WorldWideScience

Sample records for residual slope error

  1. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  2. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.

    Science.gov (United States)

    Nistea, Ioana T; Alcock, Simon G; Kristiansen, Paw; Young, Adam

    2017-05-01

    Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

  3. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  4. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal

    2016-01-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  5. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  6. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  7. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  8. Automated suppression of errors in LTP-II slope measurements with x-ray optics. Part1: Review of LTP errors and methods for the error reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yashchuk, Valeriy V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-11

    Systematic error and instrumental drift are the major limiting factors of sub-microradian slope metrology with state-of-the-art x-ray optics. Significant suppression of the errors can be achieved by using an optimal measurement strategy suggested in [Rev. Sci. Instrum. 80, 115101 (2009)]. With this series of LSBL Notes, we report on development of an automated, kinematic, rotational system that provides fully controlled flipping, tilting, and shifting of a surface under test. The system is integrated into the Advanced Light Source long trace profiler, LTP-II, allowing for complete realization of the advantages of the optimal measurement strategy method. We provide details of the system’s design, operational control and data acquisition. The high performance of the system is demonstrated via the results of high precision measurements with a spherical test mirror.

  9. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    Science.gov (United States)

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  10. The Articulatory Phonetics of /r/ for Residual Speech Errors.

    Science.gov (United States)

    Boyce, Suzanne E

    2015-11-01

    Effective treatment for children with residual speech errors (RSEs) requires in-depth knowledge of articulatory phonetics, but this level of detail may not be provided as part of typical clinical coursework. At a time when new imaging technologies such as ultrasound continue to inform our clinical understanding of speech disorders, incorporating contemporary work in the basic articulatory sciences into clinical training becomes especially important. This is particularly the case for the speech sound most likely to persist among children with RSEs-the North American English rhotic sound, /r/. The goal of this article is to review important information about articulatory phonetics as it affects children with RSE who present with /r/ production difficulties. The data presented are largely drawn from ultrasound and magnetic resonance imaging studies. This information will be placed in a clinical context by comparing productions of typical adult speakers to successful versus misarticulated productions of two children with persistent /r/ difficulties. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. A method to evaluate residual phase error for polar formatted synthetic aperture radar systems

    Science.gov (United States)

    Musgrove, Cameron; Naething, Richard

    2013-05-01

    Synthetic aperture radar systems that use the polar format algorithm are subject to a focused scene size limit inherent to the polar format algorithm. The classic focused scene size limit is determined from the dominant residual range phase error term. Given the many sources of phase error in a synthetic aperture radar, a system designer is interested in how much phase error results from the assumptions made with the polar format algorithm. Autofocus algorithms have limits to the amount and type of phase error that can be corrected. Current methods correct only one or a few terms of the residual phase error. A system designer needs to be able to evaluate the contribution of the residual or uncorrected phase error terms to determine the new focused scene size limit. This paper describes a method to estimate the complete residual phase error, not just one or a few of the dominant residual terms. This method is demonstrated with polar format image formation, but is equally applicable to other image formation algorithms. A benefit for the system designer is that additional correction terms can be added or deleted from the analysis as necessary to evaluate the resulting effect upon image quality.

  12. Pencil kernel correction and residual error estimation for quality-index-based dose calculations

    International Nuclear Information System (INIS)

    Nyholm, Tufve; Olofsson, Joergen; Ahnesjoe, Anders; Georg, Dietmar; Karlsson, Mikael

    2006-01-01

    Experimental data from 593 photon beams were used to quantify the errors in dose calculations using a previously published pencil kernel model. A correction of the kernel was derived in order to remove the observed systematic errors. The remaining residual error for individual beams was modelled through uncertainty associated with the kernel model. The methods were tested against an independent set of measurements. No significant systematic error was observed in the calculations using the derived correction of the kernel and the remaining random errors were found to be adequately predicted by the proposed method

  13. Residual-based a posteriori error estimation for multipoint flux mixed finite element methods

    KAUST Repository

    Du, Shaohong

    2015-10-26

    A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.

  14. A Refined Algorithm On The Estimation Of Residual Motion Errors In Airborne SAR Images

    Science.gov (United States)

    Zhong, Xuelian; Xiang, Maosheng; Yue, Huanyin; Guo, Huadong

    2010-10-01

    Due to the lack of accuracy in the navigation system, residual motion errors (RMEs) frequently appear in the airborne SAR image. For very high resolution SAR imaging and repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. We have proposed a new algorithm before to estimate the residual motion errors for an individual SAR image. It exploits point-like targets distributed along the azimuth direction, and not only corrects the phase, but also improves the azimuth focusing. But the required point targets are selected by hand, which is time- and labor-consuming. In addition, the algorithm is sensitive to noises. In this paper, a refined algorithm is proposed aiming at these two shortcomings. With real X-band airborne SAR data, the feasibility and accuracy of the refined algorithm are demonstrated.

  15. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking.

    Science.gov (United States)

    Koehler-McNicholas, Sara R; Nickel, Eric A; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H

    2017-01-01

    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.

  16. Analysis of slope stabillity and controlling factor on residual soil of folded breccia formation

    Science.gov (United States)

    Rachman, S.; Muslim, D.; Sulaksana, N.; Burhannuddinnur, M.; Pramudito, H.

    2018-01-01

    This research aims to obtain a potential landslide zonation. Theresearch area is located in Depok Village and surroundings, Jatigede District, Sumedang regency, West Java province. Geographically located at the point of coordinates 06°50‧33-06°51‧00″ South Latitude and 108°05‧37 ″- 108°06‧17″ East Longitude. This research is intended to mapping the identification of landslide and soil properties data. The mapping and soil sampling were conducted only in the research area. The methodology used was mapping and finding the safety factor with Bishop Analysis. The morphological condition of the study area indicates moderate conditions undulating hilly area with slopes between 15° - 40°, with a tick soil layer was covering the slope. This condition is greatly affected by rainfall. This research is to know the type of ground movement along with the value of the safety factor of the slope so that can provide suggestions for overcoming instability in the study area.

  17. Evaluating EIV, OLS, and SEM Estimators of Group Slope Differences in the Presence of Measurement Error: The Single-Indicator Case

    Science.gov (United States)

    Culpepper, Steven Andrew

    2012-01-01

    Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…

  18. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    International Nuclear Information System (INIS)

    Chan, Mark; Grehn, Melanie; Cremers, Florian; Siebert, Frank-Andre; Wurster, Stefan; Huttenlocher, Stefan; Dunst, Jürgen; Hildebrandt, Guido; Schweikard, Achim; Rades, Dirk; Ernst, Floris

    2017-01-01

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.

  19. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  20. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Tuen Mun Hospital, Hong Kong (China); Grehn, Melanie [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Cremers, Florian [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Siebert, Frank-Andre [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Wurster, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Department for Radiation Oncology, University Medicine Greifswald, Greifswald (Germany); Huttenlocher, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Dunst, Jürgen [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen (Denmark); Hildebrandt, Guido [Department for Radiation Oncology, University Medicine Rostock, Rostock (Germany); Schweikard, Achim [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Rades, Dirk [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Ernst, Floris [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); and others

    2017-03-15

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.

  1. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases.

    Science.gov (United States)

    Chan, Mark; Grehn, Melanie; Cremers, Florian; Siebert, Frank-Andre; Wurster, Stefan; Huttenlocher, Stefan; Dunst, Jürgen; Hildebrandt, Guido; Schweikard, Achim; Rades, Dirk; Ernst, Floris; Blanck, Oliver

    2017-03-15

    Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase-related residual tracking errors. In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, -7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, -1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors

    Science.gov (United States)

    2010-09-01

    modeling process using Matlab and MSC Nastran to sim- ulate actuator-induced residual error. . . . . . . . . . . . . . . . . . 47 3-3 Finite element mirror...automatically gener- ates the structural design of space telescope via Nastran , adds representative dynamic disturbances, simulates the application of...polynomials and Bessel functions. The authors employ a piezoelectrically- actuated membrane mirror model implemented using MSC Nastran to calculate the

  3. Structural brain differences in school-age children with residual speech sound errors.

    Science.gov (United States)

    Preston, Jonathan L; Molfese, Peter J; Mencl, W Einar; Frost, Stephen J; Hoeft, Fumiko; Fulbright, Robert K; Landi, Nicole; Grigorenko, Elena L; Seki, Ayumi; Felsenfeld, Susan; Pugh, Kenneth R

    2014-01-01

    The purpose of the study was to identify structural brain differences in school-age children with residual speech sound errors. Voxel based morphometry was used to compare gray and white matter volumes for 23 children with speech sound errors, ages 8;6-11;11, and 54 typically speaking children matched on age, oral language, and IQ. We hypothesized that regions associated with production and perception of speech sounds would differ between groups. Results indicated greater gray matter volumes for the speech sound error group relative to typically speaking controls in bilateral superior temporal gyrus. There was greater white matter volume in the corpus callosum for the speech sound error group, but less white matter volume in right lateral occipital gyrus. Results may indicate delays in neuronal pruning in critical speech regions or differences in the development of networks for speech perception and production. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  5. Differential effects of visual-acoustic biofeedback intervention for residual speech errors

    Directory of Open Access Journals (Sweden)

    Tara Mcallister Byun

    2016-11-01

    Full Text Available Recent evidence suggests that the incorporation of visual biofeedback technologies may enhance response to treatment in individuals with residual speech errors. However, there is a need for controlled research systematically comparing biofeedback versus non-biofeedback intervention approaches. This study implemented a single-subject experimental design with a crossover component to investigate the relative efficacy of visual-acoustic biofeedback and traditional articulatory treatment for residual rhotic errors. Eleven child/adolescent participants received ten sessions of visual-acoustic biofeedback and ten sessions of traditional treatment, with the order of biofeedback and traditional phases counterbalanced across participants. Probe measures eliciting untreated rhotic words were administered in at least 3 sessions prior to the start of treatment (baseline, between the two treatment phases (midpoint, and after treatment ended (maintenance, as well as before and after each treatment session. Perceptual accuracy of rhotic production was assessed by outside listeners in a blinded, randomized fashion. Results were analyzed using a combination of visual inspection of treatment trajectories, individual effect sizes, and logistic mixed-effects regression. Effect sizes and visual inspection revealed that participants could be divided into categories of strong responders (n=4, mixed/moderate responders (n=3, and non-responders (n=4. Individual results did not reveal a reliable pattern of stronger performance in biofeedback versus traditional blocks, or vice versa. Moreover, biofeedback versus traditional treatment was not a significant predictor of accuracy in the logistic mixed-effects model examining all within-treatment word probes. However, the interaction between treatment condition and treatment order was significant: biofeedback was more effective than traditional treatment in the first phase of treatment, and traditional treatment was more

  6. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Laursen, Louise Vagner; Elstrøm, Ulrik Vindelev; Vestergaard, Anne; Muren, Ludvig P.; Petersen, Jørgen Baltzer; Lindegaard, Jacob Christian; Grau, Cai; Tanderup, Kari

    2012-01-01

    Purpose: Due to the often quite extended treatment fields in cervical cancer radiotherapy, uncorrected rotational set-up errors result in a potential risk of target miss. This study reports on the residual rotational set-up error after using daily cone beam computed tomography (CBCT) to position cervical cancer patients for radiotherapy treatment. Methods and materials: Twenty-five patients with locally advanced cervical cancer had daily CBCT scans (650 CBCTs in total) prior to treatment delivery. We retrospectively analyzed the translational shifts made in the clinic prior to each treatment fraction as well as the residual rotational errors remaining after translational correction. Results: The CBCT-guided couch movement resulted in a mean translational 3D vector correction of 7.4 mm. Residual rotational error resulted in a target shift exceeding 5 mm in 57 of the 650 treatment fractions. Three patients alone accounted for 30 of these fractions. Nine patients had no shifts exceeding 5 mm and 13 patients had 5 or less treatment fractions with such shifts. Conclusion: Twenty-two of the 25 patients have none or few treatment fractions with target shifts larger than 5 mm due to residual rotational error. However, three patients display a significant number of shifts suggesting a more systematic set-up error.

  7. Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Muren, Ludvig; Høyer, Morten

    2007-01-01

    BACKGROUND AND PURPOSE: Image-guided on-line correction of the target position allows radiotherapy of prostate cancer with narrow set-up margins. The present study investigated the residual set-up error after on-line prostate localization and its impact on margins. MATERIALS AND METHODS: Prostate...... localization based on two orthogonal X-ray images of gold markers implanted in the prostate was performed with an on-board imager at four treatment sessions for 90 patients. The set-up error in the sagittal plane residual after couch adjustment was evaluated on lateral verification portal images. RESULTS...

  8. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  9. Genetic properties of residual feed intakes for maintenance and growth and the implications of error measurement.

    Science.gov (United States)

    Rekaya, R; Aggrey, S E

    2015-03-01

    A procedure for estimating residual feed intake (RFI) based on information used in feeding studies is presented. Koch's classical model consists of using fixed regressions of feed intake on metabolic BW and growth, and RFI is obtained as the deviation between the observed feed intake and the expected intake for an individual with a given weight and growth rate. Estimated RFI following such a procedure intrinsically suffers from the inability to separate true RFI from the sampling error. As the latter is never equal to 0, estimated RFI is always biased, and the magnitude of such bias depends on the ratio between the true RFI variance and the residual variance. Additionally, the classical approach suffers from its inability to dissect RFI into its biological components, being the metabolic efficiency (maintaining BW) and growth efficiency. To remedy these problems we proposed a procedure that directly models the individual animal variation in feed efficiency used for body maintenance and growth. The proposed model is an extension of Koch's procedure by assuming animal-specific regression coefficients rather than population-level parameters. To evaluate the performance of both models, a data simulation was performed using the structure of an existing chicken data set consisting of 2,289 records. Data was simulated using 4 ratios between the true RFI and sampling error variances (1:1, 2:1, 4:1, and 10:1) and 5 correlation values between the 2 animal-specific random regression coefficients (-0.95, -0.5, 0, 0.5, and 0.95). The results clearly showed the superiority of the proposed model compared to Koch's procedure under all 20 simulation scenarios. In fact, when the ratio was 1:1 and the true genetic correlation was equal to -0.95, the correlation between the true and estimated RFI for animals in the top 20% was 0.60 and 0.51 for the proposed and Koch's models, respectively. This is an 18% superiority for the proposed model. For the bottom 20% of animals in the ranking

  10. Minimization and Mitigation of Wire EDM Cutting Errors in the Application of the Contour Method of Residual Stress Measurement

    Science.gov (United States)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2016-01-01

    The contour method of residual stress measurement relies on the careful application of wire electro-discharge machining (WEDM) for the cutting stage. Changes in material removal rates during the cut lead to errors in the final calculated values of residual stress. In this study, WEDM cutting parameters have been explored to identify the optimum conditions for contour method residual stress measurements. The influence of machine parameters on the surface roughness and cutting artifacts in the contour cut is discussed. It has been identified that the critical parameter in improving the surface finish is the spark pulse duration. A typical cutting artifact and its impact on measured stress values have been identified and demonstrated for a contour cut in a welded marine steel. A procedure is presented to correct contour displacement data from the influence of WEDM cutting artifacts, and is demonstrated on the correction of a measured weld residual stress. The corrected contour method improved the residual stress magnitude up to 150 MPa. The corrected contour method results were validated by X-ray diffraction, incremental center hole drilling, and neutron diffraction.

  11. Interface stress in socket/residual limb with transtibial prosthetic suspension systems during locomotion on slopes and stairs.

    Science.gov (United States)

    Eshraghi, Arezoo; Abu Osman, Noor Azuan; Gholizadeh, Hossien; Ali, Sadeeq; Abas, Wan Abu Bakar Wan

    2015-01-01

    This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs. Three transtibial prostheses, with a pin/lock system, a Seal-In system, and a magnetic suspension system, were created for the participants in a prospective study. Interface stress was measured as the peak pressure by using the F-socket transducers during stairs and ramp negotiation. Twelve individuals with transtibial amputation managed to complete the experiments. During the stair ascent and descent, the greatest peak pressure was observed in the prosthesis with the Seal-In system. The magnetic prosthetic suspension system caused significantly different peak pressure at the anterior proximal region compared with the pin/lock (P = 0.022) and Seal-In (P = 0.001) during the stair ascent. It was also observed during the stair descent and ramp negotiation. The prostheses exhibited varying pressure profiles during the stair and ramp ascent. The prostheses with the pin/lock and magnetic suspension systems exhibited lower peak pressures compared with the Seal-In system. The intrasystem pressure distribution at the anterior and posterior regions of the residual limb was fairly homogenous during the stair and ramp ascent and descent. Nevertheless, the intrasystem pressure mapping revealed a significant difference among the suspension types, particularly at the anterior and posterior sensor sites.

  12. Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED.

    Science.gov (United States)

    Harring, Jeffrey R; Blozis, Shelley A

    2014-06-01

    Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.

  13. Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.

    Directory of Open Access Journals (Sweden)

    Nadeem A Malik

    Full Text Available Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS, Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K due to the sweeping effect decreases with increasing pair separation (σl, such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.

  14. Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Guo Xiao-Mao

    2010-10-01

    Full Text Available Abstract Background The cone beam CT (CBCT guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT guided accelerated partial breast irradiation (APBI. Methods Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. Results A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR, 3.1 mm and 2.3 mm in the superior-inferior (SI, and 2.3 mm and 2.0 mm in the anterior-posterior (AP directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10

  15. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    Science.gov (United States)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  16. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  17. The Residual Setup Errors of Different IGRT Alignment Procedures for Head and Neck IMRT and the Resulting Dosimetric Impact

    International Nuclear Information System (INIS)

    Graff, Pierre; Kirby, Neil; Weinberg, Vivian; Chen, Josephine; Yom, Sue S.; Lambert, Louise; Pouliot, Jean

    2013-01-01

    Purpose: To assess residual setup errors during head and neck radiation therapy and the resulting consequences for the delivered dose for various patient alignment procedures. Methods and Materials: Megavoltage cone beam computed tomography (MVCBCT) scans from 11 head and neck patients who underwent intensity modulated radiation therapy were used to assess setup errors. Each MVCBCT scan was registered to its reference planning kVCT, with seven different alignment procedures: automatic alignment and manual registration to 6 separate bony landmarks (sphenoid, left/right maxillary sinuses, mandible, cervical 1 [C1]-C2, and C7-thoracic 1 [T1] vertebrae). Shifts in the different alignments were compared with each other to determine whether there were any statistically significant differences. Then, the dose distribution was recalculated on 3 MVCBCT images per patient for every alignment procedure. The resulting dose-volume histograms for targets and organs at risk (OARs) were compared to those from the planning kVCTs. Results: The registration procedures produced statistically significant global differences in patient alignment and actual dose distribution, calling for a need for standardization of patient positioning. Vertically, the automatic, sphenoid, and maxillary sinuses alignments mainly generated posterior shifts and resulted in mean increases in maximal dose to OARs of >3% of the planned dose. The suggested choice of C1-C2 as a reference landmark appears valid, combining both OAR sparing and target coverage. Assuming this choice, relevant margins to apply around volumes of interest at the time of planning to take into account for the relative mobility of other regions are discussed. Conclusions: Use of different alignment procedures for treating head and neck patients produced variations in patient setup and dose distribution. With concern for standardizing practice, C1-C2 reference alignment with relevant margins around planning volumes seems to be a valid

  18. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts.

    Science.gov (United States)

    Abrahams, Liam; Hurst, Laurence D

    2017-12-01

    Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of "dual-coding," namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5' mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift "catch and destroy" or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine-Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The Residual Setup Errors of Different IGRT Alignment Procedures for Head and Neck IMRT and the Resulting Dosimetric Impact

    Energy Technology Data Exchange (ETDEWEB)

    Graff, Pierre [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Radiation-Oncology, Alexis Vautrin Cancer Center, Vandoeuvre-Les-Nancy (France); Doctoral School BioSE (EA4360), Nancy (France); Kirby, Neil [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Weinberg, Vivian [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Department of Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Chen, Josephine; Yom, Sue S. [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Lambert, Louise [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States); Radiation-Oncology, Montreal University Centre, Montreal (Canada); Pouliot, Jean, E-mail: jpouliot@radonc.ucsf.edu [Department of Radiation-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California (United States)

    2013-05-01

    Purpose: To assess residual setup errors during head and neck radiation therapy and the resulting consequences for the delivered dose for various patient alignment procedures. Methods and Materials: Megavoltage cone beam computed tomography (MVCBCT) scans from 11 head and neck patients who underwent intensity modulated radiation therapy were used to assess setup errors. Each MVCBCT scan was registered to its reference planning kVCT, with seven different alignment procedures: automatic alignment and manual registration to 6 separate bony landmarks (sphenoid, left/right maxillary sinuses, mandible, cervical 1 [C1]-C2, and C7-thoracic 1 [T1] vertebrae). Shifts in the different alignments were compared with each other to determine whether there were any statistically significant differences. Then, the dose distribution was recalculated on 3 MVCBCT images per patient for every alignment procedure. The resulting dose-volume histograms for targets and organs at risk (OARs) were compared to those from the planning kVCTs. Results: The registration procedures produced statistically significant global differences in patient alignment and actual dose distribution, calling for a need for standardization of patient positioning. Vertically, the automatic, sphenoid, and maxillary sinuses alignments mainly generated posterior shifts and resulted in mean increases in maximal dose to OARs of >3% of the planned dose. The suggested choice of C1-C2 as a reference landmark appears valid, combining both OAR sparing and target coverage. Assuming this choice, relevant margins to apply around volumes of interest at the time of planning to take into account for the relative mobility of other regions are discussed. Conclusions: Use of different alignment procedures for treating head and neck patients produced variations in patient setup and dose distribution. With concern for standardizing practice, C1-C2 reference alignment with relevant margins around planning volumes seems to be a valid

  20. Statistical tests against systematic errors in data sets based on the equality of residual means and variances from control samples: theory and applications.

    Science.gov (United States)

    Henn, Julian; Meindl, Kathrin

    2015-03-01

    Statistical tests are applied for the detection of systematic errors in data sets from least-squares refinements or other residual-based reconstruction processes. Samples of the residuals of the data are tested against the hypothesis that they belong to the same distribution. For this it is necessary that they show the same mean values and variances within the limits given by statistical fluctuations. When the samples differ significantly from each other, they are not from the same distribution within the limits set by the significance level. Therefore they cannot originate from a single Gaussian function in this case. It is shown that a significance cutoff results in exactly this case. Significance cutoffs are still frequently used in charge-density studies. The tests are applied to artificial data with and without systematic errors and to experimental data from the literature.

  1. A multi-sensor burned area algorithm for crop residue burning in northwestern India: validation and sources of error

    Science.gov (United States)

    Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.

    2017-12-01

    A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build

  2. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  3. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  4. Autofocus Correction of Azimuth Phase Error and Residual Range Cell Migration in Spotlight SAR Polar Format Imagery

    OpenAIRE

    Mao, Xinhua; Zhu, Daiyin; Zhu, Zhaoda

    2012-01-01

    Synthetic aperture radar (SAR) images are often blurred by phase perturbations induced by uncompensated sensor motion and /or unknown propagation effects caused by turbulent media. To get refocused images, autofocus proves to be useful post-processing technique applied to estimate and compensate the unknown phase errors. However, a severe drawback of the conventional autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors (APE). As the resolution be...

  5. Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: Comparison of two arm fixation devices and the effect of arm position correction

    International Nuclear Information System (INIS)

    Kapanen, Mika; Laaksomaa, Marko; Skyttä, Tanja; Haltamo, Mikko; Pehkonen, Jani; Lehtonen, Turkka; Kellokumpu-Lehtinen, Pirkko-Liisa; Hyödynmaa, Simo

    2016-01-01

    Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors and setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.

  6. Slippery Slopes

    Science.gov (United States)

    2004-01-01

    The wheel tracks in this image are an artifact of the difficult terrain faced recently by NASA's Mars Exploration Rover Opportunity deep inside 'Endurance Crater.' Opportunity took the picture with its navigation camera on the rover's 205th martian day, or sol (Aug. 21, 2004). On the preceding sol, to avoid a potentially hazardous rock target, the rover team changed routes. Steep slopes and lack of traction when driving in this terrain caused the rover to experience up to 50 percent slip during parts of its traverse. Opportunity ended up more than 50 centimeters (about 20 inches) downslope from the planned final position. Another shift in objective on sol 205 had Opportunity on the move again toward safer terrain. Analysis of the final drive showed the rover's traction increasing during its latest moves.

  7. Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy

    International Nuclear Information System (INIS)

    Hawkins, Maria A.; Brock, Kristy K.; Eccles, Cynthia; Moseley, Douglas; Jaffray, David; Dawson, Laura A.

    2006-01-01

    Purpose: To evaluate the residual error in liver position using breath-hold kilovoltage (kV) cone-beam computed tomography (CT) following on-line orthogonal megavoltage (MV) image-guided breath-hold liver cancer conformal radiotherapy. Methods and Materials: Thirteen patients with liver cancer treated with 6-fraction breath-hold conformal radiotherapy were investigated. Before each fraction, orthogonal MV images were obtained during exhale breath-hold, with repositioning for offsets >3 mm, using the diaphragm for cranio-caudal (CC) alignment and vertebral bodies for medial-lateral (ML) and anterior posterior (AP) alignment. After repositioning, repeat orthogonal MV images, orthogonal kV fluoroscopic movies, and kV cone-beam CTs were obtained in exhale breath-hold. The cone-beam CT livers were registered to the planning CT liver to obtain the residual setup error in liver position. Results: After repositioning, 78 orthogonal MV image pairs, 61 orthogonal kV image pairs, and 72 kV cone-beam CT scans were obtained. Population random setup errors (σ) in liver position were 2.7 mm (CC), 2.3 mm (ML), and 3.0 mm (AP), and systematic errors (Σ) were 1.1 mm, 1.9 mm, and 1.3 mm in the superior, medial, and posterior directions. Liver offsets >5 mm were observed in 33% of cases; offsets >10 mm and liver deformation >5 mm were observed in a minority of patients. Conclusions: Liver position after radiation therapy guided with MV orthogonal imaging was within 5 mm of planned position in the majority of patients. kV cone-beam CT image guidance should improve accuracy with reduced dose compared with orthogonal MV image guidance for liver cancer radiation therapy

  8. Sensitivity analysis of crustal correction and its error propagation to upper mantle residual gravity and density anomalies

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2013-01-01

    We investigate the effect of the crustal structure heterogeneity and uncertainty in its determination on stripped gravity field. The analysis is based on interpretation of residual upper mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust...... a relatively small range of expected density variations in the lithospheric mantle, knowledge on the uncertainties associated with incomplete knowledge of density structure of the crust is of utmost importance for further progress in such studies......) uncertainties in the velocity-density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions...... from velocity to density and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by high-quality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. The residual...

  9. Dosimetric effect of intrafraction motion and residual setup error for hypofractionated prostate intensity-modulated radiotherapy with online cone beam computed tomography image guidance.

    LENUS (Irish Health Repository)

    Adamson, Justus

    2012-02-01

    PURPOSE: To quantify the dosimetric effect and margins required to account for prostate intrafractional translation and residual setup error in a cone beam computed tomography (CBCT)-guided hypofractionated radiotherapy protocol. METHODS AND MATERIALS: Prostate position after online correction was measured during dose delivery using simultaneous kV fluoroscopy and posttreatment CBCT in 572 fractions to 30 patients. We reconstructed the dose distribution to the clinical tumor volume (CTV) using a convolution of the static dose with a probability density function (PDF) based on the kV fluoroscopy, and we calculated the minimum dose received by 99% of the CTV (D(99)). We compared reconstructed doses when the convolution was performed per beam, per patient, and when the PDF was created using posttreatment CBCT. We determined the minimum axis-specific margins to limit CTV D(99) reduction to 1%. RESULTS: For 3-mm margins, D(99) reduction was <\\/=5% for 29\\/30 patients. Using post-CBCT rather than localizations at treatment delivery exaggerated dosimetric effects by ~47%, while there was no such bias between the dose convolved with a beam-specific and patient-specific PDF. After eight fractions, final cumulative D(99) could be predicted with a root mean square error of <1%. For 90% of patients, the required margins were <\\/=2, 4, and 3 mm, with 70%, 40%, and 33% of patients requiring no right-left (RL), anteroposterior (AP), and superoinferior margins, respectively. CONCLUSIONS: For protocols with CBCT guidance, RL, AP, and SI margins of 2, 4, and 3 mm are sufficient to account for translational errors; however, the large variation in patient-specific margins suggests that adaptive management may be beneficial.

