WorldWideScience

Sample records for residual effective interactions

  1. Universal relationship connecting various two-body effective residual interactions

    International Nuclear Information System (INIS)

    Knuepfer, W.; Huber, M.G.

    1976-01-01

    Starting from a momentum space analysis of the two-body matrix elements, a relation has been established between the size of the model space actually used in a specific calculation and the relevant properties of the effective residual interaction. It turns out that the two-body transition density acts like a filter function on the Fourier transform of the force; it exhibits a distinct structure which clearly reflects the size and the detailed properties of the configuration space actually used. From an investigation of this filter function an equivalence criterion for different effective residual two-body interactions has been established both for closed and open shell nuclei. This result can be used to construct simple although realistic effective forces. As an example, a model for a separable residual interaction is proposed in which the corresponding parameters are being clearly related to the nuclear radius (i.e., the mass number), to the quantum numbers (i.e., the angular momentum) of the state under consideration and to the size of the configuration space used. For a number of examples this force has been applied successfully for the description of low energy properties of both closed and open shell nuclei

  2. Identification of mannose interacting residues using local composition.

    Directory of Open Access Journals (Sweden)

    Sandhya Agarwal

    Full Text Available BACKGROUND: Mannose binding proteins (MBPs play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs in order to understand mechanism of recognition of pathogens by MBPs. RESULTS: This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM based models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence similarity. SVM models were developed on two types of datasets: 1 main dataset consists of 1029 mannose interacting and 1029 non-interacting residues, 2 realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues. In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/. CONCLUSIONS: Compositional analysis of mannose interacting and non-interacting residues shows that certain types of residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of interacting residues. This study will be useful in annotating the function

  3. Prediction of interface residue based on the features of residue interaction network.

    Science.gov (United States)

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Residual correlation in two-proton interferometry from Λ-proton strong interactions

    International Nuclear Information System (INIS)

    Wang, Fuqiang

    1999-01-01

    We investigate the residual effect of Λp strong interactions in pp correlations with one proton from Λ decays. It is found that the residual correlation is about 10% of the Λp correlation strength, and has a broad distribution centered around q≅40 MeV/c. The residual correlation cannot explain the observed structure on the tail of the recently measured pp correlation function in central Pb+Pb collisions by NA49 at the Super Proton Synchrotron. (c) 1999 The American Physical Society

  5. The residual proton-neutron interaction and nuclear collectivity

    International Nuclear Information System (INIS)

    Casten, R.F.

    1990-01-01

    The essential role of the valence, residual p-n interaction in the development of collectivity, though long known in general terms, has recently become increasingly apparent. A brief review of the p-n interaction is given, including some very basic nuclear data that illustrate its effects and the phenomenological N p N n scheme and the P-factor. This is followed by a discussion of recent experimental extractions of p-n matrix elements throughout the periodic table and theoretical efforts to understand them, in terms of both Shell and Nilsson models. 20 refs., 13 figs

  6. Effects of the residual proton-neutron interaction in the development of collectivity in nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.

    1990-01-01

    The widespread effects of the residual T=0 proton-neutron (p-n) interaction in the evolution of nuclear structure are discussed. Although these effects in inducing single nucleon configuration mixing, and hence in the development of non-spherical nuclear shapes, collectivity, and the associated shape and phase transitions have been known for four decades, it is only in recent years that their deep ramifications have become more fully appreciated. This had led to a unified phenomenological understanding of the role of the p-n interaction in nuclear collectivity and to, for example, the proposal of the N p N n scheme and the associated concept of the P factor, which is a normalized value of N p N n reflecting the average number of p-n interactions per valence nucleon. Simultaneously, experimentally-determined p-n matrix elements for many nuclei have been extracted: they disclose striking anomalies for N=Z nuclei, and intriguing microstructure. These developments and empirical results will be discussed along with microscopic calculations that can be used to interpret them. 18 refs., 13 figs

  7. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    Science.gov (United States)

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  8. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    Science.gov (United States)

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  9. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  10. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  11. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information

    Directory of Open Access Journals (Sweden)

    Panwar Bharat

    2013-02-01

    Full Text Available Abstract Background The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. Results In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL. It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i vitamin interacting residues (VIRs, (ii vitamin-A interacting residues (VAIRs, (iii vitamin-B interacting residues (VBIRs and (iv pyridoxal-5-phosphate (vitamin B6 interacting residues (PLPIRs have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM features of protein sequences. Finally, we selected best performing SVM modules and

  12. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.

    Science.gov (United States)

    Panwar, Bharat; Gupta, Sudheer; Raghava, Gajendra P S

    2013-02-07

    The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0

  13. Identification of NAD interacting residues in proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2010-03-01

    Full Text Available Abstract Background Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs from amino acid sequence using bioinformatics tools. Results We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity. In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred. A support vector machine (SVM based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC 0.47 with accuracy 74.13% at window length 17

  14. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors

    Directory of Open Access Journals (Sweden)

    Fengqi Xu

    2018-05-01

    Full Text Available Measles virus (MV causes an acute and highly devastating contagious disease in humans. Employing the crystal structures of three human receptors, signaling lymphocyte-activation molecule (SLAM, CD46, and Nectin-4, in complex with the measles virus hemagglutinin (MVH, we elucidated computationally the details of binding energies between the amino acid residues of MVH and those of the receptors with an ab initio fragment molecular orbital (FMO method. The calculated inter-fragment interaction energies (IFIEs revealed a number of significantly interacting amino acid residues of MVH that played essential roles in binding to the receptors. As predicted from previously reported experiments, some important amino-acid residues of MVH were shown to be common but others were specific to interactions with the three receptors. Particularly, some of the (non-polar hydrophobic residues of MVH were found to be attractively interacting with multiple receptors, thus indicating the importance of the hydrophobic pocket for intermolecular interactions (especially in the case of Nectin-4. In contrast, the electrostatic interactions tended to be used for specific molecular recognition. Furthermore, we carried out FMO calculations for in silico experiments of amino acid mutations, finding reasonable agreements with virological experiments concerning the substitution effect of residues. Thus, the present study demonstrates that the electron-correlated FMO method is a powerful tool to search exhaustively for amino acid residues that contribute to interactions with receptor molecules. It is also applicable for designing inhibitors of MVH and engineered MVs for cancer therapy.

  15. The RING 2.0 web server for high quality residue interaction networks.

    Science.gov (United States)

    Piovesan, Damiano; Minervini, Giovanni; Tosatto, Silvio C E

    2016-07-08

    Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico-chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain-domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π-π stacking and π-cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.

    Science.gov (United States)

    Khashan, Raed; Zheng, Weifan; Tropsha, Alexander

    2012-08-01

    Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods. Copyright © 2012 Wiley Periodicals, Inc.

  17. Extended Lipkin-type models with residual proton-neutron interaction

    International Nuclear Information System (INIS)

    Stoica, S.

    1999-01-01

    Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)

  18. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  19. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2017-01-01

    Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. Effect of inorganic chelate of zinc and restaurant residual oil added ...

    African Journals Online (AJOL)

    Effect of inorganic chelate of zinc and restaurant residual oil added to feed mixture ... The interaction effects of RRO and ZnO did not result to a significant change in ... Therefore, the effects of RRO deteriorated the quality of meat by raising the ...

  1. The effect of delignification process with alkaline peroxide on lactic acid production from furfural residues

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2012-11-01

    Full Text Available Furfural residues produced from the furfural industry were investigated as a substrate for lactic acid production by simultaneous saccharification and fermentation (SSF. Alkaline peroxide was used for delignification of furfural residues to improve the final lactic acid concentration. The residue was treated with 1.3% to 1.7% hydrogen peroxide at 80 °C for 1 h with a substrate concentration of 3.33%. SSF of furfural residues with different delignification degrees were carried out to evaluate the effect of delignification degree on lactic acid production. Using corn hydrolysates/ furfural residues as substrates, SSF with different media were carried out to investigate the effect of lignin on the interaction between enzymes and lactic acid bacteria. Lactic acid bacteria had a negative effect on cellulase, thus resulting in the reduction of enzyme activity. Lignin and nutrients slowed down the decreasing trend of enzyme activity. A higher delignification resulted in a slower fermentation rate and lower yield due to degradation products of lignin and the effect of lignin on the interaction between enzymes and lactic acid bacteria. For the purpose of lactic acid production, a moderate delignification (furfural residues with the lignin content of 14.8% was optimum.

  2. Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.

    Science.gov (United States)

    Ng, Derek P; Deber, Charles M

    2016-08-09

    Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes.

  3. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Directory of Open Access Journals (Sweden)

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  4. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    Science.gov (United States)

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  5. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper

    We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases....

  6. Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor.

    Science.gov (United States)

    Migliori, Amy D; Smith, Douglas E; Arya, Gaurav

    2014-12-12

    Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper......Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self......, TIP4P or TIP3P; i.e., each water model requires specific water-charged molecule interaction potentials. New models (models 1 and 3) are thus described for both water models. Uncertainties in relative free energies of charged residues are ~2 kcal/mol with the new parameters, due to variations in system...

  8. Interplay between symmetries and residual interactions in rotating nuclei

    International Nuclear Information System (INIS)

    Cwiok, S.; Kvasil, J.; Nazmitdinov, R.G.

    1990-01-01

    Using the space rotation and translation invariance of the nuclear Hamiltonian, the residual interactions for a rotating nucleus are constructed. The connection is found between the Goldstone modes of motion (spurious states) and the symmetries of equations of motion in Random Phase Approximation for states near the yrast line. (author). 18 figs

  9. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    Science.gov (United States)

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  10. Computational design, construction, and characterization of a set of specificity determining residues in protein-protein interactions.

