superalloy Inconel 718 for two different turning operations, face grooving and facing. Process variables are in both cases cutting speed and feed that have been varied between (10 and 1200) m/min and (0.01 and 0.5) mm, respectively. The first turning technique face grooving, which gives cutting conditions similar to orthogonal cutting, showed a clear dependency of the residual stresses on the cutting speed. The tensile stress at the surface, the maximum compressive stress below the surface, and the thickness of the affected layer increase with increasing cutting speed. The tensile stresses are constrained to a thin surface layer and compressive residual stresses below the surface dominate the depth profile of the residual stresses. Only at low cutting speed, residual stresses were largely avoided. The second turning technique facing confirmed the dependency of the residual stresses on the cutting speed and revealed a similar dependency on the feed. Microstructural investigations of near-surface cross-sections by means of transmission electron microscopy showed a zone where the grains had undergone plastic

  5. Measurements of thermal residual stresses in SiC/Ti-15-3 composites

    Energy Technology Data Exchange (ETDEWEB)

    Bobet, J.-L.; Masuda, C. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-06-01

    Residual stresses present in an as received and thermally cycled SCS-6/Ti-15-3 metal matrix composite (MMC) have been approached via X-ray diffraction (sin{sup 2}{psi}) experiments. Determination of stress profiles have been achieved by successive removal of the matrix from the composite surface by electropolishing. Axial and hoop stresses in the matrix were tensile (higher on the surface) and those measured in the fiber were compressive (about -500 to -600 MPa). A stress gradient normal to the surface of the composite was found. Measurement of residual stress levels in the composite subjected to thermal cycling from 400degC to 800degC in an inert atmosphere or in vacuum revealed a huge stress relaxation after only 200 cycles. (author)

  6. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    Science.gov (United States)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  7. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    Science.gov (United States)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  8. Nondestructive Testing and Characterization of Residual Stress Field Using an Ultrasonic Method

    Institute of Scientific and Technical Information of China (English)

    SONG Wentao; XU Chunguang; PAN Qinxue; SONG Jianfeng

    2016-01-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designedto conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  9. RESIDUAL STRESS MEASUREMENTS AND STRUCTURAL INTEGRITY IMPLICATIONS FOR SELECTIVE LASER MELTED TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Knowles, C. R.

    2012-11-01

    Full Text Available Selective laser melting (SLM of Ti-6Al-4V has significant potential in the aerospace and biotechnology industries. SLM employs a focused laser beam to melt successive layers of metallic powder into complex components. This process can result in the generation of high thermally-induced residual stresses. These residual stresses, together with micro-flaws/ pores from the inherent fabrication process, may lead to premature fatigue crack initiation and propagation at relatively low cyclic stresses. The hole-drilling strain gauge method was used to evaluate residual stresses within SLM Ti-6Al-4V specimens, with the intention of understanding the associated mechanisms for the successful application of SLM Ti-6Al-4V in industry.

  10. Effect of shot peening and grit blasting on surface integrity: Influence on residual stresses

    Institute of Scientific and Technical Information of China (English)

    K.TOSHA; LU Jian

    2006-01-01

    The influences of factors such as particle size (0.55-2.2 mm), particle velocity (15-35 m/s) and thickness of work material on the surface integrity were investigated. The residual stresses induced by shot peening or grit blasting were examined. In order to clarify the influences of those factors on residual stress included in the surface integrity, a medium carbon steel (w(C)= 0.45%, 180 HV) was peened by a centrifugal type peening machine using cast steel particles (650-800 HV). The results show that the compressive residual stresses on the peened surface are larger than those of grit blasting; the critical thickness of shot peening is about 50% thicker than that of grit blasting; the high compressive stresses induced by blasting are owing to the wrought or peening effect.

  11. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    CERN Document Server

    Ko, S H; Singh, R

    2015-01-01

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.

  12. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    Science.gov (United States)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  13. Retention of Compressive Residual Stresses Introduced by Shot Peening in a Powder Metal Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack

    2016-01-01

    The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.

  14. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K{sub Ic}, was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4.

  15. Reduction of tensile residual stresses during the drawing process of tungsten wires

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Ripoll, Manel, E-mail: manel.rodriguez@ctd.uni-lj.si [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse 11, 79108 Freiburg (Germany); Weygand, Sabine M. [University of Applied Sciences Karlsruhe, Department of Mechanical Engineering and Mechatronics, Moltkestrasse 30, 76133 Karlsruhe (Germany); Riedel, Hermann [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse 11, 79108 Freiburg (Germany)

    2010-05-25

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  16. Evaluation of similar metal weld effects on residual stress of nozzle dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Cheon; Jeong, Jae Uk; Chang, Yoon Suk; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2008-07-01

    Determination of weld-induced residual stress has been an important issue in nuclear power industry because several failures were reported in dissimilar metal weld parts due to primary water stress corrosion cracking. In this context, a couple of remarkable round robin analyses were conducted to quantify the welding simulation variables and to establish optimized numerical analysis process. The purpose of the present research is to introduce welding simulation results for a safety and relief nozzle, which has a dissimilar metal weld part as well as a similar metal weld part. First, finite element analyses are carried out to calculate residual stresses at the inside of nozzle considering only dissimilar metal welding. Subsequently, residual stresses taking into account both the dissimilar and similar metal welding are computed. The similar metal weld effect is evaluated by comparing these analysis results and technical findings derived from the evaluation are fully discussed.

  17. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  18. Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings

    Science.gov (United States)

    Elhoriny, Mohamed; Wenzelburger, Martin; Killinger, Andreas; Gadow, Rainer

    2017-04-01

    The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.

  19. Dynamic Investigation of Interface Stress on Below-Knee Residual Limb in a Prosthetic Socket

    Institute of Scientific and Technical Information of China (English)

    贾晓红; 张明; 王人成; 金德闻

    2004-01-01

    The dynamic effects of inertial loads on the interface stresses between a residual limb and the trans-tibial prosthetic socket were investigated. A 3-D nonlinear finite element model, based on the actual geometry of the residual limb, including internal bones and socket liner, was developed to study the mechanical interaction between the socket and the residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The results show that interface pressure and shear stress have a similar double-peaked waveform shape in the stance phase. The average difference in interface stresses between the cases with and without consideration of inertial forces is 8.4% in the stance phase and 20.1% in the swing phase. The results suggest that the dynamic effects of inertial loads on interface stress distribution during walking must be considered in prosthetic socket design.

  20. Manufacturing inspection of electrical steels using Magnetic Barkhausen Noise: residual stress detection

    Energy Technology Data Exchange (ETDEWEB)

    Samimi, A.A., E-mail: 9aa8@queensu.ca [Queen' s Univ., Applied Magnetics Group, Kingston, Ontario (Canada); Krause, T.W. [Royal Military College of Canada, NDE Lab., Kingston, Ontario (Canada); Clapham, L. [Queen' s Univ., Applied Magnetics Group, Kingston, Ontario (Canada); Gallaugher, M.; Ding, Y.; Chromik, R. [McGill Univ., Dept. of Mining and Materials Engineering, Montreal, Quebec (Canada)

    2016-09-15

    Non-oriented Electrical Steel (NOES) is the magnetic core lamination material used for flux transfer in rotary machines. The presence of residual stress associated with material processing may be detrimental to magnetic domain structure refinement and as a result, magnetic performance of NOES. Therefore, manufacturing inspection of NOES that identifies the presence of residual stress could contribute to the production of more energy efficient cores. However, standard materials evaluation is limited to destructive and off-line techniques. The present work employed Magnetic Barkhausen Noise (MBN) for nondestructive identification of local residual stress associated with stages in material processing. Analysis of MBN from single strips of NOES demonstrated clear response to applied tensile stress, mechanical shearing, the presence of an insulating coating and punching. The results establish the potential of MBN as a nondestructive testing technology for quality control of electrical steels at various stages of manufacture. (author)

  1. Residual stress measurements of 2-phase sprayed coating layer

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Masayuki [Kagawa Polytechnic College, Kagawa (Japan); Hanabusa, Takao

    1997-06-01

    In a series of the already reported single phase metal and ceramic melt sprayed films, on two phase melt sprayed films, their stress and thermal stress changes due to their bending load are tried to test. In order to prepare two phase state, austenitic stainless steel wire is used by a laser melt spraying method. In this method, CO{sub 2} laser is used for a thermal source, and proceeding direction of its laser is selected to cross melt spraying direction. As a result, the following facts can be elucidated. The stress values at {alpha}- and {gamma}-phase in the stainless steel film are linearly responsive to the bending load, and the stress change in {alpha}-phase is smaller than that in {gamma}-phase. In a heat and cool cycle, {alpha}-phase shows a trend of extension with increasing temperature but {gamma}-phase shows a trend of compression inversely. And, stress behavior at {alpha}- and {gamma}-phases in the stainless steel film does not agree with a mixing rule in common two-phase materials. (G.K.)

  2. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  3. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    Science.gov (United States)

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was

  4. Residual stress in copper containing a high concentration of krypton precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Haerting, M.; Yaman, M.; Bucher, R.; Britton, D.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2002-08-01

    A study of the residual stress and bubble pressure in bulk samples of copper, containing 3 at.-% krypton, using X-ray diffraction techniques is presented here. The authors have confirmed that the Kr forms solid precipitates with an fcc structure, which is consistent with an estimated pressure of 2.4 GPa. Stress measurements in the surrounding Cu matrix indicate a zero normal stress, confirming that the matrix experiences only a shear strain. The magnitude of the shear stress is estimated from the bubble pressure to be below the yield stress of the matrix, thus explaining the long term stability of the bubbles. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  5. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, A., E-mail: amadariaga@mondragon.edu [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Esnaola, J.A.; Arrazola, P.J. [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Ruiz-Hervias, J.; Muñoz, P. [Departamento Ciencia de Materiales, ETSI Caminos, Universidad Politécnica de Madrid, c/Profesor Aranguren s/n, Madrid 28040 (Spain); Ostolaza, K. [Materials and Processes Technology Department, ITP S.A., Parque Tecnológico, Edificio 300, 48170 Zamudio (Spain)

    2015-01-03

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  6. Atomistic modelling of residual stress at UO2 surfaces.

    Science.gov (United States)

    Arayro, Jack; Tréglia, Guy; Ribeiro, Fabienne

    2016-01-13

    Modelling oxide surface behaviour is of both technological and fundamental interest. In particular, in the case of the UO2 system, which is of major importance in the nuclear industry, it is essential to account for the link between microstructure and macroscopic mechanical properties. Indeed micromechanical models at the mesoscale need to be supplied by the energetic and stress data calculated at the nanoscale. In this framework, we present a theoretical study, coupling an analytical model and thermostatistical simulation to investigate the modifications induced by the presence of a surface regarding atomic relaxation and energetic and stress profiles. In particular, we show that the surface effective thickness as well as the stress profile, which are required by micromechanical approaches, are strongly anisotropic.

  7. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: tanius@cdtn.br, E-mail: dhbs@cdtn.br, E-mail: tanius@cdtn.br, E-mail: raphaelmecanica@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Souto, Joao P.R.S.; Carvalho Junior, Ideir T., E-mail: joprocha@yahoo.com.br, E-mail: ideir_engenharia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    2013-07-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  8. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  9. Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vetor regression

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Young Do; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-06-15

    Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

  10. A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray

    Science.gov (United States)

    Ma, Ce; Dou, Zuo-yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-cheng

    2016-11-01

    We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten kα1. By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten kα1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.

  11. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Miura, Takahiro; Shimada, Takuya; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2013-10-01

    Tablet characteristics of tensile strength and disintegration time were predicted using residual stress distribution, simulated by the finite element method (FEM). The Drucker-Prager Cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC). The DPC model was calibrated using a direct shear test and analysis of the hardening law of the powder. The constructed DPC model was fed into the analysis using the FEM, and the mechanical behavior of pharmaceutical powders during compaction was analyzed using the FEM. The results revealed that the residual stress distribution of the tablets was uniform when the compression force increased. In particular, the residual stress distribution of tablets composed of equal amounts of LAC, CS, and MCC was more uniform than the tablets composed of 67% LAC and 33% CS, with no MCC. The tensile strength and disintegration time were predicted accurately from the residual stress distribution of tablets using multiple linear regression analysis and partial least squares regression analysis. This suggests that the residual stress distribution of tablets is related closely to the tensile strength and disintegration time.

  12. X-ray diffraction analysis of residual stress in zirconia dental composites

    Science.gov (United States)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  13. Phase transformations and residual stresses in environmental barrier coatings

    Science.gov (United States)

    Harder, Bryan J.