  10. Using residual stacking to mitigate site-specific errors in order to improve the quality of GNSS-based coordinate time series of CORS

    Science.gov (United States)

    Knöpfler, Andreas; Mayer, Michael; Heck, Bernhard

    2014-05-01

    Within the last decades, positioning using GNSS (Global Navigation Satellite Systems; e.g., GPS) has become a standard tool in many (geo-) sciences. The positioning methods Precise Point Positioning and differential point positioning based on carrier phase observations have been developed for a broad variety of applications with different demands for example on accuracy. In high precision applications, a lot of effort was invested to mitigate different error sources: the products for satellite orbits and satellite clocks were improved; the misbehaviour of satellite and receiver antennas compared to an ideal antenna is modelled by calibration values on absolute level, the modelling of the ionosphere and the troposphere is updated year by year. Therefore, within processing of data of CORS (continuously operating reference sites), equipped with geodetic hardware using a sophisticated strategy, the latest products and models nowadays enable positioning accuracies at low mm level. Despite the considerable improvements that have been achieved within GNSS data processing, a generally valid multipath model is still lacking. Therefore, site specific multipath still represents a major error source in precise GNSS positioning. Furthermore, the calibration information of receiving GNSS antennas, which is for instance derived by a robot or chamber calibration, is valid strictly speaking only for the location of the calibration. The calibrated antenna can show a slightly different behaviour at the CORS due to near field multipath effects. One very promising strategy to mitigate multipath effects as well as imperfectly calibrated receiver antennas is to stack observation residuals of several days, thereby, multipath-loaded observation residuals are analysed for example with respect to signal direction, to find and reduce systematic constituents. This presentation will give a short overview about existing stacking approaches. In addition, first results of the stacking approach

  11. Combining human volitional control with intrinsic controller on robotic prosthesis: A case study on adaptive slope walking.

    Science.gov (United States)

    Chen, Baojun; Wang, Qining

    2015-01-01

    Affording lower-limb amputees the ability to volitionally control robotic prostheses can improve the adaptability to terrain changes as well as enhancing proprioception. However, it also increases amputees' conscious burdens for prosthesis control. Therefore, in this paper, we aim to propose a hybrid controller which combines human volitional control with the intrinsic controller on the robotic transtibial prosthesis, enabling the amputee actively controlling prosthesis with little conscious attention. In this preliminary study, a hybrid controller for adaptive slope walking was designed. A slope estimator was embedded in the intrinsic controller to estimate the ground slope of the previous step using signals measured by prosthetic sensors. And a myoelectric controller allows the amputee subject to convey slope changes to prosthetic controller by volitionally contract his residual muscles, whose electromyography signals were mapped to the slope increment. The hybrid controller combined these two results to obtain the estimated slope. One male transtibial amputee subject was recruited in this research. Experiment results showed that the intrinsic slope estimator produced satisfactory estimation results with an average absolute error of 0.70 ± 0.54 degrees. By adding amputee's volitional control, the hybrid controller is able to predict the upcoming slope changes.

  12. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S. [Graz Medical Univ. (Austria). Dept. of Therapeutic Radiology and Oncology; Galle, G. [Graz Medical Univ. (Austria). Dept. of Urology

    2013-04-15

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was {<=} 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)

  13. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy.

    Science.gov (United States)

    Langsenlehner, T; Döller, C; Winkler, P; Gallé, G; Kapp, K S

    2013-04-01

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was ≤ 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease.

  14. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S.; Galle, G.

    2013-01-01

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was ≤ 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)

  15. Analysis of covariance with pre-treatment measurements in randomized trials: comparison of equal and unequal slopes.

    Science.gov (United States)

    Funatogawa, Ikuko; Funatogawa, Takashi

    2011-09-01

    In randomized trials, an analysis of covariance (ANCOVA) is often used to analyze post-treatment measurements with pre-treatment measurements as a covariate to compare two treatment groups. Random allocation guarantees only equal variances of pre-treatment measurements. We hence consider data with unequal covariances and variances of post-treatment measurements without assuming normality. Recently, we showed that the actual type I error rate of the usual ANCOVA assuming equal slopes and equal residual variances is asymptotically at a nominal level under equal sample sizes, and that of the ANCOVA with unequal variances is asymptotically at a nominal level, even under unequal sample sizes. In this paper, we investigated the asymptotic properties of the ANCOVA with unequal slopes for such data. The estimators of the treatment effect at the observed mean are identical between equal and unequal variance assumptions, and these are asymptotically normal estimators for the treatment effect at the true mean. However, the variances of these estimators based on standard formulas are biased, and the actual type I error rates are not at a nominal level, irrespective of variance assumptions. In equal sample sizes, the efficiency of the usual ANCOVA assuming equal slopes and equal variances is asymptotically the same as those of the ANCOVA with unequal slopes and higher than that of the ANCOVA with equal slopes and unequal variances. Therefore, the use of the usual ANCOVA is appropriate in equal sample sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  17. Preliminary Slope Stability Study Using Slope/ W

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  18. Proposal for a Universal Test Mirror for Characterization of Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll, Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-01-01

    The development of third generation light sources like the Advanced Light Source (ALS) or BESSY II brought to a focus the need for high performance synchrotron optics with unprecedented tolerances for slope error and micro roughness. Proposed beam lines at Free Electron Lasers (FEL) require optical elements up to a length of one meter, characterized by a residual slope error in the range of 0.1mu rad (rms),and rms values of 0.1 nm for micro roughness. These optical elements must be inspected by highly accurate measuring instruments, providing a measurement uncertainty lower than the specified accuracy of the surface under test. It is essential that metrology devices in use at synchrotron laboratories be precisely characterized and calibrated to achieve this target. In this paper we discuss a proposal for a Universal Test Mirror (UTM) as a realization of a high performance calibration instrument. The instrument would provide an ideal calibration surface to replicate a redundant surface under test of redundant figure. The application of a sophisticated calibration instrument will allow the elimination of the majority of the systematic error from the error budget of an individual measurement of a particular optical element. We present the limitations of existing methods, initial UTM design considerations, possible calibration algorithms, and an estimation of the expected accuracy

  19. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  20. Dark Slope Streaks

    Science.gov (United States)

    2004-01-01

    13 March 2004 Martian slope streaks occur in the regions most heavily mantled by fine, dry dust, particularly Tharsis, Arabia, and the knobby areas between Amazonis and Cerberus. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some examples of dark slope streaks off of buttes, mesas, and massifs in a dust-mantled crater in central Arabia Terra. New slope streaks form from time to time in the modern martian environment; the streaks in this image probably formed within the past decade. To create them, dust slid or avalanched down the slopes in an almost liquid-like manner. The image is located near 6.8oN, 321.7oW. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  1. Unstable slope management program.

    Science.gov (United States)

    2009-08-01

    This Rapid Response Project gathered information on existing unstable slope management programs, with a : focus on asset management practices in the United States and overseas. On the basis of this study, the research : team summarized and recommende...

  2. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  3. Analysis of Covariance and Randomized Block Design with Heterogeneous Slopes.

    Science.gov (United States)

    Klockars, Alan J.; Beretvas, S. Natasha

    2001-01-01

    Compared the Type I error rate and the power to detect differences in slopes and additive treatment effects of analysis of covariance (ANCOVA) and randomized block designs through a Monte Carlo simulation. Results show that the more powerful option in almost all simulations for tests of both slope and means was ANCOVA. (SLD)

  4. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  5. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.

    Science.gov (United States)

    Siewert, Frank; Buchheim, Jana; Boutet, Sébastien; Williams, Garth J; Montanez, Paul A; Krzywinski, Jacek; Signorato, Riccardo

    2012-02-13

    We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics.

  6. Advance in prediction of soil slope instabilities

    Science.gov (United States)

    Sigarán-Loría, C.; Hack, R.; Nieuwenhuis, J. D.

    2012-04-01

    Six generic soils (clays and sands) were systematically modeled with plane-strain finite elements (FE) at varying heights and inclinations. A dataset was generated in order to develop predictive relations of soil slope instabilities, in terms of co-seismic displacements (u), under strong motions with a linear multiple regression. For simplicity, the seismic loads are monochromatic artificial sinusoidal functions at four frequencies: 1, 2, 4, and 6 Hz, and the slope failure criterion used corresponds to near 10% Cartesian shear strains along a continuous region comparable to a slip surface. The generated dataset comprises variables from the slope geometry and site conditions: height, H, inclination, i, shear wave velocity from the upper 30 m, vs30, site period, Ts; as well as the input strong motion: yield acceleration, ay (equal to peak ground acceleration, PGA in this research), frequency, f; and in some cases moment magnitude, M, and Arias intensity, Ia, assumed from empirical correlations. Different datasets or scenarios were created: "Magnitude-independent", "Magnitude-dependent", and "Soil-dependent", and the data was statistically explored and analyzed with varying mathematical forms. Qualitative relations show that the permanent deformations are highly related to the soil class for the clay slopes, but not for the sand slopes. Furthermore, the slope height does not constrain the variability in the co-seismic displacements. The input frequency decreases the variability of the co-seismic displacements for the "Magnitude-dependent" and "Soil-dependent" datasets. The empirical models were developed with two and three predictors. For the sands it was not possible because they could not satisfy the constrains from the statistical method. For the clays, the best models with the smallest errors coincided with the simple general form of multiple regression with three predictors (e.g. near 0.16 and 0.21 standard error, S.E. and 0.75 and 0.55 R2 for the "M

  7. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  8. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  9. A Different Pitch to Slope

    Science.gov (United States)

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  10. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  11. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  12. Proposal for a Universal Test Mirror for Characterization of SlopeMeasuring Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll,Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-07-31

    The development of third generation light sources like theAdvanced Light Source (ALS) or BESSY II brought to a focus the need forhigh performance synchrotron optics with unprecedented tolerances forslope error and micro roughness. Proposed beam lines at Free ElectronLasers (FEL) require optical elements up to a length of one meter,characterized by a residual slope error in the range of 0.1murad (rms),and rms values of 0.1 nm for micro roughness. These optical elements mustbe inspected by highly accurate measuring instruments, providing ameasurement uncertainty lower than the specified accuracy of the surfaceunder test. It is essential that metrology devices in use at synchrotronlaboratories be precisely characterized and calibrated to achieve thistarget. In this paper we discuss a proposal for a Universal Test Mirror(UTM) as a realization of a high performance calibration instrument. Theinstrument would provide an ideal calibration surface to replicate aredundant surface under test of redundant figure. The application of asophisticated calibration instrument will allow the elimination of themajority of the systematic error from the error budget of an individualmeasurement of a particular optical element. We present the limitationsof existing methods, initial UTM design considerations, possiblecalibration algorithms, and an estimation of the expectedaccuracy.

  13. Analysis of localizer and glide slope Flight Technical Error

    Science.gov (United States)

    2008-12-09

    A new wake turbulence procedure has been developed that permits two dependent arrival traffic streams during instrument meteorological conditions : to runways with centerline separations less than 2500 ft. For the proposed procedure, aircraft approac...

  14. Medication Errors

    Science.gov (United States)

    ... for You Agency for Healthcare Research and Quality: Medical Errors and Patient Safety Centers for Disease Control and ... Quality Chasm Series National Coordinating Council for Medication Error Reporting and Prevention ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  15. Estimation of rod scale errors in geodetic leveling

    Science.gov (United States)

    Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.

    1995-01-01

    Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.

  16. Error Analysis for Interferometric SAR Measurements of Ice Sheet Flow

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1999-01-01

    and slope errors in conjunction with a surface parallel flow assumption. The most surprising result is that assuming a stationary flow the east component of the three-dimensional flow derived from ascending and descending orbit data is independent of slope errors and of the vertical flow....

  17. Statistics of the slope-method estimator.

    Science.gov (United States)

    Rocadenbosch, F; Comerón, A; Albiol, L

    2000-11-20

    The slope method has customarily been used and is still used for inversion of atmospheric optical parameters, extinction, and backscatter in homogeneous atmospheres from lidar returns. Our aim is to study the underlying statistics of the old slope method and ultimately to compare its inversion performance with that of the present-day nonlinear least-squares solution (the so-called exponential-curve fitting). The contents are twofold: First, an analytical study is conducted to characterize the bias and the mean-square-estimation error of the regression operator, which permits estimation of the optical parameters from the logarithm of the range-compensated lidar return. Second, universal plots for most short- and far-range tropospheric backscatter lidars are presented as a rule of thumb for obtaining the optimum regression interval length that yields unbiased estimates. As a result, the simple graphic basis of the slope method is still maintained, and its inversion performance improves up to that of the present-day computer-oriented exponential-curve fitting, which ends the controversy between these two algorithms.

  18. Slope failure simulations with MPM

    NARCIS (Netherlands)

    Vardon, P.J.; Wang, B.; Hicks, M.A.

    2017-01-01

    The simulation of slope failures, including both failure initiation and development, has been modelled using the material point method (MPM). Numerical case studies involving various slope angles, heterogeneity and rainfall infiltration are presented. It is demonstrated that, by utilising a

  19. Slope Failure Simulations with MPM

    NARCIS (Netherlands)

    Vardon, P.J.; Wang, B.; Hicks, M.A.

    2017-01-01

    The simulation of slope failures, including both failure initiation and development, has been modelled using the material point method. By utilising a constitutive model which encompasses, in a simplified manner, both pre- and post-failure behaviour, the majority of types of geotechnical slope

  20. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  1. Medical error

    African Journals Online (AJOL)

    QuickSilver

    is only when mistakes are recognised that learning can occur...All our previous medical training has taught us to fear error, as error is associated with blame. This fear may lead to concealment and this is turn can lead to fraud'. How real this fear is! All of us, during our medical training, have had the maxim 'prevention is.

  2. Slope failure investigation management system.

    Science.gov (United States)

    2013-03-01

    Highway slopes are exposed to a variety of environmental and climatic conditions, such as deforestation, cycles of : freezing and thawing weather, and heavy storms. Over time, these climatic conditions, in combination with other : factors such as geo...

  3. Light and Dark Slope Streaks

    Science.gov (United States)

    2004-01-01

    21 July 2004 Dark slope streaks are a common feature on slopes thickly-mantled by dust, especially in the Tharsis, Arabia, and western Amazonis regions of Mars. Less common are light-toned slope streaks, which often occur in the same area as dark streaks. They are most common in Arabia Terra, and some are shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Slope streaks are probably the result of sudden avalanches of extremely dry dust. The behavior of the avalanching dust is somewhat fluid-like, and new streaks have been observed to form over intervals of a few months to a Mars year. This image is located near 13.4oN, 340.3oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  4. Compost for steep slope erosion.

    Science.gov (United States)

    2008-06-01

    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  5. North Slope (Wahluke Slope) expedited response action cleanup plan

    International Nuclear Information System (INIS)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi 2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  6. North Slope (Wahluke Slope) expedited response action cleanup plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  7. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  8. 16 determination of posterior tibia slope and slope deterioration with ...

    African Journals Online (AJOL)

    Orth (SA), FCS (ECSA), Consultant Orthopaedic Surgeon, P.O. Box. 84074, Mombasa, Kenya. Email: michenimuthuuri@yahoo.com. ABSTRACT. Background: The posterior inclination of the tibia plateaux relative to the longitudinal axis of the tibia is referred to as the Posterior Tibia Slope (PTS). Fore knowledge of the mean ...

  9. Mass movement hazard assessment model in the slope profile

    Science.gov (United States)

    Colangelo, A. C.

    2003-04-01

    The central aim of this work is to assess the spatial behaviour of critical depths for slope stability and the behaviour of their correlated variables in the soil-regolith transition along slope profiles over granite, migmatite and mica-schist parent materials in an humid tropical environment. In this way, we had making measures of shear strength for residual soils and regolith materials with soil "Cohron Sheargraph" apparatus and evaluated the shear stress tension behaviour at soil-regolith boundary along slope profiles, in each referred lithology. In the limit equilibrium approach applied here we adapt the infinite slope model for slope analysis in whole slope profile by means of finite element solution like in Fellenius or Bishop methods. In our case, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. For each slice, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, slope gradient, top of subsurface flow gradient, apparent soil bulk density. The correlations showed the relative weight of cohesion, internal friction angle, apparent bulk density of soil materials and slope gradient variables with respect to the evaluation of critical depth behaviour for different simulated soil moisture content levels at slope profile scale. Some important results refer to the central role of behaviour of soil bulk-density variable along slope profile during soil evolution and in present day, because the intense clay production, mainly Kaolinite and Gibbsite at B and C-horizons, in the humid tropical environment. A increase in soil clay content produce a fall of friction angle and bulk density of material, specially when some montmorillonite or illite clay are present. We have observed too at threshold conditions, that a slight change in soil bulk-density value may disturb drastically the equilibrium of

  10. Evolution of steep Martian slopes

    Science.gov (United States)

    Sullivan, Robert John, Jr.

    1992-01-01

    The physical properties and evolution of steep slopes on the planet Mars are examined. Where martian slopes are steepest and of greatest relief, the slope morphology is distinctive and characterized by regular, alternating spurs and gullies. Previous workers identified these martian gullies as dry debris avalanche chutes, partially because a nonspecific 'dry mass-wasting' explanation seemed compatible, initially, with current surface conditions. An evacuated avalanche chute provides the opportunity to back analyze the stability of the mobile layer of the chute at the time of its failure. For the martian slope problem a new stability back-analysis technique was developed which incorporates the third dimension (chute width) into the back-analysis calculation, allowing unambiguous determination of the average cohesion and angle of internal friction of the mobile layer. A series of trials was performed to investigate the effects of gravitational acceleration, average slope angle, and average mobile layer density, cohesion, and angle of internal friction on the size and shape of the transverse chute cross-section. Results indicate that: (1) variations in density, gravitational acceleration, and cohesion affect the overall size of the cross-section but not its width:depth ratio, and (2) the contrast between average slope angle and angle of internal friction is most influential on the width:depth ratio of the cross-section. The difference between these two parameters is inversely proportional to the width:depth ratio. Application of the three-dimensional back-analysis technique to proposed martian avalanche chutes yields values of cohesion and angle of internal friction of the mobile layers that are similar mechanically (without genetic implications) to those of terrestrial glacial till, a poorly sorted material with moderate inter-grain cohesion, or lunar soils under normal stresses representative of (lunar) depths of between ten and twenty meters. Material of these

  11. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  12. Refractive Errors

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Refractive Errors in Children En Español Read in Chinese How does the ... birth and can occur at any age. The prevalence of myopia is low in US children under the age of eight, but much higher ...

  13. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  14. Impact of slope inclination on salt accumulation

    Science.gov (United States)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  15. Unraveling uncertainties of water table slope assessment with DGPS in lowland floodplain wetlands.

    Science.gov (United States)

    Mirosław-Świątek, Dorota; Michałowski, Robert; Szporak-Wasilewska, Sylwia; Ignar, Stefan; Grygoruk, Mateusz

    2016-11-01

    In our study, we analyzed the combined standard uncertainty of water table slope assessment done using differential global positioning system (DGPS)-based measurements of water table elevation and distances between measurement locations. We compared and discussed uncertainties in water table slope assessments done in various hypothetical environments of lowland floodplains (water table slopes typically ranged from 1.25 · 10 -4 to 1 · 10 -3 ). Our analyses referred to elevation measurements done with the static GPS and DGPS real-time kinematic (RTK) approaches, which are currently among the most frequently used elevation measurement techniques worldwide. Calculations of the combined standard uncertainty of water table slope allowed us to conclude that the DGPS-RTK approach used in water table slope assessment can result in assessment errors as high as 50 % at short (RTK measurements, while, in the case of static GPS measurements, acceptable measurement errors at the same level occur at distances as low as 1350 m. Errors in water table slope assessment as high as 50 % occur at distances of 1130 m and 140 m for DGPS-RTK and static GPS measurements, respectively. We conclude that, although the DGPS-RTK methodology-due to its ease of use and time-saving capabilities is very often applied to water level measurements in lowland riparian wetlands, the application of the DGPS-RTK methodology for water table slope assessment at distances shorter than a few couples of meters results in very low accuracy (errors greater than 50 %) and should not be used for calculating local slopes in low slope areas such as lowland riparian zones.

  16. Error Bounds: Necessary and Sufficient Conditions

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Kruger, A.Y.; Fabian, Marián; Henrion, R.

    2010-01-01

    Roč. 18, č. 2 (2010), s. 121-149 ISSN 1877-0533 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z10190503 Keywords : Error bounds * Calmness * Subdifferential * Slope Subject RIV: BA - General Mathematics Impact factor: 0.333, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-error bounds necessary and sufficient conditions.pdf

  17. Inborn Errors of Metabolism.

    Science.gov (United States)

    Ezgu, Fatih

    2016-01-01

    Inborn errors of metabolism are single gene disorders resulting from the defects in the biochemical pathways of the body. Although these disorders are individually rare, collectively they account for a significant portion of childhood disability and deaths. Most of the disorders are inherited as autosomal recessive whereas autosomal dominant and X-linked disorders are also present. The clinical signs and symptoms arise from the accumulation of the toxic substrate, deficiency of the product, or both. Depending on the residual activity of the deficient enzyme, the initiation of the clinical picture may vary starting from the newborn period up until adulthood. Hundreds of disorders have been described until now and there has been a considerable clinical overlap between certain inborn errors. Resulting from this fact, the definite diagnosis of inborn errors depends on enzyme assays or genetic tests. Especially during the recent years, significant achievements have been gained for the biochemical and genetic diagnosis of inborn errors. Techniques such as tandem mass spectrometry and gas chromatography for biochemical diagnosis and microarrays and next-generation sequencing for the genetic diagnosis have enabled rapid and accurate diagnosis. The achievements for the diagnosis also enabled newborn screening and prenatal diagnosis. Parallel to the development the diagnostic methods; significant progress has also been obtained for the treatment. Treatment approaches such as special diets, enzyme replacement therapy, substrate inhibition, and organ transplantation have been widely used. It is obvious that by the help of the preclinical and clinical research carried out for inborn errors, better diagnostic methods and better treatment approaches will high likely be available. © 2016 Elsevier Inc. All rights reserved.

  18. VT Lidar Slope (1 meter) - 2005 - Essex

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  19. Gravity-induced stresses in finite slopes

    Science.gov (United States)

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  20. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  1. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  2. Slope protection for artificial island

    Energy Technology Data Exchange (ETDEWEB)

    Czerniak, M.T.; Collins, J.I.; Shak, A.T.

    1981-08-01

    The technology under development to protect artificial-island production platforms from Arctic sea and ice damage involves three major considerations: (1) sea conditions during the ice-free season, (2) ice conditions during winter, and (3) construction constraints imposed by material availability, transportation problems, and length of the construction season. So far, researchers have evaluated 15 different slope-protection systems on the basis of reliability, construction-cost, and maintenance-cost factors, choosing 8 candidates for wave and ice model testing. The cases of interest involve exploration and production islands in shallow and deeper water applications.

  3. Mycorrhizal aspects in slope stabilisation

    Science.gov (United States)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  4. The Influence of Shales on Slope Instability

    Science.gov (United States)

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  5. Alignment error analysis of detector array for spatial heterodyne spectrometer.

    Science.gov (United States)

    Jin, Wei; Chen, Di-Hu; Li, Zhi-Wei; Luo, Hai-Yan; Hong, Jin

    2017-12-10

    Spatial heterodyne spectroscopy (SHS) is a new spatial interference spectroscopy which can achieve high spectral resolution. The alignment error of the detector array can lead to a significant influence with the spectral resolution of a SHS system. Theoretical models for analyzing the alignment errors which are divided into three kinds are presented in this paper. Based on these models, the tolerance angle of these errors has been given, respectively. The result of simulation experiments shows that when the angle of slope error, tilt error, and rotation error are less than 1.21°, 1.21°, 0.066° respectively, the alignment reaches an acceptable level.

  6. Solution algorithm of dwell time in slope-based figuring model

    Science.gov (United States)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  7. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  8. Solow Residuals Without Capital Stocks

    DEFF Research Database (Denmark)

    Burda, Michael C.; Severgnini, Battista

    2014-01-01

    We use synthetic data generated by a prototypical stochastic growth model to assess the accuracy of the Solow residual (Solow, 1957) as a measure of total factor productivity (TFP) growth when the capital stock in use is measured with error. We propose two alternative measurements based on current...

  9. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  10. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (fwalls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  11. The Hydromechanics of Vegetation for Slope Stabilization

    Science.gov (United States)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  12. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load

    Directory of Open Access Journals (Sweden)

    Li Dan-Feng

    2016-01-01

    Full Text Available Slope instability under dynamic load is the technical difficulty in the engineering; the evaluation of slope stability under dynamic load and the control of dynamic load is particularly important. In this paper, taking the right side slope of K27+140 m~380 m typical section (K27 slope for short in Chongqing Fuling-Fengdu-Shizhu expresses highway as an example to calculate and analyze. The K27 slope is under sinusoidal vehicle load and supported by anchor cable and antislide pile to resist downslide strength; at the same time, the combined effect of them is studied. Three-dimensional finite element methodology (FEM is used to simulate the bedding slope with piles and anchor cable support; furthermore, the eigenvalue can be obtained. In order to reduce error of the elastic boundary conditions caused by the reflection effect of wavelengths, the combination of Lysmer surface viscous boundary and traditional ground support boundaries is utilized to analyze and calculate the time-histories during bedding slope under dynamic load. The dynamic response of pile anchor support to resist sliding force is obtained. The concept of the pile anchor supporting coordinate interval is put forward. Furthermore, it is verified that the pile anchor supporting coordinate interval can be used to evaluate the stability of the slope under dynamic load and provide a new method for the control of the dynamic load.

  13. Slope Estimation from ICESat/GLAS

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  14. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  15. Analysis of slope slip surface case study landslide road segment Purwantoro-Nawangan/Bts Jatim Km 89+400

    International Nuclear Information System (INIS)

    Purnomo, Joko Sidik; Purwana, Yusep Muslih; Surjandari, Niken Silmi

    2017-01-01

    Wonogiri is a region of south eastern part of Central Java province which borders with East Java and Yogyakarta Province. In Physiographic its mostly undulating hills so that the frequent occurrence of landslides, especially during the rainy season. Landslide disaster that just happened that on the road segment Purwantoro-Nawangan / Bts Jatim Km 89 + 400 were included in the authority of the Highways Department of Central Java Province. During this time, Error analysis of slope stability is not caused by a lot of presumption shape of slip surface, but by an error in determining the location of the critical slip surface. This study aims to find the shape and location slip surface landslide on segment Purwantoro - Nawangan Km 89 + 400 with the interpretation of soil test results. This research method is with the interpretation of CPT test and Bore Hole as well as modeling use limit equilibrium method and finite element method. Processing contours of the slopes in the landslide area resulted in three cross section that slopes A-A, B-B and C-C which will be modeling the slopes. Modeling slopes with dry and wet conditions at the third cross section slope. It was found that the form of the slope slip surface are known to be composite depth 1.5-2 m with safety factor values more than 1.2 (stable) when conditions are dry slopes. But its became failure with factor of safety < 0.44 when conditions are wet slopes. (paper)

  16. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  17. Assessment of radar altimetry correction slopes for marine gravity recovery: A case study of Jason-1 GM data

    Science.gov (United States)

    Zhang, Shengjun; Li, Jiancheng; Jin, Taoyong; Che, Defu

    2018-04-01

    Marine gravity anomaly derived from satellite altimetry can be computed using either sea surface height or sea surface slope measurements. Here we consider the slope method and evaluate the errors in the slope of the corrections supplied with the Jason-1 geodetic mission data. The slope corrections are divided into three groups based on whether they are small, comparable, or large with respect to the 1 microradian error in the current sea surface slope models. (1) The small and thus negligible corrections include dry tropospheric correction, inverted barometer correction, solid earth tide and geocentric pole tide. (2) The moderately important corrections include wet tropospheric correction, dual-frequency ionospheric correction and sea state bias. The radiometer measurements are more preferred than model values in the geophysical data records for constraining wet tropospheric effect owing to the highly variable water-vapor structure in atmosphere. The items of dual-frequency ionospheric correction and sea state bias should better not be directly added to range observations for obtaining sea surface slopes since their inherent errors may cause abnormal sea surface slopes and along-track smoothing with uniform distribution weight in certain width is an effective strategy for avoiding introducing extra noises. The slopes calculated from radiometer wet tropospheric corrections, and along-track smoothed dual-frequency ionospheric corrections, sea state bias are generally within ±0.5 microradians and no larger than 1 microradians. (3) Ocean tide has the largest influence on obtaining sea surface slopes while most of ocean tide slopes distribute within ±3 microradians. Larger ocean tide slopes mostly occur over marginal and island-surrounding seas, and extra tidal models with better precision or with extending process (e.g. Got-e) are strongly recommended for updating corrections in geophysical data records.

  18. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    Science.gov (United States)

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  19. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  20. The Sloping Land Conversion Program in China

    DEFF Research Database (Denmark)

    Liu, Zhen

    By overcoming the barriers that limit access to financial liquidity and human resource, the Sloping Land Conversion Program (SLCP) can promote rural livelihood diversification. This paper examines this effect using a household survey data set spanning the 1999 implementation of the Sloping land c...

  1. Lattice calculus of the morphological slope transform

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); P. Maragos

    1995-01-01

    textabstractThis paper presents a study of the morphological slope transform in the complete lattice framework. It discusses in detail the interrelationships between the slope transform at one hand and the (Young-Fenchel) conjugate and Legendre transform, two well-known concepts from convex

  2. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  3. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  4. Physical model studies of seismically induced deformations in slopes

    Science.gov (United States)

    Wartman, Joseph

    below the shear surface in lieu of the base acceleration to compute deformations. The accuracy of both the original (1965) and modified Newmark formulation was greatest when a degrading yield acceleration was used to model the soil's transition from peak to residual shear strength. Back-analyses of the slope tests indicate that the Newmark analysis is best performed: (1) sing shear rate-corrected soil or geosynthetic shear strengths; (2) by properly modeling the soil or geosynthetic displacement versus shear strength relationship; (3) using an acceleration-time history that is appropriate for the base of the slip surface; (4) recognizing that sliding block procedures only account for localized deformation. (Abstract shortened by UMI.)