    Science.gov (United States)

    Nagao, Chioko; Izako, Nozomi; Soga, Shinji; Khan, Samia Haseeb; Kawabata, Shigeki; Shirai, Hiroki; Mizuguchi, Kenji

    2012-10-01

    Proteins interact with different partners to perform different functions and it is important to elucidate the determinants of partner specificity in protein complex formation. Although methods for detecting specificity determining positions have been developed previously, direct experimental evidence for these amino acid residues is scarce, and the lack of information has prevented further computational studies. In this article, we constructed a dataset that is likely to exhibit specificity in protein complex formation, based on available crystal structures and several intuitive ideas about interaction profiles and functional subclasses. We then defined a "structure-based specificity determining position (sbSDP)" as a set of equivalent residues in a protein family showing a large variation in their interaction energy with different partners. We investigated sequence and structural features of sbSDPs and demonstrated that their amino acid propensities significantly differed from those of other interacting residues and that the importance of many of these residues for determining specificity had been verified experimentally. Copyright © 2012 Wiley Periodicals, Inc.

  11. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies.

    Science.gov (United States)

    Anda, André; De Vico, Luca; Hansen, Thorsten

    2017-06-08

    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  12. Agrochemical residue-biota interactions in soil and aquatic ecosystems

    International Nuclear Information System (INIS)

    1980-01-01

    Two FAO/IAEA coordinated research programmes are concerned with isotopic tracer-aided studies of agrochemical residue-biota interactions in soils and aquatic ecosystems. They currently involve 18 studies in 14 countries: Brazil, Canada, Egypt, F.R. Germany, Hungary, India, Indonesia, Iraq, Israel, Malaysia, Thailand, Turkey, USA and USSR. The aim was to develop, standardize and apply labelled substrate techniques for comparative assays of primary autotrophic and microheterotrophic production and decay, and complementary tracer techniques to determine the fate, persistence and bioconcentration of trace contaminants. Comparable data were studied concerning the current status of water bodies and likely changes due to contaminants. Soil capacity to decompose undesirable contaminants and residues, and to promote desirable transformations were studied. The techniques were also applied as a diagnostic and prognostic tool, with priority given to rice ecosystems

  13. The empirical residual proton-neutron interaction and the onset of collectivity in nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.

    1991-01-01

    The critical role of the residual valence p-n interaction in the development and evolution of collectivity, and the onset of shape/phase transitions, is discussed from the standpoint of phenomenological approaches, and empirical extraction of individual p-n interaction strengths, and simple model calculation of them. 22 refs., 18 figs

  14. Chaperone-like activity of β-casein and its effect on residual in vitro activity of horseradish peroxidase

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria; Olsen, Karsten; Sørensen, Jens Christian

    2014-01-01

    , as similar experiment with bovine serum albumin resulted in residual activity of horseradish peroxidase that was significantly lower than without any addition. The effect of β-casein on HRP disappears when pH is below the isoelectric point of β-casein. It was also proven by light scattering studies that β...... proteins. Incubating HRP (0.1 mg mL-1) for 10 min at 72 °C resulted in residual activity of 59 ± 5%, while addition of 1 mg mL-1 β-casein resulted in increase in residual activity up to 85 ± 1%. Increased residual activity is not merely attributed to an effect of higher total protein concentration......-casein interacts with horseradish peroxidase when the temperature was increased from 25 to 70 °C whereas interactions seem to cease when temperature was lowered back to 25 °C. This study highlights how specific proteins can influence enzyme activity, which is of potential importance for various industries...

  15. Polychlorinated Biphenyls (PCB) Residue Effects Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The PCB Residue Effects (PCBRes) Database was developed to assist scientists and risk assessors in correlating PCB and dioxin-like compound residues with toxic...

  16. Effect of mungbean residue and nitrogen levels on barley

    International Nuclear Information System (INIS)

    Jan, A.; Muhammad, Z.; Daur, I.; Khan, I.A.

    2011-01-01

    A field experiment was conducted to evaluate response of barley to mungbean residue (0, 10, 20 and 30 Mg ha/sup -1/), nitrogen levels (0, 25, 50 and 75 kg ha/sup -1/) and their interaction. Emergence m/sup -2/ (50), plant height (109 cm), leaf area tiller-1 (106 cm/sup 2/), lodging score (5.55), termites attack (3.4%), grains spike-1 (67), biological yield (12.80 Mg ha/sup -1/) and grain yield (2.32 Mg ha/sup -1/) were significantly (p=0.05) higher for 30 Mg ha/sup -1/ mungbean residue compared to other levels. Similarly plant height (110 cm), lodging score (5.29) and biological yield (13.75 Mg ha/sup -1/) were higher at 75 kg ha/sup -1/ N compared to other levels of N. Productive tillers m/sup -2/, grains spike/sup -1/, 1000 grain weight, grain yield and harvest index were optimum at 50 kg ha-1 N as compared to 75 kg ha/sup -1/ N that encouraged lodging. Interaction between residue and nitrogen indicated that 10 Mg residue and 50 kg N ha/sup -1/ is recommended to achieve maximum net return under comparable conditions. (author)

  17. Quantum oscillation signatures of spin-orbit interactions controlling the residual nodal bilayer-splitting in underdoped high-Tc cuprates

    Science.gov (United States)

    Harrison, Neil; Shekhter, Arkady

    2015-03-01

    We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.

  18. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  19. The role and effect of residual stress on pore generation during anodization of aluminium thin films

    International Nuclear Information System (INIS)

    Liao, M.W.; Chung, C.K.

    2013-01-01

    Highlights: •Al films of varying residual stress were prepared by sputtering. •Variation of the residual stress in the Al films influences pore growth during anodization. •The change in average pore size with residual stress is fairly small. •Interaction of residual stress with oxide growth stress leads to change in structure. •Residual tensile stress increases the pore density of porous alumina. -- Abstract: The role and effect of residual stress on pore generation of anodized aluminium oxide (AAO) have been investigated into anodizing the various-residual-stresses aluminium films. The plane stresses were characterised by X-ray diffraction with sin 2 ψ method. The pore density roughly linearly increased with residual stress from 64.6 (−132.5 MPa) to 90.5 pores/μm 2 (135.9 MPa). However, the average pore size around 40 nm was not changed significantly except for the rougher film. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation for higher pore density. The findings provide new foundations for realizing AAO films on silicon

  20. Effect of soil-bound residues of malathion on microbial activities

    International Nuclear Information System (INIS)

    Hussain, A.; Iqbal, Z.; Asi, M.R.; Tahira, R.; Chudhary, J.A.

    2001-01-01

    The effect of soil-bound residues of malathion on CO/sub 2/ evolution, dehydrogenase activity and some nitrogen transformations in a loam soil was investigated under laboratory conditions. The soil samples containing bound residues arising from 10 mg g-1 of the applied malathion were mixed in equal quantity with fresh soil and compared with solvent extracted control soil without bound residues (extracted in the same way as soil containing bound residues). Another control comprising un extracted fresh soil without bound residues was also kept to study the effect of solvent extraction on the biological activity. Rate of Carbon mineralization (CO/sub 2/ evolution) was decreased in the presence of soil-bound residues of malathion. Bound residues also affected dehydrogenase activity of soil. Over 40% inhibition of dehydrogenase activity was observed after 4 days and the inhibition persisted at least for 12 days. Nitrogen mineralization was stimulated in soil containing bound residues of malathion and this stimulatory effect increased with time of incubation. Nitrification was partially inhibited in the presence of soil-bound residues of malathion. The inhibitory effect of the soil-bound residues on nitrification did not show much variation with time. The soil-bound residues did not affect denitrification rate (N/sub 2/O evolution). Nitrogen fixation (acetylene reduction) was partially inhibited in soil amended with bound residues of malathion and the inhibitory effect persisted for at least one week. In general, soil bound residues of malathion inhibited CO/sub 2/ evolution, dehydrogenase activity, nitrification and nitrogen fixation while mineralization of nitrogen was stimulated. Denitrification was not affected by the applied insecticide. (author)

  1. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing. Progress report, FY 1985

    International Nuclear Information System (INIS)

    Close, J.A.; Jacobs, P.T.; Korth, G.E.; Mudlin, J.M.; Server, W.L.; Spaletta, H.W.

    1985-10-01

    This report documents the work performed on four research tasks in Fiscal Year 1985 (FY-1985) which were part of the Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing Project. The technical and management/institutional objectives for the project are described, followed by a description of the results of each task. The work on Task 1 involved identifying and prioritizing new research activities for the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research (NPAR) Program. A proposed methodology and plan for aging-system interaction studies was developed in Task 2. The description of Task 3 work comprises a summary of nuclear plant life extension activities in the US, the technical basis associated with the residual life of metallic materials and a proposed plan for research on residual life assessment. Task 4 describes the initial evaluation of selected Standard Review Plan (NUREG-0800) sections to investigate the feasibility of relicensing. 14 refs., 13 figs., 20 tabs

  3. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  4. Similarity of multi-fragmentation of residual nucleus created in nucleus-nucleus interactions at high energies

    International Nuclear Information System (INIS)

    Abdel-Hafiez, A.; Chernyavski, M.M.; Orlova, G.I.; Gulamov, K.G.; Navotny, V.SH.; Uzhinskii, V.V.

    2000-01-01

    Experimental data on multi-fragmentation of residual krypton nuclei created in the interactions of the krypton nuclei with photoemulsion nuclei ut energy of 0.9 GeV per nucleon are presented in a comparison with the analogous data on fragmentation of gold residual nuclei at the energy of 10.7 GeV/nucleon. It is shown for the first time that there are two regimes of nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with closed masses created at different reactions are fragmenting practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. The evidence of existence of a radial flow of the spectator fragment at the decay of residual krypton nuclei is found

  5. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme.

    Science.gov (United States)

    Babbitt, Shalon E; San Francisco, Brian; Bretsnyder, Eric C; Kranz, Robert G

    2014-08-19

    C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.