    Silicon-based ceramics (SiC, Si3N4) are promising materials for high-temperature structural applications in turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) were developed to protect the underlying substrate. In the case of silicon carbide (SiC), multilayer coating systems consist of a Ba1-xSrxAl2Si 2O8 (BSAS) topcoat, a mullite or mullite + SrAl2Si 2O8 (SAS) interlayer, and a silicon bond coat. In this work, biaxial strains were measured on as-sprayed and heat-treated samples to analyze the stress and phase evolution in the coating system as a function of depth and temperature. Models were used to compare the results with an ideal coating system. In the assprayed state, tensile stresses as high as 175 MPa were measured, and cracking was observed. After thermally cycling the samples, stresses were significantly reduced and cracks in the topcoat had closed. The addition of SAS to the interlayer increased the compressive stress in the BSAS topcoat in thermally-cycled samples, which was desirable for EBC applications. The BSAS topcoat transformed from the as-deposited hexacelsian state to the stable celsian above 1200°C. This phase transformation is accompanied by a CTE reduction. The kinetics of the hexacelsian-to-celsian transformation were quantified for freestanding plasma-sprayed BSAS. Activation energies for bulk bars and crushed powder were determined to be ˜340 kJ/mol and ˜500 kJ/mol, respectively. X-ray diffraction and electron backscatter diffraction were used to establish how microstructural constraints reduce the transformation energy. Barrier coating lifetime and stability are also influenced by exposure to reactive, low-melting point calcium-magnesium-aluminosilicate (CMAS) deposits formed from dust and sand. Multilayer doped aluminosilicate coatings and bulk BSAS material were

  14. Finite element analysis of residual stress in the welded zone of a high strength steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Chen Maoai; Shen Xiaoqin

    2004-04-01

    The distribution of the residual stress in the weld joint of HQ130 grade high strength steel was investigated by means of finite element method (FEM) using ANSYS software. Welding was carried out using gas shielded arc welding with a heat input of 16 kJ/cm. The FEM analysis on the weld joint reveals that there is a stress gradient around the fusion zone of weld joint. The instantaneous residual stress on the weld surface goes up to 800 ∼ 1000 MPa and it is 500 ∼ 600 MPa, below the weld. The stress gradient near the fusion zone is higher than any other location in the surrounding area. This is attributed as one of the significant reasons for the development of cold cracks at the fusion zone in the high strength steel. In order to avoid such welding cracks, the thermal stress in the weld joint has to be minimized by controlling the weld heat input.

  15. Finite Element Modeling and Validation of Residual Stresses in 304 L Girth Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dike, J.J.; Ortega, A.R.; Cadden, C.H.; Rangaswamy, P. Brown, D.

    1998-06-01

    Three dimensional finite element simulations of thermal and mechanical response of a 304 L stainless steel pipe subjected to a circumferential autogenous gas tungsten arc weld were used to predict residual stresses in the pipe. Energy is input into the thermal model using a volumetric heat source. Temperature histories from the thermal analysis are used as loads in the mechanical analyses. In the mechanical analyses, a state variable constitutive model was used to describe the material behavior. The model accounts for strain rate, temperature, and load path histories. The predicted stresses are compared with x-ray diffraction determinations of residual stress in the hoop and circumferential directions on the outside surface of the pipe. Calculated stress profiles fell within the measured data. Reasons for observed scatter in measured stresses are discussed.

  16. Analysis of macro and micro residual stresses in functionally graded materials by diffraction methods

    CERN Document Server

    Dantz, D; Reimers, W

    1999-01-01

    The residual stress state in microwave sintered metal-ceramic functionally graded materials (FGM) consisting of 8Y-ZrO/sub 2//Ni and 8Y-ZrO/sub 2//NiCr8020, respectively, was analysed by non- destructive diffraction methods. In $9 order to get knowledge of the complete residual stress state in the near surface region as well as in the interior of the material, complementary methods were applied. Whereas the surface was characterised by X-ray techniques using $9 conventional sources, the stresses within the bulk of the material were investigated by means of high energy synchrotron radiation. The stress state was found to obey the differences in the coefficients of thermal expansion $9 (micro-stresses) on the one hand and the inhomogeneous cooling conditions (macrostresses) on the other hand. (7 refs).

  17. Relaxation of residual stresses in SiC wafers by annealing

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiufang; XU Xiangang; HU Xiaobo; LI Juan; WANG Yingmin; JIANG Shouzhen; ZHANG Kai; JIANG Minhua

    2006-01-01

    Residual stresses in SiC wafers, which were introduced during production processes including sawing, lapping,mechanical polishing (MP), and chemical-mechanical polishing (CMP), were evaluated in terms of changes in radius of curvature and high-resolution X-ray diffractometer (HRXRD) measurements. It was found that annealing was an effective method to reduce stress fields and to improve the wafer flatness. Lapping process generated more residual stresses than other machining processes, and these stresses could be relaxed by thermal treatment. The results showed that annealing was an essential procedure following lapping in the whole production process. The molten KOH etching results accounted for the correlation between the relaxation of stresses and the creation of basal screw dislocations.

  18. Hydration and radiation effects on the residual stress state of cortical bone.

    Science.gov (United States)

    Tung, Patrick K M; Mudie, Stephen; Daniels, John E

    2013-12-01

    The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately -150 MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100 MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.

  19. Residual stress analysis of multilayer environmental barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Harder, B.; Almer, J.; Weyant, C.; Lee, K.; Faber, K.; Northwestern Univ.; Rolls-Royce Corp.

    2009-02-01

    Silicon-based ceramics (SiC, Si{sub 3}N{sub 4}) are promising materials systems for high-temperature structural applications in gas turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) have been developed to shield the underlying substrate and prevent degradation. Here we report on elastic and thermal properties, as well as internal stresses of candidate multilayer coatings, as measured in situ using microfocused high-energy X-rays in a transmission diffraction geometry. Doped aluminosilicate coatings were investigated for their stability on a SiC/SiC melt-infiltrated substrate. The coatings consisted of a Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} topcoat with a mullite or mullite+SrAl{sub 2}Si{sub 2}O{sub 8} interlayer, and a silicon bond coat. A numerical model was used to compare the stress results with an ideal coating system. Experiments were carried out on as-sprayed and heat-treated samples in order to analyze the strain and phase evolution as a function of multilayer depth and temperature. The phase transformation of the topcoat promoted healing of cracks in the EBC and reduced stresses in the underlying layers and the addition of SAS to the interlayer reduced stresses in thermally cycled coatings, but did not stop cracks from forming.

  20. Design Credit for Compressive Residual Stresses in Turbine Engine Components

    Science.gov (United States)

    2005-03-01

    Laser shock processing (LSP) and low plasticity burnishing (LPB) provide impressive fatigue and damage tolerance improvement by introducing deep or...edges to mitigate FOD and fan blade dovetail surfaces to mitigate fretting damage. Keywords: design credit, fatigue, low plasticity burnishing ...As a simple example, consider a plate containing a central hole loaded in tension with some superimposed vibratory stresses, at R = 0.7. The

  1. Thermal stresses in multilayer optical-storage media

    Science.gov (United States)

    Nkansah, M. A.; Evans, K. E.

    1989-07-01

    Previously, it has been shown that thermal stresses may have a significant role to play in optical-storage media. Calculations have shown that thermal stresses are produced in single-layer optical-storage thin films sufficient to cause interlayer failure and blister formation. In this paper, more realistic multilayer thin films are modeled and it is shown that considerably higher stresses can be produced depending on the layer geometry and material properties. These effects are important both in the initial writing process and in subsequent reading or writing processes, and may result in long-term-accumulated, stress-induced damage.

  2. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    Science.gov (United States)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  3. Elastoplastic analysis of process induced residual stresses in thermally sprayed coatings

    Science.gov (United States)

    Chen, Yongxiong; Liang, Xiubing; Liu, Yan; Xu, Binshi

    2010-07-01

    The residual stresses induced from thermal spraying process have been extensively investigated in previous studies. However, most of such works were focused on the elastic deformation range. In this paper, an elastoplastic model for predicting the residual stresses in thermally sprayed coatings was developed, in which two main contributions were considered, namely the deposition induced stress and that due to differential thermal contraction between the substrate and coating during cooling. The deposition induced stress was analyzed based on the assumption that the coating is formed layer-by-layer, and then a misfit strain is accommodated within the multilayer structure after the addition of each layer (plastic deformation is induced consequently). From a knowledge of specimen dimensions, processing temperatures, and material properties, residual stress distributions within the structure can be determined by implementing the model with a simple computer program. A case study for the plasma sprayed NiCoCrAlY on Inconel 718 system was performed finally. Besides some similar phenomena observed from the present study as compared with previous elastic model reported in literature, the elastoplastic model also provides some interesting features for prediction of the residual stresses.

  4. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  5. Cold pulse and rotation reversals with turbulence spreading and residual stress

    DEFF Research Database (Denmark)

    Hariri, F.; Naulin, Volker; Rasmussen, Jens Juul

    2016-01-01

    Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence...... and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable....... As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here...

  6. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    Science.gov (United States)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-03-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  7. Measurement and modelling of residual stresses in straightened commercial eutectoid steel rods

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, M.L. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Borlado, C.R. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Open University, Faculty of Technology, Milton Keynes, MK7 6AL (United Kingdom); Mompean, F.J. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Garcia-Hernandez, M. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Gil-Sevillano, J. [CEIT, Paseo de Manuel Lardizabal 15, E-20018 San Sebastian (Spain); Ruiz-Hervias, J. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Atienza, J.M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain)]. E-mail: jmatienza@mater.upm.es; Elices, M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Peng, Ru Lin [NFL Studsvik, Uppsala University, S-61182 Nykoeping (Sweden); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, K7L 3N6 (Canada)

    2005-09-15

    Neutron strain scanning measurements on a eutectoid steel rod that has been subjected to standard industrial coiling and straightening operations are presented. Strains were determined non-destructively using two different diffractometers, one at a steady-state neutron source and the other at a pulsed spallation neutron source, with measurements made in both the ferrite and cementite components of the pearlitic microstructure. The residual stress state is explained in terms of a simplified analytical model for a two-phase material, which takes into account the successive loading operations contributing to residual stress. The results show that residual stresses generated by bending-straightening operations are significant and are likely to play an important role in the mechanical properties of the final wires.

  8. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    Science.gov (United States)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  9. NUMERICAL PREDICTION OF PROCESS-INDUCED RESIDUAL STRESSES IN GLASS BULB PANEL

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hua-min; SUN Qiang; XI Guo-dong; LI De-qun

    2006-01-01

    A numerical simulation model for predicting residual stresses which arise during the solidification process of pressed glass bulb panel was developed. The solidification of a molten layer of glass between cooled parallel plates was used to model the mechanics of the buildup of residual stresses in the forming process. A thermorheologically simple thermoviscoelastic model was assumed for the material. The finite element method employed was based on the theory of shells as an assembly of flat elements. This approach calculates residual stresses layer by layer like a truly three-dimensional calculation; which is well suited for thin pressed products of complex shape. An experimental comparison was employed to verifythe proposed models and methods.

  10. Prediction of Welding Residual Stress in 2. 25Cr-1Mo Steel Pipe

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering effects of martensite transformation was developed based on commercial ABAQUS software. Continuous cooling transformation (CCT) diagrams were employed to simulate the fraction of martensite in fusion zone, coarsegrained heat affected zone and fine-grained heat affected zone. The Koistinen-Marburger relationship was used to trace the formation of martensite. The effects of both volume change and yield strength change due to phase transformation on welding residual stress were considered using the proposed FE model. The result shows that the phase transformation has significant effects on the welding residual stress in multi-pass butt weld of pipe. The predicted simulation results by the proposed numerical method are generally in good agreement with experimental results.

  11. Cold pulse and rotation reversals with turbulence spreading and residual stress

    DEFF Research Database (Denmark)

    Hariri, F.; Naulin, Volker; Rasmussen, Jens Juul;

    2016-01-01

    Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence...... spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal...... and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable...

  12. Numerical simulation of dissimilar metal welding and its verification for determination of residual stresses

    Directory of Open Access Journals (Sweden)

    Sz. Szávai

    2016-03-01

    Full Text Available This paper summarizes the results of the through-thickness residual stress distributions on dissimilar metal weld (DMW mock-up. DMWs, as welded joints between ferritic steels and either austenitic stainless steels or nickel-based alloys, are commonly found in piping systems of NPPs as well as in other industrial plants. The welding of the mock-up is simulated by the 3D finite element model using temperature and phase dependent material properties. The commercial finite element code MSC.Marc is used to obtain the numerical results by implementing the Goldak’s double ellipsoidal shaped weld heat source and combined convection radiation boundary conditions. Residual stress measurements are performed on welded joints to validate the simulation results. The validated residual stress distributions can be used for the life time assessment and failure mode predictions of the welded joints.

  13. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    Science.gov (United States)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  14. Prediction of Welding Deformation and Residual Stresses in Fillet Welds Using Indirect Couple Field FE Method

    Directory of Open Access Journals (Sweden)

    Asifa Khurram

    2013-03-01

    Full Text Available Fillet welds are extensively used in shipbuilding, automobile and other industries. Heat concentrated at a small area during welding induces distortions and residual stresses, affecting the structural strength. In this study, indirect coupled-field method is used to predict welding residual stresses and deformation in a fillet joint due to welding on both sides. 3-D nonlinear thermal finite element analysis is performed in ANSYS software followed by a structural analysis. Symmetrical boundary conditions are applied on half of the model for simplification. Results of FE structure analysis predict residual stresses in the specimen. A comparison of simulation results with experimental values proves the authenticity of the technique. The present study can be extended for complex structures and welding techniques.