  5. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  6. Precision Tiltmeter as a Reference for Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-01-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 (micro)rad (rms)

  7. Mapeamento da declividade em microbacias com Sistemas de Informação Geográfica Digital mapping of slope angle in watersheds with Geographical Information Systems

    Directory of Open Access Journals (Sweden)

    Márcio de M. Valeriano

    2003-08-01

    estimate errors in the developed method were evaluated by mapping the standardized residues.

  8. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  9. Angular calibration of surface slope measuring profilers with a bendable mirror

    Science.gov (United States)

    Artemiev, Nikolay A.; Smith, Brian V.; Domning, Edward E.; Chow, Ken P.; Lacey, Ian; Yashchuk, Valeriy V.

    2014-09-01

    Performance of state-of-the-art surface slope measuring profilers, such as the Advanced Light Source's (ALS) long trace profiler (LTP-II) and developmental LTP (DLTP) is limited by the instrument's systematic error. The systematic error is specific for a particular measurement arrangement and, in general, depends on both the measured surface slope value and the position along a surface under test. Here we present an original method to characterize or measure the instrument's systematic error using a bendable X-ray mirror as a test surface. The idea of the method consists of extracting the systematic error from multiple measurements performed at different mirror bendings. An optimal measurement strategy for the optic, under different settings of the benders, and the method of accurate fitting of the measured slope variations with characteristic functions are discussed. We describe the procedure of separation of the systematic error of an actual profiler from surface slope variation inherent to the optic. The obtained systematic error, expressed as a function of the angle of measurement, is useful as a calibration of the instrument arranged to measure an optic with a close curvature and length. We show that accounting for the systematic error enables the optimal setting of bendable optics to the desired ideal shape with accuracy limited only by the experimental noise. Application of the method in the everyday metrology practice increases the accuracy of the measurements and allows measurements of highly curved optics with accuracy similar to those achieved with flat optics. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  10. Factors affecting seismic response of submarine slopes

    Directory of Open Access Journals (Sweden)

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  11. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  12. MECHANICAL HARVESTING OF COFFEE IN HIGH SLOPE

    Directory of Open Access Journals (Sweden)

    FELIPE SANTINATO

    2016-01-01

    Full Text Available Brazilian coffee farming is carried out both on flat and steep lands. In flat areas, mechanized operations are intensive; however, in steep slope areas, certain mechanized operations cannot be performed, such as harvesting. Based on this, the industry has developed machinery to harvest coffee in areas with up to 30% slope. However, harvesters have their efficiency and operational performance influenced by land slope. Thus, this study aimed to evaluate the operational performance and harvesting efficiency of a steep-slope harvester under different situations, using different speed settings. The experiment was carried out in the county of Santo Antônio do Amparo, state of Minas Gerais, Brazil, using five coffee stands with 10, 15, 20, 25 and 30% slope. Evaluations were performed with a self-propelled harvester (Electron, TDI®, Araguari, MG, Brazil at three rotation speeds (600, 800 and 1.000 rpm and two ground speeds (800 and 1.000 m h-1. The results showed the lower speed (800 m h-1 was suitable for 10% slope areas since the amount of fallen coffee berries. For areas of 20% slope, harvesting time was 21.6% longer than in flatter areas. Downtime varied from 10.66 to 29.18% total harvest due to a higher number of maneuvers.

  13. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    from all three robots for decision- making at each step, and to control the physical connections among the robots. In addition, TRESSA (as in prior systems that have utilized this architecture) , incorporates a capability for deterministic response to unanticipated situations from yet another architecture reported in Control Architecture for Robotic Agent Command and Sensing (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40. Tether tension control is a major consideration in the design and operation of TRESSA. Tension is measured by force sensors connected to each tether at the Cliffbot. The direction of the tension (both azimuth and elevation) is also measured. The tension controller combines a controller to counter gravitational force and an optional velocity controller that anticipates the motion of the Cliffbot. The gravity controller estimates the slope angle from the inclination of the tethers. This angle and the weight of the Cliffbot determine the total tension needed to counteract the weight of the Cliffbot. The total needed tension is broken into components for each Anchorbot. The difference between this needed tension and the tension measured at the Cliffbot constitutes an error signal that is provided to the gravity controller. The velocity controller computes the tether speed needed to produce the desired motion of the Cliffbot. Another major consideration in the design and operation of TRESSA is detection of faults. Each robot in the TRESSA system monitors its own performance and the performance of its teammates in order to detect any system faults and prevent unsafe conditions. At startup, communication links are tested and if any robot is not communicating, the system refuses to execute any motion commands. Prior to motion, the Anchorbots attempt to set tensions in the tethers at optimal levels for counteracting the weight of the Cliffbot; if either Anchorbot fails to reach its optimal tension level within a specified time, it sends

  14. A comparison of least squares linear regression and measurement error modeling of warm/cold multipole correlation in SSC prototype dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Kim, K.; Gunst, R.; Schucany, W.

    1993-05-01

    Linear estimation of cold magnetic field quality based on warm multipole measurements is being considered as a quality control method for SSC production magnet acceptance. To investigate prediction uncertainties associated with such an approach, axial-scan (Z-scan) magnetic measurements from SSC Prototype Collider Dipole Magnets (CDM's) have been studied. This paper presents a preliminary evaluation of the explanatory ability of warm measurement multipole variation on the prediction of cold magnet multipoles. Two linear estimation methods are presented: least-squares regression, which uses the assumption of fixed independent variable (xi) observations, and the measurement error model, which includes measurement error in the xi's. The influence of warm multipole measurement errors on predicted cold magnet multipole averages is considered. MSD QA is studying warm/cold correlation to answer several magnet quality control questions. How well do warm measurements predict cold (2kA) multipoles? Does sampling error significantly influence estimates of the linear coefficients (slope, intercept and residual standard error)? Is estimation error for the predicted cold magnet average small compared to typical variation along the Z-Axis? What fraction of the multipole RMS tolerance is accounted for by individual magnet prediction uncertainty?

  15. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  16. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  17. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  18. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].

    Science.gov (United States)

    Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen

    2012-06-01

    A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.

  19. Rock Slope Design Criteria : Executive Summary Report

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  20. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  1. Slope failure investigation management system : [research summary].

    Science.gov (United States)

    2013-03-01

    Highway slopes are exposed to a variety of environmental and climatic conditions, : such as deforestation, cycles of freezing and thawing weather, and heavy storms. : Over time, these climatic conditions, in combination with other factors such as : g...

  2. Percent Agricultural Land Cover on Steep Slopes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  3. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  4. Green technologies for reducing slope erosion.

    Science.gov (United States)

    2010-01-01

    As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...

  5. North Slope, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  6. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  7. Seasonal slope surface deformation measured with TLS

    International Nuclear Information System (INIS)

    Fan, L; Smethurst, J; Powrie, W; Sellaiya, A

    2014-01-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water

  8. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  11. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  12. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  13. IGS Rapid Orbits: Systematic Error at Day Boundaries

    National Research Council Canada - National Science Library

    Slabinski, Victor J

    2006-01-01

    ... +2 to +13 cm. IGS Final orbits show similar discontinuities at each 00 hr GPS. The biased residual discontinuities reflect a discontinuity in Rapid orbit systematic position error across day boundaries...

  14. Sloping fan travertine, Belen, New Mexico, USA

    Science.gov (United States)

    Cook, Megan; Chafetz, Henry S.

    2017-05-01

    Pliocene to Quaternary age travertines are very well-exposed in quarries near Belen, New Mexico, U.S.A., on the western edge of the Rio Grande Rift system. A series of hillside springs produced travertine tongues tens of meters thick and hundreds of meters long. The accumulations represent deposits from individual springs as well as the amalgamation of deposits. The overall architecture is predominantly composed of sloping fans with a smaller component of terrace mounds. The sloping fan deposits commonly have a dip of step morphology. As a consequence of vertical accretion in the pools, terrace mounds morphed into sloping fans. The travertine is composed of a variety of commonly reported constituents, i.e., centimeter thick laminae of bacterial shrubs and oncoids, foam rock, sheets and rafts, and finely crystalline crusts that occur throughout the sloping fan and terrace mound accumulations. Sheets and rafts formed as precipitates in pools on the surfaces of the fans and terraces as well as spelean deposits on the water surfaces of pools within cavities in the overall accumulation. Thus, the spelean rafts provide valuable indicators of original horizontality in the sloping fan strata. In addition, intraformational breccias, composed of locally torn-up travertine intraclastic boulders and deposited in with other travertine, and extraformational breccias, composed of torn-up travertine intraclasts mixed with siliciclastic fines and sand and Paleozoic limestone clasts transported downslope from higher on the hillside, are a common constituent in the sloping fan accumulation. The Belen travertines provide a very well-exposed example of sloping fan travertines and may provide relevant data with regard to the subsurface Aptian Pre-Salt deposits, offshore Brazil.

  15. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  16. Influence of Different Slope Aspects on Some Soil Properties and Forest Soils Evolution (Case Study: Rostam Abad Region, Guilan Province

    Directory of Open Access Journals (Sweden)

    M. Zarinibahador

    2016-02-01

    and 1359 mm, respectively. Thus, the soil moisture and temperature regimes are udic and thermic, respectively. The physical and chemical analysis were carried out on soil samples including particle size distribution, bulk density, pH, organic carbon, total nitrogen, available phosphor and cation exchange capacity. This study was done in a completely randomized design several observational with five replications. The total of 34 soil samples were collected in the two slope aspect of the profile and all samples were tested and statistical analyzed. For the micromorphological study, thin sections were prepared from undisturbed samples. The samples were impregnated with polyester resin and later sectioned. The thin sections were prepared and analyzed in petrographic microscope equipped with polarized light. Results and Discussion: The results of multivariable analysis of variance (MANOVA and Hotteling's T2 showed that there is significant different in soil properties between two hill slopes(p≤0.01. Also, the results of t-test showed the values of pH, content of sand, sand to clay ratio and available phosphorous significantly was higher in Southern hill slope in comparison with Northern hill slope(p≤0.01. Whereas, clay content and cation exchange capacity significantly were higher in Northern hill slope in comparison with Southern hill slope(p≤0.05. Also observed micromorphological studies showed biological activity was stronger in Northern hill slope in comparison with Southern hill slope. Properties observed in thin sections of Northern slope aspect include fungal hyphae, spherical and ellipsoid excrement of microorganisms in root residual (related to oribatid mites which indicated stronger biology in Northern slope aspect soils as compare to Southern slope aspect soils. Also, more accumulates* of clay inside voids, nodules, fragmented of coating of well-oriented, micro laminated, reddish-brown clay, chamber voids in Northern slope soils toward Southern slope soils

  17. Impact of T1 slope on surgical and adjacent segment degeneration after Bryan cervical disc arthroplasty.

    Science.gov (United States)

    Yang, Peng; Li, Yongqian; Li, Jia; Shen, Yong

    2017-01-01

    This retrospective study investigated an association between preoperative T1 slope and surgical and adjacent segment degeneration (SASD) after Bryan cervical disc arthroplasty (BCDA) in patients with cervical degenerative disc disease. Based on preoperative standing lateral radiographs, 90 patients were classified according to T1 slope that was higher or lower than the 50th percentile (high T1 or low T1, 28 and 62 patients, respectively). Patients were also classified as SASD or non-SASD (38 and 52 patients, respectively) determined by radiographs at final follow-up. Visual analog scale (VAS) and Neck Disability Index (NDI) scores for neck and arm pain were noted, and changes in the sagittal alignment of the cervical spine (SACS), functional spinal unit (FSU) angle, and FSU range of motion (ROM) were also noted. Univariate and multivariate logistic regression analyses were performed to determine the risk factors for SASD. The overall rate of SASD was 42.2% (38/90). The SACS, FSU angle, FSU ROM, and SASD rates of the high T1 and low T1 slope groups were significantly different at the last follow-up. The NDI and VAS scores of the high T1 slope group were significantly greater than those of the low T1 slope. The multivariate logistic regression analysis showed that high T1 slope and endplate coverage discrepancy (ie, residual space behind the prosthesis) were significant risk factors for SASD after BCDA. High T1 slope and endplate coverage discrepancy were associated with SASD after BCDA. Patients with a high preoperative T1 slope have a smaller FSU angle and more neck pain after BCDA.

  18. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  19. Role of slope on infiltration: A review

    Science.gov (United States)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  20. Winter chemistry of North Slope lakes

    Science.gov (United States)

    Chambers, M. K.; White, D. M.; Lilly, M. R.; Hinzman, L. D.; Hilton, K. M.; Busey, R.

    2006-12-01

    Lakes are important water resources on the North Slope of Alaska. Oilfield exploration and production requires water for facility use as well as transportation. Ice road construction requires winter extraction of fresh water. Since most North Slope lakes are relatively shallow, the quantity and quality of the water remaining under the ice by the end of the winter are important environmental management issues. Currently permits are based on the presence of overwintering fish populations and their sensitivity to low oxygen. Sampling during the winter of 2004 2005 sheds light on the winter chemistry of several pumped lakes and one unpumped lake on the North Slope. Dissolved oxygen, conductivity, pH, and temperature profiles were taken along with ice thickness and water depth measurements. Water samples were extracted and analyzed for Na, Ca, K, Mg, Fe, DOC, and alkalinity in the laboratory. Lake properties, rather than pumping activities, were the best predictors of oxygen depletion, with the highest levels of dissolved oxygen maintained in the lake with the least dissolved constituents. As would be expected, specific conductance increased with depth in the lake while dissolved oxygen decreased with depth. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May. The summarized data provides a view of North Slope lake chemistry trends, while continued studies investigate the chemical impacts of pumping North Slope lakes through continued sampling and modeling efforts.

  1. Learning from Errors.

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-03

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the beneficial effects are particularly salient when individuals strongly believe that their error is correct: Errors committed with high confidence are corrected more readily than low-confidence errors. Corrective feedback, including analysis of the reasoning leading up to the mistake, is crucial. Aside from the direct benefit to learners, teachers gain valuable information from errors, and error tolerance encourages students' active, exploratory, generative engagement. If the goal is optimal performance in high-stakes situations, it may be worthwhile to allow and even encourage students to commit and correct errors while they are in low-stakes learning situations rather than to assiduously avoid errors at all costs.

  2. Voice activity detection algorithm using perceptual wavelet entropy neighbor slope.

    Science.gov (United States)

    Lee, Gihyoun; Na, Sung Dae; Cho, Jin-Ho; Kim, Myoung Nam

    2014-01-01

    This paper presents a voice activity detection (VAD) approach using a perceptual wavelet entropy neighbor slope (PWENS) in a low signal-to-noise (SNR) environment and with a variety of noise types. The basis for our study is to use acoustic features that have large entropy variance for each wavelet critical band. The speech signal is decomposed by the proposed perceptual wavelet packet decomposition (PWPD), and the VAD function is extracted by PWENS. Finally, VAD is decided by the proposed VAD decision rule using two memory buffers. In order to evaluate the performance of the VAD decision, many speech samples and a variety of SNR conditions were used in the experiment. The performance of the VAD decision is confirmed using objective indexes such as a graph of the VAD decision and the relative error rate.

  3. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  4. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  5. Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes

    International Nuclear Information System (INIS)

    Ma, Ben

    2015-01-01

    Although there has been extensive debate in the literature that addresses the impact of urbanization on total energy use, the relative magnitude of each impact channel has not been empirically examined and urbanization's effects on energy transition dynamics in China remains unknown. Using panel datasets at the provincial level from 1986 to 2011, this paper employs dynamic models to investigate both the long-run and short-run elasticities of urbanization on energy intensities and the most significant impact channel is identified. Coal intensity and electricity intensity are also modeled to reveal energy transition dynamics driven by urbanization. A set of newly developed regression techniques, namely well-performed common correlated effects mean group (CCEMG) and augmented mean group (AMG) estimators, are used to treat residual cross-sectional dependence, nonstationary residuals, and unlikely-to-hold homogeneous slope assumptions. The results obtained verify that the net effects of urbanization on overall energy intensity and electricity intensity are statistically positive, with long-run elasticities of 0.14% to 0.37% and 0.23% to 0.29%, respectively, whereas China's urbanization does not significantly increase coal intensity. The fact that short-run elasticities account for a majority of corresponding long-run values indicates that the short-run effect, that is, indirect energy use induced by urban infrastructures is the most significant impact channel of urbanization on energy use in China. An energy transition from high-pollution coal to clean electricity is also present in China, although the fundamental transition to renewable energy is still in its infancy. From a regional perspective, urbanization exerts asymmetric impacts on provincial energy use so that energy policies associated with urbanization should be province-specific. The findings also illustrate that for a panel dataset on regional dimension within large and fast-growing economies such

  6. Inborn errors of metabolism

    Science.gov (United States)

    Metabolism - inborn errors of ... Bodamer OA. Approach to inborn errors of metabolism. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 205. Rezvani I, Rezvani GA. An ...

  7. Drug Errors in Anaesthesiology

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Jain

    2009-01-01

    Full Text Available Medication errors are a leading cause of morbidity and mortality in hospitalized patients. The incidence of these drug errors during anaesthesia is not certain. They impose a considerable financial burden to health care systems apart from the patient losses. Common causes of these errors and their prevention is discussed.

  8. ATC operational error analysis.

    Science.gov (United States)

    1972-01-01

    The primary causes of operational errors are discussed and the effects of these errors on an ATC system's performance are described. No attempt is made to specify possible error models for the spectrum of blunders that can occur although previous res...

  9. Modern Slope Processes on the Moon

    Science.gov (United States)

    Shevchenko, V. V.; Pine, P. K.; Shevrel, S. D.; Dadu, I.; Lu, Y.; Skobeleva, T. P.; Kvaratskhelia, O.; Rosemberg, K.

    2012-01-01

    Slope movements of material in lunar craters are investigated based on remote spectral studies carried out on board the Clementine spacecraft, and data obtained during the large-scale survey on board the LRO (Lunar Reconnaissance Orbit) spacecraft. The morphological analysis of crater forms based on large-scale images and spectral and spectropolarized assessments of the exposition age (or maturity) of the slope material has led to the conclusion that the formation process of observed outcrops probably is a modern feature. The lower age limit of these structures is estimated at 40-80 years. Thus, slope movements of surface materials can continue at the present time, regardless of the age of the crater studied. Slope movements of crushed granular material lead to fresh outcrops of subsurface layers of marine or continental landscapes and, therefore, extend our capabilities to research the deep material of the Moon. To analyze this phenomenon, craters of 16 and 30 km have been selected. The length of fresh outcrops, while depending strongly on the dimensions of the craters, can be up to several kilometers. In connection with this, the prospect appears of remote analysis of rocks that came to the surface from depths of at least several hundred meters. In this case, there are openings for the contact analysis of subsurface material without the use of labor-intensive operations associated with the delivery of equipment for deep drilling to the lunar surface.

  10. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  11. Mathematics, Physics and Computer Sciences Dual slope ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences Dual slope integration technique to design a digital thermometer. S. F. AKANDE, E. D. DADOEM. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjpas.v7i2.16256 · AJOL African Journals Online.

  12. VT USGS NED Slope (10 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Used ElevationDEM_DEM10M and the Arc/Info SLOPE command with the "PERCENT_RISE" and ".3048" Z_unit options to create this data layer. Input source...

  13. A Worthwhile Task to Teach Slope

    Science.gov (United States)

    Wagener, Lauren L.

    2009-01-01

    Since mathematics is found in every aspect of life, it is important for teachers to provide experiences that help students find connections and develop an appreciation for math and its use in their lives outside school. Slope is an excellent example of a math concept that is usually taught without context or connection. In this article, the…

  14. Fractal Rock Slope Dynamics Anticipating a Collapse

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Novotná, Dagmar; Zvelebil, Jiří

    2004-01-01

    Roč. 70 (2004), 036212 ISSN 1063-651X R&D Projects: GA ČR GA205/00/1055 Institutional research plan: CEZ:AV0Z1030915 Keywords : fractal * scaling * unstable rock slope * collapse prediction * engineering geology Subject RIV: BA - General Mathematics Impact factor: 2.352, year: 2004

  15. A Novel Way To Practice Slope.

    Science.gov (United States)

    Kennedy, Jane B.

    1997-01-01

    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  16. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the r......The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  17. Real-time analysis for Stochastic errors of MEMS gyro

    Science.gov (United States)

    Miao, Zhiyong; Shi, Hongyang; Zhang, Yi

    2017-10-01

    Since a good knowledge of MEMS gyro stochastic errors is important and critical to MEMS INS/GPS integration system. Therefore, the stochastic errors of MEMS gyro should be accurately modeled and identified. The Allan variance method is IEEE standard method in the filed of analysis stochastic errors of gyro. This kind of method can fully characterize the random character of stochastic errors. However, it requires a large amount of data to be stored, resulting in large offline computational burden. Moreover, it has a painful procedure of drawing slope lines for estimation. To overcome the barriers, a simple linear state-space model was established for MEMS gyro. Then, a recursive EM algorithm was implemented to estimate the stochastic errors of MEMS gyro in real time. The experimental results of ADIS16405 IMU show that the real-time estimations of proposed approach are well within the error limits of Allan variance method. Moreover, the proposed method effectively avoids the storage of data.

  18. Design and Analysis of Delayed Chip Slope Modulation in Optical Wireless Communication

    KAUST Repository

    Park, Kihong

    2015-08-23

    In this letter, we propose a novel slope-based binary modulation called delayed chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. Shorter duration of chips than bit duration are used to represent the change of state in an amplitude level according to consecutive bit information and to exploit the trade-off between bandwidth and power efficiency. We analyze the power spectral density and error rate performance of the proposed DCSM. We show from numerical results that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to conventional modulation schemes.

  19. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  20. Error bounds from extra precise iterative refinement

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason

    2005-02-07

    We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

  1. GPS and GIS study of the western slope of the Chiquihuite hill in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Martínez–Yáñez

    2009-04-01

    Full Text Available The demographic explosion of the City of Mexico has forced the anarchical growth of urban development in its mountain slopes. The geologic risk conditions that prevail in such areas are rock falls and down slope creep. The topographic slope analysis shows that these some areas pose a high risk condition for the housing developments located down slope. A geodetic net work was thus developed for the establishment of a reference frame to detect medium and long term slope movement. The location of these benchmarks included rock out crops, structural containment civil structures and street sidewalks. This network was designed to be occupied using GPS fast static methods, with times of occupation no greater to 45 minutes per station. In order to keep short baselines to the reference station and its position errors within low levels we installed a reference GPS site (U CHI on the Southern part of Cerro del Chiquihuite. The Chiquihuite GPS network was monitored for 5 years. The GPS solutions were obtained by differential techniques with ambiguity solution and precise or bits, and using UCHI stations as a reference. The Chiquihuite GPS network does not show significant variations, except for the vertical component at station CH55. This site is likely to be affected by regional subsidence.

  2. Indoor Slope and Edge Detection by Using Two-Dimensional EKF-SLAM with Orthogonal Assumption

    Directory of Open Access Journals (Sweden)

    Jixin Lv

    2015-04-01

    Full Text Available In an indoor environment, slope and edge detection is an important problem in simultaneous localization and mapping (SLAM, which is a basic requirement for mobile robot autonomous navigation. Slope detection allows the robot to find areas that are more traversable while the edge detection can prevent robot from falling. Three-dimensional (3D solutions usually require a large memory and high computational costs. This study proposes an efficient two-dimensional (2D solution to combine slope and edge detection with a line-segment-based extended Kalman filter SLAM (EKF-SLAM in a structured indoor area. The robot is designed to use two fixed 2D laser range finders (LRFs to perform horizontal and vertical scans. With local area orthogonal assumption, the slope and edge are modelled into line segments swiftly from each vertical scan, and then are merged into the EKF-SLAM framework. The EKF-SLAM framework features an optional prediction model that can automatically decide whether the application of iterative closest point (ICP is necessary to compensate for the dead reckoning error. The experimental results demonstrate that the proposed algorithm is capable of building an accurate 2D map swiftly, which contains crucial information of the edge and slope.

  3. Aircraft system modeling error and control error

    Science.gov (United States)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  4. The effects of slope length and slope gradient on the size distributions of loess slides: Field observations and simulations

    Science.gov (United States)

    Qiu, Haijun; Cui, Peng; Regmi, Amar Deep; Hu, Sheng; Wang, Xingang; Zhang, Yuzhu

    2018-01-01

    In this study, we characterize and consider the effects of slope length and slope gradient on the size distributions of loess slides. To carry out this study, we employ data on 275 loess slides within Zhidan County, Central Loess Plateau, China. These data were collected in the field and supplemented by the interpretation of remote sensing images. Both the field observations and slope stability analysis show that loess slide size increases with the slope length. Slide sizes is significantly correlated with slope length, showing a power law relationship in both cases. However, the simulation results show that slope gradient is not associated with loess slide size. The main part of the link between slope gradient and slide size seen in the observations is only apparent, as indicated by the strong connection between slope gradient and length. Statistical analysis of the field observations reveals that slope gradient decreases with increasing slope length, and this correlation interferes with the potential relationship between landslide sizes and slope gradient seen in the field observations. In addition, the probability densities of the areas of loess slides occurring on slopes of different slope lengths are determined using kernel density estimation. This analysis shows that slope length controls the rollover of the frequency-size distribution of loess slides. The scaling exponent increases with slope length.

  5. Wildlife response on the Alaska North Slope

    International Nuclear Information System (INIS)

    Costanzo, D.; McKenzie, B.

    1992-01-01

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  6. Slope parameters of ππ-system

    International Nuclear Information System (INIS)

    Isaev, P.S.; Osipov, A.A.

    1984-01-01

    The slope parameters of the ππ-system are calculated in the framework of the superconductor-tupe quark model. The analogous calculations are made for πK-system. The amplitudes are obtained by using the box quark diagrams and tree diagrams with the intermediate scalar epsilon(700), Ssup(x)(975), K tilde (1350) mesons and vector rho(770), K* (892) mesons

  7. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    Zhang, X. C. (John); Wang, Z. L.

    2017-05-01

    To date interrill erosion processes are not fully understood under different rainfall and soil conditions. The objectives are to 1) identify the interrill erosion regime and limiting process under the study condition, 2) characterize the interactive effects of rainfall intensity and flow depth on sediment transport competency and mode, and 3) develop a lumped interrill erosion model. A loess loam soil with 39% sand and 45% silt was packed to flumes and exposed to simulated rainfall. A complete factorial design with three factors was used, which included rainfall intensity (48, 62, 102, 149, and 170 mm h-1), slope gradient (17.6, 26.8, 36.4, 46.6, and 57.7%), and slope length (0.4, 0.8, 1.2, 1.6, and 2 m). Rain splash, sediment discharge in runoff, and flow velocity were measured. Results showed that rainfall intensity played a dual role not only in detaching soil materials but also in enhancing sediment transport. Sediment transport was the process limiting interrill erosion rate under the study condition. Two major sediment transport modes were identified: rainfall-driven rolling/creeping and flow-driven rolling/sliding. The relative importance of each mode was largely determined by flow depth. The competence of the flow in transporting sediment decreased downslope as flow depth increased due to increased dissipation of raindrop energy. The optimal mean flow depth for the maximal interrill erosion rates was erosion rate. The negative correlation seemed stronger for heavier rains, indicating the cushioning effects of flow depth. Lumped interrill erosion models, developed from short slopes, are likely to overestimate erosion rates. Given transport as the limiting process, the so called erodibility value, estimated with those models, is indeed sediment transportability under the study condition. The effects of slope length on interrill erosion regimes need to be studied further under a wider range of conditions.

  8. The sloping land conversion program in China

    DEFF Research Database (Denmark)

    Liu, Zhen; Lan, Jing

    2015-01-01

    Through addressing the motivations behind rural households’ livelihood diversification, this paper examines the effect of the Sloping Land Conversion Program (SLCP) on livelihood diversification using a longitudinal household survey data set spanning the overall implementation of the SLCP. Our...... results show that the SLCP works as a valid external policy intervention to increase rural livelihood diversification. In addition, the findings demonstrate that the implementation of the SLCP has had heterogeneous effects on livelihood diversification across different rural income groups. The lower...

  9. Ocean processes at the Antarctic continental slope.

    Science.gov (United States)

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  10. Slope and curvature of microbreaking wind waves

    Science.gov (United States)

    Caulliez, G.

    2009-04-01

    Microscale breaking is commonly observed at sea for steep waves less than 30 cm in wavelength. This phenomenon generates high surface slope and curvature roughness at the water surface, which has numerous implications for air-sea exchange and remote-sensing studies. In particular, microbreaking affects momentum transfer from wind to waves, leads to formation of vortices in water, and plays a key role in scattering of electromagnetic and acoustic waves by the air-sea interface. The geometric properties of the parasitic capillaries generated upon steep steady gravity-capillary waves have been well studied over the last decades, both experimentally and numerically. However, owing to their variability, the basic features of naturally occurring wind wave breakers as observed at sea or even in laboratory are far from being identified up to now. To this end, an experimental investigation of microbreaking wind waves was made in a large wind wave tank which combined visualizations of wave breaker profiles with single-point wave elevation and slope measurements. We show that microscale breakers exhibit a characteristic signature in slope and curvature suggesting formation of a bulge on the forward face of the wave crest. Parasitic ripples however are not necessarily generated ahead the bulge. Such breakers are observed for a wide range of wave steepness and wave slope skewness, their structure being only weakly dependent on wavelength and wind forcing. The geometric properties of microbreakers are analysed statistically and compared with the results of the recent numerical simulations by Hung and Tsai (J. Phys. Oceanogr., 2009).