  6. Initial contents of residue quality parameters predict effects of larger soil fauna on decomposition of contrasting quality residues

    Directory of Open Access Journals (Sweden)

    Ratikorn Sanghaw

    2017-10-01

    Full Text Available A 52-week decomposition study employing the soil larger fauna exclusion technique through litter bags of two mesh sizes (20 and 0.135 mm was conducted in a long-term (18 yr field experiment. Organic residues of contrasting quality of N, lignin (L, polyphenols (PP and cellulose (CL all in grams per kilogram: rice straw (RS: 4.5N, 22.2L, 3.9PP, 449CL, groundnut stover (GN: 21.2N, 71.4L, 8.1PP, 361CL, dipterocarp leaf litter (DP: 5.1N, 303L, 68.9PP, 271CL and tamarind leaf litter (TM: 11.6N, 190L, 27.7PP, 212CL were applied to soil annually to assess and predict soil larger fauna effects (LFE on decomposition based on the initial contents of the residue chemical constituents. Mass losses in all residues were not different under soil fauna inclusion and exclusion treatments during the early stage (up to week 4 after residue incorporation but became significantly higher under the inclusion than the exclusion treatments during the later stage (week 8 onwards. LFE were highest (2–51% under the resistant DP at most decomposition stages. During the early stage (weeks 1–4, both the initial contents of labile (N and CL and recalcitrant C, and recalcitrant C interaction with labile constituents of residues showed significant correlations (r = 0.64–0.90 with LFE. In the middle stage (week 16, LFE under resistant DP and TM had significant positive correlations with L, L + PP and L/CL. They were also affected by these quality parameters as shown by the multiple regression analysis. In the later stages (weeks 26–52, the L/CL ratio was the most prominent quality parameter affecting LFE. Keywords: Mesofauna and macrofauna, Microorganisms, Recalcitrant and labile compounds, Residue chemical composition, Tropical sandy soil

  7. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  8. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Science.gov (United States)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  9. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  10. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  11. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  12. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

    Science.gov (United States)

    Madrakian, T.; Bagheri, H.; Afkhami, A.

    2015-05-01

    The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

  13. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  14. Three- and five-quasiparticle isomers, rotational bands and residual interactions in 175Hf

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Walker, P.M.

    1980-03-01

    Two 3-quasiparticle isomers with spins, parities and half lives of 19/2 + , 1.1 μ and 23/2 - , 1.2 ns have been identified at 1433 and 1766 keV in 175 Hf. A third isomer possibly 35/2 - with a 1.2 μs half-life is found at 3015 keV. The first two are characterised as a 7/2 + (633) neutron coupled to the known 6 + and 8 - 2-proton isomers of the core nuclei. Rotational bands based on the 3-qp isomers are highly perturbed, due to Coriolis mixing, and their structure is reproduced in a band mixing calculation. The energy depression of the 3-quasiparticle states relative to the 2-quasiproton core states is attributed mainly to the residual proton-neutron interaction, and possibly also to blocking effects through neutron admixtures

  15. Relocation of radioactive residuals store: environment effects statement

    International Nuclear Information System (INIS)

    1984-11-01

    This Environment Effects Statement describes and assesses the likely environmental effects of the proposal to relocate the Health Commission's existing radioactive residuals store to a site within the established Dutson Downs waste disposal area, located 20 km south-east of Sale and 225 km east of Melbourne. The information presented demonstrates that the siting and construction of the proposed radioactive residuals store and the procedures to be adopted for the handling and storage of materials will not present an unacceptable risk to public health and safety, nor will it involve any significant adverse environmental effects

  16. Contribution of the residue at position 4 within classical nuclear localization signals to modulating interaction with importins and nuclear targeting.

    Science.gov (United States)

    Smith, Kate M; Di Antonio, Veronica; Bellucci, Luca; Thomas, David R; Caporuscio, Fabiana; Ciccarese, Francesco; Ghassabian, Hanieh; Wagstaff, Kylie M; Forwood, Jade K; Jans, David A; Palù, Giorgio; Alvisi, Gualtiero

    2018-08-01

    Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Generic GPCR residue numbers - aligning topology maps while minding the gaps

    DEFF Research Database (Denmark)

    Isberg, Vignir; de Graaf, Chris; Bortolato, Andrea

    2015-01-01

    Generic residue numbers facilitate comparisons of, for example, mutational effects, ligand interactions, and structural motifs. The numbering scheme by Ballesteros and Weinstein for residues within the class A GPCRs (G protein-coupled receptors) has more than 1100 citations, and the recent crysta...

  18. Residual effects of hypnotics: an update.

    Science.gov (United States)

    Hindmarch, I

    1991-07-01

    The sedative/hypnotic benzodiazepines introduced worldwide in the early 1960s were acclaimed for their low chemical toxicity and safety in clinical use. A decade later, some researchers and clinicians found that while all the drugs had undoubted potency and efficacy as sleep inducers and maintainers, the trade-off in residual effects (e.g., excessive daytime tiredness, poor concentration, impaired psychomotor performance, lowered mental abilities) was cause for concern. These sequelae not only affected patients' safety and ability to perform daytime tasks, but were also counter-therapeutic; the daytime sleep that was produced interfered with the natural nocturnal sleep. In a recent study, the degree to which patient abilities were impaired was measured by a number of psychomotor tests. Benzodiazepines with a duration of clinical effect of less than 8 to 10 hours produced fewer, less frequent residual effects than those with a measurable activity in excess of the normal nocturnal sleep period.

  19. Interfacial Tryptophan Residues: A Role for the Cation-{pi} Effect?

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Jensen, Morten Ø.; Helix Nielsen, Claus

    2005-01-01

    Integral membrane proteins are characterized by having a preference for aromatic residues, e.g., tryptophan (W), at the interface between the lipid bilayer core and the aqueous phase. The reason for this is not clear, but it seems that the preference is related to a complex interplay between steric...... between the nitrogen moiety of lipid molecule headgroups and the pi-electron distribution of gramicidin (gA) tryptophan residues (W(9), W(11), W(13), and W(15)) using molecular dynamics (MD) simulations of gA embedded in two hydrated lipid bilayers composed of 1-palmitoyl-2-oleoylphosphatidylethanolamine....... Our criteria for cation-pi interactions are based on distance and angular requirements, and the results from our model suggest that cation-pi interactions are relevant for W(PE)(11), W(PE)(13), W(PE)(15), and, to some extent, W(PC)(11) and W(PC)(13). In our model, W(9)does not seem to engage in cation...

  20. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  1. Effects of Bio-char on Soil Microbes in Herbicide Residual Soils

    Directory of Open Access Journals (Sweden)

    WANG Gen-lin

    2015-10-01

    Full Text Available Effects of biological carbon (bio-char on soil microbial community were studied by pot experiments simulating long residual herbicide residues in soil environment, which clarifed the improvement of biochar and its structural properties on soil microenvironment. The results showed that fungi and actinomycetes had the same effect tendency within 0~0.72 mg·kg-1 in clomazone residue which increased the role of stimulation with crop growth process prolonged, especially in high residue treatment, but strong inhibitory effect on bacteria community was occured early which returned to normal until sugar beet growth to fiftieth day. Soil fungi community decreased with bio-char adding, but had no significant difference with the control. When clomazone residue in soil was below 0.24 mg·kg-1, soil actinomycetes community was higher than control without bio-char, bacteria increased first and then reduced after adding carbon as below 0.12 mg·kg-1. Biochar was ‘deep hole’ structure containing C, O, S and other elements. The results showed that a certain concentration clomazone residue in soil would stimulate soil fungi and actinomycetes to grow. After adding the biochar, the inhibition effect of high herbicides residual on bacterial would be alleviated.

  2. Technical note: Equivalent genomic models with a residual polygenic effect.

    Science.gov (United States)

    Liu, Z; Goddard, M E; Hayes, B J; Reinhardt, F; Reents, R

    2016-03-01

    Routine genomic evaluations in animal breeding are usually based on either a BLUP with genomic relationship matrix (GBLUP) or single nucleotide polymorphism (SNP) BLUP model. For a multi-step genomic evaluation, these 2 alternative genomic models were proven to give equivalent predictions for genomic reference animals. The model equivalence was verified also for young genotyped animals without phenotypes. Due to incomplete linkage disequilibrium of SNP markers to genes or causal mutations responsible for genetic inheritance of quantitative traits, SNP markers cannot explain all the genetic variance. A residual polygenic effect is normally fitted in the genomic model to account for the incomplete linkage disequilibrium. In this study, we start by showing the proof that the multi-step GBLUP and SNP BLUP models are equivalent for the reference animals, when they have a residual polygenic effect included. Second, the equivalence of both multi-step genomic models with a residual polygenic effect was also verified for young genotyped animals without phenotypes. Additionally, we derived formulas to convert genomic estimated breeding values of the GBLUP model to its components, direct genomic values and residual polygenic effect. Third, we made a proof that the equivalence of these 2 genomic models with a residual polygenic effect holds also for single-step genomic evaluation. Both the single-step GBLUP and SNP BLUP models lead to equal prediction for genotyped animals with phenotypes (e.g., reference animals), as well as for (young) genotyped animals without phenotypes. Finally, these 2 single-step genomic models with a residual polygenic effect were proven to be equivalent for estimation of SNP effects, too. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  4. Identification of the gamma subunit-interacting residues on photoreceptor cGMP phosphodiesterase, PDE6alpha '.

    Science.gov (United States)

    Granovsky, A E; Artemyev, N O

    2000-12-29

    Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.