  15. Evaluation of Young's Modulus and Residual Stress of NiFe Film by Microbridge Testing

    Institute of Scientific and Technical Information of China (English)

    Zhimin ZHOU; Yong ZHOU; Mingjun WANG; Chunsheng YANG; Ji'an CHEN; Wen DING; Xiaoyu GAO; Taihua ZHANG

    2006-01-01

    Microbridge testing was used to measure the Young's modulus and residual stress of metallic films. Samples of freestanding NiFe film microbridge were fabricated by microelectromechanical systems. Special ceramic shaft structure was designed to solve the problem of getting the load-deflection curve of NiFe film microbridge by the Nanoindenter XP system with normal Berkovich probe. Theoretical analysis of load-deflection curves of the microbridges was proposed to evaluate the Young's modulus and residual stress of the films simultaneously. The calculated results based on experimental measurements show that the average Young's modulus and residual stress for the electroplated NiFe films are 203.2 GPa and 333.0 MPa, respectively, while the Young's modulus measured by the Nano-hardness method is 209.6±11.8 GPa for the thick NiFe film with silicon substrate.

  16. MICROBRIDGE TESTING OF YOUNG'S MODULUS AND RESIDUAL STRESS OF NICKEL FILM ELECTROPLATED ON SILICON WAFER

    Institute of Scientific and Technical Information of China (English)

    Y. Zhou; C.S Yang; J.A. Chen; G.F. Ding; L. Wang; M.J. Wang; Y.M. Zhang; T.H. Zhang

    2004-01-01

    Microbridge testing is used to measure the Young's modulus and residual stresses of metallic films. Nickel film microbridges with widths of several hundred microns are fabricated by Microelectromechanical Systems. In order to measure the mechanical properties of nickel film microbridges, special shaft structure is designed to solve the problem of getting the load-deflection curves of metal film microbridge by Nanoindenter XP system with normal Berkovich probe. Theoretical analysis of the microbridge load-deflection curve is proposed to evaluate the Young's modulus and residual stress of the films simultaneously. The calculated results based on the experimental measurements show that the average Young's modulus and residual stress are around 190GPa and 175MPa respectively, while the Young's modulus measured by Nanohardness method on nickel film with silicon substrate is 186.8±7.34GPa.

  17. The Effect of Residual Stress on the Wear Properties of Dlc Coatings

    Science.gov (United States)

    Jang, Young-Jun; Kim, Seock-Sam; Rha, Jong-Joo

    Multi-layer diamond-like carbon (DLC) coating, 150 and 220 nm thick were deposited by negative pulsed d.c. bias induced with magnetron sputtering. The objective of this research is to resolve a wear resistance in terms of DLC coating residual stress and mechanical properties. The bias was controlled from - 200 to 0 V during 10 second with point contacting controller. The surface structure was continuously fabricating to soft and hard-layer during deposition. It was shown that the compressive residual stress and hardness were 0.09, 18 GPa under multi-layer coating condition. The as-deposited DLC coating has a relatively higher wear resistance than unmodified DLC under nanoabrasive wear. It also showed that multi-layer DLC coating had no wear until 400 nN. The decreased residual stress and increased film hardness in the multi-layer coating gave a rise to increase wear resistance.

  18. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    朱大焕; 王坤; 王先平; 陈俊凌; 方前锋

    2012-01-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  19. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Science.gov (United States)

    Zhu, Dahuan; Wang, Kun; Wang, Xianping; Chen, Junling; Fang, Qianfeng

    2012-07-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  20. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: silvall@cdtn.br, E-mail: tanius@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil). Servico de Integridade Estrutural; Martins, Ketsia S., E-mail: ketshinoda@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Nelo Horizonte (Brazil). Departamento de Engenharia Metalurgica

    2015-07-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  1. Modified Layer-Removal Method for Measurement of Residual Stress in Pre-stretched Aluminium Alloy Plate

    Institute of Scientific and Technical Information of China (English)

    Liangbao Liu; Jianfei Sun; Wuyi Chen; Pengfei Sun

    2015-01-01

    Residual stress is one of the factors affecting the machining deformation of monolithic structure parts in the aviation industry. Thus, the studies on machining deformation rules induced by residual stresses largely depend on correctly and efficiently measuring the residual stresses of workpieces. A modified layer⁃removal method is proposed to measure residual stress by analysing the characteristics of a traditional layer⁃removal method. The coefficients of strain release are then deduced according to the simulation results using the finite element method ( FEM) . Moreover, the residual stress in a 7075T651 aluminium alloy plate is measured using the proposed method, and the results are then analyzed and compared with the data obtained by the traditional methods. The analysis indicates that the modified layer⁃removal method is effective and practical for measuring the residual stress distribution in pre⁃stretched aluminium alloy plates.

  2. Effect of Grinding and Polishing on the Residual Stress and Bending Strength of a Silicon Nitride Ceramic

    Institute of Scientific and Technical Information of China (English)

    GAO Ling; YANG Haitao; DU Daming; ZHAO Shikun; LI Huaping; YUAN Runzhang

    2005-01-01

    The residual stresses on the surface of the differently ground and polished silicon nitride ceramics were measured using X-ray diffraction and identified by SEM.The effect of the residual stress on the bending strength was investigated.The investigations show that the grinding process can introduce subatantial tensile residual stresses up to 290MPa on the surface of silicon nitride ceramics,which has a significant effect on reducing the bending strength of the ceramics after grinding.Thus,in comparison with the ceramics with a rough surface,the ceramics with a mirror image surface may have a lower strength.Polishing can smooth the residual stresses.When we evaluate the quality of the ceramic components after grinding,we must take residual stress into consideration. The grinding methods and grinding conditions must be carefully selected in order to get the favorite residual stress as well as the surface smoothness.

  3. Residual stress and electromagnetic characteristics in loop type frequency selective surface embedded hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Mi; Seo, Yun Seok; Chun, Heoung Jae [Yonsei University, Seoul (Korea, Republic of); Hong, Ik Pyo [Kongju National University, Cheonan (Korea, Republic of); Park, Yong Bae [Ajoo University, Suwon (Korea, Republic of); Kim, Yoon Jae [Agency for defense development, Daejeon (Korea, Republic of)

    2015-01-15

    Residual stresses occur in frequency-selective surface (FSS)-embedded composite structures after co-curing due to differences between the coefficients of thermal expansion between composite skins and FSSs. Furthermore, the electromagnetic characteristics may be affected by the deformation of the FSS pattern by residual stresses. Therefore, we studied the changes in electromagnetic characteristics due to the deformation of FSS, using residual stresses to deform loop-type FSS-embedded hybrid composites. We considered the effects of loop-type FSS patterns of equal dimension as well as the stacking sequences of composite laminates on the electromagnetic characteristics of FSSs: Square loop, triangular loop and circular loop. The stacking sequences of composite laminates considered in this study were [0]{sub 8}, [0/90]{sub 4}, [+-45]{sub 4} and [0/+-45/90]{sub 2}. The FSS was located between composite laminates in the middle plane. To determine the residual stresses and deformations in the FSS embedded laminate structures, the thermal loading condition in the finite element analysis was induced by cooling the hybrid structures from 125 .deg. C to 20 .deg. C based on the cure cycle of the composite. Also, the electromagnetic reflection characteristics of the hybrid structures were predicted using deformed models by residual stresses, considering the effects of stacking sequence of composite laminates. The results showed that the maximum residual stresses and deformations were produced in the [0]{sub 8} composites with all three loop-types of FSS pattern. However, the maximum resonance frequency shifts occurred in the square and triangle loop-types with stacking sequence of [0]{sub 8} , while the maximum resonance frequency shift occurred in the circular loop-type with stacking sequence of [0/+-45/90]{sub 2}.

  4. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  5. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    Science.gov (United States)

    1981-11-30

    and Cracking due to Stress Relieving Heat Treatment of HY80 Steel ", Welding in the World, 10 (1/2), 1972. -114- elastic-plastic and creep analysis...900°F (500C) is adequate. In these steels stress relief treatments are beneficial for the prevention of stress corrosion and reheat cracking . For...of * Contract NOO014-75-C-0469 (M.I.T. OSP #82558) STUDY OF RESIDUAL STRESSES AND DISTORTION IN - . -- ISTRUCTURAL WELT*IENTS IN HIGH-STRENGTH STEELS

  6. Residual stress evaluation and curvature behavior of aluminium 7050 peen forming processed; Avaliacao da tensao residual em aluminio 7050 conformado pelo processo peen forming

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.R. de; Lima, N.B., E-mail: rolivier@ipen.b, E-mail: nblima@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Braga, A.P.V.; Goncalves, M., E-mail: anapaola@ipt.b, E-mail: mgoncalves@ipt.b [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2010-07-01

    Shot peening is a superficial cold work process used to increase the fatigue life evaluated by residual stress measurements. The peen forming process is a variant of the shot peening process, where a curvature in the plate is obtained by the compression of the grains near to the surface. In this paper, the influence of the parameters such as: pressure of shot, ball shot size and thickness of aluminum 7050 samples with respect to residual stress profile and resulting arc height was studied. The evaluation of the residual stress profile was obtained by sin{sup 2} {Psi} method. (author)

  7. Mechanism of Residual Stress Reduction in Low Alloy Steel by a Low Frequency Alternating Magnetic Treatment

    Institute of Scientific and Technical Information of China (English)

    Yanli Song; Lin Hua

    2012-01-01

    Residual stress reduction in low alloy steel by a low frequency alternating magnetic treatment and its mechanism were investigated. Experimental results revealed that average stress reductions of 20%-24% were obtained in the welded samples. Moreover, compared with the zones with lower initial stress levels, more remarkable stress reductions were obtained in the stress concentration zones. The microstructures and magnetic domains were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Based on the analysis of the microstructure and magnetic domain changes, the mechanism of stress reduction by the magnetic treatment has been concluded: (1) the magneto-plastic deformations mainly due to the more uniform redistribution of dislocations are the fundamental cause of stress relaxation; and (2) surface topography is also proved to affect the magnetic treatment results to some degree by influencing magnetic domains.

  8. On the reliability of neutron diffraction for residual stress measurement in cold-drawn steels

    Science.gov (United States)

    Ruiz-Hervias, J.; Mompean, F.; Hofmann, M.; Atienza, J. M.

    2011-10-01

    Residual strains were measured in the ferrite phase of pearlitic steel rods along the radial, axial and hoop directions. Two samples with different initial diameters were subjected to one drawing pass (using same drawing parameters) with 20% section reduction and measured in two different neutron diffraction instruments. The results show that the residual strain state is very similar in both cases, regardless of the diameter of the initial rod. This means that the final residual strain-stress state is unique and it is related to the cold-drawing process parameters. In addition, the results show the reliability of strain scanning with different neutron instruments and experimental conditions.

  9. Determination of global and local residual stresses in SOFC by X-ray diffraction

    Science.gov (United States)

    Villanova, Julie; Sicardy, Olivier; Fortunier, Roland; Micha, Jean-Sébastien; Bleuet, Pierre

    2010-02-01

    Solid Oxide Fuel Cell (SOFC) is a high-performance electrochemical device for energy conversion. A single cell is composed of five layers made of different ceramic materials: anode support, anode functional layer, electrolyte, cathode functional layer and cathode. The mechanical integrity of the cell is a major issue during its lifetime, especially for the electrolyte layer. Damage of the cells is mainly due to the high operating temperature, the "redox" behaviour of the anode and the brittleness of the involved materials. Since residual stresses are known to play a significant role in the damage evolution, it is important to determine them. For this purpose, residual stresses in an anode-supported planar SOFC were measured by X-ray diffraction. Firstly, macroscopic stresses in each phase of each layer were studied using the sin 2ψ method on a laboratory X-ray goniometer at room temperature. This technique enables the calculation of residual stress of the material from the measurement of the crystal lattice deformation. The electrolyte has been found under bi-axial compressive stress of -920 MPa. Secondly, X-ray measurements controlling depth penetration were made in the electrolyte using grazing incidence method. The results show that the stress is not homogenous in the layer. The first five micrometers of the electrolyte have been found less constrained (-750 MPa) than the complete layer, suggesting a gradient of deformation in the electrolyte from the interface with the Anode Functional Layer to the free surface. Finally, local stress measurements were made on the electrolyte layer by X-ray synchrotron radiation that allows high accuracy measurement on the (sub-) micrometer scale. Polychromatic and monochromatic beams are used to determine the complete strain tensor from grain to grain in the electrolyte. First results confirm the macroscopic stress trend of the electrolyte. These X-ray techniques at different scales will contribute to a better understanding of

  10. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.