  11. Transhumanism, medical technology and slippery slopes

    OpenAIRE

    McNamee, M J; Edwards, S D

    2006-01-01

    In this article, transhumanism is considered to be a quasi‐medical ideology that seeks to promote a variety of therapeutic and human‐enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and on...

  12. Error detection method

    Science.gov (United States)

    Olson, Eric J.

    2013-06-11

    An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).

  13. Modelling Progressive Failure in Rock-slopes

    Science.gov (United States)

    Pons, M. Güell I.; Jaboyedoff, M.

    2009-04-01

    Rock failures are common in Alpine mountain chains and pose a threat to life and infrastructures. In general, rock slope stability is an interplay between existing discontinuities and development of new ones in intact material. In this work, we study progressive failure by means of numerical methods at multiple scales and using distinct element methods (DEM). Distinct element methods are of advantage because they account for discontinuities and are able to simulate the development of failure in time. The use of micro-parameters instead of constitutive laws allows studying the influence of heterogeneities present in the rock mass. In the first case, the code PFC-2D is used at the slope scale to test the influence of the slope geometry, the joint sets distribution and the joint set persistence in the case of toppling failures under various triggering mechanisms. Heterogeneity properties (cohesion and friction angle) are distributed randomly to simulate natural rock variability. In the second case, a cellular automata model, which is based on concepts of progressive failure in disordered systems, is used to explain the role of heterogeneities in the fracture process at a small scale. The results provide a link to time-to-failure predictions observed in some field cases. This study aims to be a base for the development of a model which permits to understand why some rock masses accelerate until global failure while other are capable to stabilize under the same conditions.

  14. Progress in Predicting Rock-Slope Failures

    Science.gov (United States)

    Korup, O.

    2015-12-01

    Recent research on predicting landslides has seen a massive increase in statistical and computational methods that are largely adapted from the fields of machine learning and data mining. Judging from a sample of some 150 recent scientific papers, the gross majority of the reported success rates of these statistical methods are overwhelmingly high and promising at between 71% and 98%. Perhaps surprisingly, though, the death toll and damage from landslides has remained elevated in the early 21st century, so that reliably predicting the occurrence of rock-slope failures without overfitting our models remains challenging. Here I review some of the recent advances in this field, and show how novel results from landslide seismology and landslide sedimentology have promoted our ability of detecting large rock-slope failures in mountainous terrain. Several new detailed investigations of the internal nature of large rockslide deposits, for example, help to reduce the confusion potential with macroscopically similar moraine debris, or microscopically similar fault breccia. I further outline some of the limitations of empirical models that use rainfall intensity-duration thresholds for landslide early warning, and of multivariate methods concerned with mapping landslide susceptibility at the regional scale. I conclude by discussing the occurrence of 'black swans' such as long-runout rock-ice avalanches in size distributions of rock-slope failures, and their implications for quantitative hazard appraisals.

  15. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  16. Correction for quadrature errors

    DEFF Research Database (Denmark)

    Netterstrøm, A.; Christensen, Erik Lintz

    1994-01-01

    In high bandwidth radar systems it is necessary to use quadrature devices to convert the signal to/from baseband. Practical problems make it difficult to implement a perfect quadrature system. Channel imbalance and quadrature phase errors in the transmitter and the receiver result in error signals......, which appear as self-clutter in the radar image. When digital techniques are used for generation and processing or the radar signal it is possible to reduce these error signals. In the paper the quadrature devices are analyzed, and two different error compensation methods are considered. The practical...

  17. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.

    2016-01-01

    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  18. Impact of T1 slope on surgical and adjacent segment degeneration after Bryan cervical disc arthroplasty

    Directory of Open Access Journals (Sweden)

    Yang P

    2017-08-01

    Full Text Available Peng Yang,1 Yongqian Li,2,3 Jia Li,2,3,* Yong Shen2,3,* 1Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, 2Department of Orthopedic Surgery, 3Key Laboratory of Orthopedic Biomechanics of Hebei Province, the Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China *These authors contributed equally to this work Background: This retrospective study investigated an association between preoperative T1 slope and surgical and adjacent segment degeneration (SASD after Bryan cervical disc arthroplasty (BCDA in patients with cervical degenerative disc disease.Methods: Based on preoperative standing lateral radiographs, 90 patients were classified according to T1 slope that was higher or lower than the 50th percentile (high T1 or low T1, 28 and 62 patients, respectively. Patients were also classified as SASD or non-SASD (38 and 52 patients, respectively determined by radiographs at final follow-up. Visual analog scale (VAS and Neck Disability Index (NDI scores for neck and arm pain were noted, and changes in the sagittal alignment of the cervical spine (SACS, functional spinal unit (FSU angle, and FSU range of motion (ROM were also noted. Univariate and multivariate logistic regression analyses were performed to determine the risk factors for SASD.Results: The overall rate of SASD was 42.2% (38/90. The SACS, FSU angle, FSU ROM, and SASD rates of the high T1 and low T1 slope groups were significantly different at the last follow-up. The NDI and VAS scores of the high T1 slope group were significantly greater than those of the low T1 slope. The multivariate logistic regression analysis showed that high T1 slope and endplate coverage discrepancy (ie, residual space behind the prosthesis were significant risk factors for SASD after BCDA.Conclusion: High T1 slope and endplate coverage discrepancy were associated with SASD after BCDA. Patients with a high preoperative T1

  19. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  20. Medical error and disclosure.

    Science.gov (United States)

    White, Andrew A; Gallagher, Thomas H

    2013-01-01

    Errors occur commonly in healthcare and can cause significant harm to patients. Most errors arise from a combination of individual, system, and communication failures. Neurologists may be involved in harmful errors in any practice setting and should familiarize themselves with tools to prevent, report, and examine errors. Although physicians, patients, and ethicists endorse candid disclosure of harmful medical errors to patients, many physicians express uncertainty about how to approach these conversations. A growing body of research indicates physicians often fail to meet patient expectations for timely and open disclosure. Patients desire information about the error, an apology, and a plan for preventing recurrence of the error. To meet these expectations, physicians should participate in event investigations and plan thoroughly for each disclosure conversation, preferably with a disclosure coach. Physicians should also anticipate and attend to the ongoing medical and emotional needs of the patient. A cultural change towards greater transparency following medical errors is in motion. Substantial progress is still required, but neurologists can further this movement by promoting policies and environments conducive to open reporting, respectful disclosure to patients, and support for the healthcare workers involved. © 2013 Elsevier B.V. All rights reserved.

  1. Learning from Errors

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-01

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…

  2. Slope stabilization guide for Minnesota local government engineers.

    Science.gov (United States)

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  3. Stabilization of erodible slopes with geofibers and nontraditional liquid additives.

    Science.gov (United States)

    2013-05-01

    Instability of erodible slopes due to extreme climate events and of permafrost slopes due degradation and thawing is a significant : engineering problem for northern transportation infrastructure. Engineers continually look for mitigation alternative...

  4. Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope

    Science.gov (United States)

    Gischig, Valentin S.; Moore, Jeffrey R.; Evans, Keith F.; Amann, Florian; Loew, Simon

    2011-12-01

    Thermo-elastic rock slope deformation is often considered to be of relatively minor importance and limited to shallow depths subject to seasonal warming and cooling. In this study, we demonstrate how thermomechanical (TM) effects can drive rock slope deformation at greater depths below the annual thermal active layer. Here in Part 1 of two companion papers, we present 2D numerical models of a simplified slope subject to annual surface temperature cycles. The slope geometry and discontinuity sets are loosely based on the Randa instability considered in detail in Part 2. Results show that near-surface thermo-elastic stresses can propagate to depths of 100 m and more as a result of topography and elasticity of the rock mass. Shear dislocation along discontinuities can have both a reversible component controlled by discontinuity compliance and, provided that the stress state is sufficiently close to the strength limit, an irreversible component (i.e., slip). Induced slip increments are followed by stress redistribution resulting in the propagation of slip fronts. Thus, deformation and progressive rock slope failure can be driven solely by thermomechanical forcing. The influence of TM-induced stress changes becomes stronger for increasing numbers of critically stressed discontinuities and is enhanced if failure of discontinuities involves slip-weakening. The net TM effect acts as a meso-scale fatigue process, involving incremental discontinuity slip and hysteresis driven by periodic loading.

  5. Understanding slope behavior through microseismic monitoring

    Science.gov (United States)

    Arosio, Diego; Boccolari, Mauro; Longoni, Laura; Papini, Monica; Zanzi, Luigi

    2017-04-01

    It is well known that microseismic activity originates as an elastic stress wave at locations where the material is mechanically unstable. Monitoring techniques focusing on this phenomenon have been studied for over seventy years and are now employed in a wide range of applications. As far as the study of unstable slope is concerned, microseismic monitoring can provide real-time information about fracture formation, propagation and coalescence and may be an appropriate solution to reduce the risk for human settlements when structural mitigation interventions (e.g., rock fall nets and ditches) cannot cope with large rock volumes and high kinetic energies. In this work we present the datasets collected in a 4-year period with a microseismic monitoring network deployed on an unstable rock face in Northern Italy. We mainly focus on the classification and the interpretation of collected signals with the final aim of identifying microseismic events related to the kinematic and dynamic behavior of the slope. We have analyzed signal parameters both in time and frequency domains, spectrograms, polarization of 3-component recordings supported by principal component analysis. Clustering methodologies have been tested in order to develop an automatic classification routine capable to isolate a cluster with most of the events related to slope behavior and to discard all disturbances. The network features both geophones and meteorological sensors so that we could also explore the correlation between microseismic events and meteorological datasets, although no significant relationships emerged. On the contrary, it was found that the majority of the events collected by the network are short-time high-frequency signals generated by electromagnetic activity caused by near and far thunderstorms. Finally, we attempted a preliminary localization of the most promising events according to an oversimplified homogeneous velocity model to get a rough indication about the regions of the

  6. Western Ross Sea continental slope gravity currents

    Science.gov (United States)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real

  7. Transhumanism, medical technology and slippery slopes.

    Science.gov (United States)

    McNamee, M J; Edwards, S D

    2006-09-01

    In this article, transhumanism is considered to be a quasi-medical ideology that seeks to promote a variety of therapeutic and human-enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and one particular criticism, moral arbitrariness, that undermines both weak and strong transhumanism is highlighted.

  8. Clustering Moving Objects Using Segments Slopes

    OpenAIRE

    Mohamed E. El-Sharkawi; Hoda M. O. Mokhtar; Omnia Ossama

    2011-01-01

    Given a set of moving object trajectories, we show how to cluster them using k-meansclustering approach. Our proposed clustering algorithm is competitive with the k-means clusteringbecause it specifies the value of “k” based on the segment’s slope of the moving object trajectories. Theadvantage of this approach is that it overcomes the known drawbacks of the k-means algorithm, namely,the dependence on the number of clusters (k), and the dependence on the initial choice of the clusters’centroi...

  9. Intertidal beach slope predictions compared to field data

    NARCIS (Netherlands)

    Madsen, A.J.; Plant, N.G.

    2001-01-01

    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium

  10. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  11. Errors in neuroradiology.

    Science.gov (United States)

    Caranci, Ferdinando; Tedeschi, Enrico; Leone, Giuseppe; Reginelli, Alfonso; Gatta, Gianluca; Pinto, Antonio; Squillaci, Ettore; Briganti, Francesco; Brunese, Luca

    2015-09-01

    Approximately 4 % of radiologic interpretation in daily practice contains errors and discrepancies that should occur in 2-20 % of reports. Fortunately, most of them are minor degree errors, or if serious, are found and corrected with sufficient promptness; obviously, diagnostic errors become critical when misinterpretation or misidentification should significantly delay medical or surgical treatments. Errors can be summarized into four main categories: observer errors, errors in interpretation, failure to suggest the next appropriate procedure, failure to communicate in a timely and a clinically appropriate manner. Misdiagnosis/misinterpretation percentage should rise up in emergency setting and in the first moments of the learning curve, as in residency. Para-physiological and pathological pitfalls in neuroradiology include calcification and brain stones, pseudofractures, and enlargement of subarachnoid or epidural spaces, ventricular system abnormalities, vascular system abnormalities, intracranial lesions or pseudolesions, and finally neuroradiological emergencies. In order to minimize the possibility of error, it is important to be aware of various presentations of pathology, obtain clinical information, know current practice guidelines, review after interpreting a diagnostic study, suggest follow-up studies when appropriate, communicate significant abnormal findings appropriately and in a timely fashion directly with the treatment team.

  12. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  13. Preventing Errors in Laterality

    OpenAIRE

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2014-01-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...

  14. Disclosure of medical errors.

    Science.gov (United States)

    Matlow, Anne; Stevens, Polly; Harrison, Christine; Laxer, Ronald M

    2006-12-01

    The 1999 release of the Institute of Medicine's document To Err is Human was akin to removing the lid of Pandora's box. Not only were the magnitude and impact of medical errors now apparent to those working in the health care industry, but consumers or health care were alerted to the occurrence of medical events causing harm. One specific solution advocated was the disclosure to patients and their families of adverse events resulting from medical error. Knowledge of the historical perspective, ethical underpinnings, and medico-legal implications gives us a better appreciation of current recommendations for disclosing adverse events resulting from medical error to those affected.

  15. On the error analysis of the meshless FDM and its multipoint extension

    Science.gov (United States)

    Jaworska, Irena

    2018-01-01

    The error analysis for the meshless methods, especially for the Meshless Finite Difference Method (MFDM), is discussed in the paper. Both a priori and a posteriori error estimations are considered. Experimental order of convergence confirms the theoretically developed a priori error bound. The higher order extension of the MFDM - the multipoint approach may be used as a source of the improved reference solution, instead of the true analytical one, for the global and local error estimation of the solution and residual errors. Several types of a posteriori error estimators are described. A variety of performed tests confirm high quality of a posteriori error estimation based on the multipoint MFDM.

  16. State Estimation and Forecasting of the Ski-Slope Model Using an Improved Shadowing Filter

    Science.gov (United States)

    Mat Daud, Auni Aslah

    In this paper, we present the application of the gradient descent of indeterminism (GDI) shadowing filter to a chaotic system, that is the ski-slope model. The paper focuses on the quality of the estimated states and their usability for forecasting. One main problem is that the existing GDI shadowing filter fails to provide stability to the convergence of the root mean square error and the last point error of the ski-slope model. Furthermore, there are unexpected cases in which the better state estimates give worse forecasts than the worse state estimates. We investigate these unexpected cases in particular and show how the presence of the humps contributes to them. However, the results show that the GDI shadowing filter can successfully be applied to the ski-slope model with only slight modification, that is, by introducing the adaptive step-size to ensure the convergence of indeterminism. We investigate its advantages over fixed step-size and how it can improve the performance of our shadowing filter.

  17. New method for estimating daily global solar radiation over sloped topography in China

    Science.gov (United States)

    Shi, Guoping; Qiu, Xinfa; Zeng, Yan

    2018-03-01

    A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m-2 d-1 and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme, the distribution of daily global solar radiation over slopes in China on four days in the middle of each season (15 January, 15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas (Tianshan, Kunlun Mountains, Qinling, and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas, which will be useful in analyses of mountain climate and planning for agricultural production.

  18. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%–90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  19. An Empirical State Error Covariance Matrix Orbit Determination Example

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance

  20. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  1. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  2. Spotting software errors sooner

    International Nuclear Information System (INIS)

    Munro, D.

    1989-01-01

    Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)

  3. Error Reporting Logic

    National Research Council Canada - National Science Library

    Jaspan, Ciera; Quan, Trisha; Aldrich, Jonathan

    2008-01-01

    ... it. In this paper, we introduce error reporting logic (ERL), an algorithm and tool that produces succinct explanations for why a target system violates a specification expressed in first order predicate logic...

  4. Pedal Application Errors

    Science.gov (United States)

    2012-03-01

    This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...

  5. Design for Error Tolerance

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1983-01-01

    An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....

  6. Inpatients’ medical prescription errors

    Directory of Open Access Journals (Sweden)

    Aline Melo Santos Silva

    2009-09-01

    Full Text Available Objective: To identify and quantify the most frequent prescription errors in inpatients’ medical prescriptions. Methods: A survey of prescription errors was performed in the inpatients’ medical prescriptions, from July 2008 to May 2009 for eight hours a day. Rresults: At total of 3,931 prescriptions was analyzed and 362 (9.2% prescription errors were found, which involved the healthcare team as a whole. Among the 16 types of errors detected in prescription, the most frequent occurrences were lack of information, such as dose (66 cases, 18.2% and administration route (26 cases, 7.2%; 45 cases (12.4% of wrong transcriptions to the information system; 30 cases (8.3% of duplicate drugs; doses higher than recommended (24 events, 6.6% and 29 cases (8.0% of prescriptions with indication but not specifying allergy. Cconclusion: Medication errors are a reality at hospitals. All healthcare professionals are responsible for the identification and prevention of these errors, each one in his/her own area. The pharmacist is an essential professional in the drug therapy process. All hospital organizations need a pharmacist team responsible for medical prescription analyses before preparation, dispensation and administration of drugs to inpatients. This study showed that the pharmacist improves the inpatient’s safety and success of prescribed therapy.

  7. Assessment and mapping of slope stability based on slope units: A ...

    Indian Academy of Sciences (India)

    4) 1153–1171. Muntohar A S and Liao H J 2010 Rainfall infiltration: Infi- nite slope model for landslides triggering by rainstorm;. Nat. Hazards 54(3) 967–984. Muthu K, Petrou M, Tarantino C and Blonda P 2008 Land- slide possibility mapping ...

  8. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  9. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall

    Science.gov (United States)

    Zhang, F. B.; Yang, M. Y.; Li, B. B.; Li, Z. B.; Shi, W. Y.

    2017-10-01

    The aeolian sand-covered loess slope of the Wind-Water Erosion Crisscross Region of the Loess Plateau in China may play a key role in contributing excessive sediment to the Yellow River. Understanding its hydro-erosional processes is crucial to assessing, controlling and predicting soil and water losses in this region and maintaining the ecological sustainability of the Yellow River. Simulated rainfall (intensity 90 mm h-1) was used to investigate the runoff and soil loss from loess slopes with different slope gradients (18%, 27%, 36%, 47%, and 58%) and overlying sand layer thicknesses (0, 5 and 10 cm). As compared with uncovered loess slopes, an overlying sand layer delayed runoff production, reduced cumulative runoff and increased cumulative soil loss, as well as enhancing variations among slope gradients. Cumulative runoff and soil loss from the sand-covered loess slopes increased with increasing slope gradients and then slightly decreased, with a peak at about 47% gradient; they both were greater from the 10-cm sand-covered loess slope than from the 5-cm except for with 18% slope gradient. In general, differences in cumulative runoff between sand layer thicknesses became smaller, while those in cumulative soil loss became larger, with increasing slope gradient. Runoff and soil loss rates on the sand-covered loess slopes exhibited unimodal distributions during the rainstorms. Maximum values tended to occur at the same rain duration, and increased considerably with increasing slope gradient and sand layer thickness on slopes that were less than 47%. Liquefaction process might occur on the lower loess slopes covered with thinner sand layers but failures similar to shallow landslides might occur when the sand layer was thicker on steeper slopes. The presence of an overlying sand layer changed the relationship between runoff and soil loss rates during intense rainstorms and this change varied with different slope gradients. Our results demonstrated that the effects

  10. Human error in aviation operations

    Science.gov (United States)

    Nagel, David C.

    1988-01-01

    The role of human error in commercial and general aviation accidents and the techniques used to evaluate it are reviewed from a human-factors perspective. Topics addressed include the general decline in accidents per million departures since the 1960s, the increase in the proportion of accidents due to human error, methods for studying error, theoretical error models, and the design of error-resistant systems. Consideration is given to information acquisition and processing errors, visually guided flight, disorientation, instrument-assisted guidance, communication errors, decision errors, debiasing, and action errors.

  11. Methodologies for risk analysis in slope instability

    International Nuclear Information System (INIS)

    Bernabeu Garcia, M.; Diaz Torres, J. A.

    2014-01-01

    This paper is an approach to the different methodologies used in conducting landslide risk maps so that the reader can get a basic knowledge about how to proceed in its development. The landslide hazard maps are increasingly demanded by governments. This is because due to climate change, deforestation and the pressure exerted by the growth of urban centers, damage caused by natural phenomena is increasing each year, making this area of work a field of study with increasing importance. To explain the process of mapping a journey through each of the phases of which it is composed is made: from the study of the types of slope movements and the necessary management of geographic information systems (GIS) inventories and landslide susceptibility analysis, threat, vulnerability and risk. (Author)

  12. Positive Surge Propagation in Sloping Channels

    Directory of Open Access Journals (Sweden)

    Daniele Pietro Viero

    2017-07-01

    Full Text Available A simplified model for the upstream propagation of a positive surge in a sloping, rectangular channel is presented. The model is based on the assumptions of a flat water surface and negligible energy dissipation downstream of the surge, which is generated by the instantaneous closure of a downstream gate. Under these hypotheses, a set of equations that depends only on time accurately describes the surge wave propagation. When the Froude number of the incoming flow is relatively small, an approximate analytical solution is also proposed. The predictive ability of the model is validated by comparing the model results with the results of an experimental investigation and with the results of a numerical model that solves the full shallow water equations.

  13. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  14. Alaskan North Slope Oil & Gas Transportation Support

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Michael Russell [Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)

    2017-03-31

    North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations

  15. Error monitoring in musicians

    Directory of Open Access Journals (Sweden)

    Clemens eMaidhof

    2013-07-01

    Full Text Available To err is human, and hence even professional musicians make errors occasionally during their performances. This paper summarizes recent work investigating error monitoring in musicians, i.e. the processes and their neural correlates associated with the monitoring of ongoing actions and the detection of deviations from intended sounds. EEG Studies reported an early component of the event-related potential (ERP occurring before the onsets of pitch errors. This component, which can be altered in musicians with focal dystonia, likely reflects processes of error detection and/or error compensation, i.e. attempts to cancel the undesired sensory consequence (a wrong tone a musician is about to perceive. Thus, auditory feedback seems not to be a prerequisite for error detection, consistent with previous behavioral results. In contrast, when auditory feedback is externally manipulated and thus unexpected, motor performance can be severely distorted, although not all feedback alterations result in performance impairments. Recent studies investigating the neural correlates of feedback processing showed that unexpected feedback elicits an ERP component after note onsets, which shows larger amplitudes during music performance than during mere perception of the same musical sequences. Hence, these results stress the role of motor actions for the processing of auditory information. Furthermore, recent methodological advances like the combination of 3D motion capture techniques with EEG will be discussed. Such combinations of different measures can potentially help to disentangle the roles of different feedback types such as proprioceptive and auditory feedback, and in general to derive at a better understanding of the complex interactions between the motor and auditory domain during error monitoring. Finally, outstanding questions and future directions in this context will be discussed.

  16. Adaptive residual DPCM for lossless intra coding

    Science.gov (United States)

    Cai, Xun; Lim, Jae S.

    2015-03-01

    In the Differential Pulse-code Modulation (DPCM) image coding, the intensity of a pixel is predicted as a linear combination of a set of surrounding pixels and the prediction error is encoded. In this paper, we propose the adaptive residual DPCM (ARDPCM) for intra lossless coding. In the ARDPCM, intra residual samples are predicted using adaptive mode-dependent DPCM weights. The weights are estimated by minimizing the Mean Squared Error (MSE) of coded data and they are synchronized at the encoder and the decoder. The proposed method is implemented on the High Efficiency Video Coding (HEVC) reference software. Experimental results show that the ARDPCM significantly outperforms HEVC lossless coding and HEVC with the DPCM. The proposed method is also computationally efficient.

  17. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  18. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  19. Pediatric antidepressant medication errors in a national error reporting database.

    Science.gov (United States)

    Rinke, Michael L; Bundy, David G; Shore, Andrew D; Colantuoni, Elizabeth; Morlock, Laura L; Miller, Marlene R

    2010-01-01

    To describe inpatient and outpatient pediatric antidepressant medication errors. We analyzed all error reports from the United States Pharmacopeia MEDMARX database, from 2003 to 2006, involving antidepressant medications and patients younger than 18 years. Of the 451 error reports identified, 95% reached the patient, 6.4% reached the patient and necessitated increased monitoring and/or treatment, and 77% involved medications being used off label. Thirty-three percent of errors cited administering as the macrolevel cause of the error, 30% cited dispensing, 28% cited transcribing, and 7.9% cited prescribing. The most commonly cited medications were sertraline (20%), bupropion (19%), fluoxetine (15%), and trazodone (11%). We found no statistically significant association between medication and reported patient harm; harmful errors involved significantly more administering errors (59% vs 32%, p = .023), errors occurring in inpatient care (93% vs 68%, p = .012) and extra doses of medication (31% vs 10%, p = .025) compared with nonharmful errors. Outpatient errors involved significantly more dispensing errors (p errors due to inaccurate or omitted transcription (p errors. Family notification of medication errors was reported in only 12% of errors. Pediatric antidepressant errors often reach patients, frequently involve off-label use of medications, and occur with varying severity and type depending on location and type of medication prescribed. Education and research should be directed toward prompt medication error disclosure and targeted error reduction strategies for specific medication types and settings.

  20. Learning from Errors

    Directory of Open Access Journals (Sweden)

    MA. Lendita Kryeziu

    2015-06-01

    Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.

  1. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  2. Investigation of Error Patterns in Geographical Databases

    Science.gov (United States)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  3. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  4. Calculating SPRT Interpolation Error

    Science.gov (United States)

    Filipe, E.; Gentil, S.; Lóio, I.; Bosma, R.; Peruzzi, A.

    2018-02-01

    Interpolation error is a major source of uncertainty in the calibration of standard platinum resistance thermometer (SPRT) in the subranges of the International Temperature Scale of 1990 (ITS-90). This interpolation error arises because the interpolation equations prescribed by the ITS-90 cannot perfectly accommodate all the SPRTs natural variations in the resistance-temperature behavior, and generates different forms of non-uniqueness. This paper investigates the type 3 non-uniqueness for fourteen SPRTs of five different manufacturers calibrated over the water-zinc subrange and demonstrates the use of the method of divided differences for calculating the interpolation error. The calculated maximum standard deviation of 0.25 mK (near 100°C) is similar to that observed in previous studies.

  5. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  6. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based......The geomagnetic field varies on a variety of time- and length scales, which are only rudimentary considered in most present field models. The part of the observed field that can not be explained by a given model, the model residuals, is often considered as an estimate of the data uncertainty (which...... on 5 years of Ørsted and CHAMP data, and includes secular variation and acceleration, as well as low-degree external (magnetospheric) and induced fields. The analysis is done in order to find the statistical behaviour of the space-time structure of the residuals, as a proxy for the data covariances...

  7. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    Science.gov (United States)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  8. LIBERTARISMO & ERROR CATEGORIAL

    Directory of Open Access Journals (Sweden)

    Carlos G. Patarroyo G.

    2009-01-01

    Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.

  9. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  10. From incipient slope instability through slope deformation to catastrophic failure - Different stages of failure development on the Ivasnasen and Vollan rock slopes (western Norway)

    Science.gov (United States)

    Oppikofer, T.; Saintot, A.; Hermanns, R. L.; Böhme, M.; Scheiber, T.; Gosse, J.; Dreiås, G. M.

    2017-07-01

    The long-term evolution of rock slope failures involves different stages, from incipience of slope instability to catastrophic failure, through a more or less long-lasting slope deformation phase that also involves creeping or sliding. Topography, lithology, and structural inheritance are the main intrinsic factors that influence this evolution. Here, we investigate the role of these intrinsic factors on the rock slope failure development of the Ivasnasen and Vollan rock slopes (Sunndal Valley, western Norway) using a multitechnique approach that includes geomorphologic and structural field mapping, kinematic analysis, terrestrial cosmogenic nuclide exposure dating, topographic reconstruction, and deformation quantification. Ivasnasen is a rock slope failure complex with several past rock slope failures and a present unstable rock slope, located on a cataclinal NW-facing slope and developed in augen gneiss. Vollan on the opposite valley side is a deep-seated gravitational slope deformation (DSGSD) affecting the whole mountainside, developed in quartzite in the upper part and micaschist in the lower part. These different lithologies belong to different nappe complexes that were emplaced and folded into a series of syn- and anticlines during the Caledonian orogeny. These folds lead to different lithologies being exposed in different structural orientations on the opposite valley flanks, which in turn leads to different types and evolution of rock slope failures. At Ivasnasen the 45°-55° NW-dipping ductile foliation allowed for a fairly simple planar sliding mechanism for the 1.2 million m3 post-glacial rock slope failure. Failure occurred ca. 3.3 ka ago after a short period of prefailure deformation. For the present 2.2 million m3 unstable rock slope at Ivasnasen, a steepening of the foliation at the toe impedes such a mechanism and up to 10 m of displacement has not lead to a catastrophic failure yet. The Vollan DSGSD is characterized by a steep major back scarp

  11. Agricultural pesticide residues

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    The utilization of tracer techniques in the study of agricultural pesticide residues is reviewed under the following headings: lysimeter experiments, micro-ecosystems, translocation in soil, degradation of pesticides in soil, biological availability of soil-applied substances, bound residues in the soil, use of macro- and microautography, double and triple labelling, use of tracer labelling in animal experiments. (U.K.)