  5. Differential Effects of Visual-Acoustic Biofeedback Intervention for Residual Speech Errors

    Science.gov (United States)

    McAllister Byun, Tara; Campbell, Heather

    2016-01-01

    Recent evidence suggests that the incorporation of visual biofeedback technologies may enhance response to treatment in individuals with residual speech errors. However, there is a need for controlled research systematically comparing biofeedback versus non-biofeedback intervention approaches. This study implemented a single-subject experimental design with a crossover component to investigate the relative efficacy of visual-acoustic biofeedback and traditional articulatory treatment for residual rhotic errors. Eleven child/adolescent participants received ten sessions of visual-acoustic biofeedback and 10 sessions of traditional treatment, with the order of biofeedback and traditional phases counterbalanced across participants. Probe measures eliciting untreated rhotic words were administered in at least three sessions prior to the start of treatment (baseline), between the two treatment phases (midpoint), and after treatment ended (maintenance), as well as before and after each treatment session. Perceptual accuracy of rhotic production was assessed by outside listeners in a blinded, randomized fashion. Results were analyzed using a combination of visual inspection of treatment trajectories, individual effect sizes, and logistic mixed-effects regression. Effect sizes and visual inspection revealed that participants could be divided into categories of strong responders (n = 4), mixed/moderate responders (n = 3), and non-responders (n = 4). Individual results did not reveal a reliable pattern of stronger performance in biofeedback versus traditional blocks, or vice versa. Moreover, biofeedback versus traditional treatment was not a significant predictor of accuracy in the logistic mixed-effects model examining all within-treatment word probes. However, the interaction between treatment condition and treatment order was significant: biofeedback was more effective than traditional treatment in the first phase of treatment, and traditional treatment was more effective

  6. Radiation effects on residual voltage of polyethylene films

    International Nuclear Information System (INIS)

    Kyokane, Jun; Park, Dae-Hee; Yoshino, Katsumi.

    1986-01-01

    It has recently been pointed out that diagnosis of deterioration in insulating materials for electric cables used in nuclear power plants and outer space (communications satellite in particular) can be effectively performed based on measurements of residual voltage. In the present study, polyethylene films are irradiated with γ-rays or electron beam to examine the changes in residual voltage characteristics. Irradiation of electron beam and γ-rays are carried out to a dose of 0 - 90 Mrad and 0 - 100 Mrad, respectively. Measurements are made of the dependence of residual voltage on applied voltage, electron beam and γ-ray irradiation, annealing temperature and annealing time. Results show that carriers, which are once trapped after being released from the electrode, move within the material after the opening of the circuit to produce resiual voltage. The residual voltage increases with increasing dose of electron beam or γ-ray and levels off at high dose. Residual voltage is increased about several times by either electron beam or γ-rays, but electron beam tends to cause greater residual voltage than γ-ray. Polyethylene films irradiated with electron beam can recover upon annealing. It is concluded from observations made that residual voltage has close relations with defects in molecular structures caused by radiations, particularly the breaking of backbone chains and alteration in superstructures. (Nogami, K.)

  7. Near target residues from the peripheral interaction of relativistic heavy ions with bismuth

    International Nuclear Information System (INIS)

    Aleklett, K.; Morrissey, D.J.; Loveland, W.; Moody, K.; Seaborg, G.T.

    1979-01-01

    Isotopic distributions for the near target residues Au and Tl were measured radioanalytically for the reaction of 8.0-GeV 20 Ne ions with 209 Bi. The isotopic production cross section for Au and Tl isotopes were calculated by using a macroscopic abrasion-ablation model and a microscopic intranuclear cascade-evaporation model. The importance of the neutron skin in determining the yield of these products from the peripheral interactions was also explored in the framework of the macroscopic model. 3 figures

  8. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  9. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  10. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  11. Washing effects of limonene on pesticide residues in green peppers.

    Science.gov (United States)

    Lu, Hai-Yan; Shen, Yan; Sun, Xing; Zhu, Hong; Liu, Xian-Jin

    2013-09-01

    The presence of pesticide residues in food has caused much concern. The low health risks and environmental impacts of limonene make it a very interesting solvent for use in green chemistry. Washing effects of limonene on pesticide residues of methyl chlorpyrifos, chlorothalonil, chlorpyrifos, fenpropathrin and deltamethrin were investigated in green pepper. Results showed that washing with a low concentration of limonene for 5 min (where LOQ is limit of quantitation) caused 53.67%, limonene for 10 min produced 55.90%, limonene for 5 min was the optimal treatment for elimination of pesticide residues in green pepper, considering effect and treatment time as well as cost. © 2013 Society of Chemical Industry.

  12. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  13. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    Science.gov (United States)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  14. The earthworm gastrointestinal effect on the release of organic bound residues in soils

    Science.gov (United States)

    Du, J. H.

    2018-03-01

    Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.

  15. Effect of washing on pesticide residues in olives.

    Science.gov (United States)

    Guardia-Rubio, M; Ayora-Cañada, M J; Ruiz-Medina, A

    2007-03-01

    The present work aims at contributing to the knowledge of the fate of 5 pesticides in olives in order to evaluate how washing may affect the presence of these residues in this fruit (and consequently in olive oil). For this purpose, olives were sprayed with commercial formulations containing the active ingredients and a series of analyses were performed for 64 d by using gas chromatography with mass spectrometric detection. Selected pesticides, ranked by their importance, were diuron, terbuthylazine, simazine, alpha-endosulfan, and beta-endosulfan. The pesticide fraction, which was not removable from olives by washing, increased with time after treatment until their degradation started at week 6. Washing performed 1 d after treatment was the most effective in reducing residues, especially for simazine. Consequently, the washing step performed in olive mills could be effective in removing those herbicide residues present in olives as a consequence of contact with contaminated soil for a short time. This happens when olives are dropped and harvested off the ground by means of brushes or suction equipment.

  16. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  17. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  18. A survey of residual analysis and a new test of residual trend.

    Science.gov (United States)

    McDowell, J J; Calvin, Olivia L; Klapes, Bryan

    2016-05-01

    A survey of residual analysis in behavior-analytic research reveals that existing methods are problematic in one way or another. A new test for residual trends is proposed that avoids the problematic features of the existing methods. It entails fitting cubic polynomials to sets of residuals and comparing their effect sizes to those that would be expected if the sets of residuals were random. To this end, sampling distributions of effect sizes for fits of a cubic polynomial to random data were obtained by generating sets of random standardized residuals of various sizes, n. A cubic polynomial was then fitted to each set of residuals and its effect size was calculated. This yielded a sampling distribution of effect sizes for each n. To test for a residual trend in experimental data, the median effect size of cubic-polynomial fits to sets of experimental residuals can be compared to the median of the corresponding sampling distribution of effect sizes for random residuals using a sign test. An example from the literature, which entailed comparing mathematical and computational models of continuous choice, is used to illustrate the utility of the test. © 2016 Society for the Experimental Analysis of Behavior.

  19. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  20. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  1. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  2. Beam, vacuum and walls, a 3-body interaction

    International Nuclear Information System (INIS)

    Arianer, J.

    2002-11-01

    The interactions between beams of accelerated particles, residual gas and walls involve complex physical processes. In most cases these interactions affect the quality of the vacuum and the value of the pressure. This course reviews all these interactions in a pedagogical and practical way that may be useful for any user of devices involving beams of particles. This document is made up of 6 chapters: 1) basic notions (Maxwell-Boltzmann distribution, kinematics of charged particles, collisions, excitation and ionization), 2) properties of beams (emittance, local effects, and synchrotron radiation), 3) interactions between residual gas and particle beams (Bremsstrahlung radiation, energy loss due to ionization, charge shift of ion beams, photo-absorption and photo-ionization, and slowing-down in a plasma), 4) surface properties (crystal structure, and interaction between surface and the residual gas), 5) interaction between the beam and walls (reflection and diffraction of electrons, secondary emission of electrons, desorption induced by electron and ion impacts, photon production, ion-wall interaction, sputtering, ion penetration, surface ionization and thermal-ionization), and 6) radiation-wall interaction (diffusion, damping, photo-electric effect, desorption induced by photons, pair production and laser-surface interaction). (A.C.)

  3. Profile Monitors Based on Residual Gas Interaction

    CERN Document Server

    Forck, P; Giacomini, T; Peters, A

    2005-01-01

    The precise determination of transverse beam profiles at high current hadron accelerators has to be performed non-interceptingly. Two methods will be discussed based on the excitation of the residual gas molecules by the beam particles: Firstly, by beam induced fluorescence (BIF) light is emitted from the residual gas molecules and is observed with an image intensified CCD camera. At most laboratories N2 gas is inserted, which has a large cross section for emission in the blue wave length region. Secondly, a larger signal strength is achieved by detecting the ionization products in an Ionization Profile Monitor (IPM). By applying an electric field all ionization products are accelerated toward a spatial resolving Micro-Channel Plate. The signal read-out can either be performed by observing the light from a phosphor screen behind the MCP or electronically by a wire array. Methods to achieve a high spatial resolution and a fast turn-by-turn readout capability are discussed. Even though various approaches at dif...

  4. The Effect of Processing on 14C- Chlofenvinphos Residues in Maize Oil and Bioavailability of its Cake Residues on Rats

    International Nuclear Information System (INIS)

    Mahdy, F.; El-Maghraby, S.

    2008-01-01

    Maize seed obtained from 14 C-chlofenvinphos treated plants contained 0.12 % of the applied dose. The insecticide residues in crude oil, methanol and coke amounted to 10 %, 6 % and 69 %, respectively of original residues inside the seeds.The 14 C activity in the crude oil could be a gradual reduced by the refining processes. The alkali treatment and bleaching steps are more effective steps in the refining processes remove about (63 %). The refined oil contained only about 17 % of the 14 C-residues originally present. The major residues in processed oil contain parent compound, in addition to five metabolites of the insecticide. When rats fed the extracted seeds (cake), the bound residues were found to be considerably bioavailable. After feeding rats for 5 days with the cake, a substantial amount of 14 C-residues was eliminated in the urine (59.5 %), while about 20 % was excreted in the feces. About 15 % of the radioactivity was distribution among various organs

  5. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  6. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  7. Fate and persistence of 14C pesticide residues in different soils: effects of 14C pesticide contaminated run-off soil water on biological systems. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Lichtenstein, E.