    Science.gov (United States)

    Labrosse, Michel R; Gerson, Eleanor R; Veinot, John P; Beller, Carsten J

    2013-01-01

    Material properties needed for accurate stress analysis of the human aorta are still incompletely known, especially as many reports have ignored the presence of residual stresses in the aortic wall. To contribute new material regarding these issues, we carried out measurements and pressurization testing on ascending, thoracic and abdominal aortic samples from 24 human subjects aged 38-77 years, and evaluated the opening angle describing the circumferential residual stress level present in the aorta. We determined material constants for the aorta by gender, anatomic location and age group, according to a simple phenomenological constitutive model. The unpressurized aortic radius positively correlated with age, and the circumferential and longitudinal stretch ratios under systemic pressure negatively correlated with age, confirming the known enlargement and stiffening of the aorta with aging. The opening angle was measured to range from a minimum of 89° to above 360° for extreme cases. For given aortic dimensions and material properties, analysis of the in vivo circumferential and longitudinal mural stress distributions indicated a profound influence of the opening angle. For instance, in the thoracic aorta of males aged 38-66, opening angles in the range of 0° to 80° (resp. 60°) may equalize the gradient of in vivo circumferential (resp. longitudinal) stress between the inner and outer layers of the aorta, as commonly expected; however, opening angles above 160° (resp. 120°) may cause the gradient of circumferential (resp. longitudinal) stress to reverse and increase compared to the case without residual stress, putting the maximum stresses toward the adventitia instead of the intima. Even though the analysis of the aortic wall excluded possible longitudinal residual stresses as well as material inhomogeneities, such as constitutive differences between the intimal, medial and adventitial layers, the experimental data reported herein are important to aortic

  11. Creep Modeling in a Composite Rotating Disc with Thickness Variation in Presence of Residual Stress

    Directory of Open Access Journals (Sweden)

    Vandana Gupta

    2012-01-01

    Full Text Available Steady-state creep response in a rotating disc made of Al-SiC (particle composite having linearly varying thickness has been carried out using isotropic/anisotropic Hoffman yield criterion and results are compared with those using von Mises yield criterion/Hill's criterion ignoring difference in yield stresses. The steady-state creep behavior has been described by Sherby's creep law. The material parameters characterizing difference in yield stresses have been used from the available experimental results in literature. Stress and strain rate distributions developed due to rotation have been calculated. It is concluded that the stress and strain distributions got affected from the thermal residual stress in an isotropic/anisotropic rotating disc, although the effect of residual stress on creep behavior in an anisotropic rotating disc is observed to be lower than those observed in an isotropic disc. Thus, the presence of residual stress in composite rotating disc with varying thickness needs attention for designing a disc.

  12. BOOK REVIEW: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation

    Science.gov (United States)

    Fitzpatrick, ed M. E.; Lodini, A.

    2003-09-01

    The presence of residual stresses within engineering components is often a key feature in determining their usable lifetimes and failure characteristics. Residual surface compression can, for example, restrict the propagation of surface cracks through the bulk. As a consequence, it is essential to characterize the magnitude and spatial distribution of residual stresses and, at least for non-destructive testing, this is most widely achieved using diffraction of neutron and high energy synchrotron radiations. This book aims to provide a detailed description of the methodology used to determine residual stresses. The major emphasis is placed on the neutron method, this being the more widely established approach at present. It contains 20 chapters contributed by 23 authors, divided into five major parts. The overall layout is very logical, with the first part giving a general introduction to the use of neutrons and x-rays for materials research and summarizing the methods used for their production. Part 2 considers the more specific aspects of extracting the residual stress distribution within a bulk sample and includes some valuable comments on a number of potential experimental problems, such as the determination of the stress-free lattice parameter and the effects of broadening of the Bragg peaks. The experimental facilities currently available or under development are described in part 3, with the remaining two parts devoted to general and specific applications of the residual stress measurement technique. As expected with such a large number of different authors, there is some variation in style and quality. However, the text is generally easy to follow and, more importantly, it is largely free of the problems of inconsistent notation and dupication of material that can afflict multi-authored texts. My only negative comment concerns the latter portion of the book devoted to specific applications of the technique, which is illustrative rather than comprehensive. In

  13. Analysis of Residual Stress and Deformation of Rolling Strengthen Crankshaft Fillet

    Directory of Open Access Journals (Sweden)

    Han Shaojun

    2016-01-01

    Full Text Available Based on the analysis of crankshaft fillet rolling process, used ANSYS finite element analysis software to conduct the elastic-plastic mechanical simulation of crankshaft rolling process, and gained the variation law of the residual stress and plastic deformation in the radial path of the fillet under different rolling laps and rolling pressure. Established the relationship between the rolling pressure and the plastic deformation and residual stress of the fillet, and provided theoretical support for the evaluation and detection of the crankshaft rolling quality.

  14. Through-Thickness Measurements of Residual Stresses in an Overlay Dissimilar Weld Pipe using Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Wan Chuck; EM, Vyacheslav; Lee, Ho Jin; Kim, Kang Soo; Kang, Mi Hyun; Joo, Jong Dae; Seong, Baek Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byeon, Jin Gwi; Park, Kwang Soo [Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2010-10-15

    The distribution of residual stresses in dissimilar material joints has been extensively studied because of the wide applications of the dissimilar welds in many inevitable complex design structures. Especially the cracking of dissimilar welding has been a long standing issue of importance in many components of the power generation industries such as nuclear power plant, boiling pressure system, and steam generators. In particular, several failure analysis and direct observations have shown that critical fractures have frequently occurred in one side of the dissimilar welded parts. For example, the heat-affected zone on the ferrite steel side is known to critical in many dissimilar welding pipes when ferrite (low carbon steel) and austenite (stainless) steels are joined. The main cause of the residual stresses can be attributed to the mismatch in the coefficient of thermal expansion between the dissimilar metals (ferrite and austenite). Additional cladding over circumferential welds is known to reinforce the mechanical property due to the beneficial compressive residual stress imposed on the weld and heat-affected zone. However, science-based quantitative measurement of the through thickness residual stress distribution is very limited in literature. The deep penetration capability of neutrons into most metallic materials makes neutron diffraction a powerful tool to investigate and map the residual stresses of materials throughout the thickness and across the weld. Furthermore, the unique volume averaged bulk characteristic of materials and mapping capability in three dimensions are suitable for the engineering purpose. Thus, the neutron-diffraction measurement method has been selected as the most useful method for the study of the residual stresses in various dissimilar metal welded structures. The purpose of this study is to measure the distribution of the residual stresses in a complex dissimilar joining with overlay in the weld pipe. Specifically, we measured

  15. Modification of residual stress in Al-[AlBO]w/Al compound plate

    Institute of Scientific and Technical Information of China (English)

    姜传海; 吴建生; 王德尊

    2001-01-01

    The application of compound parts of Al-[AlBO]w/Al not only reduces the cost of the parts but also improves its properties. However, there is a large thermal residual stress between Al and [AlBO]w/Al, and it is harmful for practical application. From the theoretical analyses and experimental results, it was found that by the compressive pre-plastic deformation perpendicular to the interface between Al and [AlBO]w/Al, the interlayer residual stress of compound parts can be reduced, while the mechanical properties of compound parts can be improved.

  16. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    Science.gov (United States)

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  17. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...... and corners. Furthermore a comparison between the minimal residual stresses at holes and the residual stresses at other areas of the glass plate (edge, chamfer and far-field stresses) is made....

  18. Residual Stress on Surface and Cross-section of Porous Silicon Studied by Micro-Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LEI Zhen-Kun; KANG YI-Lan; CEN Hao; HU Ming; QIU Yu

    2005-01-01

    @@ Surface and cross-sectional residual stresses of electrochemical etching porous silicon are investigated quantitatively by micro-Raman spectroscopy.The results reveal that a larger tensile residual stress exists on the surface and increase linearly with the porosity.On the other hand, across the depth direction perpendicular to the surface, the tensile residual stress decreases gradually from the surface to regions near the interface between the porous silicon layer and the Si substrate.However, a compressive stress appears at the interface near to the Si substrate for balancing with the tensile stress in the porous silicon layer.The cross-sectional residual stress profile is due to the porosity and lattice mismatch gradients existing in the cross-section and influencing each other.Furthermore, the presented residual stresses of the porous silicon have a close relation with its microstructure.

  19. NUMERICAL SIMULATION OF RESIDUAL STRESSES GENERATED IN THE WIRE DRAWING PROCESS FOR DIFFERENT PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Juliana Zottis

    2014-03-01

    Full Text Available The drawing process of steel bars is usually used to check better dimensional accuracy and mechanical properties to the material. In the other hand, the major concern found in manufacturing axes through this process is the appearance of distortion of shape. Such distortions are directly linked to the accumulation of residual stresses generated during the processes. As a result, this paper aims to study the influence of process parameters such as shape of puller, speed and lubrication used in wire drawing analyzing the accumulation of residual stress after the process. The stress analysis was performed by FEM being used two simulation software: Simufact.formingGP and DeformTM. Through these analyzes, it was found that the shape of how the bar is pulled causes a reduction of up to 100 MPa in residual stresses in the center of the bar, which represents an important factor in the study of the possible causes of the distortion. As well as factors speed and homogeneity of lubrication significantly altered the profile of residual stresses in the bar.

  20. Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity

    Science.gov (United States)

    Lombardi, Anthony; D'Elia, Francesco; Ravindran, Comondore; Sediako, Dimitry; Murty, B. S.; MacKay, Robert

    2012-12-01

    The replacement of nodular cast iron with 319 type aluminum (Al) alloys in gasoline engine blocks is an example of the shift towards the use of lighter alloys in the automotive industry. However, excessive residual stress along the cylinder bore may lead to bore distortion, significantly reducing engine operating efficiency. In the current study, microstructure, mechanical properties and residual stress were characterized along the cylinder bridge of engine blocks following thermal sand reclamation (TSR), T7 heat treatment, and service testing of the casting. Neutron diffraction was effectively used to quantify the residual stress along both the Al cylinder bridge and the adjacent gray cast iron cylinder liners in the hoop, radial, and axial orientations with respect to the cylinder axis. The results suggest that an increase in cooling rate along the cylinder caused a significant refinement in microstructure at the bottom of the cylinder. In turn, this suggested an increase in alloy strength at the bottom of the cylinder relative to the top. This increased strength at the bottom of the cylinder likely reduced the susceptibility of the cylinder to rapid relief of residual stress at elevated temperature. In contrast, the coarse microstructure at the top of the cylinder likely triggered stress relief at an elevated temperature.

  1. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments

    Science.gov (United States)

    Gopinath, Abhay; Lim, Andre; Nagarajan, Balasubramanian; Cher Wong, Chow; Maiti, Rajarshi; Castagne, Sylvie

    2016-11-01

    Mechanical surface treatments such as Shot Peening (SP) and Deep Cold Rolling (DCR) are being used to introduce Compressive Residual Stress (CRS) at the surface and subsurface layers of aerospace components, respectively. This paper investigates the feasibility of a combined introduction of both the surface and sub-surface compressive residual stress on Ti6Al4V material through a successive application of the two aforementioned processes, one after the other. CRS profiles between individual processes were compared to that of combination of processes to validate the feasibility. It was found out that shot peening introduces surface compressive residual stress into the already deep cold rolled sample, resulting in both surface and sub-surface compressive residual stresses in the material. However the drawback of such a combination would be the increased surface roughness after shot peening a deep cold rolled sample which can be critical especially in compressor components. Hence, a new technology, Vibro-Peening (VP) may be used as an alternative to SP to introduce surface stress at reduced roughness.

  2. 3 D FEM analysis of welding residual stress and deformation of aero-engine blisk

    Institute of Scientific and Technical Information of China (English)

    杨建国; 周号; 雷靖; 方洪渊; 张学秋; 曲伸

    2014-01-01

    Aero-engine blisk welded by electron beam welding(EBW)method is a complicated structure.Fixtures were used to control the deformation ofblisk during its manufacturing process.Finite element method was utilized to study the evolution of the welding residual stress and deformation of this structure.In which an attenuation function was applied to the double ellipsoid heat source model based on the characteristic ofEBW,and the effects offixtures on the welding residual stresses and deforamtion were also reserached.The simulation results showed that the temperature contour ofweld cross section vertical to the weld centerline followed a “V”shape.Moreover,large welding residual stress and distortion were found in the interface between blisk and fixtures.The stress concentration was reduced sufficiently in starting and end part ofweldment as the fixtures were removed after welding process,while the removing operation had almost no effects on the welding residual stress in the middle section ofweld bead.

  3. Reduction of the residual stresses in cold expanded thick-walled cylinders by plastic compression

    Institute of Scientific and Technical Information of China (English)

    V.F. SKVORTSOV; A.O. BOZNAK; A.B. KIM; A. Yu ARLYAPOV; A.I. DMITRIEV

    2016-01-01

    We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1%generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy (IT7). After plastic compression with strain equal to 0.5 and 1%the mentioned stresses reduced to 120 and 75 MPa respectively, and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9%helps to restore holes accuracy (IT7) gained by double cold expansion and ensure that absolute value of hoop residual stresses (177 MPa) is lower compared to double cold expansion.