  12. Simulating the seismic behaviour of soil slopes and embankments

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  13. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Science.gov (United States)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  14. Error management in audit firms: Error climate, type, and originator

    NARCIS (Netherlands)

    Gold, A.H.; Gronewold, U.; Salterio, S.E.

    2014-01-01

    This paper examines how the treatment of audit staff who discover errors in audit files by superiors affects their willingness to report these errors. The way staff are treated by superiors is labelled as the audit office error management climate. In a "blame-oriented" climate errors are not

  15. Error tolerance: an evaluation of residents' repeated motor coordination errors.

    Science.gov (United States)

    Law, Katherine E; Gwillim, Eran C; Ray, Rebecca D; D'Angelo, Anne-Lise D; Cohen, Elaine R; Fiers, Rebekah M; Rutherford, Drew N; Pugh, Carla M

    2016-10-01

    The study investigates the relationship between motor coordination errors and total errors using a human factors framework. We hypothesize motor coordination errors will correlate with total errors and provide validity evidence for error tolerance as a performance metric. Residents' laparoscopic skills were evaluated during a simulated laparoscopic ventral hernia repair for motor coordination errors when grasping for intra-abdominal mesh or suture. Tolerance was defined as repeated, failed attempts to correct an error and the time required to recover. Residents (N = 20) committed an average of 15.45 (standard deviation [SD] = 4.61) errors and 1.70 (SD = 2.25) motor coordination errors during mesh placement. Total errors correlated with motor coordination errors (r[18] = .572, P = .008). On average, residents required 5.09 recovery attempts for 1 motor coordination error (SD = 3.15). Recovery approaches correlated to total error load (r[13] = .592, P = .02). Residents' motor coordination errors and recovery approaches predict total error load. Error tolerance proved to be a valid assessment metric relating to overall performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    Science, Bangalore. Her interests are in. Theoretical Computer. Science. SERIES I ARTICLE. Error Correcting Codes. 2. The Hamming Codes. Priti Shankar. In the first article of this series we showed how redundancy introduced into a message transmitted over a noisy channel could improve the reliability of transmission. In.

  17. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March 1997 pp 33-47. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/03/0033-0047 ...

  18. Error Correcting Codes

    Indian Academy of Sciences (India)

    focused pictures of Triton, Neptune's largest moon. This great feat was in no small measure due to the fact that the sophisticated communication system on Voyager had an elaborate error correcting scheme built into it. At Jupiter and Saturn, a convolutional code was used to enhance the reliability of transmission, and at ...

  19. Error Correcting Codes

    Indian Academy of Sciences (India)

    It was engineering on the grand scale. - the use of new material for .... ROAD REPAIRSCE!STOP}!TL.,ZBFALK where errors occur in both the message as well as the check symbols, the decoder would be able to correct all of these (as there are not more than 8 .... before it is conveyed to the master disc. Modulation caters for.

  20. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  1. Error Correcting Codes

    Indian Academy of Sciences (India)

    sound quality is, in essence, obtained by accurate waveform coding and decoding of the audio signals. In addition, the coded audio information is protected against disc errors by the use of a Cross Interleaved Reed-Solomon Code (CIRC). Reed-. Solomon codes were discovered by Irving Reed and Gus Solomon in 1960.

  2. Errors and ozone measurement

    Science.gov (United States)

    Mcpeters, Richard D.; Gleason, James F.

    1993-01-01

    It is held that Mimm's (1993) comparison of hand-held TOPS instrument data with the Nimbus 7 satellite's Total Ozone Mapping Spectrometer's (TOMS) ozone data was intrinsically flawed, in that the TOMS data were preliminary and therefore unsuited for quantitative analysis. It is noted that the TOMS calibration was in error.

  3. Random errors revisited

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    It is well known that the random errors of sound intensity estimates can be much larger than the theoretical minimum value determined by the BT-product, in particular under reverberant conditions and when there are several sources present. More than ten years ago it was shown that one can predict...

  4. Team errors: definition and taxonomy

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Reason, James

    1999-01-01

    In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors

  5. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  6. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  7. Quantitative analysis of error mode, error effect and criticality

    International Nuclear Information System (INIS)

    Li Pengcheng; Zhang Li; Xiao Dongsheng; Chen Guohua

    2009-01-01

    The quantitative method of human error mode, effect and criticality is developed in order to reach the ultimate goal of Probabilistic Safety Assessment. The criticality identification matrix of human error mode and task is built to identify the critical human error mode and task and the critical organizational root causes on the basis of the identification of human error probability, error effect probability and the criticality index of error effect. Therefore, this will be beneficial to take targeted measures to reduce and prevent the occurrence of critical human error mode and task. Finally, the application of the technique is explained through the application example. (authors)

  8. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thermal Properties of Alaskan North Slope Soils.

    Science.gov (United States)

    Overduin, P. P.; Kane, D. L.

    2002-12-01

    Climatic processes important to permafrost formation, maintenance and degradation have an annual to millennial timescale. The thin active layer, vegetation and snow above the permafrost can exert considerable influence on permafrost stability and react more rapidly than permafrost to climatic shifts. The thermal properties of this layer are thus important for the interpretation of permafrost data. We seek to predict bulk properties of a porous multiphase media based on state variables, bulk material properties and spatial phase densities. In this study, our objectives are: 1) to test thermal diffusivity probes in the field for the assessment of phase density, in particular of volumetric ice content and 2) to corroborate field studies with laboratory determinations of phase density and thermal diffusivity. We measure thermal properties and phase densities of a range of soils from the Alaskan North Slope, including high organic content and fine-grained mineral soils. Liquid water content is measured using time domain reflectometry to constrain the composition of the multiphase soil. Additional measurements of the soil's state are made using thermistors, heat flux plates and radial heat dissipation probes. The latter are thin films with embedded heat pulse wire and thermopiles to measure the radial thermal gradient response to temperature change. We report changes in thermal conductivity and diffusivity during freezing and thawing, and at different moisture contents and temperatures. The results for thermal conductivity and diffusivity as a function of phase density under field conditions are compared to those measured in the lab and to those calculated using empirical models.

  10. Developments in the analysis of footwall slopes in surface coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Stead, D.; Eberhardt, E. [University of Saskatchewan, Saskatoon, SK (Canada). Dept. of Geological Sciences

    1997-03-01

    Surface mining of coal, particularly in areas of mountainous topography, often involves the formation of extensive footwall slopes parallel to the strata dip. Due to structural deformation steep dips on the limbs of folds may be encountered in association with thrust faults, jointing and residual shear strength conditions. Such an environment necessitates a rigorous assessment of footwall stability in order to ensure safe and economic exploitation of the coal. This paper provides a detailed review of the factors influencing footwall slope instability in surface coal mining and the major instability mechanisms. The analysis of footwalls in the design stage and the back analysis of footwall slope failures has in general been undertaken using predominantly two-dimensional limit equilibrium techniques often incorporating a simplistic elastic column analysis. The application of numerical modelling techniques to surface coal mine footwalls has received little attention. Here the authors illustrate the potential for investigating footwall failure mechanisms and stability using the distinct element method and other modelling techniques. 44 refs., 21 figs., 2 tabs.

  11. The contour method cutting assumption: error minimization and correction

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Kastengren, Alan L [ANL

    2010-01-01

    The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

  12. Automatic Error Analysis Using Intervals

    Science.gov (United States)

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  13. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  14. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  15. Hydrologic behavior of model slopes with synthetic water repellent soils

    Science.gov (United States)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  16. Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: south slope versus north slope

    Directory of Open Access Journals (Sweden)

    C. Chen

    2018-01-01

    Full Text Available Nitrogen cycling is tightly associated with environment. The south slope of a given mountain could significantly differ from north slope in environment. Thus, N cycling should also be different between the two slopes. Since leaf δ15N, soil δ15N and Δδ15Nleaf-soil (Δδ15Nleaf-soil =  leaf δ15N − soil δ15N could reflect the N cycling characteristics, we put forward a hypothesis that leaf δ15N, soil δ15N and Δδ15Nleaf-soil should differ between the two slopes. However, such a comparative study between two slopes has never been conducted. In addition, environmental effects on leaf and soil δ15N derived from studies at global scale were often found to be different from those on a regional scale. This led to our argument that environmental effects on leaf and soil δ15N could depend on local environment. To confirm our hypothesis and argument, we measured leaf and soil δ15N on the south and north slopes of Tian Shan. Remarkable environmental differences between the two slopes provided an ideal opportunity for our test. The study showed that leaf δ15N, soil δ15N and δ15Nleaf-soil on the south slope were greater than those on the north slope, although the difference in soil δ15N was not significant. The result confirmed our hypothesis and suggested that the south slope has higher soil N transformation rates and soil N availability than the north slope. In addition, in this study it was observed that the significant influential factors of leaf δ15N were temperature, precipitation, leaf N, leaf C ∕ N, soil moisture and silt ∕ clay ratio on the north slope, whereas on the south slope only leaf C ∕ N was related to leaf δ15N. The significant influential factors of soil δ15N were temperature, precipitation, soil moisture and silt ∕ clay ratio on the north slope, whereas on the south slope, mean annual precipitation and soil moisture exerted significant effects. Precipitation exerted contrary effects on soil

  17. IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-07-01

    Full Text Available The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original

  18. Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: south slope versus north slope

    Science.gov (United States)

    Chen, Chongjuan; Jia, Yufu; Chen, Yuzhen; Mehmood, Imran; Fang, Yunting; Wang, Guoan

    2018-01-01

    Nitrogen cycling is tightly associated with environment. The south slope of a given mountain could significantly differ from north slope in environment. Thus, N cycling should also be different between the two slopes. Since leaf δ15N, soil δ15N and Δδ15Nleaf-soil (Δδ15Nleaf-soil = leaf δ15N - soil δ15N) could reflect the N cycling characteristics, we put forward a hypothesis that leaf δ15N, soil δ15N and Δδ15Nleaf-soil should differ between the two slopes. However, such a comparative study between two slopes has never been conducted. In addition, environmental effects on leaf and soil δ15N derived from studies at global scale were often found to be different from those on a regional scale. This led to our argument that environmental effects on leaf and soil δ15N could depend on local environment. To confirm our hypothesis and argument, we measured leaf and soil δ15N on the south and north slopes of Tian Shan. Remarkable environmental differences between the two slopes provided an ideal opportunity for our test. The study showed that leaf δ15N, soil δ15N and δ15Nleaf-soil on the south slope were greater than those on the north slope, although the difference in soil δ15N was not significant. The result confirmed our hypothesis and suggested that the south slope has higher soil N transformation rates and soil N availability than the north slope. In addition, in this study it was observed that the significant influential factors of leaf δ15N were temperature, precipitation, leaf N, leaf C / N, soil moisture and silt / clay ratio on the north slope, whereas on the south slope only leaf C / N was related to leaf δ15N. The significant influential factors of soil δ15N were temperature, precipitation, soil moisture and silt / clay ratio on the north slope, whereas on the south slope, mean annual precipitation and soil moisture exerted significant effects. Precipitation exerted contrary effects on soil δ15N between the two slopes. Thus, this study

  19. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  20. Video Error Correction Using Steganography

    Science.gov (United States)

    Robie, David L.; Mersereau, Russell M.

    2002-12-01

    The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  1. Error reduction in surgical pathology.

    Science.gov (United States)

    Nakhleh, Raouf E

    2006-05-01

    Because of its complex nature, surgical pathology practice is inherently error prone. Currently, there is pressure to reduce errors in medicine, including pathology. To review factors that contribute to errors and to discuss error-reduction strategies. Literature review. Multiple factors contribute to errors in medicine, including variable input, complexity, inconsistency, tight coupling, human intervention, time constraints, and a hierarchical culture. Strategies that may reduce errors include reducing reliance on memory, improving information access, error-proofing processes, decreasing reliance on vigilance, standardizing tasks and language, reducing the number of handoffs, simplifying processes, adjusting work schedules and environment, providing adequate training, and placing the correct people in the correct jobs. Surgical pathology is a complex system with ample opportunity for error. Significant error reduction is unlikely to occur without a sustained comprehensive program of quality control and quality assurance. Incremental adoption of information technology and automation along with improved training in patient safety and quality management can help reduce errors.

  2. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  3. Degradation of terraced slopes in Mediterranean conditions

    Science.gov (United States)

    Tsermegas, I.; DłuŻewski, M.; Biejat, K.; Szynkiewicz, A.

    2012-04-01

    Agricultural terraces with dry-stone walls take the largest area of all man-made landforms in Mediterranean mountain regions. Despite on that their contemporary morphodynamics have not been the subject of many studies. It is a significant problem both from a scientific and a practical point of view. The aim of the study was to estimate the influence of relief, lithology, climatic conditions, methods of wall construction and actual agricultural practice on the degradation of agricultural terraces. A field study was conducted in Greece on 7 plots with the overall area of over 42 000 m2 - on the east Crete and on two Aegean islands - Ikaria and Thera. The analysis was conducted on terraced slopes with gradient of 8-23o, built of granitoids, gneisses, crystalline schists, limestones, crystalline dolomites and volcanic tuffs. There was identified the types of terrace walls. Metrical features of terrace systems were ascertained on the basis of GPS RTK measurement. Terrace material petrography and grain size distribution was identified for regolith an soil samples taken from the selected outcrops which were recognized as being representative for 239 georadar profiles of the joint length of over 2500 m. On that basis the volume of each terrace material was defined. The rills cutting the fields and the walls were measured. The infiltration rate was also taken in 130 points. Reasearch showed that regardless of metrical features of terraces, soil grain size distribution and thickness of the terrace material, the most important reason for the destruction of terrace walls is the abandonment of cultivated areas. Changes in cultivation methods and the introduction of pasturage visibly accelerate the degradation processes. On areas unused for 30 years terrace walls are destroyed on over 25% of their length. It concerns both the areas on which filtration coefficient (k) reaches about 10-5m•s-1 as well as the ones where it is a 100 times lower. The least varied values (10-6-10-5m

  4. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    Science.gov (United States)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  5. Human Error In Complex Systems

    Science.gov (United States)

    Morris, Nancy M.; Rouse, William B.

    1991-01-01

    Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.

  6. Transition Models with Measurement Errors

    OpenAIRE

    Magnac, Thierry; Visser, Michael

    1999-01-01

    In this paper, we estimate a transition model that allows for measurement errors in the data. The measurement errors arise because the survey design is partly retrospective, so that individuals sometimes forget or misclassify their past labor market transitions. The observed data are adjusted for errors via a measurement-error mechanism. The parameters of the distribution of the true data, and those of the measurement-error mechanism are estimated by a two-stage method. The results, based on ...

  7. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  8. "A Comparison of Several Methods in a Rock Slope Stability ...

    African Journals Online (AJOL)

    This researchuses the mentioned methods and principles in the stability analysis of some rock slopes in an open pit mine in Syria, that is Khneifees phosphate mine. The importance of this researchis that it shows the role of kinematical analysis in minimizing efforts when verifying the safety of rock slopes in site, and when ...

  9. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by

  10. assessment of slope stability around gilgel gibe-ii hydroelectric

    African Journals Online (AJOL)

    preferred customer

    ... are steep and valleys are deep with low vegetation cover. Along the road from Fofa town to powerhouse II, the slope cuts are steep, which overhang at places. Thus, an attempt has been made to analyze the stability condition of potential unstable slopes along the road between Fofa town and Gilgel-Gibe Hydro- power II.

  11. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  12. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  13. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    ... survey perspective on the typical problems that can be expected during slope monitoring using total station (also known as prism monitoring) and second, to suggest ways of mitigating such problems. The aim is to create awareness of the implications of incorrect use or negligence during slope monitoring surveys utilising ...

  14. Effects of slope position and fertilization on the performance of ...

    African Journals Online (AJOL)

    FARO 45 (ITA 257) early maturing upland variety of rice was used as the test crop at each slope level. The experiment was a 3 x 2 factorial combination of three slopes (upper, middle and hydromorphic fringe) and two fertilizations (without fertilizer and with fertilizer) in a Randomized Complete Block Design (RCBD), ...

  15. Assessment of slope stability and remedial measures around Gilgel ...

    African Journals Online (AJOL)

    (1995) technique, whereas the slope having wedge mode of failure was analyzed by 'SASW' computer program. The stability analysis was carried out for the existing and anticipated worst conditions. The results indicate that all critical slopes in the study area are stable for the existing conditions, represented by dry static ...

  16. Assessment of rock mass decay in artificial slopes

    NARCIS (Netherlands)

    Huisman, M.

    2006-01-01

    This research investigates the decay of rock masses underlying slopes, and seeks to quantify the relations of such decay with time and geotechnical parameters of the slope and rock mass. Decay can greatly affect the geotechnical properties of rocks within engineering timescales, and may induce a

  17. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    Afeni

    implications of incorrect use or negligence during slope monitoring surveys utilising a total station. 1. Introduction ... monitoring frequency depends on the nature of the rock type, operations around the slope and the objectives of ... to do with correct design, legal compliance, monitoring requirements and systems design that.

  18. Measurement System Characterization in the Presence of Measurement Errors

    Science.gov (United States)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  19. Reporting Self-Made Errors: The Impact of Organizational Error-Management Climate and Error Type

    NARCIS (Netherlands)

    Gold, A.H.; Gronewold, U.; Salterio, S.E.

    2013-01-01

    We study how an organization's error-management climate affects organizational members' beliefs about other members' willingness to report errors that they discover when chance of error detection by superiors and others is extremely low. An error-management climate, as a component of the

  20. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  1. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  2. Effect of Slope Positions on Physicochemical Properties of Soils Located on a Toposequence in Deilaman Area of Guilan Province

    Directory of Open Access Journals (Sweden)

    P. Mohajeri

    2016-10-01

    Full Text Available Introduction: Topography is one of the most important factors of soil formation and evolution. Soil properties vary spatially and are influenced by some environmental factors such as landscape features, including topography, slope aspect and position, elevation, climate, parent material and vegetation. Variations in landscape features can influence many phenomena and ecological processes including soil nutrients and water interactions. This factor affects soil properties by changing the altitude, steepness and slope direction of lands. In spite of the importance of understanding the variability of soils for better management, few studies have been done to assess the quality of soils located on a toposequence and most of these studies include just pedological properties. The aim of this study was to investigate physical and chemical properties of soils located on different slope positions and different depths of a toposequence in Deilaman area of Gilan province, that located in north of Iran. Materials and Methods: The lands on toposequence that were same in climate, parent material, vegetation and time factors but topographical factor was different, were divided into five sections including steep peak, shoulder slope, back slope, foot slope and toe slope. In order to topsoil sampling, transverse sections of this toposequence were divided into three parts lengthways, each forming one replicate or block. 10*10 square was selected and after removing a layer of undecomposed organic residues such as leaf litter, three depths of 0 to 20, 20 to 40 and 40 to60 cm soil samples were collected. physical and chemical characteristics such as soil texture, bulk density, aggregate stability, percent of organic matter, cation exchange capacity, available phosphorous and total nitrogen were measured. Results and Discussion: The results showed that, because of high organic matter content and fine textured soils on the lower slope positions including foot slope

  3. Morphologic, Topographic, and Thermal Analysis of Slope Streaks on Mars

    Science.gov (United States)

    Aharonson, O.; Schorghofer, N.; Khatiwala, S.; Richardson, M. I.

    2002-12-01

    Surfaces containing features known as slope streaks are common on Mars in regions where thermal-inertia is low and steep slopes are frequent. We have recently compiled a catalog of slope streak images and identified previously unrecognized correlations with surface properties. Building on this work, we analyze data from Mars Orbiter Camera, from Mars Orbiter Laser Altimeter, and from the Thermal Emission Imaging System instrument on board Mars Odyssey, to constrain the physical properties and thermal conditions at the specific sites where slope streaks are forming. A number of proposed theories explaining the formation mechanism of slope streaks can be tested using new data, including an exciting possibility of the potential role of a water phase-transition.

  4. US North Slope gas and Asian LNG markets

    Science.gov (United States)

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  5. Determination Of Slope Instability Using Spatially Integrated Mapping Framework

    Science.gov (United States)

    Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.

    2016-11-01

    The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.

  6. Error analysis for pesticide detection performed on paper-based microfluidic chip devices

    Science.gov (United States)

    Yang, Ning; Shen, Kai; Guo, Jianjiang; Tao, Xinyi; Xu, Peifeng; Mao, Hanping

    2017-07-01

    Paper chip is an efficient and inexpensive device for pesticide residues detection. However, the reasons of detection error are not clear, which is the main problem to hinder the development of pesticide residues detection. This paper focuses on error analysis for pesticide detection performed on paper-based microfluidic chip devices, which test every possible factor to build the mathematical models for detection error. In the result, double-channel structure is selected as the optimal chip structure to reduce detection error effectively. The wavelength of 599.753 nm is chosen since it is the most sensitive detection wavelength to the variation of pesticide concentration. At last, the mathematical models of detection error for detection temperature and prepared time are concluded. This research lays a theory foundation on accurate pesticide residues detection based on paper-based microfluidic chip devices.

  7. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  8. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  9. Errors in neuroretinal rim measurement by Cirrus high-definition optical coherence tomography in myopic eyes.

    Science.gov (United States)

    Hwang, Young Hoon; Kim, Yong Yeon; Jin, Sunyoung; Na, Jung Hwa; Kim, Hwang Ki; Sohn, Yong Ho

    2012-11-01

    To investigate the prevalence of, and factors associated with, errors in neuroretinal rim measurement by Cirrus high-definition (HD) spectral-domain optical coherence tomography (OCT) in myopic eyes. Neuroretinal rim thicknesses of 255 myopic eyes were measured by Cirrus HD-OCT. The prevalence of, and factors associated with, optic disc margin detection error and cup margin detection error were assessed by analysing 72 cross-sectional optic nerve head (ONH) images obtained at 5° intervals for each eye. Among the 255 eyes, 45 (17.6%) had neuroretinal rim measurement errors; 29 (11.4%) had optic disc margin detection errors at the temporal (16 eyes), superior (11 eyes), and inferior (2 eyes) quadrants; 19 (7.5%) showed cup margin detection errors at the nasal (17 eyes) and temporal (2 eyes) quadrants; and 3 (1.2%) had both disc and cup margin detection errors. Errors in detection of temporal optic disc margin were associated with presence of parapapillary atrophy (PPA), higher myopia, and greater axial length (AL) (perrors were associated with vitreous opacities attached to the ONH surface or acute cup slope angles (pErrors in neuroretinal rim measurement by Cirrus HD-OCT were found in myopic eyes, especially in eyes with PPA, higher myopia, greater AL, vitreous opacity or acute cup slope angle. These findings should be considered when interpreting neuroretinal rim thickness measured by Cirrus HD-OCT.

  10. Errors in dual x-ray beam differential absorptiometry

    International Nuclear Information System (INIS)

    Bolin, F.; Preuss, L.; Gilbert, K.; Bugenis, C.

    1977-01-01

    Errors pertinent to the dual beam absorptiometry system have been studied and five areas are given in detail: (1) scattering, in which a computer analysis of multiple scattering shows little error due to this effect; (2) geometrical configuration effects, in which the slope of the sample is shown to influence the accuracy of the measurement; (3) Poisson variations, wherein it is shown that a simultaneous reduction can be obtained in both dosage and statistical error; (4) absorption coefficients, in which the effect of variation in absorption coefficient compilations is shown to have a critical effect on the interpretations of experimental data; and (5) filtering, wherein is shown the need for filters on dual beam systems using a characteristic x-ray output. A zero filter system is outlined

  11. Decline of Low-Frequency Hearing in People With Ski-Slope Hearing Loss; Implications for Electrode Array Insertion.

    Science.gov (United States)

    Schuurbiers, Jasper; Dingemanse, Gertjan; Metselaar, Mick

    2017-12-01

    The decline of low-frequency hearing in people with ski-slope hearing loss varies and might depend on etiology. People with ski-sloping hearing loss might benefit from cochlear implantation with preservation of residual hearing. To reduce the risk of losing low-frequency hearing after implantation, the electrode-array can be inserted partially up to the desired frequency. That, however, obstructs electrical stimulation of lower frequencies. To decide between complete or partial insertion, knowledge regarding the natural decline of low-frequency hearing is helpful. Patients with at least two ski-slope audiograms over time were selected. We calculated progression at lower frequencies for 320 patients. Etiologies for hearing loss were retrieved from medical records. Progression of hearing loss was analyzed separately for patients with uni- and bilateral hearing losses. Relative progression of hearing loss was obtained by comparing progression to a reference group. Average progression of PTA was 1.73 dB/yr and was not significantly different in the bilateral and unilateral group. Etiologies that did not show significantly more progression compared with the reference group could be identified as single or short-lasting pathologic events, whereas long-lasting conditions had significant more progression of PTA. Patients with a ski-slope hearing loss that was caused by a single or short-lasting event have low progression rate and are viable for partial insertion to minimize the risk of damaging residual low-frequency hearing. In the absence of such an event, complete insertion should be considered because faster than normal deterioration of low-frequency hearing over time will probably limit the advantage of preservation of residual hearing.

  12. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  13. Diagnostic errors in pediatric radiology

    International Nuclear Information System (INIS)

    Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.

    2011-01-01

    Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)

  14. Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India

    Directory of Open Access Journals (Sweden)

    Tariq Siddique

    2015-10-01

    Full Text Available The road network in the Himalayan terrain, connecting remote areas either in the valleys or on the hill slopes, plays a pivotal role in socio-economic development of India. The planning, development and even maintenance of road and rail networks in such precarious terrains are always a challenging task because of complexities posed by topography, geological structures, varied lithology and neotectonics. Increasing population and construction of roads have led to destabilisation of slopes, thus leading to mass wasting and movement, further aggravation due to recent events of cloud bursts and unprecedented flash floods. Vulnerability analysis of slopes is an important component for the “Landslide Hazard Assessment” and “Slope Mass Characterisation” guide planners to predict and choose suitable ways for construction of roads and other engineering structures. The problem of landslides along the national highway-58 (NH-58 from Rishikesh to Devprayag is a common scene. The slopes along the NH-58 between Jonk and Rishikesh were investigated, which experienced very heavy traffic especially from March to August due to pilgrimage to Kedarnath shrine. On the basis of slope mass rating (SMR investigation, the area falls in stable class, and landslide susceptibility score (LSS values also indicate that the slopes under investigation fall in low to moderate vulnerability to landslide. More attentions should be paid to the slopes to achieve greater safe and economic benefits along the highway.

  15. Effect of slope height and horizontal forces on the bearing capacity of strip footings near slopes in cohesionless soil

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2016-01-01

    The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, ...

  16. Validity and slopes of the linear equation of state for natural brines in salt lake systems

    Science.gov (United States)

    Kohfahl, C.; Post, V. E. A.; Hamann, E.; Prommer, H.; Simmons, C. T.

    2015-04-01

    Many density-dependent groundwater flow simulations rely on a linear equation of state that relates the fluid density to the total dissolved solute content (TDS). This approach ignores non-linear volume of mixing effects, as well as the impact of any chemical reactions. These effects can be considered by using geochemical codes that implement algorithms that calculate the density of a fluid based on the concentration of individual solute species. While in principle such algorithms could be used in-lieu of a linear equation of state in a groundwater model, the computational overhead is such that the use of a more simplified equation of state is preferred. This requires that the assumption of linearity as well as the appropriate value of the linear slope have to be determined. Here, published density measurements of 7 chemically-distinct salt lake brines are compared with densities calculated by PHREEQC-3, confirming the applicability of PHREEQC's algorithm to salt lake brines, as well as to seawater brines and artificial brines from laboratory experiments. Further, calculations with PHREEQC-3 are used to assess the impact of mineral precipitation reactions during evaporative concentration. Results show that the density-TDS relationship is essentially linear over a wide concentration range, and that slopes range between 0.64 and 0.75, with the upper end of the range applying to Na-CO3-Cl brines and the lower end to Na-Cl brines. Mineral precipitation of highly-soluble evaporate minerals such as halite and trona limit TDS, and may lead to considerable errors in coupled flow simulations based on a linear equation of state at high concentrations. Misrepresentation of the slope may lead to an error of up to 20% in the calculated length of the brine nose bordering a salt lake, or of the Rayleigh number, which indicates if a density stratification is stable or not.

  17. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Science.gov (United States)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  18. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Directory of Open Access Journals (Sweden)

    Á. Török

    2018-02-01

    Full Text Available Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System was used to collect images which were processed by Pix4D mapper (structure from motion technology to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS with the use of seven ground control points. The obtained digital surface model (DSM was processed (vegetation removal and the derived digital terrain model (DTM allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method. Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE–WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS.

  19. Is there a distinct continental slope fauna in the Antarctic?

    Science.gov (United States)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  20. Distinguishing Errors in Measurement from Errors in Optimization

    OpenAIRE

    Rulon D. Pope; Richard E. Just

    2003-01-01

    Typical econometric production practices under duality ignore the source of disturbances. We show that, depending on the source, a different approach to estimation is required. The typical approach applies under errors in factor input measurement rather than errors in optimization. An approach to the identification of disturbance sources is suggested. We find credible evidence in U.S. agriculture of errors in optimization compared to errors of measurement, and thus reject the typical specific...