    1982-09-01

    The interaction of selected fungicides, herbicides and N-fertilizers with microorganisms in cranberry soils and their effects on the degradation of 14 C-phenyl-parathion were investigated. Incubation of soils with parathion of p-nitrophenol for 4 days, followed by the addition of 14 C-parathion resulted after 24 h in an enhanced degradation of the insecticide to 14 CO 2 (34-39% of the applied radiocarbon as opposed to 2% in controls) and also in an increased binding of 14 C to the soil. The fungicide captafol inhibited the degradation of soil-applied 14 C-parathion as evidenced by a reduction of both 14 CO 2 evolution and 14 C-bound residues. Maneb and benomyl suppressed the degradation of 14 C-parathion to 14 CO 2 but not the formation of bound residues. Addition of 2,4-D to 14 C-parathion treated soil also resulted in an increased persistence of the insecticide. Studies conducted with the insecticide and (NH 4 ) 2 SO 4 , NH 4 NO 3 , KNO 3 or urea showed that under all experimental conditions the total amounts of 14 C recovered were similar, yet the distribution of 14 C-compounds into benzene-soluble, water-soluble and bound residues was not. This possibly indicated a change in the pathway of 14 C-parathion degradation. The insecticide was most persistent in soils containing (NH 4 ) 2 SO 4 , as demonstrated by a recovery of 29% of the applied radiocarbon in benzene-soluble form. Analyses by TIC of this benzene extraction phase revealed the presence of 14 C-parathion, 14 C-p-aminophenol and 14 C-aminoparathion

  8. Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Ozaki, S.; Nakamura, T. [FUJITSU LABORATORIES Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2014-06-19

    We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoride residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.

  9. Effect of solvent on the structure of a protein (H3.1) with a coarse-grained model with knowledge-based interactions

    Science.gov (United States)

    Pandey, Ras; Farmer, Barry

    2013-03-01

    Quality of solvent plays a critical role in modulating the structure of a protein along with the temperature. Using a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV) we examine the structure and dynamics of a histone (H3.1). The empty lattice sites constitute the effective solvent medium in which the protein is embedded. Residue-solvent characteristic interaction is based on the hydropathy index while the residue-residue interaction is used from the knowledge-based contact matrices derived from ensembles of protein structures in the protein data bank. Large scale simulations are performed to analyze the structure of protein for a range of residue-solvent interaction strength, a measure of the solvent quality with each potential. Unlike the monotonic thermal response, the radius of gyration of the protein exhibits non-monotonic dependence of the solvent strength. Quantitative comparison of the structure and dynamics emerging from three knowledge-based potentials will be presented in this talk. This work is supported by Air Force Research Laboratory.

  10. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  11. Effects of plantation residue management on the community ...

    African Journals Online (AJOL)

    Effects of plantation residue management on the community structure of wattle regeneration invertebrate pests in South Africa. ... Members of the soil invertebrate pest complex included whitegrubs and cutworms that generally had a higher pest status than millipedes, nematodes, grasshoppers, ants, false wireworms, ...

  12. Effect of residual stress induced by cold expansion on fatigue crack ...

    African Journals Online (AJOL)

    Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...

  13. Effect of processing on residues of chlorpyrifos in stored corn and rice

    International Nuclear Information System (INIS)

    Tejada, A.W.; Calumpang, S.M.F.; Gambalan, N.B.

    1990-01-01

    The effect of processing on residues of chlorpyrifos in rice and corn was determined. Chlorpyrifos solution (0.1%) sprayed on jute sacks containing corn resulted in absorption of residues in kernel and cob up to six months. A similar trend was observed in rice. Radiotracer studies revealed very low levels of bound residues (0.2 - 0.8 mg/kg) present in rice only. The usual practice of washing rice and corn before cooking reduced chlorpyrifos residues as much as 57% to 100%. Residues in wash water declined with each washing. Cooking further reduced the residues of chlorpyrifos only when volatilization was possible. Chlorpyrifos appeared to be persistent. Cooking rice in plot with the lid on did not produce any substantial reduction in the chlorpyrifos content. The practice of storing rice and corn in the Philippines does not give rice to chlorpyrifos residues which may exceed the recommended daily intake of 0.01 mg/kg-bw. (Auth.) 13 refs., 12 tabs., 3 figs

  14. Norepinephrine transporter function and desipramine: residual drug effects versus short-term regulation.

    Science.gov (United States)

    Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun

    2005-04-30

    Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.

  15. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions

    International Nuclear Information System (INIS)

    Freudenthal, Bret D.; Gakhar, Lokesh; Ramaswamy, S.; Washington, M. Todd

    2009-01-01

    Eukaryotic proliferating cell nuclear antigen (PCNA), an essential accessory factor in DNA replication and repair, is a ring-shaped homotrimer. A novel nontrimeric structure of E113G-mutant PCNA protein is reported, which shows that this protein forms alternate subunit interactions. It is concluded that the charged side chain of Glu113 promotes normal trimer formation by destabilizing these alternate subunit interactions. Eukaryotic proliferating cell nuclear antigen (PCNA) is an essential replication accessory factor that interacts with a variety of proteins involved in DNA replication and repair. Each monomer of PCNA has an N-terminal domain A and a C-terminal domain B. In the structure of the wild-type PCNA protein, domain A of one monomer interacts with domain B of a neighboring monomer to form a ring-shaped trimer. Glu113 is a conserved residue at the subunit interface in domain A. Two distinct X-ray crystal structures have been determined of a mutant form of PCNA with a substitution at this position (E113G) that has previously been studied because of its effect on translesion synthesis. The first structure was the expected ring-shaped trimer. The second structure was an unanticipated nontrimeric form of the protein. In this nontrimeric form, domain A of one PCNA monomer interacts with domain A of a neighboring monomer, while domain B of this monomer interacts with domain B of a different neighboring monomer. The B–B interface is stabilized by an antiparallel β-sheet and appears to be structurally similar to the A–B interface observed in the trimeric form of PCNA. The A–A interface, in contrast, is primarily stabilized by hydrophobic interactions. Because the E113G substitution is located on this hydrophobic surface, the A–A interface should be less favorable in the case of the wild-type protein. This suggests that the side chain of Glu113 promotes trimer formation by destabilizing these possible alternate subunit interactions

  16. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  17. The effect of radiation on the function of the residual pancreas

    International Nuclear Information System (INIS)

    Matsuoka, Yoshisuke; Tsujii, Hirohiko; Kamada, Tadashi; Irie, Goro

    1987-01-01

    For patients with carcinomas of the bile duct and the pancreas, a pancreatoduodenectomy is generally the first choise of treatment. In our institute, the residual pancreas after surgery is transplanted into the abdominal wall in order to prevent diabetes mellites. We irradiated the residual pancreas postoperatively with a dosage of 15 to 43 Gy in order to inhibit the exocrine function. We then removed the drainage catheter from the residual pancreas. In the treatment, the endocrine function can be preserved. With respect to the radiation effect on the exocrine function, the amount of pancreatic secretion showed a transient increase in the first few days after the start of the irradiation, followed by a mild decrease. The serum amylase decreased immediatelly after the start of irradiation and increased sequentially during long-term observations. The amylase in the pancreatic juice showed a remarkable decrease immediatelly after the start of irradiation, and this decrease was maintained during long-term observations (The minimum level was observed from the dosage of 20 to 30 Gy). In order to analyse the radiation effect on the endocrine function, 50 g OGTTs were performed before and after irradiation in thirteen patients. In two of the thirteen patients, the results of the tests showed a new diabetic pattern after irradiation, which required insulin in one patient. It was concluded from our study that irradiation to the residual pancreas with in the dosage of 15 to 43 Gy the catheters in the residual pancreas could be removed in fourteen of fifteen patients without any unfavorable effect. (author)

  18. Effect of Filament Fineness on Composite Yarn Residual Torque

    Directory of Open Access Journals (Sweden)

    Sarıoğlu Esin

    2018-03-01

    Full Text Available Yarn residual torque or twist liveliness occurs when the twist is imparted to spin the fibers during yarn formation. It causes yarn snarling, which is an undesirable property and can lead the problems for further processes such as weaving and knitting. It affects the spirality of knitted fabrics and skewness of woven fabrics. Generally, yarn residual torque depends on yarn twist, yarn linear density, and fiber properties used. Composite yarns are widely produced to exploit two yarns with different properties such on optimum way at the same time and these yarns can be produced by wrapping sheath fibers around filament core fiber with a certain twist. In this study, the effect of filament fineness used as core component of composite yarn on residual torque was analyzed. Thus, the false twist textured polyester filament yarns with different filament fineness were used to produce composite yarns with different yarn count. The variance analysis was performed to determine the significance of twist liveliness of filament yarns and yarn count on yarn twist liveliness. Results showed that there is a statistically significant differences at significance level of α=0.05 between filament fineness and yarn residual torque of composite yarns.

  19. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  20. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples.

    Science.gov (United States)

    Yang, Tianxi; Doherty, Jeffery; Zhao, Bin; Kinchla, Amanda J; Clark, John M; He, Lili

    2017-11-08

    Removal of pesticide residues from fresh produce is important to reduce pesticide exposure to humans. This study investigated the effectiveness of commercial and homemade washing agents in the removal of surface and internalized pesticide residues from apples. Surface-enhanced Raman scattering (SERS) mapping and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods were used to determine the effectiveness of different washing agents in removing pesticide residues. Surface pesticide residues were most effectively removed by sodium bicarbonate (baking soda, NaHCO 3 ) solution when compared to either tap water or Clorox bleach. Using a 10 mg/mL NaHCO 3 washing solution, it took 12 and 15 min to completely remove thiabendazole or phosmet surface residues, respectively, following a 24 h exposure to these pesticides, which were applied at a concentration of 125 ng/cm 2 . LC-MS/MS results showed, however, that 20% of applied thiabendazole and 4.4% of applied phosmet had penetrated into the apples following the 24 h exposure. Thiabendazole, a systemic pesticide, penetrated 4-fold deeper into the apple peel than did phosmet, a non-systemic pesticide, which led to more thiabendazole residues inside the apples, which could not be washed away using the NaHCO 3 washing solution. This study gives us the information that the standard postharvest washing method using Clorox bleach solution for 2 min is not an effective means to completely remove pesticide residues on the surface of apples. The NaHCO 3 method is more effective in removing surface pesticide residues on apples. In the presence of NaHCO 3 , thiabendazole and phosmet can degrade, which assists the physical removal force of washing. However, the NaHCO 3 method was not completely effective in removing residues that have penetrated into the apple peel. The overall effectiveness of the method to remove all pesticide residues diminished as pesticides penetrated deeper into the fruit. In practical application

  1. Effect of corn residue harvest method with ruminally undegradable protein supplementation on performance of growing calves and fiber digestibility.