  4. Residual stress evaluation in the vicinity of ceramic coating interface using polychromatic X-ray method

    Energy Technology Data Exchange (ETDEWEB)

    Shibano, Jun-ichi; Ukai, Takayoshi; Tadano, Shigeru [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Todoh, Masahiro

    1995-06-01

    This paper presents a polychromatic X-ray method for nondestructive evaluation of residual stress distributed in the vicinity of the interface between a ceramic coating layer and a substrate metal. Since the strain is assumed to be a linear function of the depth, the strain distribution along the depth direction can be obtained from the weighted mean strain equation calculated by considering the intensity of diffracted X-rays over the penetration depth. Therefore, the distribution along the depth direction of the residual stress was determined by the strain distributions in two directions: the vertical direction and the inclined direction to the surface. SUS316 coated with TiN by the PVD process was used as the specimen. The residual stress distributions in the coating layer and the substrate of the specimen were evaluated using this method. As a result, not only compressive residual stress in the coating layer but also the stress gradient in the substrate could be confirmed simultaneously and nondestructively. (author).

  5. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  6. Considerations on the choice of experimental parameters in residual stress measurements by hole-drilling and ESPI

    Directory of Open Access Journals (Sweden)

    C. Barile

    2014-10-01

    Full Text Available Residual stresses occur in many manufactured structures and components. Great number of investigations have been carried out to study this phenomenon. Over the years, different techniques have been developed to measure residual stresses; nowadays the combination of Hole Drilling method (HD with Electronic Speckle Pattern Interferometry (ESPI has encountered great interest. The use of a high sensitivity optical technique instead of the strain gage rosette has the advantage to provide full field information without any contact with the sample by consequently reducing the cost and the time required for the measurement. The accuracy of the measurement, however, is influenced by the proper choice of several parameters: geometrical, analysis and experimental. In this paper, in particular, the effects of some of those parameters are investigated: misknowledgment in illumination and detection angles, the influence of the relative angle between the sensitivity vector of the system and the principal stress directions, the extension of the area of analysis and the adopted drilling rotation speed. In conclusion indications are provided to the scope of optimizing the measurement process together with the identification of the major sources of errors that can arise during the measuring and the analysis stages.

  7. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Park, Heung Bae [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2010-10-15

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  8. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    Energy Technology Data Exchange (ETDEWEB)

    Weise, A. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik; Fritsche, G. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.).

  9. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  10. Influence of rare earths addition on residual stress of Fe-based coating prepared by brush plating technology

    Institute of Scientific and Technical Information of China (English)

    JIN Guo; LU Bingwen; HOU Dingding; CUI Xiufang; SONG Jiahui; LIU Erbao

    2016-01-01

    The effect of rare earths (La, Ce and Pr) addition on residual stress in iron coatings prepared by brush plating was investi-gated. The results showed that the addition of rare earth transformed the residual stress in the coating from tensile to compressive. To relieve the residual stress, on the one hand, RE elements segregated at the grain boundaries which restricted the coalescence of the grains and provided more capability of grain deformation. On the other hand, RE elements could purify detrimental element and ab-sorb hydrogen atoms in the coating. Among the three rare earths, elements lanthanum showed the most significant effect on surface morphology and residual stress.

  11. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    Science.gov (United States)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  12. Experimental Study of the Induced Residual Stresses During the Manufacturing Process of an Aeronautic Composite Material

    Directory of Open Access Journals (Sweden)

    Hussam Kassem

    2010-09-01

    Full Text Available A methodology is proposed for predicting the formation and the development of the manufacturing residual stresses, this approach is based on the study of the evolution of the resin yield stress. In order to evaluate our method, a comparison has been made between the yield time (corresponding to the formation of a yield stress and the gel time. A self-consistent model is used to determine the cure-dependent chemical shrinkage coefficient of the composite material. This model allows considering for the composite material behavior an anisotropic chemical shrinkage, which is not represented by a classical linear model. An experimental approach based on the peel-ply method is used to determine the distribution of the residual stresses through the thickness.

  13. Residual internal stress optimization for EPON 828/DEA thermoset resin using fiber Bragg grating sensors

    Science.gov (United States)

    Rohr, Garth D.; Rasberry, Roger D.; Kaczmarowski, Amy K.; Stavig, Mark E.; Gibson, Cory S.; Udd, Eric; Roach, Allen R.; Nation, Brendan

    2015-05-01

    Internal residual stresses and overall mechanical properties of thermoset resins are largely dictated by the curing process. It is well understood that fiber Bragg grating (FBG) sensors can be used to evaluate temperature and cure induced strain while embedded during curing. Herein, is an extension of this work whereby we use FBGs as a probe for minimizing the internal residual stress of an unfilled and filled Epon 828/DEA resin. Variables affecting stress including cure cycle, mold (release), and adhesion promoting additives will be discussed and stress measurements from a strain gauge pop-off test will be used as comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  15. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Institute of Scientific and Technical Information of China (English)

    Jie Cheng; Si-Young Kwak; Ho-Young Hwang

    2010-01-01

    In this study,residual stresses in heat treated specimen were measured by using ESPI(Electronic Speckle-Pattern Interferometry)combined with the hole-drilling method.The specimen,made of SUS 304austenitic stainless steel,was quenched and water cooled to room temperature.Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process.As a result,the thermal stress fields were obtained from both the experiment and the numerical simulation.By comparision of stress fields,results from the experimental method and numerical simulation well agreed to each other,therefore,it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  16. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  17. Measurement and tailoring of residual stress in expanded austenite on austenitic stainless steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Winther, Grethe

    2017-01-01

    Expanded austenite on stainless steel with a high interstitial nitrogen content is characterized by elasto-plastic accommodation of the large composition-induced lattice expansion leading to huge compressive residual stress. The elasto-plastic accommodation as well as the (steep) concentration...... profile has implications for the measurement strategy to determine lattice strains and associated residual stresses with X-ray diffraction. Lattice strain measurements were performed on nitrided as well as subsequently de-nitrided expanded austenite on AISI 316L stainless steel, for various grazing...... stresses in expanded austenite can be tailored by de-nitriding after nitriding, such that a condition of virtually zero stress at the surface is obtained....

  18. Residual stress inspection by Eu3+ photoluminescence piezo-spectroscopy: An application in thermal barrier coatings

    Science.gov (United States)

    Zhao, Yu; Ma, Chunli; Huang, Fengxian; Wang, Chunjie; Zhao, Sumei; Cui, Qiliang; Cao, Xueqiang; Li, Fangfei

    2013-08-01

    A non-destructive inspection technique was developed to measure the residual stresses in thermal barrier coatings (TBCs) by using Eu3+ photoluminescence piezo-spectroscopy. The new approach is based on the relationship between stress and the position of the main peak of 5D0→7F2 transition, which is built by the high-pressure techniques. The Eu3+ luminescent sublayer was applied in the current method to ensure that the detected position in TBCs can be well controlled. The laser used to detect Eu3+ luminescence gives a proper penetration depth and spatial resolution, which make this method suitable to detect the stresses concentrated near the interfaces between different layers. This method was successfully applied in detecting residual stress in plasma sprayed TBCs with a 8YSZ:Eu (1 mol. %) sublayer.

  19. Simulation of mechanical properties and residual stress of nanostructural coatings based on transition metals nitrides

    Science.gov (United States)

    Danilyuk, Alexander L.; Shaposhnikov, Victor L.; Filonov, Andrew B.; Anischik, Victor M.; Uglov, Vladimir V.; Kuleshov, Andrew K.; Danilyuk, Maxim A.

    2008-07-01

    Physical properties of novel nanostructural coatings, formed by ion-plasmous flux from solid solutions of transition and refractory metals (Ti, Zr, Cr) have been intensively studied to enhance characteristics of tool materials. We have developed the modeling technique for effective predictions of internal stresses and calculation of elastic properties of nanostructural coatings composed of metal nitrides. Quantum-mechanical modeling of microstructure, elastic constants, bulk modulus and residual stress for binary and ternary metal nitride clusters have been performed. The dependences of these characteristics on the crystal structure deformations have been investigated. The essential modification of elastic constants and bulk moduli with changes in lattice constants and stoichiometric composition has been observed. The influence of elastically stressed state of sample on X-ray diffraction intensity has been examined by using the exponential model. The model of residual stress distribution identifying in depth of wear-resistant nanostructural coating from the data of diffraction experiments has been developed.

  20. Enhancement of energy dispersive residual stress analysis by consideration of detector electronic effects

    Science.gov (United States)

    Denks, I. A.; Genzel, Ch.

    2007-08-01

    The effects of the germanium detector electronics on diffraction line patterns is investigated. It is shown that not only the detector resolution and the throughput but also the energy stability depend on both the specific detector settings and the dead time. For a moderate resolution versus throughput setting a correction function is proposed and applied to the near-surface residual stress analysis of three samples with considerably different stress states. It is demonstrated that without the correction function ghost stresses up to hundreds of MPa in the near-surface region are obtained. The correction procedure is verified by conventional X-ray measurements. In conclusion, the authors strongly suggest quantifying the electronic shifts of any individual detector systems prior to the analysis of residual stresses.

  1. An Evaluation on the Residual Stresses Induced by EFR Welding of CEDM Nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Ho; Park, Gi Yeol; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this paper, carried out the welding analysis to use the SYSWELD as welding interpretation code based on the reactor upper head nozzle. In this paper, evaluated the residual stress in CEDM nozzle by EFR through the SYSWELD which is the welding interpretation code. The conclusion are same as below. 1) When comparing with Hoop Stress and Axial Stress by J-Groove and EFR, after welding residual stress by EFR is lower than after J-Groove. 2) After EFR, it was confirmed that the tensile stress is reduced after increasing over the point3. The PWSCC of Dissimilar Metal Zone of reactor can degrade the integrity of the main device in nuclear power plant, and according to the power plant stopped for inspection, it can cause an enormous amount of lost sales when the crack is occurred. Various methods have been developed to reduce residual stress to prevent the PWSCC like Weld Overlay (WOL), Mechanical Stress Improvement Process (Msp), Laser Peening, Inlay Weld, etc. Among them, Wol is the most commonly used welding method in nuclear power plant. When performing a Wol, structure rigidity will be increase, and residual stress of welding zone will be changed into compressive stress from the tensile stress. This has the advantage that improved resistance to PWSCC. The most commonly used material in nuclear power plant is Inconel 600. Inconel 600 consist of a Ni-Cr-Fe and it has 14-17% of Cr content, 10% of Fe content and susceptible to PWSCC. The more Cr content is more stronger against PWSCC. Inconel 690 which has 2 times more Cr content than Inconel 600 has very strong resistance to PWSCC than Inconel 600. Embedded Flaw Repair (EFR) has been developed in Westinghouse by 1994. The welding metal with high corrosion resistance is embedded on the surface of component, and could protect cracking part from the PWSCC. It is permanent repair method that isolates the flaw from the environment, eliminating further crack propagation due to PWSCC. EFR method is that at least three layers

  2. Modeling delamination due to thermal stress in optical storage media

    Science.gov (United States)

    Nkansah, M. A.; Evans, K. E.

    1990-04-01

    Finite element analysis is used to calculate the shape of blisters formed in bilayer optical storage media due to the buildup of thermal stresses during laser writing. It is shown that practically usable blisters may be expected to form in a time period of about 15 ns. Such a thermal stress delamination process may also precede melting in conventional pit formation processes.

  3. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Idury, K.S.N. Satish, E-mail: satishidury@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Ismail, T.P., E-mail: tpisma@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Bhadauria, Alok, E-mail: alokbhadauria1@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, S.K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  4. ANALYSIS OF RESIDUAL STRESS IN THE METAL MATRIX COMPOSITE PLATES WITH CIRCULAR HOLES

    Directory of Open Access Journals (Sweden)

    Muzaffer TOPCU

    1999-02-01

    Full Text Available In this study, elasto-plastic stress analysis have been made for metal matrix composite plates containing a central hole subjected to uniaxial tension under various uniformly distributed loads. In the solution, ısoparametric rectangular elements with nine nodes have been used. In the reinforcement angles 0 and 90 degrees for different diameters of the holes ın the vicinity of the holes residual stress variations have been investigated.

  5. Residual stress in plasma sprayed ceramic turbine tip and gas path seal specimens

    Science.gov (United States)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The residual stresses in a ceramic sheet material used for turbine blade tip gas path seals, were estimated. These stresses result from the plasma spraying process which leaves the surface of the sheet in tension. To determine the properties of plasma sprayed ZrO2-Y2O3 sheet material, its load deflection characteristics were measured. Estimates of the mechanical properties for sheet materials were found to differ from those reported for plasma sprayed bulk materials.

  6. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651.