  1. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  2. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    Science.gov (United States)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a

  3. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    Science.gov (United States)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  4. Martian slope streaks as plausible indicators of transient water activity.

    Science.gov (United States)

    Bhardwaj, Anshuman; Sam, Lydia; Martín-Torres, F Javier; Zorzano, María-Paz; Fonseca, Ricardo M

    2017-08-01

    Slope streaks have been frequently observed in the equatorial, low thermal inertia and dusty regions of Mars. The reason behind their formation remains unclear with proposed hypotheses for both dry and wet mechanisms. Here, we report an up-to-date distribution and morphometric investigation of Martian slope streaks. We find: (i) a remarkable coexistence of the slope streak distribution with the regions on Mars with high abundances of water-equivalent hydrogen, chlorine, and iron; (ii) favourable thermodynamic conditions for transient deliquescence and brine development in the slope streak regions; (iii) a significant concurrence of slope streak distribution with the regions of enhanced atmospheric water vapour concentration, thus suggestive of a present-day regolith-atmosphere water cycle; and (iv) terrain preferences and flow patterns supporting a wet mechanism for slope streaks. These results suggest a strong local regolith-atmosphere water coupling in the slope streak regions that leads to the formation of these fluidised features. Our conclusions can have profound astrobiological, habitability, environmental, and planetary protection implications.

  5. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  6. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes

    Directory of Open Access Journals (Sweden)

    L. K. A. Dorren

    2006-01-01

    Full Text Available Only a few rockfall simulation models take into account the mitigating effect of existing forest cover. The objective of our study was to improve the generic rockfall simulation model RockyFor, which does take the effect of forest stands into account, thereby developing a clear method for quantifying and modelling slope surface characteristics based on quantitative field data. To obtain these data we carried out 218 real-size rockfall experiments on forested and non-forested sites on a mountain slope in the French Alps. On the basis of a polygon map representing different diameter classes of the material covering the slope, we determine the mean obstacle height (MOH for each homogeneous unit at the experimental sites. We proposed an algorithm for calculating the tangential coefficient of restitution using the MOH. Comparing the simulated and observed data from the real-size rockfall experiments showed that the 3-D combined deterministic-probabilistic rockfall simulation model RockyFor accurately predicted rockfall events on a non-forested (Root Mean Square Error = 17% and a forested site (Root Mean Square Error = 12%. We conclude that for further improvement of rockfall-forest simulation on different slope types more quantitative data is required on (1 the energy dissipative capacity of shrubs and bushes (e.g. in coppice stands, (2 the effect of the slope material, (3 the rock shape as well as the rock size, and (4 the tangential and normal coefficient of restitution. Based on the presented results we can state that the RockyFor model could contribute to better taking into account the mitigating effect of the existing forest cover when planning protective measures.

  7. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  8. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  9. Payment Error Rate Measurement (PERM)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PERM program measures improper payments in Medicaid and CHIP and produces error rates for each program. The error rates are based on reviews of the...

  10. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  11. Human Error in Pilotage Operations

    Directory of Open Access Journals (Sweden)

    Jørgen Ernstsen

    2018-03-01

    Full Text Available Pilotage operations require close interaction between human and machines. This complex sociotechnical system is necessary to safely and efficiently maneuver a vessel in constrained waters. A sociotechnical system consists of interdependent human- and technical variables that continuously must work together to be successful. This complexity is prone to errors, and statistics show that most these errors in the maritime domain are due to human components in the system (80 ? 85%. This explains the attention on research to reduce human errors. The current study deployed a systematic human error reduction and prediction approach (SHERPA to shed light on error types and error remedies apparent in pilotage operations. Data was collected using interviews and observation. Hierarchical task analysis was performed and 55 tasks were analyzed using SHERPA. Findings suggests that communication and action omission errors are most prone to human errors in pilotage operations. Practical and theoretical implications of the results are discussed.

  12. Soft Error Vulnerability of Iterative Linear Algebra Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; de Supinski, B

    2007-12-15

    Devices become increasingly vulnerable to soft errors as their feature sizes shrink. Previously, soft errors primarily caused problems for space and high-atmospheric computing applications. Modern architectures now use features so small at sufficiently low voltages that soft errors are becoming significant even at terrestrial altitudes. The soft error vulnerability of iterative linear algebra methods, which many scientific applications use, is a critical aspect of the overall application vulnerability. These methods are often considered invulnerable to many soft errors because they converge from an imprecise solution to a precise one. However, we show that iterative methods can be vulnerable to soft errors, with a high rate of silent data corruptions. We quantify this vulnerability, with algorithms generating up to 8.5% erroneous results when subjected to a single bit-flip. Further, we show that detecting soft errors in an iterative method depends on its detailed convergence properties and requires more complex mechanisms than simply checking the residual. Finally, we explore inexpensive techniques to tolerate soft errors in these methods.

  13. Error Detection in ESL Teaching

    OpenAIRE

    Rogoveanu Raluca

    2011-01-01

    This study investigates the role of error correction in the larger paradigm of ESL teaching and learning. It conceptualizes error as an inevitable variable in the process of learning and as a frequently occurring element in written and oral discourses of ESL learners. It also identifies specific strategies in which error can be detected and corrected and makes reference to various theoretical trends and their approach to error correction, as well as to the relation between language instructor...

  14. [The error, source of learning].

    Science.gov (United States)

    Joyeux, Stéphanie; Bohic, Valérie

    2016-05-01

    The error itself is not recognised as a fault. It is the intentionality which differentiates between an error and a fault. An error is unintentional while a fault is a failure to respect known rules. The risk of error is omnipresent in health institutions. Public authorities have therefore set out a series of measures to reduce this risk. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Reducing nurse medicine administration errors.

    Science.gov (United States)

    Ofosu, Rose; Jarrett, Patricia

    Errors in administering medicines are common and can compromise the safety of patients. This review discusses the causes of drug administration error in hospitals by student and registered nurses, and the practical measures educators and hospitals can take to improve nurses' knowledge and skills in medicines management, and reduce drug errors.

  16. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  17. Cardiovascular medication errors in children.

    Science.gov (United States)

    Alexander, Diana C; Bundy, David G; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2009-07-01

    We sought to describe pediatric cardiovascular medication errors and to determine patients and medications with more-frequently reported and/or more-harmful errors. We analyzed cardiovascular medication error reports from 2003-2004 for patients error, no harm; E-I, harmful error). Proportions of harmful reports were determined according to drug class and age group. "High-risk" drugs were defined as antiarrhythmics, antihypertensives, digoxin, and calcium channel blockers. A total of 147 facilities submitted 821 reports with community hospitals predominating (70%). Mean patient age was 4 years (median: 0.9 years). The most common error locations were NICUs, general care units, PICUs, pediatric units, and inpatient pharmacies. Drug administration, particularly improper dosing, was implicated most commonly. Severity analysis showed 5% "near misses," 91% errors without harm, and 4% harmful errors, with no reported fatalities. A total of 893 medications were cited in 821 reports. Diuretics were cited most frequently, followed by antihypertensives, angiotensin inhibitors, beta-adrenergic receptor blockers, digoxin, and calcium channel blockers. Calcium channel blockers, phosphodiesterase inhibitors, antiarrhythmics, and digoxin had the largest proportions of harmful events, although the values were not statistically significantly different from those for other drug classes. Infants medication errors reaching inpatients, in a national, voluntary, error-reporting database. Proportions of harmful errors were not significantly different by age or cardiovascular medication. Most errors were related to medication administration, largely due to improper dosing.

  18. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability

    Science.gov (United States)

    Gischig, Valentin S.; Moore, Jeffrey R.; Evans, Keith F.; Amann, Florian; Loew, Simon

    2011-12-01

    Deformation monitoring between 2004 and 2011 at the rock slope instability above Randa (Switzerland) has revealed an intriguing seasonal trend. Relative dislocation rates across active fractures increase when near-surface rock temperatures drop in the fall and decrease after snowmelt as temperatures rise. This temporal pattern was observed with different monitoring systems at the ground surface and at depths up to 68 m, and represents the behavior of the entire instability. In this paper, the second of two companion pieces, we interpret this seasonal deformation trend as being controlled by thermomechanical (TM) effects driven by near-surface temperature cycles. While Part 1 of this work demonstrated in a conceptual manner how TM effects can drive deep rock slope deformation and progressive failure, we present here in Part 2 a case study where temperature-controlled deformation trends were observed in a natural setting. A 2D discrete-element numerical model is employed, which allows failure along discontinuities and successfully reproduces the observed kinematics of the Randa instability. By implementing simplified ground surface temperature forcing, model results were able to reproduce the observed deformation pattern, and TM-induced displacement rates and seasonal amplitudes in the model are of the same order of magnitude as measured values. Model results, however, exhibit spatial variation in displacement onset times while field measurements show more synchronous change. Additional heat transfer mechanisms, such as fracture ventilation, likely create deviations from the purely transient-conductive temperature field modeled. We suggest that TM effects are especially important at Randa due to the absence of significant groundwater within the unstable rock mass.

  19. Carbonate slope morphology revealing bank-to-slope sediment transfer in Little Bahama Bank, Bahamas

    Science.gov (United States)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Ducassou, Emmanuelle; Fauquembergue, Kelly; Conesa, Gilles; Principaud, Mélanie; Le Goff, Johan; Ragusa, Jérémy; Bujan, Stephane; Bashah, Sara

    2017-04-01

    New high-quality multibeam data depict the area located between Little Bahama Bank (LBB, Bahamas) and Blake Plateau. The survey details the morphology of a giant 135-km-long canyon, the Great Abaco Canyon (GAC) and its main characteristics. The canyon main axis runs parallel to the margin. The pathway shows several knickpoints and plunge pools. The most important knickpoint is underlined by an abrupt change in slope of the canyon thalweg. The last one leads to the opening towards the Blake Basin. Its morphologic head forms a vast receptacle but does not represent the main source of material at present. The material supplied through the LBB canyon systems does not reach this area which only shows lineaments related to the pathway of the Antilles current and restricted failure scars. Most of the supply comes from the canyon flanks. In the north, tributary canyons drain the contourite deposits forming large flat plateaus above the drowned carbonate platform of the Blake Plateau. In addition, these contourite plateaus are subjected to translational slides moving towards the northern edge of the canyon forming a dissymmetric debris accumulation along the toe of the north canyon edge. Another source of sediment are two large tributaries connecting the GAC directly to the LBB upper slope. Sub bottom profiles suggest the presence of a turbiditic levee on the tributary canyon sides and inferred turbiditic activity. Little Abaco Canyon (LAC) shows morphologic similarities with GAC but at a smaller size. However, the canyon seems more active in terms of sediment transport. Canyons draining the eastern part of LBB show fresh sedimentary structures (sediment waves) suggesting active sedimentary processes. These structures are made of clean sand with shallow water organisms suggesting a direct supply from the carbonate platform edge. In term of size and morphology, the GAC compares to the largest canyons in siliciclastic environments. Its originality comes from the fact it is

  20. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  1. Residual stress measurement by neutron diffraction

    International Nuclear Information System (INIS)

    Akita, Koichi; Suzuki, Hiroshi

    2010-01-01

    Neutron diffraction method has great advantages, allowing us to determine the residual stress deep present within the bulk materials and components nondestructively. Therefore, the method has been applied to confirm the structural integrity of the actual mechanical components and structures and to improve the manufacturing process and strength reliability of the products. This article reviews the residual stress measurement methodology of neutron diffraction. It also refers to the appropriate treatments of diffraction plane, stress-free lattice spacing, coarse grain and surface error to obtain reliable results. Finally, a few applications are introduced to show the capabilities of the neutron stress measurement method for the studies on the strength and elasto-plastic behaviors of crystalline materials. (author)

  2. Sun drying of residual annatto seed powder

    Directory of Open Access Journals (Sweden)

    Dyego da Costa Santos

    2015-01-01

    Full Text Available Residual annatto seeds are waste from bixin extraction in the food, pharmaceutical and cosmetic industries. Most of this by-product is currently discarded; however, the use of these seeds in human foods through the elaboration of powder added to other commercial powders is seen as a viable option. This study aimed at drying of residual annatto powder, with and without the oil layer derived from the industrial extraction of bixin, fitting different mathematical models to experimental data and calculating the effective moisture diffusivity of the samples. Powder containing oil exhibited the shortest drying time, highest drying rate (≈ 5.0 kg kg-1 min-1 and highest effective diffusivity (6.49 × 10-12 m2 s-1. All mathematical models assessed were a suitable representation of the drying kinetics of powders with and without oil, with R2 above 0.99 and root mean square error values lower than 1.0.

  3. Errors due to random noise in velocity measurement using incoherent-scatter radar

    Directory of Open Access Journals (Sweden)

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  4. A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Lili; Tian, Li; Wang, Desheng

    2008-10-31

    In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.

  5. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  6. Percent Agricultural Land Cover on Steep Slopes (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  7. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter....... The experimental results of measured loop-gain at different operating points are presented to validate the theoretical performance of the controller....

  8. Slope movements in Callejón de Huyalas, Peru

    Czech Academy of Sciences Publication Activity Database

    Vilímek, V.; Zapata, M. L.; Stemberk, Josef

    2003-01-01

    Roč. 35, supplementum (2003), s. 39-51 ISSN 0300-5402 Institutional research plan: CEZ:AV0Z3046908 Keywords : slope movements * natural hazards * Cordillera Blanca Subject RIV: DB - Geology ; Mineralogy

  9. Clay mineral distribution on the Kerala continental shelf and slope

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nair, R.R.; Hashimi, N.H.

    minerals are quartz and feldspar. Kaolinite and gibbsite have low values on the outer shelf and high values on the inner shelf and slope, while illite increases in the offshore direction. However, montmorillonite behaves differently from others in having...

  10. Slope Stabilization Using Recycled Plastic Pins, Phase III.

    Science.gov (United States)

    2007-01-01

    A new technique for stabilizing surficial slope failures using recycled plastic reinforcing members has been developed. The : objective of the project described in this report has been to develop, evaluate, and document a technique for stabilization ...

  11. Probabilistic analysis algorithm for UA slope software program.

    Science.gov (United States)

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  12. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

  13. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

  14. Landslide hazard on the slopes of Dabicho Ridge, Wondo Genet ...

    African Journals Online (AJOL)

    1996-06-18

    Landslide hazard on the slopes of Dabicho Ridge, Wondo Genet area: the case of June 18, 1996 event. Berhanu Temesgen, Mohammed Umer, Asfawossen Asrat, Ogbaghebriel Berakhi, Abayneh Ayele, Dramis Francesco, Metasebia Demissie ...

  15. Systems of pillarless working of adjacent, sloped and inclined seams

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1979-01-01

    An analysis is made (advantages and disadvantages) of existing and recommended (pillarless) systems of working adjacent, sloped, and inclined seams. The economic benefits, area and extent of those systems are indicated. 8 references, 4 figures.

  16. Effect of slope height and horizontal forces on the bearing capacity of strip footings near slopes in cohesionless soil

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2016-01-01

    The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal......, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing...

  17. Slope Impacts on Concentrated Flow Hydraulics in Rangeland

    Science.gov (United States)

    Al-Hamdan, O. Z.; Pierson, F. B.; Williams, C. J.; Kormos, P. R.; Nearing, M. A.; Boll, J.

    2009-12-01

    Several studies have been conducted to describe rill or concentrated flow hydraulics. However, most of these studies used data obtained from either laboratory experiments or field sites located on gently sloping crop lands. The data sets in the few rangeland field studies conducted did not cover a variety of hillslope angles and generally focused on slope gradients less than 20%. The lack of studies with steeper slopes resulted in misinterpreting the slope gradient impact on concentrated flow hydraulics, as sites with different slopes have different soil and vegetation cover characteristics. This study examines the characteristics of rangeland concentrated flow hydraulics as a function of vegetation and ground cover using field experimental data from diverse vegetated rangeland sites of the western United States. These data span a wide range of slope angles (5.6%-65.8%), soil types, and vegetative cover. Many of the sites exhibit some degree of disturbance, such as wild fire, prescribed fire, tree mastication, and/or tree cutting. The data were divided into two sets, gently sloping (20%). Analyses were performed on each data set separately as well as on the combined data set. For the complete data set, concentrated flow occurred on less than 26% of the gently sloping plots and on more than 70% of the steep plots. The results showed that the Darcy-Weisbach roughness coefficient (f) had no significant correlation with vegetation and ground cover variables on the gently sloping sites. However, roughness coefficient f was positively correlated with vegetation and ground cover on steep rangelands (R2=0.53, n=439). The power relation relating the flow width (w) to the discharge (Q) was statistically different on the gentle and the steep sites. A multi regression equation for estimating the width of the concentrated flow as a function of flow discharge, slope, and vegetation cover was developed (R2=0.62, n=360), where the variation of slope alone explained 39% of the

  18. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  19. NRL Glider Data Report for the Shelf-Slope Experiment

    Science.gov (United States)

    2017-09-12

    Transformation and Transport in the Northern Gulf of Mexico: Platform Proof of Concept for the Ocean Observing System in the Northern Gulf of Mexico...glider SL083 was deployed for the Shelf-Slope experiment: “Shelf-Slope Interactions and Carbon Transformation and Transport in the Northern Gulf of... Digital Environmental Model (GDEM) climatology profiles. Optics QC generates flags to indicate that manual examination of profiles is required. Both

  20. Digital analysis of the slopes of Rab Island

    OpenAIRE

    Mladen Pahernik

    2007-01-01

    The paper analyzes morphometric features of the slopes of Rab Island. Based on the digital elevation model, raster layers were calculated for the values of slope angle, aspect and curvature, as well as valley network, which was grouped using the Strahler method. A comparative analysis of the calculated values of morphometric parameters was conducted in the GIS environment. Spatial distribution of the values of each of the morphometric parameters was correlated to the structural and morphogene...

  1. Modelling the influence of tree removal on embankment slope hydrology

    OpenAIRE

    Briggs, Kevin; Smethurst, Joel; Powrie, William

    2014-01-01

    Trees cover the slopes of many railway earthworks supporting the UK’s transport network. Root water uptake by trees can cause seasonal shrinkage and swelling of the embankment soil, affecting the line and level of the railway track. This requires continual maintenance to maintain the serviceability of the track and reduce train speed restrictions. However, the removal of trees from railway embankment slopes and the loss of soil suctions generated by root water uptake may negatively impact emb...

  2. Effects of surface slope on erosion rates of quartz particles

    OpenAIRE

    Lodge, Phillip.

    2006-01-01

    Modeling sediment erosion is important in a wide range of environmental problems. The effects of various environmental factors on erosion rates have been studied, but the effects of surface slope on erosion rates of a wide range of sediments have not been quantified. The effects of surface slope, both in the direction of flow (pitch) and perpendicular to the flow (roll), on erosion rates of quartz particles were investigated using the Sediment Erosion at Depth Flume (Sedflume). US Navy (US...

  3. Origins of coevolution between residues distant in protein 3D structures

    OpenAIRE

    Anishchenko, Ivan; Ovchinnikov, Sergey; Kamisetty, Hetunandan; Baker, David

    2017-01-01

    Coevolution-derived contact predictions are enabling accurate protein structure modeling. However, coevolving residues are not always in contact, and this is a potential source of error in such modeling efforts. To investigate the sources of such errors and, more generally, the origins of coevolution in protein structures, we provide a global overview of the contributions to the “exceptions” to the general rule that coevolving residues are close in protein three-dimensional structures.

  4. Spatial position influences perception of slope from graphs.

    Science.gov (United States)

    Parrott, Stacey; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru

    2014-01-01

    We routinely examine linear trends from bar graphs and scatterplots while taking a science class, attending a business presentation, or reading a magazine article. Graphs are placed in different positions on a page or a presentation slide for aesthetic considerations. However, because left and right positions tend to be associated with lower and higher values in the conventional depiction of numerical values, we hypothesized that the perception of positive and negative slopes may be influenced by the placement of a graph. Using a visual search task, with each display containing four bar graphs or scatterplots (one per quadrant), we have demonstrated that the detection of a negative slope is selectively slowed in the upper-right quadrant (for both bar graphs and scatterplots), whereas the detection of a positive slope is selectively slowed in the upper-left quadrant (for bar graphs only). These results suggest that an upper-right position is incompatible with perceiving negative slopes and an upper-left position is incompatible with perceiving positive slopes. Although the origin of these specific associations is unclear, our results have implications for where to place a graph depending on the slope it displays.

  5. Controlling errors in unidosis carts

    Directory of Open Access Journals (Sweden)

    Inmaculada Díaz Fernández

    2010-01-01

    Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.

  6. Prioritising interventions against medication errors

    DEFF Research Database (Denmark)

    Lisby, Marianne; Pape-Larsen, Louise; Sørensen, Ann Lykkegaard

    Abstract Authors: Lisby M, Larsen LP, Soerensen AL, Nielsen LP, Mainz J Title: Prioritising interventions against medication errors – the importance of a definition Objective: To develop and test a restricted definition of medication errors across health care settings in Denmark Methods: Medication...... errors constitute a major quality and safety problem in modern healthcare. However, far from all are clinically important. The prevalence of medication errors ranges from 2-75% indicating a global problem in defining and measuring these [1]. New cut-of levels focusing the clinical impact of medication...... errors are therefore needed. Development of definition: A definition of medication errors including an index of error types for each stage in the medication process was developed from existing terminology and through a modified Delphi-process in 2008. The Delphi panel consisted of 25 interdisciplinary...

  7. Error adaptation in mental arithmetic.

    Science.gov (United States)

    Desmet, Charlotte; Imbo, Ineke; De Brauwer, Jolien; Brass, Marcel; Fias, Wim; Notebaert, Wim

    2012-01-01

    Until now, error and conflict adaptation have been studied extensively using simple laboratory tasks. A common finding is that responses slow down after errors. According to the conflict monitoring theory, performance should also improve after an error. However, this is usually not observed. In this study, we investigated whether the characteristics of the experimental paradigms normally used could explain this absence. More precisely, these paradigms have in common that behavioural adaptation has little room to be expressed. We therefore studied error and conflict adaptation effects in a task that encounters the richness of everyday life's behavioural adaptation--namely, mental arithmetic, where multiple solution strategies are available. In accordance with our hypothesis, we observed that post-error accuracy increases after errors in mental arithmetic. No support for conflict adaptation in mental arithmetic was found. Implications for current theories of conflict and error monitoring are discussed.

  8. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  9. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  10. Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value.

    Science.gov (United States)

    Guazzi, Marco; Arena, Ross; Ascione, Aniello; Piepoli, Massimo; Guazzi, Maurizio D

    2007-05-01

    Increased slope of exercise ventilation to carbon dioxide production (VE/VCO2) is an established prognosticator in patients with heart failure. Recently, the occurrence of exercise oscillatory breathing (EOB) has emerged as an additional strong indicator of survival. The aim of this study is to define the respective prognostic significance of these variables and whether excess risk may be identified when either respiratory disorder is present. In 288 stable chronic HF patients (average left ventricular ejection fraction, 33 +/- 13%) who underwent cardiopulmonary exercise testing, the prognostic relevance of VE/VCO2 slope, EOB, and peak VO2 was evaluated by multivariate Cox regression. During a mean interval of 28 +/- 13 months, 62 patients died of cardiac reasons. Thirty-five percent presented with EOB. Among patients exhibiting EOB, 54% had an elevated VE/VCO2 slope. The optimal threshold value for the VE/VCO2 slope identified by receiver operating characteristic analysis was or = 36.2 (sensitivity, 77%; specificity, 64%; P or = 36.2) was the only other exercise test variable retained in the regression (residual chi2, 5.9; P = .02). The hazard ratio for subjects with EOB and a VE/VCO2 slope > or = 36.2 was 11.4 (95% confidence interval, 4.9-26.5; P breathing presence does not necessarily imply an elevated VE/VCO2 slope, but combination of either both yields to a burden of risk remarkably high.

  11. Expected Performance of the Upcoming Surface Water and Ocean Topography Mission Measurements of River Height, Width, and Slope

    Science.gov (United States)

    Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.

    2017-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.

  12. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

    International Nuclear Information System (INIS)

    Lathouwers, D.

    2011-01-01

    In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

  13. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer

    International Nuclear Information System (INIS)

    Qian, J.; Assoufid, L.; Macrander, A.

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 ± 0.15 (micro)rad for the LTP, and 3.11 ± 0.02 (micro)rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 (micro)rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 ± 0.08 (micro)rad from LTP measurements but it is 0.35 ± 0.01 (micro)rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  14. Soil properties in high-elevation ski slopes

    Science.gov (United States)

    Filippa, Gianluca; Freppaz, Michele; Letey, Stéphanie; Corti, Giuseppe; Cocco, Stefania; Zanini, Ermanno

    2010-05-01

    The development of winter sports determines an increasing impact on the high altitude ecosystems, as a consequence of increased participation and an increasing demand of high quality standards for skiable areas. The construction of a ski slope is associated with a certain impact on soil, which varies as a function of the degree of human-induced disturbance to the native substrata. In this work, we provide a description of the characteristics of alpine tundra ski-slope soils and their nutrient status, contrasted with undisturbed areas. The study site is located in the Monterosaski Resort, Aosta Valley, NW Italy (45°51' N; 7°48' E). We chose 5 sites along an altitudinal gradient between 2700 and 2200 m a.s.l.. Per each site, one plot was established on the ski slope, while a control plot was chosen under comparable topographic conditions a few meters apart. Soils were described and samples were collected and analysed for main chemical-physical properties. In addition an evaluation of N forms, organic matter fractionation and microbial biomass was carried out. Soil depth ranged between 10 to more than 70 cm, both on the ski slope and in the undisturbed areas. A true organo-mineral (A) horizon was firstly identified at 2500 m a.s.l., while a weathering horizon (Bw) was detected at 2400 m a.s.l.. However, a Bw horizon thick enough to be recognised as diagnostic for shifting soil classification order from Entisols to Inceptisols (USDA-Soil Taxonomy) was detected only below 2400 m a.s.l.. Lithic Cryorthents were predominant in the upper part of the sequence (above 2500 m a.s.l.), both in the ski slope and the undisturbed areas; Typic Cryorthents were identified between 2500 and 2400 m a.s.l., while Inceptisols were predominant between 2400 and 2200 m a.s.l.. Chemical-physical properties will be discussed focusing on the main differences between ski slope and undisturbed soils, as determined by the ski slope construction. Pedogenetic processes at high altitude are

  15. Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope was calculated from the bathymetry surface for each raster cell using ArcGIS's Spatial Analyst 'Slope' Tool. Slope describes the maximum steepness of a terrain...

  16. New twist in the optical schematic of surface slope measuring long trace profiler

    Science.gov (United States)

    Nikitin, Sergey M.; Gevorkyan, Gevork S.; McKinney, Wayne R.; Lacey, Ian; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2017-09-01

    The advents of fully coherent free electron lasers and diffraction limited synchrotron storage ring sources of x-rays are catalyzing the development of new, ultra-high accuracy metrology methods. To fully exploit the potential of these sources, metrology needs to be capable of determining the figure of an optical element with sub-nanometer height accuracy. Currently, the two most prevalent slope measuring instruments used for characterization of x-ray optics are the auto-collimator based nanometer optical measuring device (NOM) and the long trace profiler (LTP) using pencil beam interferometry (PBI). These devices have been consistently improved upon by the x-ray optics metrology community, but appear to be approaching their metrological limits. Here, we revise the traditional optical schematic of the LTP. We experimentally show that, for the level of accuracy desired for metrology with state-of-the-art x-ray optics, the Dove prism in the LTP reference channel appears to be one of the major sources of instrumental error. Therefore, we suggest returning back to the original PBI LTP schematics with no Dove prism in the reference channel. In this case, the optimal scanning strategies [Yashchuk, Rev. Sci. Instrum. 80, 115101 (2009)] used to suppress the instrumental drift error have to be used to suppress a possible drift error associated with laser beam pointing instability. We experimentally and by numerical simulation demonstrate the usefulness of the suggested approach for measurements with x-ray optics with both face up and face down orientations.

  17. Errors in abdominal computed tomography

    International Nuclear Information System (INIS)

    Stephens, S.; Marting, I.; Dixon, A.K.

    1989-01-01

    Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab

  18. A Geomagnetic Reference Error Model

    Science.gov (United States)

    Maus, S.; Woods, A. J.; Nair, M. C.

    2011-12-01

    The accuracy of geomagnetic field models, such as the International Geomagnetic Reference Field (IGRF) and the World Magnetic Model (WMM), has benefitted tremendously from the ongoing series of satellite magnetic missions. However, what do we mean by accuracy? When comparing a geomagnetic reference model with a magnetic field measurement (for example of an electronic compass), three contributions play a role: (1) The instrument error, which is not subject of this discussion, (2) the error of commission, namely the error of the model coefficients themselves in representing the geomagnetic main field, and (3) the error of omission, comprising contributions to the geomagnetic field which are not represented in the reference model. The latter can further be subdivided into the omission of the crustal field and the omission of the disturbance field. Several factors have a strong influence on these errors: The error of commission primarily depends on the time elapsed since the last update of the reference model. The omission error for the crustal field depends on altitude of the measurement, while the omission error for the disturbance field has a strong latitudinal dependence, peaking under the auroral electrojets. A further complication arises for the uncertainty in magnetic declination, which is directly dependent on the strength of the horizontal field. Here, we present an error model which takes all of these factors into account. This error model will be implemented as an online-calculator, providing the uncertainty of the magnetic elements at the entered location and time.