    Science.gov (United States)

    King, T M; Bondurant, R G; Jolly-Breithaupt, M L; Gramkow, J L; Klopfenstein, T J; MacDonald, J C

    2017-12-01

    Two experiments evaluated the effects of corn residue harvest method on animal performance and diet digestibility. Experiment 1 was designed as a 2 × 2 + 1 factorial arrangement of treatments using 60 individually fed crossbred steers (280 kg [SD 32] initial BW; = 12). Factors were the corn residue harvest method (high-stem and conventional) and supplemental RUP at 2 concentrations (0 and 3.3% diet DM). A third harvest method (low-stem) was also evaluated, but only in diets containing supplemental RUP at 3.3% diet DM because of limitations in the amount of available low-stem residue. Therefore, the 3 harvest methods were compared only in diets containing supplemental RUP. In Exp. 2, 9 crossbred wethers were blocked by BW (42.4 kg [SD 7] initial BW) and randomly assigned to diets containing corn residue harvested 1 of 3 ways (low-stem, high-stem, and conventional). In Exp. 1, steers fed the low-stem residue diet had greater ADG compared with the steers fed conventionally harvested corn residue ( = 0.03; 0.78 vs. 0.63 kg), whereas steers fed high-stem residue were intermediate ( > 0.17; 0.69 kg), not differing from either conventional or low-stem residues. Results from in vitro OM digestibility suggest that low-stem residue had the greatest ( RUP content (40% of CP) and RUP digestibility (60%) among the 3 residues ( ≥ 0.35). No interactions were observed between harvest method and the addition of RUP ( ≥ 0.12). The addition of RUP tended to result in improved ADG (0.66 ± 0.07 vs. 0.58 ± 0.07 for supplemental RUP and no RUP, respectively; = 0.08) and G:F (0.116 ± 0.006 vs. 0.095 ± 0.020 for supplemental RUP and no RUP, respectively; = 0.02) compared with similar diets without the additional RUP. In Exp. 2, low-stem residue had greater DM and OM digestibility and DE ( < 0.01) than high-stem and conventional residues, which did not differ ( ≥ 0.63). Low-stem residue also had the greatest NDF digestibility (NDFD; < 0.01), whereas high-stem residue had greater

  2. How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review.

    Science.gov (United States)

    Chung, Stephen Wc

    2018-06-01

    Nowadays, the use of pesticides is inevitable for pest control in crops, especially for fruit and vegetables. After the harvest from raw agricultural commodities, the amount of pesticide residues in food is mainly influenced by the storage, handling and processing that follow. If good agricultural and good manufacturing practices are enforced effectively, the amount of pesticide residues would be brought below the corresponding maximum residue level. Thus, the consumption of raw and/or prepared fruit and vegetables would be safe. Nonetheless, reports regarding pesticide residues in fruit or vegetables on mass media have been worrying consumers, who are concerned about the adverse effects of pesticide residues. As a result, consumers perform household processing before consumption to reduce any related risks. However, can these preparations effectively remove pesticide residues? Reviewing the extensive literature, it showed that, in most cases, washing and soaking can only lead to a certain degree of reduction in residue level, while other processing such as peeling, soaking in chemical baths and blanching can reduce pesticide residues more effectively. In general, the behaviour of residues during processing can be rationalised in terms of the physico-chemical properties of the pesticide and the nature of the process. In contrast, the reported studies are diversified and some areas still lack sufficient studies to draw any remarks. Recommendations are provided with respect to the available information that aims to formulate an environmental friendly, cost-effective and efficient household processing of fruit and vegetables to reduce pesticide residues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. A single arginine residue is required for the interaction of the electron transferring flavoprotein (ETF) with three of its dehydrogenase partners.

    Science.gov (United States)

    Parker, Antony R

    2003-12-01

    The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.

  4. Effective interactions

    International Nuclear Information System (INIS)

    Elliott, J.P.

    1981-01-01

    This chapter attempts to describe and compare some of the more important nucleon-nucleon interactions that have been used in nuclear structure calculations, and to relate them where possible to the real nucleon-nucleon interaction. Explains that different interactions have been used depending on whether one is fitting to total binding energies and densities with a Hartree Fock (HF) calculation or fitting to spectra and spectroscopic data in a shell model calculation. Examines both types of calculation after two preliminary sections concerned with notation and with the philosophy underlying the use of model spaces and effective interactions. Discusses Skyrme interactions, finite range interactions, small model space, large model space, and the Sussex potential matrix elements. Focuses on the more empirical approaches in which a simple form is chosen for the effective interaction in a given model space and the parameters are deduced from fitting many-body data

  5. The Effect of Crop Residue Application to Soil Fauna Community and Mungbean Growth (Vigna radata

    Directory of Open Access Journals (Sweden)

    SUGIYARTO

    2000-01-01

    Full Text Available Litterbag experiment was carried out to determine the effect of crop residue application to soil fauna community and mungbean growth. The experiment arranged in randomized complete design with triplicate. The four treatment application of crotalarian, rice straw and banana’s aerial stem residues as well as without residue application as control. Soil fauna community and mungbean growth measured at 8 weeks after mungbean sown. Soil fauna extracted by modified Barless-Tullgren extractor apparatus. Height and dry weight of mungbean measured as crop growth parameters. The results indicated that the soil fauna densities and diversities as well as the growth of mungbean tended to increase by the application of crop residues. The effect of the treatment decreasing in the following order: banana’s aerial stem residue > crotalarian residue > rice straw > without residue application. There were high correlation between mungbean growth and soil fauna diversities.© 2001 Jurusan Biologi FMIPA UNS SurakartaKey words:

  6. Toxic effects of ethylene oxide residues on bovine embryos in vitro.

    Science.gov (United States)

    Holyoak, G R; Wang, S; Liu, Y; Bunch, T D

    1996-04-15

    The potential of ethylene oxide (EtO) residues in exposed plastic tissue culture dishes to adversely affect bovine oocyte maturation, fertilization and subsequent embryonic development was monitored. In experiment 1, the effects of aeration time and aeration combined with washing of EtO-gassed culture dishes on the extent of residual toxicity were investigated. There was no cleavage in any treatment in which oocytes were matured and fertilized in dishes exposed to EtO. EtO residues caused functional degeneration of oocytes even when culture dishes were aerated for more than 12 days post EtO-exposure and repeatedly washed. In experiment 2, the residual toxicity of EtO gas on in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC) were evaluated. Cleavage rate significantly decreased and post-cleavage development was retarded in ova maintained in dishes treated with EtO either during IVM or IVF. EtO residues may be more detrimental to spermatozoa than to oocytes which may have been the primary cause of fertilization failure during IVF.

  7. Effects of magnetic core geometry on false detection in residual current sensor

    International Nuclear Information System (INIS)

    Colin, Bruno; Chillet, Christian; Kedous-Lebouc, Afef; Mas, Patrick

    2006-01-01

    Under high-supply current, residual circuit breakers are subject to abnormal tripping, caused by false residual currents. Geometric or magnetic anomalies in the circuit breaker ring core seem to be responsible for these abnormal currents. This paper studies a few anomalies (spiral shape effect, conductor eccentricity, lamination effect) and calculates different contributions using the finite element simulations. The results show that the ring core, made of thin wound magnetic tape, is particularly sensitive to primary conductor eccentricity

  8. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    Science.gov (United States)

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  9. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  10. Baryon femtoscopy considering residual correlations as a tool to extract strong interaction potentials

    Directory of Open Access Journals (Sweden)

    Szymański Maciej

    2015-01-01

    Full Text Available In this article, the analysis of baryon-antibaryon femtoscopic correlations is presented. In particular, it is shown that taking into account residual correlations is crucial for the description of pΛ¯$\\bar \\Lambda $ and p̄Λ correlation functions measured by the STAR experiment in Au–Au collisions at the centre-of-mass energy per nucleon pair √sNN = 200 GeV. This approach enables to obtain pΛ¯$\\bar \\Lambda $ (p̄Λ source size consistent with the sizes extracted from correlations in pΛ (p̄Λ¯$\\bar \\Lambda $ and lighter pair systems as well as with model predictions. Moreover, with this analysis it is possible to derive the unknown parameters of the strong interaction potential for baryon-antibaryon pairs under several assumptions.

  11. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  12. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  13. Effects of cypermethrin on the ligand-independent interaction between androgen receptor and steroid receptor coactivator-1

    International Nuclear Information System (INIS)

    Pan, Chen; Liu, Ya-Peng; Li, Yan-Fang; Hu, Jin-Xia; Zhang, Jin-Peng; Wang, Hong-Mei; Li, Jing; Xu, Li-Chun

    2012-01-01

    The pyrethroid insecticide, cypermethrin has been considered as an environmental anti-androgen by interfering with the androgen receptor (AR) transactivation. In order to clarify the effects of cypermethrin on the ligand-independent interaction between the AR and SRC-1, the mammalian two-hybrid assay has been developed in the study. The AR N-terminal domain 1–660 amino acid residues were subcloned into the plasmid pVP16 to construct the vector pVP16-ARNTD. The SRC-1 C-terminal domain 989–1240 amino acid residues were subcloned into the plasmid pM to construct the vector pM-SRC-1. The fusion vectors pVP16-ARNTD, pM-SRC-1 and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The AR AF1 interacted with SRC-1 in the absence of exogenous ligand 5α-dihydrotestosterone (DHT). Furthermore, DHT did not enhance the interaction between AR AF-1 and SRC-1 at the concentrations from 10 −10 M to 10 −8 M. Cypermethrin inhibited the interaction between the AR AF1 and SRC-1, and the significant reduction was detected at the concentration of 10 −5 M. It is suggested that the interaction between the AR AF1 and SRC-1 is ligand-independent. Cypermethrin inhibits AR activity by disrupting the ligand-independent AR–SRC-1 interaction.