    Science.gov (United States)

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-02-28

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  7. Vibration of piezoelectric nanobeams with an internal residual stress and a nonlinear strain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Chengyuan, E-mail: cywang@ujs.edu.cn; Luo, Ying

    2015-10-23

    This Letter reports the effect of an internal residual stress and the local geometric nonlinearity on the vibration of piezoelectric nanowires (NWs). A dynamic equation is derived based on Hamilton's principle, which enables one to capture the above-mentioned effects and the influence of all lateral surfaces of a rectangular NW. Vibration frequencies are obtained for the NWs under an electrical voltage and compared with those given by the existing Young–Laplace model where zero internal stress, a linear strain and the effects of top and bottom surfaces of rectangular NWs are considered. It is found that the internal residual stress can extinguish the effect of the surface-induced residual stress and substantially down shift the frequency or qualitatively alter the size-dependence of the frequency. In addition, with a nonlinear strain the piezoelectric effect is found to be able to exert a direct impact on the bending stiffness of piezoelectric NWs. - Highlights: • A dynamic equation is derived for piezoelectric nanowires (PNs) by considering a nonlinear strain and an internal stress. • A nonlinear strain extends the piezoelectric effects to the bending stiffness of the PNs. • An internal stress decreases PN frequency and alters its thickness-dependence. • All lateral surfaces of PNs contribute substantially to the effect of surface piezoelectricity.

  8. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Atteridge, D.G.; Anderson, W.E. [Oregon Graduate Inst., Portland, OR (United States); West, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-03-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application.

  9. Diffraction plane dependence of elastic constants in residual stress measurement by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Okido, Shinobu; Hayashi, Makoto [Hitachi Ltd., Tokyo (Japan); Morii, Yukio; Minakawa, Nobuaki; Tsuchiya, Yoshinori

    1997-06-01

    In a residual stress measurement by x-ray diffraction method and a neutron diffraction method, strictly speaking, the strain measurement of various diffracted surface was conducted and it is necessary to use its elastic modulus to convert from the strain to the stress. Then, in order to establish the residual stress measuring technique using neutron diffraction, it is an aim at first to make clear a diffraction surface dependency of elastic modulus for the stress conversion in various alloys. As a result of investigations the diffraction surface dependency of elastic module on SUS304 and STS410 steels by using RESA (Neutron diffractometer for residual stress analysis) installed at JRR-3M in Tokai Establishment of JAERI, following results are obtained. The elastic modulus of each diffraction surface considering till plastic region could be confirmed to be in a region of {+-}20% of that calculated by Kroner`s model and to be useful for that used on conversion to the stress. And, error of this elastic modulus was thought to cause the transition and defect formed at inner portion of the materials due to a plastic deformation. (G.K.)

  10. Evaluation of residual stress distribution in shot-peened steel by synchrotron radiation

    CERN Document Server

    Akiniwa, Y; Suzuki, K; Yanase, E; Nishio, K; Kusumi, Y; Okada, H; Arai, K

    2003-01-01

    The in-depth distribution of residual stresses in shot-peened steels was measured by using high energy X-rays from a synchrotron radiation source. The relation between the 2 theta and sin sup 2 psi was obtained with the side-inclination method (psi diffractometer). The distribution of residual stresses was first evaluated by the nonlinearity of the sin sup 2 psi diagram by a simplex method. The estimated stress agreed with the distribution determined through the sin sup 2 psi method by using Cr-K alpha radiation combined with the conventional surface removal method. A new method was proposed to estimate the stress value of the distributed residual stress. The new method was a combination of the side-inclination method and the iso-inclination method (omega diffractometer) to maintain the penetration depth constant. The sin sup 2 psi diagram could be approximated by the linear relationship. The evaluated stress distribution agreed well with the distribution obtained by the surface removal method. (author)

  11. Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.

  12. Laser sheet scattered light method for industrial measurement of thickness residual stress distribution in flat tempered glass

    Science.gov (United States)

    Castellini, P.; Stroppa, L.; Paone, N.

    2012-05-01

    The paper presents the laser sheet scattered light technique, a fast optical non contact method for measuring internal stress distribution over a cross section of flat glass specimens, designed for closed loop control of glass tempering furnaces. The technique is an evolution of the scattered light method for flat glass residual stress analysis and allows a full thickness stress profile to be measured with a single shot acquisition across a glass plate without any contact. A linearly polarized laser sheet, shaped into a thin plane of parallel light beams, enters orthogonally to the side of the flat glass illuminating its full thickness. Light sheet is orthogonal to the glass surface and travels parallel to it. Stress induced birefringence through the glass affects light polarization, thus scattered light intensity detected at 90° with respect to the polarization of the incident light appears spatially modulated in intensity. A camera aligned orthogonal to the laser light polarization collects an image of fringes whose shape is digitally analyzed to measure the thickness stress state. The paper describes the development of this technique by recalling the scattered light method, then describing its automation by scanning a collimated beam across the glass thickness and finally by showing that the scan method can be substituted by the light sheet method. Light sheet method provides a full field non contact stress measurement across the glass thickness, thus allowing for a fast inspection method, suitable for industrial use. Flat glass items for industrial use have bevelled edges; this does not allow measurements close to glass surface. To solve this limit, experimental data are extrapolated by a symmetrical polynomial fitting and imposing a zero integral to the stress profile. Results on surface stress measured by the laser sheet scattered method are in agreement with those of the automated light scattered method and show a fair agreement with measurement by an

  13. Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nanoindentation Technique

    Science.gov (United States)

    Zhu, Jianguo; Xie, Huimin; Hu, Zhenxing; Chen, Pengwan; Zhang, Qingming

    2012-09-01

    A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.

  14. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  15. Influence of Interlayer Design on Residual Thermal Stresses in Trilayered and Graded All-Ceramic Restorations

    Science.gov (United States)

    Henriques, Bruno; Fabris, Douglas; Souza, Júlio C. M.; Silva, Filipe S.; Mesquita-Guimarães, Joana; Zhang, Yu; Fredel, Márcio

    2017-01-01

    Residual thermal stresses are formed in dental restorations during cooling from high temperature processing. The aim of this study was to evaluate the influence of constructive design variables (composition and interlayer thickness) on residual stresses in alumina- and zirconia-graded restorations. Restorations' real-like cooling conditions were simulated using finite elements method and temperature-dependent material properties were used. Three different designs were evaluated: a bilayered restoration (sharp transition between materials); a trilayered restoration with a homogenous interlayer between core and veneer; and a trilayered restoration with a graded interlayer. The interlayer thickness and composition were varied. Zirconia restorations presented overall higher thermal stress values than alumina ones. Thermal stresses were significantly reduced by the presence of a homogeneous interlayer. The composition of the interlayer showed great influence on the thermal stresses, with the best results for homogeneous interlayers being observed for porcelain contents in the composite ranging between 30%-50% (vol.%), for both alumina and zirconia restorations. The interlayer's thickness showed a minor contribution in the thermal stress reduction. The graded interlayer showed an optimized reduction in restorations' thermal stresses. The use of graded interlayer, favoring enhanced thermal stress distributions and lower magnitude is expected to reduce the risk of catastrophic failure. PMID:27987657

  16. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  17. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    Science.gov (United States)

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi, Tonio

    2010-09-01

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: β-SiC and β-Si3N4 microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  18. Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations.

    Science.gov (United States)

    Henriques, Bruno; Fabris, Douglas; Souza, Júlio C M; Silva, Filipe S; Mesquita-Guimarães, Joana; Zhang, Yu; Fredel, Márcio

    2017-02-01

    Residual thermal stresses are formed in dental restorations during cooling from high temperature processing. The aim of this study was to evaluate the influence of constructive design variables (composition and interlayer thickness) on residual stresses in alumina- and zirconia-graded restorations. Restorations' real-like cooling conditions were simulated using finite elements method and temperature-dependent material properties were used. Three different designs were evaluated: a bilayered restoration (sharp transition between materials); a trilayered restoration with a homogenous interlayer between core and veneer; and a trilayered restoration with a graded interlayer. The interlayer thickness and composition were varied. Zirconia restorations presented overall higher thermal stress values than alumina ones. Thermal stresses were significantly reduced by the presence of a homogeneous interlayer. The composition of the interlayer showed great influence on the thermal stresses, with the best results for homogeneous interlayers being observed for porcelain contents in the composite ranging between 30%-50% (vol.%), for both alumina and zirconia restorations. The interlayer's thickness showed a minor contribution in the thermal stress reduction. The graded interlayer showed an optimized reduction in restorations' thermal stresses. The use of graded interlayer, favoring enhanced thermal stress distributions and lower magnitude is expected to reduce the risk of catastrophic failure. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Residual Stress in TGO and Interfacial Damage in Thermal Barrier Coating after Thermal Exposure and Cyclic Indentation

    Science.gov (United States)

    Zhu, Shijie; Fukuda, Kunihisa; Osaki, Toru

    The local stress distributions in thermally grown oxide (TGO) layer of thermal barrier coating before and after thermal exposure were measured by photo-stimulated luminescence spectrum. The effect of isothermal oxidation on the residual stress in the TGO was investigated. It was found that the compressive stress in the TGO increased with an increase in thermal exposure time up to 100 hours and then decreased. The residual stresses in the TGO were also influenced by interfacial damage introduced by cyclic indentation.

  20. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques

    KAUST Repository

    Joshi, Sunnie

    2013-09-01

    This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response of the material to a quasi-static loading. The soft tissue is modeled as a nonlinear, prestressed and residually stressed, isotropic, slightly compressible elastic body with a rectangular geometry. A boundary value problem is formulated for the residually stressed and prestressed soft tissue, the boundary of which is subjected to a quasi-static pressure, and then an idealized model for the ultrasound interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on static finite deformation via an asymptotic construction. The model is studied, through a semi-inverse approach, for a specific class of deformations that leads to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, several inverse spectral algorithms are developed to approximate the residual stress distribution in the body, given the first few eigenfrequencies of several induced static pressures. © 2013 Elsevier Ltd. All rights reserved.

  1. Cold Drawn Steel Wires-Processing, Residual Stresses and Ductility Part II: Synchrotron and Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Phelippeau,A.; Pommier, S.; Zakharchenko, I.; Levy-Tubiana, R.; Tsakalakos, T.; Clavel, M.; Croft, M.; Zhong, Z.; Prioul, C.

    2006-01-01

    Cold drawing of steel wires leads to an increase of their mechanical strength and to a drop in their ductility. The increase of their mechanical strength has long been related to the reduction of the various material scales by an intense plastic deformation. Besides, it was discussed in the companion paper that large plastic deformation leads to the loss of the material hardening capabilities and that, in such a case, residual stresses preserve the elongation to failure of wires. Experimental measurements of residual stresses inside the wire have therefore been undertaken. In this paper, lattice parameters as measured using synchrotron diffraction are compared with those calculated using the residual stress fields as determined by the finite-element method. There is a major disagreement between experimental and numerical results that is too large to be attributed to the errors of the finite-element analyses. Therefore, neutron diffraction experiments have also been performed. These measurements show that there is a significant variation of the lattice parameter with the drawing level, which is not inherited from residual stresses, and that variation is very sensitive to the cooling rate after processing. It is therefore proposed that cold drawing would induce a phase transformation of the steel, possibly a martensitic transformation.

  2. Young's modulus and residual stress of GeSbTe phase-change thin films

    NARCIS (Netherlands)

    Nazeer, Hammad; Bhaskaran, Harish; Woldering, Léon A.; Abelmann, Leon

    2015-01-01

    The mechanical properties of phase change materials alter when the phase is transformed. In this paper, we report on experiments that determine the change in crucial parameters such as Young's modulus and residual stress for two of the most widely employed compositions of phase change films, Ge1Sb2T

  3. A round-robin analysis of temperature and residual stresses in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Sup; Kang, Sun Ye; Park, June Soo; Sohn, Gap Heon [Korea Power Engineering Company, Inc., Daejeon (Korea, Republic of)

    2008-07-01

    DMWs are common feature of the PWR in the welded connections between carbon steel and stainless steel piping. The nickel-based weld metal, Alloy 82/182, is used for welding the dissimilar metals and is known to be susceptible to PWSCC. A round-robin program has been implemented to benchmark the numerical simulation of the transient temperature and weld residual stresses in the DMWs. To solve the round-robin problem related to pressurizer safety and relief nozzle, the thermal elasto-plastic analysis is performed in the DMW by using the FEM. The welding includes both the DMW of the nozzle to safe-end and the SMW of the safe-end and piping. Major results of the analyses are discussed: The axial and circumferential residual stresses are found to be -88MPa(225MPa) and -38MPa(293MPa) on the inner surface of the DMW; where the values in parenthesis are the residual stresses after the DMW. Thermo-mechanical interaction by the SMW has a significant effect on the residual stress fields in the DMW.

  4. Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo, E-mail: kskim5@kaeri.re.k [Korea Atomic Energy Research Institute, 150, Dukjin-dong, Daejeon 305-353 (Korea, Republic of); Lee, Ho Jin; Lee, Bong Sang [Korea Atomic Energy Research Institute, 150, Dukjin-dong, Daejeon 305-353 (Korea, Republic of); Jung, In Chul; Park, Kwang Soo [Doosan Heavy Industries and Construction Co., 555 Gwigok Dong, Changwon 641-792 (Korea, Republic of)

    2009-12-15

    Both the experiment and FE analysis were performed to estimate the residual stresses at the parts of the dissimilar metal welds. The specimen of the dissimilar Butt welds was manufactured, and the residual stresses of this specimen were measured by the X-ray method and a Hole Drilling Technique. The values measured by two experimental methods showed a big deviation at the SUS 316L plate. Consequently, the experimental methods to estimate the residual stresses are not a superior method. The Butt FEM Model on this specimen was developed and analyzed by the ABAQUS Code. The results of the FE analysis were compared with those of the experimental methods. As a whole, the values of the Butt FEM Model showed a trend which was in agreement with the experimental values and the values of FE analysis were found reasonable. The Repair FEM Model and the Overlay FEM Model were developed and analyzed by the ABAQUS Code. The values of these results were also found reasonable data even if the experimental methods be not performed. Therefore, the residual stresses for the dissimilar metal welds can be estimated by an analysis with an appropriate FEM Model without the experimental methods.