  19. Sepsis: Medical errors in Poland.

    Science.gov (United States)

    Rorat, Marta; Jurek, Tomasz

    2016-01-01

    Health, safety and medical errors are currently the subject of worldwide discussion. The authors analysed medico-legal opinions trying to determine types of medical errors and their impact on the course of sepsis. The authors carried out a retrospective analysis of 66 medico-legal opinions issued by the Wroclaw Department of Forensic Medicine between 2004 and 2013 (at the request of the prosecutor or court) in cases examined for medical errors. Medical errors were confirmed in 55 of the 66 medico-legal opinions. The age of victims varied from 2 weeks to 68 years; 49 patients died. The analysis revealed medical errors committed by 113 health-care workers: 98 physicians, 8 nurses and 8 emergency medical dispatchers. In 33 cases, an error was made before hospitalisation. Hospital errors occurred in 35 victims. Diagnostic errors were discovered in 50 patients, including 46 cases of sepsis being incorrectly recognised and insufficient diagnoses in 37 cases. Therapeutic errors occurred in 37 victims, organisational errors in 9 and technical errors in 2. In addition to sepsis, 8 patients also had a severe concomitant disease and 8 had a chronic disease. In 45 cases, the authors observed glaring errors, which could incur criminal liability. There is an urgent need to introduce a system for reporting and analysing medical errors in Poland. The development and popularisation of standards for identifying and treating sepsis across basic medical professions is essential to improve patient safety and survival rates. Procedures should be introduced to prevent health-care workers from administering incorrect treatment in cases. © The Author(s) 2015.

  20. Contour Error Map Algorithm

    Science.gov (United States)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  1. A procedure for the significance testing of unmodeled errors in GNSS observations

    Science.gov (United States)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  2. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  3. Slope instability in the Bastardo Basin (Umbria, Central Italy – The landslide of Barattano

    Directory of Open Access Journals (Sweden)

    C. Cencetti

    2003-01-01

    Full Text Available The Bastardo Basin is one of the classics Apenninic intermontane basins of central Italy. They are en-closed tectonic basins (graben and semigraben with high anthropization, but with high vulnerability, too (seismic, hydrogeological and geomorphological. The paper concerns some aspects about slope instability in the Bastardo Basin as part of a wider research, which aims to actually define the characteristics of the liability to landslides of the Apenninic intermontane basins. In particular lithological, stratigraphical and hydrogeological conditions are analysed under which a landslide near village of Barattano has developed. This mass movement, at different times, produced partial or total occlusion of the torrent Puglia. Here geognostic investigations together with laboratory tests and subsequent monitoring of landslide area were carried out.  A back analysis, based on limit equilibrium solutions for the factor of safety of the slope, provided the residual strenght properties of the soil mass along the sliding surface.   The landslide of Barattano is representative of a very frequent situation (in terms of type, factors and causes of the movement, possible development of the movement not only within Bastardo Basin, but in general within Apenninic intermontane basins, too.  The study of landslide and the design of appropriate remedial measures are of great importance in terms of prevention and mitigation of geologic-hydraulic risk in Apenninic intermontane basins.

  4. The utility of fractional wash-out slope values following intravenous 133Xe

    International Nuclear Information System (INIS)

    Durak, H.; Bekdik, C.F.; Ulutuncel, N.

    1991-01-01

    The regional clearance of 133 Xe from the lungs after intravenous administration as well as following rebreathing was assessed in 7 normals and 18 patients with various lung disorders. Each lung was divided into three zones as upper, middle and lower. Regional ventilation (V) and regional perfusion (P) were determined using the area under the first peak at the beginning of the ventilation study and the area under the peak after intravenous administration, respectively. Slopes were calculated using the first exponential of the wash-out curve. Absolute slope values of the wash-out curves after perfusion (Pwo) and ventilation (Vwo) were expressed as a percentage of the total for each lung. Correlation coefficients between V and Vwo, V and Pwo, P and Pwo were .695, .584 and .882 in normals and .610, .461 and .685 in patients, respectively. It is concluded that Pwo is influenced by both perfusion and ventilation; it may reflect the fractional contribution to the gas exchange and can be used in the prediction of residual lung function after lung resection. (orig.) [de

  5. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems.

    Science.gov (United States)

    Bouda, Martin; Caplan, Joshua S; Saiers, James E

    2016-01-01

    Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not

  6. Box-counting dimension revisited: presenting an efficient method of minimising quantisation error and an assessment of the self-similarity of structural root systems

    Directory of Open Access Journals (Sweden)

    Martin eBouda

    2016-02-01

    Full Text Available Fractal dimension (FD, estimated by box-counting, is a metric used to characterise plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantisation error (QE, which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterise the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitised in 3D and subjected to box-counts. A pattern search algorithm was used to minimise QE by optimising grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates.QE due to both grid position and orientation was a significant source of error in FD estimates, but pattern search provided an efficient means of minimising it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitisations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did

  7. Residual stresses in material processing

    Science.gov (United States)

    Kozaczek, K. J.; Watkins, T. R.; Hubbard, C. R.; Wang, Xun-Li; Spooner, S.

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then addresses the direct, nondestructive methods of residual stress measurement by X ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  8. Direct Strain and Slope and Slope Measurement Using 2D DSPSI

    International Nuclear Information System (INIS)

    Dandach, W.; Molimard, J.; Picart, P.

    2011-01-01

    Large variety of optical full-field measurement techniques are being developed and applied to solve mechanical problems. Since each technique possesses its own merits, it is important to know the capabilities and limitations of such techniques. Among these optical full-field methods, interferometry techniques take an important place. They are based on illumination with coherent light (laser). In shearing interferometry the difference of the out of-plane displacement in two neighboring object points is directly measured. Since object displacement does not result in interferometry fringes, the method is suited for localization of strain concentrations and is indeed used in industry for this purpose. DSPSI possesses the advantage over conventional out-of-plane displacement-sensitive interferometry, that only a single difference of the unwrapped phase map is required to obtain flexural strains, thereby relieving problems with noise and reduction in the field of view. A first work in this domain (DSPSI) [1] was made in 1973, later recent studies emerged to provide a quantitative system of measurements [2]. This work aims to present the results of strain and slope measurements using digital speckle pattern shearing interferometry (DSPSI). (author)

  9. The Usability-Error Ontology

    DEFF Research Database (Denmark)

    Elkin, Peter L.; Beuscart-zephir, Marie-Catherine; Pelayo, Sylvia

    2013-01-01

    in patients coming to harm. Often the root cause analysis of these adverse events can be traced back to Usability Errors in the Health Information Technology (HIT) or its interaction with users. Interoperability of the documentation of HIT related Usability Errors in a consistent fashion can improve our...... ability to do systematic reviews and meta-analyses. In an effort to support improved and more interoperable data capture regarding Usability Errors, we have created the Usability Error Ontology (UEO) as a classification method for representing knowledge regarding Usability Errors. We expect the UEO...... will grow over time to support an increasing number of HIT system types. In this manuscript, we present this Ontology of Usability Error Types and specifically address Computerized Physician Order Entry (CPOE), Electronic Health Records (EHR) and Revenue Cycle HIT systems....

  10. National Aeronautics and Space Administration "threat and error" model applied to pediatric cardiac surgery: error cycles precede ∼85% of patient deaths.

    Science.gov (United States)

    Hickey, Edward J; Nosikova, Yaroslavna; Pham-Hung, Eric; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Redington, Andrew; Van Arsdell, Glen S

    2015-02-01

    We hypothesized that the National Aeronautics and Space Administration "threat and error" model (which is derived from analyzing >30,000 commercial flights, and explains >90% of crashes) is directly applicable to pediatric cardiac surgery. We implemented a unit-wide performance initiative, whereby every surgical admission constitutes a "flight" and is tracked in real time, with the aim of identifying errors. The first 500 consecutive patients (524 flights) were analyzed, with an emphasis on the relationship between error cycles and permanent harmful outcomes. Among 524 patient flights (risk adjustment for congenital heart surgery category: 1-6; median: 2) 68 (13%) involved residual hemodynamic lesions, 13 (2.5%) permanent end-organ injuries, and 7 deaths (1.3%). Preoperatively, 763 threats were identified in 379 (72%) flights. Only 51% of patient flights (267) were error free. In the remaining 257 flights, 430 errors occurred, most commonly related to proficiency (280; 65%) or judgment (69, 16%). In most flights with errors (173 of 257; 67%), an unintended clinical state resulted, ie, the error was consequential. In 60% of consequential errors (n = 110; 21% of total), subsequent cycles of additional error/unintended states occurred. Cycles, particularly those containing multiple errors, were very significantly associated with permanent harmful end-states, including residual hemodynamic lesions (P < .0001), end-organ injury (P < .0001), and death (P < .0001). Deaths were almost always preceded by cycles (6 of 7; P < .0001). Human error, if not mitigated, often leads to cycles of error and unintended patient states, which are dangerous and precede the majority of harmful outcomes. Efforts to manage threats and error cycles (through crew resource management techniques) are likely to yield large increases in patient safety. Copyright © 2015. Published by Elsevier Inc.

  11. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  12. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  13. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  14. Processor register error correction management

    Science.gov (United States)

    Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.

    2016-12-27

    Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.

  15. SRC Residual fuel oils

    Science.gov (United States)

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  16. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-30

    This report gave a record of the composition of several samples of residues from carbonization of various hydrogenation residue from processing some type of coal or tar in the Bergius process. These included Silesian bituminous coal processed at 600 atm. with iron catalyst, in one case to produce gasoline and middle oil and in another case to produce heavy oil excess, Scholven coal processed at 250 atm. with tin oxalate and chlorine catalyst, Bruex tar processed in a 10-liter oven using iron catalyst, and a pitch mixture from Welheim processed in a 10-liter over using iron catalyst. The values gathered were compared with a few corresponding values estimated for Boehlen tar and Gelsenberg coal based on several assumptions outlined in the report. The data recorded included percentage of ash in the dry residue and percentage of carbon, hydrogen, oxygen, nitrogen, chlorine, total sulfur, and volatile sulfur. The percentage of ash varied from 21.43% in the case of Bruex tar to 53.15% in the case of one of the Silesian coals. Percentage of carbon varied from 44.0% in the case of Scholven coal to 78.03% in the case of Bruex tar. Percentage of total sulfur varied from 2.28% for Bruex tar to a recorded 5.65% for one of the Silesian coals and an estimated 6% for Boehlen tar. 1 table.

  17. Error estimation for pattern recognition

    CERN Document Server

    Braga Neto, U

    2015-01-01

    This book is the first of its kind to discuss error estimation with a model-based approach. From the basics of classifiers and error estimators to more specialized classifiers, it covers important topics and essential issues pertaining to the scientific validity of pattern classification. Additional features of the book include: * The latest results on the accuracy of error estimation * Performance analysis of resubstitution, cross-validation, and bootstrap error estimators using analytical and simulation approaches * Highly interactive computer-based exercises and end-of-chapter problems

  18. Heuristic errors in clinical reasoning.

    Science.gov (United States)

    Rylander, Melanie; Guerrasio, Jeannette

    2016-08-01

    Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.

  19. Medication Errors in Outpatient Pediatrics.

    Science.gov (United States)

    Berrier, Kyla

    2016-01-01

    Medication errors may occur during parental administration of prescription and over-the-counter medications in the outpatient pediatric setting. Misinterpretation of medication labels and dosing errors are two types of errors in medication administration. Health literacy may play an important role in parents' ability to safely manage their child's medication regimen. There are several proposed strategies for decreasing these medication administration errors, including using standardized dosing instruments, using strictly metric units for medication dosing, and providing parents and caregivers with picture-based dosing instructions. Pediatric healthcare providers should be aware of these strategies and seek to implement many of them into their practices.

  20. [DIAGNOSTIC ERRORS IN INTERNAL MEDICINE].

    Science.gov (United States)

    Schattner, Ami

    2017-02-01

    Diagnostic errors remain an important target in improving the quality of care and achieving better health outcomes. With a relatively steady rate estimated at 10-15% in many settings, research aiming to elucidate mechanisms of error is highly important. Results indicate that not only cognitive mistakes but a number of factors acting together often culminate in a diagnostic error. Far from being 'unpreventable', several methods and techniques are suggested that may show promise in minimizing diagnostic errors. These measures should be further investigated and incorporated into all phases of medical education.

  1. Identifying Error in AUV Communication

    National Research Council Canada - National Science Library

    Coleman, Joseph; Merrill, Kaylani; O'Rourke, Michael; Rajala, Andrew G; Edwards, Dean B

    2006-01-01

    Mine Countermeasures (MCM) involving Autonomous Underwater Vehicles (AUVs) are especially susceptible to error, given the constraints on underwater acoustic communication and the inconstancy of the underwater communication channel...

  2. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    Science.gov (United States)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  3. Landform Degradation and Slope Processes on Io: The Galileo View

    Science.gov (United States)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; hide

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  4. Surface drainage in leveled land: Implication of slope

    Directory of Open Access Journals (Sweden)

    Antoniony S. Winkler

    Full Text Available ABSTRACT In the lowlands of Rio Grande do Sul, land leveling is mostly carried out with no slope for the purpose of rice production. In this environment, soils with a low hydraulic conductivity are predominant owing to the presence of a practically impermeable B-horizon near the surface. Land leveling leads to soil accommodation resulting in the formation of depressions where water accumulates after heavy rainfalls, subsequently leading to problems with crops implanted in succession to rice, such as soybeans. The objective of this research was to quantify the areas and volumes of water accumulation in soil as a function of the slope of land leveling. Five typical leveled lowland areas were studied as a part of this research. The original areas presented slopes of 0, 0.20, 0.25, 0.28 and 0.40%, which were used to generate new digital elevation models with slopes between 0 and 0.5%. These newly generated digital models were used to map the depressions with surface water storage. In conclusion, land leveling with slopes higher than 0.1% is recommended to minimize problems with superficial water storage in rice fields.

  5. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  6. Control and perception of balance at elevated and sloped surfaces.

    Science.gov (United States)

    Simeonov, Peter I; Hsiao, Hongwei; Dotson, Brian W; Ammons, Douglas E

    2003-01-01

    Understanding roof-work-related risk of falls and developing low-cost, practical engineering controls for reducing this risk remain in high demand in the construction industry. This study investigated the effects of the roof work environment characteristics of surface slope, height, and visual reference on standing balance in construction workers. The 24 participants were tested in a laboratory setting at 4 slopes (0 degrees, 18 degrees, 26 degrees, and 34 degrees), 2 heights (0, 3 m), and 2 visual conditions (with and without visual references). Postural sway characteristics were calculated using center of pressure recordings from a force platform. Workers' perceptions of postural sway and instability were also evaluated. The results indicated that slope and height synergistically increased workers' standing postural instability. Workers recognized the individual destabilizing effects of slope and height but did not recognize the synergistic effect of the two. Visual references significantly reduced the destabilizing effects of height and slope. Actual and potential applications of this research include the use of temporary level work surfaces and proximal vertical reference structures as postural instability control measures during roofing work.

  7. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  8. Hyperstereopsis in helmet-mounted NVDs: slope perception

    Science.gov (United States)

    Stuart, Geoffrey W.; Flanagan, Patrick; Gibbs, Peter

    2007-04-01

    Modern helmet-mounted night vision devices, such as the Thales TopOwl helmet, project imagery from intensifiers mounted on the sides of the helmet onto the helmet faceplate. This produces a situation of hyperstereopsis in which binocular disparities are magnified. This has the potential to distort the perception of slope in depth (an important cue to landing), because the slope cue provided by binocular disparity conflicts with veridical cues to slope, such as texture gradients and motion parallax. In the experiments, eight observers viewed sparse and dense textured surfaces tilted in depth under three viewing conditions: normal stereo hyper-stereo (4 times magnification), and hypostereo (1/4 magnification). The surfaces were either stationary, or rotated slowly around a central vertical axis. Stimuli were projected at 6 metres to minimise conflict between accommodation and convergence, and stereo viewing was provided by a Z-screen and passive polarised glasses. Observers matched perceived visual slope using a small tilt table set by hand. We found that slope estimates were distorted by hyperstereopsis, but to a much lesser degree than predicted by disparity magnification. The distortion was almost completely eliminated when motion parallax was present.

  9. Effects of Measurement Error on the Output Gap in Japan

    OpenAIRE

    Koichiro Kamada; Kazuto Masuda

    2000-01-01

    Potential output is the largest amount of products that can be produced by fully utilizing available labor and capital stock; the output gap is defined as the discrepancy between actual and potential output. If data on production factors contain measurement errors, total factor productivity (TFP) cannot be estimated accurately from the Solow residual(i.e., the portion of output that is not attributable to labor and capital inputs). This may give rise to distortions in the estimation of potent...

  10. A Hybrid Unequal Error Protection / Unequal Error Resilience ...

    African Journals Online (AJOL)

    The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...

  11. Measurement Error and Equating Error in Power Analysis

    Science.gov (United States)

    Phillips, Gary W.; Jiang, Tao

    2016-01-01

    Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…

  12. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Taynna Vernalha Rocha [Faculdades Pequeno Principe (FPP), Curitiba, PR (Brazil); Cordova Junior, Arno Lotar; Almeida, Cristiane Maria; Piedade, Pedro Argolo; Silva, Cintia Mara da, E-mail: taynnavra@gmail.com [Centro de Radioterapia Sao Sebastiao, Florianopolis, SC (Brazil); Brincas, Gabriela R. Baseggio [Centro de Diagnostico Medico Imagem, Florianopolis, SC (Brazil); Marins, Priscila; Soboll, Danyel Scheidegger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2016-03-15

    Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5- mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used. (author)

  13. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom

    Directory of Open Access Journals (Sweden)

    Taynná Vernalha Rocha Almeida

    2016-04-01

    Full Text Available Abstract Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used.

  14. Bootstrap Approach To Compare the Slopes of Two Calibrations When Few Standards Are Available.

    Science.gov (United States)

    Estévez-Pérez, Graciela; Andrade, Jose M; Wilcox, Rand R

    2016-02-16

    Comparing the slopes of aqueous-based and standard addition calibration procedures is almost a daily task in analytical laboratories. As usual protocols imply very few standards, sound statistical inference and conclusions are hard to obtain for current classical tests (e.g., the t-test), which may greatly affect decision-making. Thus, there is a need for robust statistics that are not distorted by small samples of experimental values obtained from analytical studies. Several promising alternatives based on bootstrapping are studied in this paper under the typical constraints common in laboratory work. The impact of number of standards, homoscedasticity or heteroscedasticity, three variance patterns, and three error distributions on least-squares fits were considered (in total, 144 simulation scenarios). The Student's t-test is the most valuable procedure when the normality assumption is true and homoscedasticity is present, although it can be highly affected by outliers. A wild bootstrap method leads to average rejection percentages that are closer to the nominal level in almost every situation, and it is recommended for laboratories working with a small number of standards. Finally, it was seen that the Theil-Sen percentile bootstrap statistic is very robust but its rejection percentages depart from the nominal ones (bootstrap principles to compare the slopes of two calibration lines.

  15. Scanning Long-wave Optical Test System: a new ground optical surface slope test system

    Science.gov (United States)

    Su, Tianquan; Park, Won Hyun; Parks, Robert E.; Su, Peng; Burge, James H.

    2011-09-01

    The scanning long-wave optical test system (SLOTS) is under development at the University of Arizona to provide rapid and accurate measurements of aspherical optical surfaces during the grinding stage. It is based on the success of the software configurable optical test system (SCOTS) which uses visible light to measure surface slopes. Working at long wave infrared (LWIR, 7-14 μm), SLOTS measures ground optical surface slopes by viewing the specular reflection of a scanning hot wire. A thermal imaging camera collects data while motorized stages scan the wire through the field. Current experiments show that the system can achieve a high precision at micro-radian level with fairly low cost equipment. The measured surface map is comparable with interferometer for slow optics. This IR system could be applied early in the grinding stage of fabrication of large telescope mirrors to minimize the surface shape error imparted during processing. This advantage combined with the simplicity of the optical system (no null optics, no high power carbon dioxide laser) would improve the efficiency and shorten the processing time.

  16. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  17. Medication errors in hospitalised children.

    Science.gov (United States)

    Manias, Elizabeth; Kinney, Sharon; Cranswick, Noel; Williams, Allison

    2014-01-01

    This study aims to explore the characteristics of reported medication errors occurring among children in an Australian children's hospital, and to examine the types, causes and contributing factors of medication errors. A retrospective clinical audit was undertaken of medication errors reported to an online incident facility at an Australian children's hospital over a 4-year period. A total of 2753 medication errors were reported over the 4-year period, with an overall medication error rate of 0.31% per combined admission and presentation, or 6.58 medication errors per 1000 bed days. The two most common severity outcomes were: the medication error occurred before it reached the child (n = 749, 27.2%); and the medication error reached the child who required monitoring to confirm that it resulted in no harm (n = 1519, 55.2%). Common types of medication errors included overdose (n = 579, 21.0%) and dose omission (n = 341, 12.4%). The most common cause relating to communication involved misreading or not reading medication orders (n = 804, 29.2%). Key contributing factors involved communication relating to children's transfer across different clinical settings (n = 929, 33.7%) and the lack of following policies and procedures (n = 617, 22.4%). More than half of the reports (72.5%) were made by nurses. Future research should focus on implementing and evaluating strategies aimed at reducing medication errors relating to analgesics, anti-infectives, cardiovascular agents, fluids and electrolytes and anticlotting agents, as they are consistently represented in the types of medication errors that occur. Greater attention needs to be placed on supporting health professionals in managing these medications. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  18. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  19. Rock mass characterisation and stability analyses of excavated slopes

    Science.gov (United States)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  20. Some Limits Using Random Slope Models to Measure Academic Growth

    Directory of Open Access Journals (Sweden)

    Daniel B. Wright

    2017-11-01

    Full Text Available Academic growth is often estimated using a random slope multilevel model with several years of data. However, if there are few time points, the estimates can be unreliable. While using random slope multilevel models can lower the variance of the estimates, these procedures can produce more highly erroneous estimates—zero and negative correlations with the true underlying growth—than using ordinary least squares estimates calculated for each student or school individually. An example is provided where schools with increasing graduation rates are estimated to have negative growth and vice versa. The estimation is worse when the underlying data are skewed. It is recommended that there are at least six time points for estimating growth if using a random slope model. A combination of methods can be used to avoid some of the aberrant results if it is not possible to have six or more time points.

  1. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  2. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  3. The Socioeconomic Assessment of Sloping Land Conversion Program in China

    DEFF Research Database (Denmark)

    Liu, Zhen

    with the aim to combat deforestation, ecological degradation, over cultivation of sloping land and soil erosion. However, we also believe it brings changes to the rural economic structure and household livelihood strategy. Applying and developing some empirical and theoretical methods with a large amount......Abstract This thesis mainly focuses on the socioeconomic impact of the largest Ecological Recovery Program ― the Sloping Land Conversion Program (SLCP), also called Grain for Green Program (GFG) in China. The central government initiated this program in 1999 and it was launched nationwide in 2002...... that there exist heterogeneous effects of SLCP implementation on livelihood diversification across different rural income groups. The lower income group was more affected by the program in terms of income diversification. The Second paper ― The Effects of Sloping Land Conversion Program on Agricultural Households...

  4. Preparation-induced errors in EPR dosimetry of enamel: pre- and post-crushing sensitivity

    International Nuclear Information System (INIS)

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1996-01-01

    Errors in dose estimation as a function of grain size for tooth enamel has been previously shown for beta irradiation after crushing. We tested the effect of gamma radiation applied to specimens before and after crushing. We extend the previous work in that we found that post-crushing irradiation altered the slope of the dose-response curve of the hydroxyapatite signal and produced a grain-size dependent offset. No changes in the slope of the dose-response curve were seen in enamel caps irradiated before crushing

  5. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  6. Subroutine library for error estimation of matrix computation (Ver. 1.0)

    International Nuclear Information System (INIS)

    Ichihara, Kiyoshi; Shizawa, Yoshihisa; Kishida, Norio

    1999-03-01

    'Subroutine Library for Error Estimation of Matrix Computation' is a subroutine library which aids the users in obtaining the error ranges of the linear system's solutions or the Hermitian matrices' eigenvalues. This library contains routines for both sequential computers and parallel computers. The subroutines for linear system error estimation calculate norms of residual vectors, matrices's condition numbers, error bounds of solutions and so on. The subroutines for error estimation of Hermitian matrix eigenvalues derive the error ranges of the eigenvalues according to the Korn-Kato's formula. The test matrix generators supply the matrices appeared in the mathematical research, the ones randomly generated and the ones appeared in the application programs. This user's manual contains a brief mathematical background of error analysis on linear algebra and usage of the subroutines. (author)

  7. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  8. Evidence of slope instability in the Southwestern Adriatic Margin

    Directory of Open Access Journals (Sweden)

    D. Minisini

    2006-01-01

    Full Text Available The Southwestern Adriatic Margin (SAM shows evidence of widespread failure events that generated slide scars up to 10 km wide and extensive slide deposits with run out distances greater than 50 km. Chirp-sonar profiles, side-scan sonar mosaics, multibeam bathymetry and sediment cores document that the entire slope area underwent repeated failures along a stretch of 150 km and that mass-transport deposits, covering an area of 3320 km2, are highly variable ranging from blocky slides to turbidites, and lay on the lower slope and in the basin. The SAM slope between 300–700 m is impacted by southward bottom currents shaping sediment drifts (partly affected by failure and areas of dominant erosion of the seafloor. When slide deposits occur in areas swept by bottom currents their fresh appearence and their location at seafloor may give the misleading impression of a very young age. Seismic-stratigraphic correlation of these deposits to the basin floor, however, allow a more reliable age estimate through sediment coring of the post-slide unit. Multiple buried failed masses overlap each other in the lower slope and below the basin floor; the most widespread of these mass-transport deposits occurred during the MIS 2-glacial interval on a combined area of 2670 km2. Displacements affecting Holocene deposits suggest recent failure events during or after the last phases of the last post-glacial eustatic rise. Differences in sediment accumulation rates at the base or within the sediment drifts and presence of downlap surfaces along the slope and further in the basin may provide one or multiple potential weak layers above which widespread collapses take place. Neotectonic activity and seismicity, together with the presence of a steep slope, represent additional elements conducive to sediment instability and failure along the SAM. Evidence of large areas still prone to failure provides elements of tsunamogenic hazard.

  9. Varying coefficients model with measurement error.

    Science.gov (United States)

    Li, Liang; Greene, Tom

    2008-06-01

    We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.

  10. ERROR CONVERGENCE ANALYSIS FOR LOCAL HYPERTHERMIA APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEERU MALHOTRA

    2016-01-01

    Full Text Available The accuracy of numerical solution for electromagnetic problem is greatly influenced by the convergence of the solution obtained. In order to quantify the correctness of the numerical solution the errors produced on solving the partial differential equations are required to be analyzed. Mesh quality is another parameter that affects convergence. The various quality metrics are dependent on the type of solver used for numerical simulation. The paper focuses on comparing the performance of iterative solvers used in COMSOL Multiphysics software. The modeling of coaxial coupled waveguide applicator operating at 485MHz has been done for local hyperthermia applications using adaptive finite element method. 3D heat distribution within the muscle phantom depicting spherical leison and localized heating pattern confirms the proper selection of the solver. The convergence plots are obtained during simulation of the problem using GMRES (generalized minimal residual and geometric multigrid linear iterative solvers. The best error convergence is achieved by using nonlinearity multigrid solver and further introducing adaptivity in nonlinear solver.

  11. Investigation of digital timing resolution and further improvement by using constant fraction signal time marker slope for fast scintillator detectors

    Science.gov (United States)

    Singh, Kundan; Siwal, Davinder

    2018-04-01

    A digital timing algorithm is explored for fast scintillator detectors, viz. LaBr3, BaF2, and BC501A. Signals were collected with CAEN 250 mega samples per second (MSPS) and 500 MSPS digitizers. The zero crossing time markers (TM) were obtained with a standard digital constant fraction timing (DCF) method. Accurate timing information is obtained using cubic spline interpolation of a DCF transient region sample points. To get the best time-of-flight (TOF) resolution, an optimization of DCF parameters is performed (delay and constant fraction) for each pair of detectors: (BaF2-LaBr3), (BaF2-BC501A), and (LaBr3-BC501A). In addition, the slope information of an interpolated DCF signal is extracted at TM position. This information gives a new insight to understand the broadening in TOF, obtained for a given detector pair. For a pair of signals having small relative slope and interpolation deviations at TM, leads to minimum time broadening. However, the tailing in TOF spectra is dictated by the interplay between the interpolation error and slope variations. Best TOF resolution achieved at the optimum DCF parameters, can be further improved by using slope parameter. Guided by the relative slope parameter, events selection can be imposed which leads to reduction in TOF broadening. While the method sets a trade-off between timing response and coincidence efficiency, it provides an improvement in TOF. With the proposed method, the improved TOF resolution (FWHM) for the aforementioned detector pairs are; 25% (0.69 ns), 40% (0.74 ns), 53% (0.6 ns) respectively, obtained with 250 MSPS, and corresponds to 12% (0.37 ns), 33% (0.72 ns), 35% (0.69 ns) respectively with 500 MSPS digitizers. For the same detector pair, event survival probabilities are; 57%, 58%, 51% respectively with 250 MSPS and becomes 63%, 57%, 68% using 500 MSPS digitizers.