  14. Effect of handling and processing on pesticide residues in food- a review.

    Science.gov (United States)

    Bajwa, Usha; Sandhu, Kulwant Singh

    2014-02-01

    Pesticides are one of the major inputs used for increasing agricultural productivity of crops. The pesticide residues, left to variable extent in the food materials after harvesting, are beyond the control of consumer and have deleterious effect on human health. The presence of pesticide residues is a major bottleneck in the international trade of food commodities. The localization of pesticides in foods varies with the nature of pesticide molecule, type and portion of food material and environmental factors. The food crops treated with pesticides invariably contain unpredictable amount of these chemicals, therefore, it becomes imperative to find out some alternatives for decontamination of foods. The washing with water or soaking in solutions of salt and some chemicals e.g. chlorine, chlorine dioxide, hydrogen peroxide, ozone, acetic acid, hydroxy peracetic acid, iprodione and detergents are reported to be highly effective in reducing the level of pesticides. Preparatory steps like peeling, trimming etc. remove the residues from outer portions. Various thermal processing treatments like pasteurization, blanching, boiling, cooking, steaming, canning, scrambling etc. have been found valuable in degradation of various pesticides depending upon the type of pesticide and length of treatment. Preservation techniques like drying or dehydration and concentration increase the pesticide content many folds due to concentration effect. Many other techniques like refining, fermentation and curing have been reported to affect the pesticide level in foods to varied extent. Milling, baking, wine making, malting and brewing resulted in lowering of pesticide residue level in the end products. Post harvest treatments and cold storage have also been found effective. Many of the decontamination techniques bring down the concentration of pesticides below MRL. However, the diminution effect depends upon the initial concentration at the time of harvest, substrate/food and type of

  15. Residual N effects from livestock manure inputs to soils

    DEFF Research Database (Denmark)

    Schröder, Jaap; Bechini, Luca; Bittman, Shabtai

    Organic inputs including livestock manures provide nitrogen (N) to crops beyond the year of their application. This so-called residual N effect should be taken into account when making decisions on N rates for individual fields, but also when interpreting N response trials in preparation...

  16. Ferrochelatase from Rhodopseudomonas sphaeroides: substrate specificity and role of sulfhydryl and arginyl residues

    International Nuclear Information System (INIS)

    Dailey, H.A.; Fleming, J.E.; Harbin, B.M.

    1986-01-01

    Purified ferrochelatase from the bacterium Rhodopseudomonas sphaeroides was examined to determine the roles of cationic and sulfhydryl residues in substrate binding. Reaction of the enzyme sulfhydryl residues with N-ethylmaleimide or monobromobimane resulted in a rapid loss of enzyme activity. Ferrous iron, but not porphyrin substrate, had a protective effect against inactivation by these two reagents. Quantitation with 3 H-labeled N-ethylmaleimide revealed that inactivation required one to two sulfhydryl groups to be modified. Modification of arginyl residues with either 2,3-butanedione or camphorquinone 10-sulfonate resulted in a loss of ferrochelatase activity. A kinetic analysis of the modified enzyme showed that the K/sub m/ for ferrous iron was not altered but that the K/sub m/ for the prophyrin substrate was increased. These data suggested that arginyl residues may be involved in porphyrin binding, possibly via charge pair interactions between the arginyl residue and the anionic porphyrin propionate side chain. Modification of lysyl residues had no effect on enzyme activity. The authors also examined the ability of bacterial ferrochelatase to use various 2,4-disubstituted porphyrins as substrates. The authors found that 2,4-bis-acetal- and 2,4-disulfonate deuteroporphyrins were effective substrates for the purified bacterial enzyme and that N-methylprotoporphyrin was an effective inhibitor of the enzyme. Data for the ferrochelatase of R. sphaeroides are compared with previously published data for the eucaryotic enzyme

  17. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified....... To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight...... of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil....

  18. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  19. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  20. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis.

    Science.gov (United States)

    Ranius, Thomas; Hämäläinen, Aino; Egnell, Gustaf; Olsson, Bengt; Eklöf, Karin; Stendahl, Johan; Rudolphi, Jörgen; Sténs, Anna; Felton, Adam

    2018-03-01

    We review the consequences for biodiversity and ecosystem services from the industrial-scale extraction of logging residues (tops, branches and stumps from harvested trees and small-diameter trees from thinnings) in managed forests. Logging residue extraction can replace fossil fuels, and thus contribute to climate change mitigation. The additional biomass and nutrients removed, and soils and other structures disturbed, have several potential environmental impacts. To evaluate potential impacts on ecosystem services and biodiversity we reviewed 279 scientific papers that compared logging residue extraction with non-extraction, the majority of which were conducted in Northern Europe and North America. The weight of available evidence indicates that logging residue extraction can have significant negative effects on biodiversity, especially for species naturally adapted to sun-exposed conditions and the large amounts of dead wood that are created by large-scaled forest disturbances. Slash extraction may also pose risks for future biomass production itself, due to the associated loss of nutrients. For water quality, reindeer herding, mammalian game species, berries, and natural heritage the results were complicated by primarily negative but some positive effects, while for recreation and pest control positive effects were more consistent. Further, there are initial negative effects on carbon storage, but these effects are transient and carbon stocks are mostly restored over decadal time perspectives. We summarize ways of decreasing some of the negative effects of logging residue extraction on specific ecosystem services, by changing the categories of residue extracted, and site or forest type targeted for extraction. However, we found that suggested pathways for minimizing adverse outcomes were often in conflict among the ecosystem services assessed. Compensatory measures for logging residue extraction may also be used (e.g. ash recycling, liming, fertilization

  1. Effect of Cooking on 14C-Chloropyrifos Residues in Stored Faba Beans

    International Nuclear Information System (INIS)

    Mahdy, F.

    2006-01-01

    The effect of cooking on the amount and nature of 14 C-chloropyrifos residues in stored vicia faba beans was studied. faba beans treated with (ethyl-1- 14 C) chloropyrifos insecticide at a dose 15 and 45 mg insecticide/kg seeds and stored for 30 weeks had 50-54% of the actual applied doses inside the grains in the form of extractable and bound 14 C- chloropyrifos residues. Extractable residues in cooked beans included, in addition to the parent insecticide O-analogue, desethyl chloropyrifos and 3,5,6-trichloro pyridinol, as main degradation products of 14 C-chloropyrifos

  2. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  3. Residual N effects from livestock manure inputs to soils

    NARCIS (Netherlands)

    Schroder, J.J.; Bechini, L.; Bittman, S.; Brito, M.P.; Delin, S.; Lalor, S.T.J.; Morvan, T.; Chambers, B.J.; Sakrabani, R.; Sørensen, P.B.

    2013-01-01

    Organic inputs including livestock manures provide nitrogen (N) to crops beyond the year of their application. This so-called residual N effect should be taken into account when making decisions on N rates for individual fields, but also when interpreting N response trials in preparation of

  4. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model.

    Science.gov (United States)

    Sasaki, Takashi; Mita, Moeko; Ikari, Naho; Kuboyama, Ayane; Hashimoto, Shuzo; Kaneko, Tatsuya; Ishiguro, Masaji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-01-01

    TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5-nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse-human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5-nomilin interaction. Based on these results, an hTGR5-nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5-nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.

  5. Impact of Intrafraction and Residual Interfraction Effect on Prostate Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    Tang, Shikui; Deville, Curtiland; Tochner, Zelig; Wang, Ken Kang-Hsin; McDonough, James; Vapiwala, Neha; Both, Stefan

    2014-01-01

    Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D 99 (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D 99 was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a clinically

  6. Impact of Intrafraction and Residual Interfraction Effect on Prostate Proton Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: shktang@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Deville, Curtiland; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); McDonough, James; Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-12-01

    Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D{sub 99} (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D{sub 99} was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a

  7. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  8. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  9. Evaluation of machining effect for the residual stress of SA508 by hole drilling method

    International Nuclear Information System (INIS)

    Lee, Jeong Kun; Lee, Kyoung Soo; Song, Ki O; Kim, Young Shin

    2009-01-01

    Residual stresses on a surface of the material are welcome or undesirable since it's direction, compression or tensile. But especially for the fatigue, it is not negligible effect on the material strength. These residual stresses developed during the manufacturing processes involving material deformation, heat treatment, machining. The object of this paper is verifying the effect of machining what is mostly used for SA508. For verifying the effect of machining, three different kind of machining have been achieved, milling, grinding, wire cutting. Also to measure the residual stress, hole drill method and indentation method are used.