  5. Cold pulse and rotation reversals with turbulence spreading and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Hariri, F. [École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland); Naulin, V.; Juul Rasmussen, J. [Technical University of Denmark (DTU), Department of Physics, DK-2800 Kgs. Lyngby (Denmark); Xu, G. S.; Yan, N. [Institute of Plasma Physics, Chinese Academy of Sciences, ASIPP, Hefei (China)

    2016-05-15

    Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition. Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.

  6. Reducing residual stresses and deformations in selective laser melting through multi-level multi-scale optimization of cellular scanning strategy

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential...... are compared with standard scanning strategies and have been used to manufacture standard samples. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  7. MODIFIED LAYER REMOVAL METHOD FOR MEASUREMENT OF RESIDUAL STRESS DISTRIBUTION IN THICK PRE-STRETCHED ALUMINUM PLATE

    Institute of Scientific and Technical Information of China (English)

    WANGShu-hong; ZUODun-wen; WANGMin; WANGZong-rong

    2004-01-01

    The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predict and control the machining distortion, the residual stress distribution in the thick plate must be measured firstly. The modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. The residual stress distribution in specimen of 7050T7451 plate is measured by using the method, and measurement results are analyzed and compared with data obtained by other methods. The method is effective to measure the residual stress.

  8. Study of Welding Distortion and Residual Stress Considering Nonlinear Yield Stress Curves and Multi-constraint Equations

    Science.gov (United States)

    Rong, Youmin; Zhang, Guojun; Huang, Yu

    2016-10-01

    Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.

  9. A wafer mapping technique for residual stress in surface micromachined films

    Science.gov (United States)

    Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J.

    2016-09-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements.

  10. Investigation of the Residual Stress State in an Epoxy Based Specimen

    DEFF Research Database (Denmark)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens Henrik

    2015-01-01

    Abstract. Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental obse...... material models, i.e. cure kinetics, elastic modulus, CTE, chemical shrinkage, etc. together with the drilling process using the finite element method. The measured and predicted in-plane residual strain states are compared for the epoxy/metal biaxial stress specimen....... observations. In the present work, the formation of the residual stresses/strains are captured from experimental measurements and numerical models. An epoxy/steel based sample configuration is considered which creates an in-plane biaxial stress state during curing of the resin. A hole drilling process...... with a diameter of 5 mm is subsequently applied to the specimen and the released strains after drilling are measured using the Digital Image Correlation (DIC) technique. The material characterization of the utilized epoxy material is obtained from the experimental tests such as differential scanning calorimetry...

  11. Residual stresses in coating-based systems, part Ⅱ: Optimal designing methodologies

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiancheng; WU Yixiong; XU Binshi; WANG Haidou

    2007-01-01

    In this part of the work,different cases are studied to illustrate the implementation of the analytical models that have been developed in Part Ⅰ [Front.Mech.Eng.China,2007,2(1):1-12].Different topics are involved in the optimal design of coating-based systems.Some essential relations among material properties and dimensions of the coating and substrate and the residual stress variations are reflected.For the multilayered coating-based systems,some optimal design methodologies are proposed,such as the decrease in stress discontinuity at the interface between the adjacent layers,the curvature as a function of the coating thickness,the effect of the interlayer on the residual stress redistribution,and so on.For the single-layered coating-based systems,some typical approximations that are often used to predict the residual stresses in the coating-based system or bilayer structure are corrected.A simplified model for predicting the quenching stress in a coating is also developed.

  12. A photoelastic assessment of residual stresses in zirconia-veneer crowns.

    Science.gov (United States)

    Belli, R; Monteiro, S; Baratieri, L N; Katte, H; Petschelt, A; Lohbauer, U

    2012-03-01

    Residual stresses within the veneer are linked to the high prevalence of veneer chipping observed in clinical trials of zirconia prostheses. We hypothesized that the thermal mismatch between the zirconia infrastructure and the veneer porcelain, as well as the rate used for cooling zirconia-veneer crowns, would be directly proportional to the magnitude of residual stresses built within the veneer layer. Two porcelains with different coefficients of thermal expansion were used to veneer zirconia copings, to create high or low thermal mismatches. The crowns were cooled according to a fast- or a slow-cooling protocol. The retardation of polarized light waves was used to calculate the residual stress magnitude and distribution across the veneer, according to the photoelasticity principle, in 1.0-mm-thick crown sections. While thermal mismatch was an important factor influencing the maximum stress development in the veneer, cooling rate had a minor role. Curved surfaces were preferential sites for stress concentration regardless of thermal mismatch or cooling rate.

  13. Prediction of welding residual stress of dissimilar metal weld of nozzle using finite element analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Nam Su; Kim, Jong Wook; Choi, Suhn; Kim, Tae Wan [KAERI, Daejeon (Korea, Republic of)

    2008-07-01

    The Primary Water Stress Corrosion Cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  14. Effect of particle impact on residual stress development in HVOF sprayed coatings

    Science.gov (United States)

    Bansal, P.; Shipway, P. H.; Leen, S. B.

    2006-12-01

    The application of thick high-velocity oxyfuel (HVOF) coatings on metallic parts has been widely accepted as a solution to improve their wear properties. The adherence of these coatings to the substrate is strongly influenced by the residual stresses generated during the coating deposition process. In an HVOF spraying process, due to the relatively low processing temperature, significant peening stresses are generated during impact of molten and semimolten particles on the substrate. At present, finite-element (FE) models of residual stress generation for the HVOF process are not available due to the increased complexities in modeling the stresses generated due to the particle impact. In this work, an explicit FE analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system. The results from the analysis are subsequently used in a thermomechanical FE model to allow the development of the residual stresses in these coatings to be modeled.

  15. Measuring multiple residual-stress components using the contour method and multiple cuts

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  16. Swelling of Collagen-Hyaluronic Acid Co-Gels: An In Vitro Residual Stress Model.

    Science.gov (United States)

    Lai, Victor K; Nedrelow, David S; Lake, Spencer P; Kim, Bumjun; Weiss, Emily M; Tranquillo, Robert T; Barocas, Victor H

    2016-10-01

    Tissue-equivalents (TEs), simple model tissues with tunable properties, have been used to explore many features of biological soft tissues. Absent in most formulations however, is the residual stress that arises due to interactions among components with different unloaded levels of stress, which has an important functional role in many biological tissues. To create a pre-stressed model system, co-gels were fabricated from a combination of hyaluronic acid (HA) and reconstituted Type-I collagen (Col). When placed in solutions of varying osmolarity, HA-Col co-gels swell as the HA imbibes water, which in turn stretches (and stresses) the collagen network. In this way, co-gels with residual stress (i.e., collagen fibers in tension and HA in compression) were fabricated. When the three gel types tested here were immersed in hypotonic solutions, pure HA gels swelled the most, followed by HA-Col co-gels; no swelling was observed in pure collagen gels. The greatest swelling rates and swelling ratios occurred in the lowest salt concentration solutions. Tension on the collagen component of HA-Col co-gels was calculated from a stress balance and increased nonlinearly as swelling increased. The swelling experiment results were in good agreement with the stress predicted by a fibril network + non-fibrillar interstitial matrix computational model.

  17. Carbonization and transition layer effects on 3C-SiC film residual stress

    Science.gov (United States)

    Anzalone, R.; Litrico, G.; Piluso, N.; Reitano, R.; Alberti, A.; Fiorenza, P.; Coffa, S.; La Via, F.

    2017-09-01

    In this work an extended study of the carbonization process of the silicon surface and of a low temperature transition layer in the temperature rump on the 3C-SiC epitaxial growth has been reported. It has been observed that increasing the C/H2 ratio the voids density decreases, the thickness of the carbonization layer and the density increase and the morphology improves. The low temperature transition layer, grown during the ramp between the carbonization step and the real growth process, produce a further reduction of the voids at the 3C-SiC/Si interface and a considerable reduction of the stress of the 3C-SiC film. This stress reduction is related to a large change of the film morphology. No effect of the interface silicon layer on the stress is observed. This study has shown the complex connection between the first steps of the 3C-SiC growth process and the properties of the film in term of stress and superficial morphology. The residual stress has important implications with regard to the processing (wafer bow) and quality of the epitaxy. Residual stress also changes the mechanical response and/or the resonant frequency of the thin-film structure and may degrade the performance in MEMS-based devices. Therefore, a better understanding of the stress relaxation mechanism could improve the performances of 3C-SiC devices and sensor technologies.

  18. Microstructural and Residual Stress Development due to Inertia Friction Welding in Ti-6246

    Science.gov (United States)

    Attallah, Moataz M.; Preuss, Michael; Boonchareon, Chatri; Steuwer, Axel; Daniels, John E.; Hughes, Darren J.; Dungey, Christopher; Baxter, Gavin J.

    2012-09-01

    A thorough investigation has been performed to assess the microstructural properties, mechanical properties (hardness and elastic modulus), and residual stress development in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) inertia friction welds in the as-welded and postweld heat-treated conditions. It was evident that the thermomechanical deformation in the weld region occurred above the β transus, forming dynamically recrystallized β grains and precipitating acicular α within the β grains, which resulted in a localized hardness increase. In the heat-affected zone, a ghost microstructure of the base metal formed because of the absence of sufficient time for diffusion, resulting in Mo segregation in the prior primary α plates. Energy-dispersive synchrotron X-ray diffraction and neutron diffraction were used to assess the residual stress development in the three principal directions. The variation in the unstrained lattice parameters across the weld regions was established by imposing a stress balance on the axial stress component in the radial direction. It was found that the maximum stresses occurred in the hoop direction, with significantly lower stresses present in the radial and axial directions. The maximum tensile hoop stresses were located at ~4 mm from the weld centerline and not at the dynamically recrystallized β-rich weld zone. This was associated with the α → β phase transformation and the subsequent acicular α precipitation within the region surrounding the weld centerline.

  19. The influence of thermal-mechanical processing on residual stresses in titanium matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, P. [Los Alamos National Lab., NM (United States); Bourke, M.A.M. [Los Alamos National Lab., NM (United States); Wright, P.K. [General Electric Aircraft Engines, Evendale, Cincinnati, OH (United States); Jayaraman, N. [Cincinnati Univ., OH (United States). Dept. of Materials Science and Engineering; Kartzmark, E. [Los Alamos National Lab., NM (United States); Roberts, J.A. [Los Alamos National Lab., NM (United States)

    1997-03-31

    The effects of three distinct thermo-mechanical processes on the residual stress state in a uni-directionally reinforced SCS-6/Ti-6-2-4-2 [0]{sub 6} titanium-alloy matrix composite were predicted using a finite element model. For comparison the residual stresses were measured using X-ray and neutron diffraction. Reductions in stress were predicted by the models and both experimental techniques recorded a reduction compared to the as-fabricated material. While the numerically predicted trends qualitatively agreed with the neutron measurements quantitative agreement was not achieved. In the longitudinal direction the neutron results showed closer agreement to the calculation whereas in the transverse direction the X-ray results did. Nevertheless the changes did correlate with improvement in fatigue lifetimes. (orig.)

  20. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.;

    2000-01-01

    , residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...... have been performed at RISO (Roskilde, DK) and HMI-BENSC (Berlin, D), for the determination of residual stress in AA2124 + 17% SiCp and AA359 + 20% SiCp specimens, submitted to tensile and fatigue tests. For each of the investigated samples, the macrostress has been separated from the elastic...... and thermal mismatch microstresses. The results show that, in general, the main contribution to the stress state of both matrix and reinforcement is given by the thermal microstresses, already existing due to heat treatment prior to mechanical tests. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Weld Residual Stress and Distortion Analysis of the ARES I-X Upper Stage Simulator (USS)

    Science.gov (United States)

    Raju, Ivatury; Dawicke, David; Cheston, Derrick; Phillips, Dawn

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. While the main focus of this paper is a discussion of the weld modeling procedures and results for the USS, a short summary of the CIFS assessment is provided.

  2. Residual stresses in laser welded ASTM A387 Grade 91 steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: santosh@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Kundu, A. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Venkata, K.A. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Evans, A. [Institut Laue Langevin, Grenoble (France); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Francis, J.A. [University of Manchester, Manchester, M13 9PL (United Kingdom); Bhanumurthy, K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Bouchard, P.J. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Dey, G.K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India)

    2013-07-15

    Residual stresses in 9 mm thick ASTM A387 Grade 91 steel plates, joined using constant power (8 kW) low and high heat input laser welding processes, are characterised using neutron diffraction. The measured longitudinal and normal components of residual stress show a bimodal distribution across the welded joint with a low tensile or compressive trough at the weld centre flanked by high magnitude tensile peaks in parent metal adjacent to the heat affected zone boundaries. The width of the central trough and spread of the outboard tensile zones are significantly greater for the high heat input weld. In both cases, the stress distributions can be explained by the strains associated with the austenite to martensite solid-state transformation as the joint cools after welding.