  12. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  13. Human Error: A Concept Analysis

    Science.gov (United States)

    Hansen, Frederick D.

    2007-01-01

    Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.

  14. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  15. Error Detection in Numeric Codes

    Indian Academy of Sciences (India)

    Admin

    example, entering a wrong ISBN may result in purchase of a different book, entering a wrong debit card number may result in a debit from a wrong bank account. So, it is very important that these errors are detected during data entry so that the codes are rejected and the user cautioned. It is for this purpose that many error ...

  16. Barriers to Medical Error Reporting.

    Science.gov (United States)

    Poorolajal, Jalal; Rezaie, Shirin; Aghighi, Negar

    2015-01-01

    This study was conducted to explore the prevalence of medical error underreporting and associated barriers. This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan, Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%), lack of proper reporting form (51.8%), lack of peer supporting a person who has committed an error (56.0%), and lack of personal attention to the importance of medical errors (62.9%). The rate of committing medical errors was higher in men (71.4%), age of 50-40 years (67.6%), less-experienced personnel (58.7%), educational level of MSc (87.5%), and staff of radiology department (88.9%). This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  17. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  18. Measurement of the π0 electromagnetic transition form factor slope

    Science.gov (United States)

    Lazzeroni, C.; Lurkin, N.; Romano, A.; Blazek, T.; Koval, M.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P. L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.; NA62 Collaboration

    2017-05-01

    The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the π0 electromagnetic transition form factor slope parameter from 1.11 ×106 fully reconstructed K± →π± πD0, πD0 →e+e- γ events is reported. The measured value a = (3.68 ± 0.57) ×10-2 is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  19. Wave Run-Up on Sloping Coastal Structures

    DEFF Research Database (Denmark)

    Rouck, J. De; Troch, P.; Ronde, J. De

    2001-01-01

    Wave run-up is one of the main physical processes which are taken into account in the design of the crest level of sloping coastal structures. The crest level design of these structures is mainly based on physical scale model results.......Wave run-up is one of the main physical processes which are taken into account in the design of the crest level of sloping coastal structures. The crest level design of these structures is mainly based on physical scale model results....

  20. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    OpenAIRE

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands—where a law regulating active euthanasia was accepted in April 2001—may shed...

  1. Newton slopes for Artin-Schreier-Witt towers

    DEFF Research Database (Denmark)

    Davis, Christopher; Wan, Daqing; Xiao, Liang

    2016-01-01

    We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... a result on the behavior of the slopes of the eigencurve associated to the Artin-Schreier-Witt tower, analogous to the result of Buzzard and Kilford....

  2. A theory of human error

    Science.gov (United States)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  3. Onorbit IMU alignment error budget

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  4. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    Science.gov (United States)

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  5. Sharing Residual Liability

    DEFF Research Database (Denmark)

    Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco

    2016-01-01

    Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... the virtues and limits of loss-sharing rules in generating optimal (second-best) incentives and allocations of risk. We find that loss sharing may be optimal in the presence of countervailing policy objectives, homogeneous risk avoiders, and subadditive risk, which potentially offers a valuable tool...

  6. Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis

    Science.gov (United States)

    Li, Q.; Dehler, S.

    2012-04-01

    Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps

  7. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  8. Kinetics of acid hydrolysis of olive felling residues

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, L.; Ferrer, J.L. (Universidad de Cordoba, Cordoba (Spain). Dept. de Ingenieria Quimica)

    1992-04-01

    The kinetics of hydrolysis of olive tree felling residues with 1-4% HCl at temperatures between 110 and 140{degree}C have been studied. The experimental results obtained were consistent with two successive first-order reactions by which cellulose residues are transformed into sugars, which in turn are converted into decomposition products. The kinetic constants of the process (per hour) were found to be related to the acid concentration used (C, in weight percent) and to the absolute temperature. According to the above-mentioned kinetic model, the experimental sugar concentrations obtained by hydrolysis were reproduced with errors less than 10-20%. 16 refs., 3 figs., 7 tabs.

  9. Development of the springbok skin - colour pattern, hair slope and ...

    African Journals Online (AJOL)

    S.-Afr. Tydskr. Dierk. 1989,24(1). Development of the springbok skin - colour pattern, hair slope and horn rudiments in Antidorcas marsupialis. G.H. Findlay. Department of Dermatology, Faculty of Medicine, University of Pretoria, Pretoria, 0001 Republic of South Africa·. Received 19 May 1988; accepted 8 September 1988.

  10. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    This paper aims to investigate the effect of anisotropy of shear strength parameter on the stability of a sandy slope by performing the limit equilibrium analysis. Because of scarcity of mathematical equation for anisotropic friction angle of sand, at first, all results of principal stress rotation tests are processed by artificial neural ...

  11. Experimental research on stability of covering blocks for sloping banks

    International Nuclear Information System (INIS)

    Okuno, Toshihiko

    1988-01-01

    In the case of constructing thermal and nuclear power stations facing open seas, usually the harbors for unloading fuel and others are constructed. In Japan, breakwaters are installed in the places of relatively shallow depth less than 20 m, and in such case, the sloping banks having the covering material of wave-controlling blocks made of concrete are mostly adopted as those are excellent in their function and economical efficiency, and are advantageous in the maintenance and management. Sloping banks are of such type that wave-controlling blocks cover the vertical front face of nonpermeating caissons, and the same type was adopted for breakwaters and others in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc. As for the wave-controlling blocks, tetrapods and shake blocks were used. One of the most important problems in the design of sloping banks is how to estimate the stability of wave controlling blocks. In this paper, the results of the examination by hydraulic model experiment on the stability of covering blocks are reported, which are useful as the basic data for the rational and economical design of sloping banks. The experimental setup and a model bank, the generation of experimental waves and their characteristics, the experimental conditions and experimental method, and the results are reported. (Kako, I.)

  12. Wave Run-Up on Sloping Coastal Structures

    DEFF Research Database (Denmark)

    Rouck, J. De; Troch, P.; Ronde, J. De

    Wave run-up is one of the main physical processes which is taken into account in the design of the crest level of sloping coastal structures. Until recently, solely physical model results were used for the crest level design. However, prototype measurements have indicated that scale models...

  13. Nonlinear assessment of time series from rock slope monitoring

    Czech Academy of Sciences Publication Activity Database

    Zvelebil, J.; Paluš, Milan

    2007-01-01

    Roč. 9 (2007), A-05649 ISSN 1029-7006. [General Asembly of the European Geophysical Society. 15.04.2007-20.04.2007, Vienna] Institutional research plan: CEZ:AV0Z10300504 Keywords : fractal * scaling * unstable rock slope * collapse prediction * engineering geology Subject RIV: DG - Athmosphere Sciences, Meteorology

  14. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  15. Soil erosion and management activities on forested slopes

    Science.gov (United States)

    Robert R. Ziemer

    1986-01-01

    Some of the most productive forests in the Western United States grow on marginally stable mountainous slopes, where disturbance increases the likelihood of erosion. Much of the public's concern about, and, consequently, most of the research on, erosion from these forested areas is related more to the degradation of stream resources by eroded material than to the...

  16. Erosion protection for soil slopes along Virginia's highways.

    Science.gov (United States)

    2000-01-01

    A survey of the state of practice for designing slope erosion control measures within VDOT's nine districts has been conducted. On the basis of the survey, it is clear that there are no specific design procedures currently in use within VDOT for deal...

  17. Effect of Angle of Attack on Slope Climbing Performance

    Science.gov (United States)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  18. End depth in steeply sloping rough rectangular channels

    Indian Academy of Sciences (India)

    Conte S D, de Boor C 1987 Elementary numerical analysis: An algorithmic approach (New York: McGraw-Hill). Davis A C, Ellett B G S, Jacob R P 1998 Flow measurement in sloping channels with rectangular free overfall. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 760±763. Davis A C, Jacob R P, Ellett B G S 1999 Estimating ...

  19. Title Qualitative stability assessment of cut slopes along the national ...

    Indian Academy of Sciences (India)

    64

    Monitoring: ISRM Suggested Methods. Pergamon Press, London. Kundu J, Sarkar K, Singh AK (2016) Integrating structural and numerical solutions for road cut slope stability analysis-A case study, India. Rock Dynamics: From Research to. Engineering: Proceedings of the 2nd International Conference on Rock Dynamics ...

  20. Spider (Araneae) communities of scree slopes in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Klimeš, Leoš

    2005-01-01

    Roč. 33, č. 2 (2005), s. 280-289 ISSN 0161-8202 R&D Projects: GA AV ČR(CZ) IAA6007401 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z6005908 Keywords : scree slopes * environmental factors * ice formation Subject RIV: EG - Zoology Impact factor: 0.557, year: 2005

  1. Data compression by a decreasing slope-threshold test

    Science.gov (United States)

    Kleinrock, L.

    1973-01-01

    Resolution can be obtained at large compression ratios with method for selecting data points for transmission by telemetry in television compressed-data system. Test slope of raw data stream and compare it to symmetric pair of decreasing thresholds. When either threshold is exceeded, data are sampled and transmitted; thresholds are reset, and test begins again.

  2. Oscillating Nocturnal Slope Flow in a Coastal Valley

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry

    1985-01-01

    Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...

  3. Air quality in bedded mono-slope beef barns

    Science.gov (United States)

    Bedded mono-slope barns are becoming more common in the upper Midwest. Because these are new facilities, little research has been published regarding environmental quality, building management and animal performance in these facilities. A team of researchers from South Dakota State University, USDA ...

  4. How the spatial variation of tree roots affects slope stability

    Science.gov (United States)

    Mao, Zhun; Stokes, A.; Jourdan, C.; Rey, H.; Courbaud, B.; Saint-André, L.

    2010-05-01

    It is now widely recognized that plant roots can reinforce soil against shallow mass movement. Although studies on the interactions between vegetation and slope stability have significantly augmented in recent years, a clear understanding of the spatial dynamics of root reinforcement (through additional cohesion by roots) in subalpine forest is still limited, especially with regard to the roles of different forest management strategies or ecological landscapes. The architecture of root systems is important for soil cohesion, but in reality it is not possible to measure the orientation of each root in a system. Therefore, knowledge on the effect of root orientation and anisotropy on root cohesion on the basis of in situ data is scanty. To determine the effect of root orientation in root cohesion models, we investigated root anisotropy in two mixed, mature, naturally regenerated, subalpine forests of Norway spruce (Picea abies), and Silver fir (Abies alba). Trees were clustered into islands, with open spaces between each group, resulting in strong mosaic heterogeneity within the forest stand. Trenches within and between clusters of trees were dug and root distribution was measured in three dimensions. We then simulated the influence of different values for a root anisotropy correction factor in forests with different ecological structures and soil depths. Using these data, we have carried out simulations of slope stability by calculating the slope factor of safety depending on stand structure. Results should enable us to better estimate the risk of shallow slope failure depending on the type of forest and species.

  5. Slope Stability Analysis Using Slice-Wise Factor of Safety

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2014-01-01

    Full Text Available The concept of slice-wise factor of safety is introduced to investigate the state of both the whole slope and each slice. The assumption that the interslice force ratio is the same between any two slices is made and the eccentric moment of slice weight is also taken into account. Then four variables equations are formulated based on the equilibrium of forces and moment and the assumption of interslice forces, and then the slice-wise factor of safety along the slip surface can be obtained. The active and passive sections of the slope can be determined based on the distribution of factor of safety. The factor of safety of the whole slope is also defined as the ratio of the sum of antisliding force to the sum of sliding force on the slip surface. Two examples with different slip surface shapes are analysed to demonstrate the usage of the proposed method. The slice-wise factor of safety enables us to determine the sliding mechanism and pattern of a slope. The reliability is verified by comparing the overall factor of safety with that calculated by conventional methods.

  6. Slope histogram distribution-based parametrisation of Martian geomorphic features

    Science.gov (United States)

    Balint, Zita; Székely, Balázs; Kovács, Gábor

    2014-05-01

    The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.

  7. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  8. 30 CFR 716.2 - Steep-slope mining.

    Science.gov (United States)

    2010-07-01

    ... original contour restoration requirements. (1) This section applies to surface coal mining operations on... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep-slope mining. 716.2 Section 716.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM...

  9. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    1Faculty of Engineering, Azarbaijan Shahid Madani University, ... 2School of Civil Engineering, Iran University of Science and Technology, ..... material. 4.3 Stability analysis result. For each analysis case with specified geometrical configuration for slope, a wide range of slip surfaces are considered by establishing a grid of ...

  10. Soil conservation options for olive orchards on sloping land

    NARCIS (Netherlands)

    Fleskens, L.; Graaff, de J.

    2003-01-01

    Olive production is an important and growing agricultural activity throughout the Meditteranean zone. At the same time, soil erosion is one of the environmental key problems in this zone. Actual erosion in olive production areas is high, in particular on sloping land. Several erosion risk factors

  11. Slope failure susceptibility zonation using integrated remote sensing ...

    Indian Academy of Sciences (India)

    61

    The susceptibility of slopes in open pit coal mines to various modes of failure (i.e. plane, wedge, circular and toppling failure) could be envisaged by virtue of processing and analysis of pertinent satellite data. The aim of the present study was to integrate thematic maps generated using remote sensing image processing ...

  12. Title Qualitative stability assessment of cut slopes along the national ...

    Indian Academy of Sciences (India)

    64

    Keeping an eye to above problems, a study was carried out along NH-05 covering a stretch of 12 km from Jhakri to Jeori ... 2016). Regional strike of lithological units is ENE-WSW which shows local variations in the trend (Singh 1979). .... Slope 3 is exposed to wedge failure and trend of the intersection line is towards 301°.

  13. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  14. Infiltration on mountain slopes: a comparison of three environments.

    Science.gov (United States)

    Carol P. Harden*; P. Delmas Scruggs

    2003-01-01

    Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at...

  15. 30 CFR 785.15 - Steep slope mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  16. Challenging conservation agriculture on marginal slopes in Sehoul, Morocco

    NARCIS (Netherlands)

    Schwilch, G.; Laouina, A.; Chaker, M.; Machouri, N.; Sfa, M.; Stroosnijder, L.

    2015-01-01

    In Sehoul, Morocco, the use of marginal land for agriculture became a necessity for the local population due to increased poverty and the occupation of the best land by new owners. Desertification poses an additional threat to agricultural production on marginal slopes, which are often stony and

  17. A global safety deficiency : False glide slope capture affecting aircraft

    NARCIS (Netherlands)

    Schuurman, M.J.

    2016-01-01

    A serious incident occurred at Eindhoven Airport (Netherlands) in May 2013. A Boeing 737-800 performed a go-around while using the Instrument Landing System (ILS). The flight crew reported a False Glide Slope capture as the reason for the go-around.
    At first the occurrence report did not really

  18. A new vision of carbonate slopes: the Little Bahama Bank

    Science.gov (United States)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean

    2015-04-01

    Recent data collected in November 2014 (RV Walton Smith) on the upper slope of the Little Bahama Bank (LBB) between 30 and 400 m water depth allowed to characterize the uppermost slope (Rankey et al., 2012) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflection lines, 21 gravity cores and 11 Van Veen grabs. The upper slope of the LBB does not show a steep submarine cliff as known from western Great Bahama Bank. The carbonate bank progressively deepens towards the basin through a slighty inclined plateau. The slope value is reef rests on paleo-reefs that outcrop at a water depth of about 40 m. These paleo-reef structures could represent reefs that established themselves during past periods of sea-level stagnation. Below this water depth, the slope steepens up to 30° to form the marginal escarpment (Rankey et al., 2012), which is succeeded by the open margin realm (Rankey et al., 2012). The slope inclination value decreases at about 180-200 m water depth. Between 20 and 200 m of water depth, the VHR seismic shows no seafloor sub-bottom reflector. Between 180 and 320 m water depth, the seafloor smoothens. The VHR seismic shows an onlapping sediment wedge, which starts in this water depth and shows a blind or very crudely stratified echo facies. The sediment thickness of this Holocene unit may exceed 20 m. It fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. Sediment samples show the abundancy of carbonate mud on the present Bahamian seafloor. In gullies, coarser sediment can be found. In some case, soft sediments are absent suggesting by-passing. At water depth between 40 and 100 m, the present-day seafloor is covered with bioclastic sediments. The main carbonate producer seems to be the alga genus Halimeda. Sediments collected in the deeper part of the basin (water depth = 1080 m) on the distal lobe consist of

  19. Stochastic Models of Human Errors

    Science.gov (United States)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  20. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  1. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment)

    Science.gov (United States)

    Sobol, N. V.; Gabbasova, I. M.; Komissarov, M. A.

    2017-09-01

    The effect of rainfall intensity on the erosion of residual calcareous agrogray soils and clay-illuvial agrochernozems in the Southern Cis-Ural region on slopes of different inclination and vegetation type has been studied by simulating with a small-size sprinkler. It has been shown that soil loss linearly depends on rainfall intensity (2, 4, and 6 mm/min) and slope inclination (3° and 7°). When the rainfall intensity and duration, and the slope inclination increase, soil loss by erosion from agrogray soils increases higher than from agrochernozems. On the plowland with a slope of 3°, runoff begins 12, 10, and 5 min, on the average, after the beginning of rains at these intensities. When the slope increases to 7°, runoff begins earlier by 7, 6, and 4 min, respectively. After the beginning of runoff and with its increase by 1 mm, the soil loss from slopes of 3° and 7° reaches 4.2 and 25.7 t/ha on agrogray soils and 1.4 and 4.7 t/ha on agrochernozems, respectively. Fallow soils have higher erosion resistance, and the soil loss little depends on the slope gradient: it gradually increases to 0.3-1.0 t/ha per 1 mm of runoff with increasing rainfall intensity and duration. The content of physical clay in eroded material is higher than in the original soils. Fine fractions prevail in this material, which increases their humus content. The increase in rainfall intensity and duration to 4 and 6 mm/min results in the entrapment of coarse silt and sand by runoff.

  2. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    Science.gov (United States)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  3. Analysis on residual strain of Zipingpu Concrete Faced Rockfill Dam after Wenchuan earthquake

    Science.gov (United States)

    Liu, Zhenping; Chi, Shichun

    2013-06-01

    The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong earthquake anywhere in the world. Based on the finite element smoothing method, the residual strains at a typical cross-section and a downstream slope of the dam were obtained by processing the dam monitored displacement data. The position of and reason for the dam settlement and deformation of rockfill dilatancy in the earthquake were analyzed according to the section residual strain. The results show that the maximum settlement ratio on the dam body approximately occurs at 2/3 of the dam height; dilatancy occurs from the dam crest to 25-30 m in the upstream and downstream slope; the immediate cause of the face slabs horizontal construction joint dislocation is excessive residual shear strain. Meanwhile, the position of and reason for the dam fissure in the earthquake were analyzed according to the dam slope residual strain.

  4. Experimental Study on Slope Deformation Monitoring Based on a Combined Optical Fiber Transducer

    Directory of Open Access Journals (Sweden)

    Yong Zheng

    2017-01-01

    Full Text Available Landslide monitoring is very important in predicting the behavior of landslides, thereby ensuring environment, life, and property safety. On the basis of our previous studies, a novel combined optic fiber transducer (COFT for landslides monitoring and the related analysis methods are presented. Based on the principles of optical fiber microbending loss, the empirical formula of the shearing displacement of sliding body versus optical loss was established through a stretching test of optical fiber bowknot. Then the COFT grouting direct shearing tests, a large-scale landslide model test, and numerical modeling verification with FLAC3D are carried out. According to the results, the initial measurement precision of the designed COFT in sandy clay is 1 mm; its monitoring sliding distance is larger than 26.5 mm. The calculated values based on empirical formula are in good agreement with the laboratory tests and numerical simulation results. When the ratio of cement and sand in mortar is 1 : 5, the error between the calculated displacement and the measured displacement of sliding surface is the smallest. The COFT with expandable polystyrene (EPS as its base material performs better in monitoring sandy clay slopes because both the error and the mean square deviation of the empirical formula are smaller.

  5. Comprehensive Error Rate Testing (CERT)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) implemented the Comprehensive Error Rate Testing (CERT) program to measure improper payments in the Medicare...

  6. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  7. Numerical optimization with computational errors

    CERN Document Server

    Zaslavski, Alexander J

    2016-01-01

    This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s meth...

  8. Aging transition by random errors

    Science.gov (United States)

    Sun, Zhongkui; Ma, Ning; Xu, Wei

    2017-02-01

    In this paper, the effects of random errors on the oscillating behaviors have been studied theoretically and numerically in a prototypical coupled nonlinear oscillator. Two kinds of noises have been employed respectively to represent the measurement errors accompanied with the parameter specifying the distance from a Hopf bifurcation in the Stuart-Landau model. It has been demonstrated that when the random errors are uniform random noise, the change of the noise intensity can effectively increase the robustness of the system. While the random errors are normal random noise, the increasing of variance can also enhance the robustness of the system under certain conditions that the probability of aging transition occurs reaches a certain threshold. The opposite conclusion is obtained when the probability is less than the threshold. These findings provide an alternative candidate to control the critical value of aging transition in coupled oscillator system, which is composed of the active oscillators and inactive oscillators in practice.

  9. The uncorrected refractive error challenge

    Directory of Open Access Journals (Sweden)

    Kovin Naidoo

    2016-11-01

    Full Text Available Refractive error affects people of all ages, socio-economic status and ethnic groups. The most recent statistics estimate that, worldwide, 32.4 million people are blind and 191 million people have vision impairment. Vision impairment has been defined based on distance visual acuity only, and uncorrected distance refractive error (mainly myopia is the single biggest cause of worldwide vision impairment. However, when we also consider near visual impairment, it is clear that even more people are affected. From research it was estimated that the number of people with vision impairment due to uncorrected distance refractive error was 107.8 million,1 and the number of people affected by uncorrected near refractive error was 517 million, giving a total of 624.8 million people.

  10. The 137Cs technique applied to steep Mediterranean slopes (Part I): the effects of lithology, slope morphology and land use

    NARCIS (Netherlands)

    Schoorl, J.M.; Boix Fayos, C.; Meijer, de R.J.; Graaff, van der E.R.; Veldkamp, A.

    2004-01-01

    Concentrations in the soil of anthropogenic and natural radionuclides have been investigated in order to assess the applicability of the Cs-137 technique in an area of typical Mediterranean steep slopes. This technique can be used to estimate net soil redistribution rates but its potential in areas

  11. The Cs-137 technique applied to steep Mediterranean slopes (Part I) : the effects of lithology, slope morphology and land use

    NARCIS (Netherlands)

    de Meijer, R.J.; van der Graaf, E.R.

    2004-01-01

    Concentrations in the soil of anthropogenic and natural radionuclides have been investigated in order to assess the applicability of the Cs-137 technique in an area of typical Mediterranean steep slopes. This technique can be used to estimate net soil redistribution rates but its potential in areas

  12. Negligence, genuine error, and litigation

    OpenAIRE

    Sohn, David

    2013-01-01

    David H SohnDepartment of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH, USAAbstract: Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort syst...

  13. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  14. Quantum error correction for beginners

    International Nuclear Information System (INIS)

    Devitt, Simon J; Nemoto, Kae; Munro, William J

    2013-01-01

    Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future. (review article)

  15. Medical Error and Moral Luck.

    Science.gov (United States)

    Hubbeling, Dieneke

    2016-09-01

    This paper addresses the concept of moral luck. Moral luck is discussed in the context of medical error, especially an error of omission that occurs frequently, but only rarely has adverse consequences. As an example, a failure to compare the label on a syringe with the drug chart results in the wrong medication being administered and the patient dies. However, this error may have previously occurred many times with no tragic consequences. Discussions on moral luck can highlight conflicting intuitions. Should perpetrators receive a harsher punishment because of an adverse outcome, or should they be dealt with in the same way as colleagues who have acted similarly, but with no adverse effects? An additional element to the discussion, specifically with medical errors, is that according to the evidence currently available, punishing individual practitioners does not seem to be effective in preventing future errors. The following discussion, using relevant philosophical and empirical evidence, posits a possible solution for the moral luck conundrum in the context of medical error: namely, making a distinction between the duty to make amends and assigning blame. Blame should be assigned on the basis of actual behavior, while the duty to make amends is dependent on the outcome.

  16. Marine Tar Residues: a Review

    OpenAIRE

    Warnock, April M.; Hagen, Scott C.; Passeri, Davina L.

    2015-01-01

    Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in ...

  17. Improved estimations of low-degree coefficients using GPS displacements with reduced non-loading errors

    Science.gov (United States)

    Wei, Na; Shi, Chuang; Wang, Guangxing; Liu, Jingnan

    2018-02-01

    We investigate and try to reduce the impacts on low-degree estimates of non-loading errors, that is, aliasing of unmodeled loading and Global Positioning System (GPS) draconitic year errors, to improve the sensitivity of GPS observations to the loading mass. Three GPS data sets, ITRF2008-GPS residuals, ITRF2014-GPS residuals and Jet Propulsion Laboratory (JPL)'s residuals, are used and compared in this paper. Results show that the aliasing signals in GPS displacements is an important error source, especially for inferring geocentre motion. The two International Terrestrial Reference Frame (ITRF)-GPS residuals generated in a two-step combination based on Helmert transformation show more complex aliasing errors than JPL's residuals produced in precise point positions mode. The seasonal variations of geocentre motion derived from JPL thus perform the best among all three solutions, while the higher degree coefficients from the two ITRF-GPS solutions do better. Compared with ITRF2008-GPS residuals, the aliasing errors are indeed reduced, and geocentre motion/{{Δ }}T_{20}^C (degree-2 zonal coefficients in terms of surface mass density) are also much improved for ITRF2014-GPS residuals produced with a six-parameter transformation without scale parameter. Additional translation parameters should be included into ITRF2008-GPS residuals, or else {{Δ }}T_{20}^C cannot be correctly obtained. The draconitic errors pose another obstacle to accurately studying the seasonal variations of surface loading using GPS data. The draconitic harmonics (first, second and third) are well extracted from ITRF2014-derived {{Δ }}T_{20}^C and {{Δ }}T_{21}^S (degree-2 and order-1 sine coefficients), even if the time span is not long enough to independently separate the seasonal variations and draconitic harmonics. These errors account for an increase of about 10 per cent in the annual amplitude of ITRF2014-derived {{Δ }}T_{20}^C and {{Δ }}T_{21}^S. Removing the found draconitic errors

  18. Measurement Error Variance of Test-Day Obervations from Automatic Milking Systems

    DEFF Research Database (Denmark)

    Pitkänen, Timo; Mäntysaari, Esa A; Nielsen, Ulrik S

    2012-01-01

    Automated milking systems (AMS) are becoming more popular in dairy farms. In this paper we present an approach for estimation of residual error covariance matrices for AMS and conventional milking system (CMS) observations. The variances for other random effects are kept as defined in the evaluat......Automated milking systems (AMS) are becoming more popular in dairy farms. In this paper we present an approach for estimation of residual error covariance matrices for AMS and conventional milking system (CMS) observations. The variances for other random effects are kept as defined...

  19. Morphostructure at the junction between the Beata ridge and the Greater Antilles island arc (offshore Hispaniola southern slope)

    Science.gov (United States)

    Granja Bruña, J. L.; Carbó-Gorosabel, A.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.; Gómez Ballesteros, M.; Druet, M.; Pazos, A.

    2014-03-01

    Oblique convergence between the Caribbean plate's interior and the inactive Greater Antilles island arc has resulted in the collision and impingement of the thickened crust of the Beata ridge into southern Hispaniola Island. Deformation resulting from this convergence changes from a low-angle southward-verging thrust south of eastern Hispaniola, to collision and uplift in south-central Hispaniola, and to left-lateral transpression along the Southern peninsula of Haiti in western Hispaniola. Using new swath bathymetry and a dense seismic reflection grid, we mapped the morphological, structural and sedimentological elements of offshore southern Hispaniola. We have identified four morphotectonic provinces: the Dominican sub-basin, the Muertos margin, the Beata ridge and the Haiti sub-basin. The lower slope of the Muertos margin is occupied by the active Muertos thrust belt, which includes several active out-of-sequence thrust faults that, were they to rupture along their entire length, could generate large-magnitude earthquakes. The interaction of the thrust belt with the Beata ridge yields a huge recess and the imbricate system disappears. The upper slope of the Muertos margin shows thick slope deposits where the extensional tectonics and slumping processes predominate. The northern Beata ridge consists of an asymmetrically uplifted and faulted block of oceanic crust. Our results suggest that the shallower structure and morphology of the northern Beata ridge can be mainly explained by a mechanism of extensional unloading from the Upper Cretaceous onward that is still active residually along the summit of the ridge. The tectonic models for the northern Beata ridge involving active reverse strike-slip faults and transpression caused by the oblique convergence between the Beata ridge and the island arc are not supported by the structural interpretation. The eastern Bahoruco slope an old normal fault that acts as a passive tear fault accommodating the sharp along

  20. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    Science.gov (United States)

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data