  3. Modeling and simulation of residual stresses during glass bulb pressing process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The residual stresses accumulated in the forming process have great effects on the product quality of the glass bulb. Based on the characteristics analysis of glass bulb forming, a mathematical model has been established for calculating residual stresses of glass pressing process. The material is assumed as thermorheologi-cally simple thermoviscoelastic material, and the flow-induced stress is neglected. The consequences of equilibrium and compatibility equations are discussed in detail, and the boundary conditions are specified for various stages of the forming process. The numerical solution is based on the theory of thin layers, combined with finite difference method in the time and layer difference in the thickness di-rection. The presented model and solution method could easily be extended to general pressing process of glass, and applied to problems relative to glass pressing, providing extensive reference values.

  4. Repair weld induced residual stresses in thick-walled steel pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.C.; Holz, P.P.

    1978-06-01

    If a flaw requiring corrective action were to be found in an operating nuclear pressure vessel, there would be considerable safety and economic implications. Should such a flaw be found, one possible corrective action would be an in situ repair weld. A repair of this type would presumably involve grinding away material in a region encompassing the flaw and then filling the resulting cavity with weld metal. Thermal stress relieving under those conditions could lead to serious difficulties associated with thermal expansion and warpage and would therefore most likely be avoided. Such a departure from normal procedure raises questions relating to residual stresses and material toughness levels which would have to be assessed before a repair could be recommended or approved. The residual stress measurements reported are intended to provide baseline information to aid in an assessment should such a repair ever have to be seriously considered.

  5. Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M.; Clitheroe, S.; Withers, P.J. [Manchester University, School of Materials, Manchester (United Kingdom); Evans, A.D. [Paul Scherrer Institut, Villigen-PSI (Switzerland); Rodopoulos, C. [University of Patras, Patras (Greece); Hughes, D.J. [Institut Laue Langevin, Grenoble (France)

    2010-06-15

    Four mechanical surface treatments have been considered for the application to austenitic stainless steel structures. Shot peening (SP), laser shock peening (LSP), ultrasonic impact treatment (UIT) and water jet cavitation peening (WJCP), also known as cavitation shotless peening (CSP), have been applied to 8 mm thick Type 304 austenitic stainless steel coupons. This study considers the merits of each of these mechanical surface treatments in terms of their effect on the surface roughness, microstructure, level of plastic work and through thickness residual stress distribution. Microstructural studies have revealed the formation of martensite close to the treated surface for each process. Residual stress measurements in the samples show compressive stresses to a significantly greater depth for the LSP, UIT and WJCP samples compared to the more conventional SP treated sample. (orig.)

  6. Heat treatment process optimization for face gearsbased on deformation and residual stress control

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-zhong; LAN Zhou‡; HOU Liang-wei; ZHAO Hong-pu; ZHONG Yang

    2015-01-01

    In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gearsis proposed according to the structural characteristics oftheface gear and material properties of 12Cr2Ni4 steel.To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution,aheat treatment analysis model of face gearsis established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization.It is beneficialto improvingthe fatigue strength and performance of face gears.

  7. Residual stress depth profiling in complex hard coating systems by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, M. [Technische Universitaet Berlin, Institut fuer Werkstoffwissenschaften und-technologien, Sekr. BH 18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Genzel, Ch. [Hahn-Meitner-Institut Berlin, Bereich Strukturforschung, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)], E-mail: genzel@hmi.de; Holzschuh, H. [Walter AG, Derendinger Strasse 53, 72072 Tuebingen (Germany)

    2008-12-01

    X-ray residual stress analysis on multilayered coating systems is a quite difficult and demanding procedure. To obtain information on both, the individual sublayers the coating consists of and the interfacial substrate region, it is necessary to apply different methods which are complementary with respect to the accessible information depth. Based on the concept of an 'equivalent thickness' for describing angle-dispersive diffraction in multilayer structures, a method is proposed that allows for the evaluation of steep intra - as well as interlayer stress gradients within the upper sublayers of multilayer coating systems. Furthermore, energy-dispersive diffraction is shown suitable to detect the residual stress distribution in the near interface substrate zone beneath the coatings. The applicability of the approaches introduced here is demonstrated by the example of cemented carbide WC/Co cutting tools being coated by chemical vapor deposition with sequences of Al{sub 2}O{sub 3}/TiCN sublayers.

  8. Procedures for interface residual stress determination using neutron diffraction: Mo-coated steel gear wheel

    Science.gov (United States)

    Bruno, Giovanni; Fanara, Carlo; Hughes, Darren J.; Ratel, Nicolas

    2006-05-01

    Residual stresses were determined in steel gear wheels coated with molybdenum using neutron diffraction. A systematic procedure was developed to assess them in both the molybdenum coating and in the steel substrate. A detailed description of the problems associated with measurements of this type is given, together with a procedure aimed at rationalising their solution. Precise sample positioning was developed using a new experimental method and advanced metrology equipment allowing off-line sample alignment and mounting. This reliably replaces the inefficient use of entrance scans, usually adopted in residual stress analysis by neutron diffraction. Corrections were applied to overcome the presence of pseudo-strains and data reduction was performed to coherently interpret the results, including the determination of the centre-of-mass of the diffracting volume. The full three-dimensional stress profile was determined in the coating and the substrate. The data analysis methodology is fully described and recommendations are given for this kind of measurement.

  9. X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D.W. (Dept. of Materials Science and Engineering, Northwestern Univ., Evanston, IL (United States)); Faber, K.T. (Dept. of Materials Science and Engineering, Northwestern Univ., Evanston, IL (United States))

    1993-11-25

    The residual stress of a ZrO[sub 2]-8%Y[sub 2]O[sub 3] thermal barrier coating was determined as a function of thermal cycling. Samples were thermally cycled from 400 C to 1000 C in air. After a few cycles the samples exhibited a value of compressive residual stress consistent with that determined by considering the thermal expansion coefficients of the coating and substrate. Stress relief occurs in the ZrO[sub 2]-Y[sub 2]O[sub 3] coating, increasing in both frequency and magnitude with increasing number of thermal cycles. This behavior is explained in terms of a model of failure of coatings in compression. (orig.)

  10. Thermo-Mechanical Behaviour of Turbine Disc Assembly in the Presence of Residual Stresses

    Science.gov (United States)

    Maricic, Luke Anthony

    A comprehensive three dimensional coupled thermo-mechanical finite element study is performed on turbine blade attachments in gas turbine engines. The effects of the self-generated centrifugal forces of the disc and the associated blades, thermal loads, and shot peening residual are all considered in this thesis. Three aspects of the work were accordingly examined. The first was concerned with the coupled thermo-mechanical stress analysis and load sharing between the teeth of the fir-tree root. The second was devoted to the development of a complete model incorporating the effect of shot peening residual stresses upon the developed stress state. The effectiveness of shot peening treatment in response to cyclic thermo-mechanical loadings at the contact interface has also been studied. The third was concerned with the validation of some aspects of the developed models analytically using closed form solutions and experimentally using photoelasticity.

  11. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  12. Residual stress measurement by successive extension of a slot: A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Prime, M.B.

    1997-05-01

    This report reviews the technical literature on techniques that employ successive extension of a slot and the resulting deformations to measure residual stress. Such techniques are known variously in the literature as the compliance or crack compliance method, the successive cracking method, the slotting method, and a fracture mechanics based approach. The report introduces the field and describes the basic aspects of these methods. The report then reviews all literature on the theoretical developments of the method. The theory portion first considers forward method solutions including fracture mechanics, finite element, analytical, and body force methods. Then it examines inverse solutions, including incremental inverses and series expansions. Next, the report reviews all experimental applications of slotting methods. Aspects reviewed include the specimen geometry and material, the details of making the slot, the method used to measure deformation, and the theoretical solutions used to solve for stress. Finally, the report makes a brief qualitative comparison between slotting methods and other residual stress measurement methods.

  13. Core stress distribution of phase shifting multimode polymer optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Rei, E-mail: furukawa@ee.uec.ac.jp; Matsuura, Motoharu [Center for Frontier Science and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 (Japan); Nagata, Morio; Mishima, Kenji [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro [Keio Photonics Research Institute, Keio University, Saiwaiku Shinkawasaki 7-1, Kawasaki, Kanagawa 212-0032 (Japan)

    2013-11-18

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point.

  14. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  15. X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy

    NARCIS (Netherlands)

    Robinson, J.M.; van Brussel, B.A.; de Hosson, J.T.M.; Reed, R.C.

    1996-01-01

    In this paper, we report on the residual stresses in laser surface melted Ti-6Al-4V, determined using X-ray diffraction methods. The principal result is that there is an increase in the transverse residual stress with each successive, overlapping laser track. The result can be used to explain the ob

  16. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process

  17. Full field residual stress determination using hole-drilling and electronic speckle pattern interferometry (ESPI with phase unwrapping method

    Directory of Open Access Journals (Sweden)

    Lyu B.I.

    2010-06-01

    Full Text Available The hole-drilling strain gauge technique has become a standard method in measuring residual stresses [1]. Moiré interferometry combining hole-drilling method opens additional opportunity for full-field residual stress measurement using optical interferometry [2]. The optical moiré method has a non-contact feature comparing with strain gauge method. Yet Moiré interferometry suffers a drawback in its complicated grating preparation on one hand and it is difficult to be applied to work piece with complicated geometry on the other hand. Electronic speckle pattern interferometry (ESPI provides information about the displacement field of a surface and it can be conveniently used on asreceived surfaces without special surface preparation and can be applied to work piece with complicated geometry that may be unsuitable for applying strain gauge or gratings. Studies on combining ESPI with hole-drilling show that is feasible to obtain reasonable residual stress values [3, 4]. The purpose of this study was to demonstrate the detail of hole-drilling technique combining ESPI with phase unwrapping method to reveal the full field stress distribution and to measure the associated stress field on a thin specimen exerted by a uni-axial load. This study also demonstrates the noise reduction achieved by Gaussian low pass filter and a successful phase unwrapping resulted from five-step phase shifting and cellular automata method. Figure 1 shows the experimental setup of the ESPI system and the hole-drilling system. The light from a laser source is split into two beams. One split beam emerges from a PZT-stage to provide stepwise phase shifting and it further interferes with the other split image beam on the specimen surface to produce speckle patterns onto the CCD camera. By recording the speckle images of stepwise phase shifting before and after hole-drilling, the fringe patterns at each step can be obtained. Through a uniaxial loading fixture loads with

  18. Influence of Tacking Sequence on Residual Stress and Distortion of Single Sided Fillet Submerged Arc Welded Joint

    Institute of Scientific and Technical Information of China (English)

    Arpan Kumar Mondal; Pankaj Biswas; Swarup Bag

    2015-01-01

    Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.

  19. NUMERICAL ANALYSIS OF RESIDUAL STRESSES IN TITANIUM ALLOY DURING ELECTRON BEAM LOCAL POST-WELD HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Huo Lixing; Zhang Yufeng; Liu Fangjun; Chen Gang

    2005-01-01

    The distributions of temperature and residual stresses in thin plates of BT20 titanium alloy are numerically analyzed by three-dimensional finite element software during electron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined with numerical calculating results, the effects of different EBLPWHT mode and parameters, including heat treating position,heating width and heating time, on the distribution of welding residual stresses are analyzed. The results show that, the residual tensile stresses in weld center can be largely decreased when the weld is heat treated at back preface of the plate. The numerical results also indicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinity of the weld is decreased, and the range of the residual longitudinal stresses is increased along with the increase of heating width and heating time.

  20. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Jing, X.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Yan, Z. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Lu, J.Z., E-mail: jzlu@ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-07-15

    The effects of massive laser shock peening (LSP) treatment on micro-hardness, residual stress and microstructure in four different zones of laser cladding coating was investigated. Furthermore, micro-hardness curves and residual stress distributions with and without massive LSP treatment were presented and compared, and typical microstructure in different zones of both coatings were characterized by transmission electron microscope (TEM) and cross-sectional optical microscope (OM) observations. Results and analyses showed that massive LSP treatment had an important influence on micro-hardness and residual stress of the cladding coating. Special attempt was made to the effects of massive LSP treatment on microstructure in three zones of the cladding coating. In addition, the underlying mechanism of massive LSP treatment on microstructure and mechanical properties of the cladding coating was revealed clearly. - Highlights: • Micro-hardness and residual stress curves of both coatings were presented and compared. • Typical microstructure in different zones of both coatings were characterized and analyzed. • LSP causes increased micro-activities, and induces plastic deformation layer in three zones. • Underlying mechanism of LSP on mechanical properties of cladding coating was revealed.