  10. Characterization of the interdependency between residues that bind the substrate in a beta-glycosidase.

    Science.gov (United States)

    Tomassi, M H; Rozenfeld, J H K; Gonçalves, L M; Marana, S R

    2010-01-01

    The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the beta-glycosidase from Spodoptera frugiperda (Sfbetagly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfbetagly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl beta-galactoside and p-nitrophenyl beta-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfbetagly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ESdouble dagger (enzyme-transition state complex) of the double mutations (Gdouble daggerxy) is not the sum of the effects resulting from the single mutations (Gdouble daggerx and Gdouble daggery). This difference in Gdouble dagger indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in Gdouble daggerxy. Crystallographic data on beta-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

  11. The effect of commercial processing procedures on 14C-carbendazim residues in soybean oil and tomato

    International Nuclear Information System (INIS)

    Peng Genyuan; Wang Huaguo; Qi Mengwen; Wang Fujun; Zhou Changjiu

    1994-01-01

    Under simulated agricultural practices, soybean plants were treated with 14 C-labelled carbendazim during the blooming stage. The residue in seeds was determined to be 0.067 ppm; corresponding to 0.076 ppm respectively. After subjecting the oil to degumming, alkali treatment, bleaching and deodorization, 53.7% of original radioactivity was removed. Deodorization was the most effect process, removing about 20% of the residue. The concentration of residues in the deodorized oil decreased about 30%. In soybean seed and cake, the residue was mainly present as carbendazim, the concentration of the other metabolites did not exceed 30% of the residue. Tomatoes grown on a field plot were treated with 14 C-carbendazim. After harvest, the tomatoes were processed into tomato juice and canned whole fruit. The magnitude and nature of residues in samples taken at several processing steps were determined to evaluate the effect of commercial processing on removing or eliminating the residues. The results showed that the surface residues on tomato would be removed efficiently by simple washing of tomato. A buffer solution of phosphate had the highest efficiency. Tomato juice contained lower residues than canned whole fruit

  12. Quantification of Drive-Response Relationships Between Residues During Protein Folding.

    Science.gov (United States)

    Qi, Yifei; Im, Wonpil

    2013-08-13

    Mutual correlation and cooperativity are commonly used to describe residue-residue interactions in protein folding/function. However, these metrics do not provide any information on the causality relationships between residues. Such drive-response relationships are poorly studied in protein folding/function and difficult to measure experimentally due to technical limitations. In this study, using the information theory transfer entropy (TE) that provides a direct measurement of causality between two times series, we have quantified the drive-response relationships between residues in the folding/unfolding processes of four small proteins generated by molecular dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is measured with the Q-scores based on residue-residue contacts and with the statistical significance analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and responding residues that are different from the highly correlated residues revealed by the mutual information analysis. In general, the driving residues have more regular secondary structures, are more buried, and show greater effects on the protein stability as well as folding and unfolding rates. In addition, the dominant driving and responding residues from the TE analysis on the whole trajectory agree with those on a single folding event, demonstrating that the drive-response relationships are preserved in the non-equilibrium process. Our study provides detailed insights into the protein folding process and has potential applications in protein engineering and interpretation of time-dependent residue-based experimental observables for protein function.

  13. Effects of processing treatment on pesticide residues in fruits and their products

    International Nuclear Information System (INIS)

    Mao Xuefei; Jiao Bining; Fu Chenmei; Qian Yongzhong; Wang Jing

    2008-01-01

    The influence of processing treatments on pesticide residues in fruits and their products was reviewed. The effects on pesticide residues and relative control treatments for each processing step, including peeling, washing, sterilization, juicing, clarification, filtration, drying and fermentation, were discussed, respectively. Meanwhile we analyzed the future development prospectin of this field, in order to provide some suggestions for commercial fruit industry and consumers' health. (authors)

  14. Effect of cooking on enrofloxacin residues in chicken tissue.

    Science.gov (United States)

    Lolo, M; Pedreira, S; Miranda, J M; Vázquez, B I; Franco, C M; Cepeda, A; Fente, C

    2006-10-01

    The aim of this study was to determine the effect of different cooking processes (microwaving, roasting, boiling, grilling and frying) on naturally incurred enrofloxacin residues in chicken muscle. Enrofloxacin and its metabolite, ciprofloxacin, were analysed using a validated LC-MS method with limits of detection (LOD) and quantification (LOQ), respectively, of 2 and 5 ng g-1 quinolones in muscle samples. The method was shown to be linear over the range 5-500 ng g-1. Mean intra-day relative standard deviation (RSD) at a concentration of 50 ng g-1 (n = 6) was 6%; inter-day RSD was 12%. A recovery study demonstrated that 65-101%, of the drug and metabolite could be recovered from the tissue. The RSD with naturally incurred roasted chicken breast was 9.18% at a concentration of 11 +/- 1.01 ng g-1 (n = 6). In water, enrofloxacin remained stable for 3 h when heated at 100 degrees C. It was concluded that residue data from raw tissue are valid for estimation of consumer exposure to this drug, as well as the ADI calculations because cooking procedures did not affect enrofloxacin residues, which remained stable during heating. However, there was an apparent decrease in quinolone concentration in tissue because some was lost by exudation into the liquid used for cooking. Conversely, for a cooking procedure with water loss, there was an apparent increase in residue concentration.

  15. Subnanomolar Inhibitor of Cytochrome bc1 Complex Designed via Optimizing Interaction with Conformationally Flexible Residues

    Science.gov (United States)

    Zhao, Pei-Liang; Wang, Le; Zhu, Xiao-Lei; Huang, Xiaoqin; Zhan, Chang-Guo; Wu, Jia-Wei; Yang, Guang-Fu

    2009-01-01

    Cytochrome bc1 complex (EC 1.10.2.2, bc1), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc1 complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective π-π interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the π-π interaction with conformationally flexible residues was proposed to design and discover new bc1 inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c with a Ki value of 570 pM was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc1 inhibitors including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc1 inhibitor discovered from structure-based design with a potency of subnanomolar Ki value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental Ki values with a correlation coefficient of r2 = 0.89. The further inhibitory kinetics studies revealed that compound 5c is a non-competitive inhibitor with respect to substrate cytochrome c, but is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar Ki potency and slow dissociation rate constant (k−0 = 0.00358 s−1), compound 5c could be used as a specific probe for further elucidation of the mechanism of bc1 function and as a new lead compound for future drug discovery. PMID:19928849

  16. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  17. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  18. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  19. Accounting for the residual stress effects on the creep deformation of channel tubes

    International Nuclear Information System (INIS)

    Knizhnikov, Yu.N.; Platonov, P.A.; Ul'yanov, A.I.

    1985-01-01

    The effect of the first kind residual stresses arising in the walls of the zirconium base alloy fules in the process of fabrication on the RBMK type reactor channel tube creep is investigated. Models for calculation of the reactor component creep with account for the relaxation of residual stresses distributed by the wall thickness as well as the radiation and temperature fields are developed. On the basis of the analysis of the data obtained it is concluded that the effect of the residual stresses on the RBMK channel tube deformation for a long-term operation is negligible. But for the short-term fests the results can be noticeably distorted by this factor. The role of internal stresses can also manifest when determining the deformation of radiation elongation of the zirconium base alloy samples

  20. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  1. Effects of Adopting Different Kinds of Collecting Method for Years on Film Residual Coefficient and Maize Yields

    OpenAIRE

    TANG Wen-xue; MA Zhong-ming; WEI Tao

    2017-01-01

    Wide usage of mulching technology has increased crop yields, but the large amounts of mulching film residue resulting from widespread use of plastic film in China has brought about a series of pollution hazards. Based on a 4-year (2011-2014) long-term experiment, the effects of different kinds of collecting mothod (zero plastic film residues, conventional plastic film residues, whole plastic film residues remainded) on plastic film residues, residual coefficient and maize yield were explored....

  2. Ensemble Architecture for Prediction of Enzyme-ligand Binding Residues Using Evolutionary Information.

    Science.gov (United States)

    Pai, Priyadarshini P; Dattatreya, Rohit Kadam; Mondal, Sukanta

    2017-11-01

    Enzyme interactions with ligands are crucial for various biochemical reactions governing life. Over many years attempts to identify these residues for biotechnological manipulations have been made using experimental and computational techniques. The computational approaches have gathered impetus with the accruing availability of sequence and structure information, broadly classified into template-based and de novo methods. One of the predominant de novo methods using sequence information involves application of biological properties for supervised machine learning. Here, we propose a support vector machines-based ensemble for prediction of protein-ligand interacting residues using one of the most important discriminative contributing properties in the interacting residue neighbourhood, i. e., evolutionary information in the form of position-specific- scoring matrix (PSSM). The study has been performed on a non-redundant dataset comprising of 9269 interacting and 91773 non-interacting residues for prediction model generation and further evaluation. Of the various PSSM-based models explored, the proposed method named ROBBY (pRediction Of Biologically relevant small molecule Binding residues on enzYmes) shows an accuracy of 84.0 %, Matthews Correlation Coefficient of 0.343 and F-measure of 39.0 % on 78 test enzymes. Further, scope of adding domain knowledge such as pocket information has also been investigated; results showed significant enhancement in method precision. Findings are hoped to boost the reliability of small-molecule ligand interaction prediction for enzyme applications and drug design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plant residues: short term effect on sulphate, borate, zinc and copper adsorption by an acid oxisol

    Directory of Open Access Journals (Sweden)

    Dias Ana Cristi Basile

    2003-01-01

    Full Text Available Laboratory experiments were carried out to examine the effects of plant residues on Cu, Zn, B and S adsorption by an acidic oxisol. The plant residues were: black oats (Avena strigosa, oil seed radish(Raphanus sativus, velvet beans (Stizolobium cinereum, and pigeon pea (Cajanus cajan collected at flowering stage. Plant residues increased Cu and Zn adsorptions and decreased B and S adsorptions. The results indicated that for short term effect plant residues decreased the availabilities of Cu and Zn through metal organic complex reactions and increased availabilities of S and B through competition with organic anions by the adsorption sites on soil.

  4. Characterization of the interdependency between residues that bind the substrate in a β-glycosidase

    Directory of Open Access Journals (Sweden)

    M.H. Tomassi

    2010-01-01

    Full Text Available The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly, both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39 were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex of the double mutations (∆∆G‡xy is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y. This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

  5. Effects of the magnesium oxide thin films' microstructures on the residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-jun, E-mail: helijun4@126.com [The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); The State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Li-yan [Electronic Information and Networking Research Institute, Collaborative Innovation Center for Information Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Chen, Wei-Zhong [The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Liu, Xing-zhao [The State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-09-15

    The MgO thin films are deposited at various inclined angles. The morphology investigated by scanning electron microscope (SEM) shows the MgO thin films deposited at high inclined angles have columnar grain. The relationships between full width high maximum (FWHM) of ω-scan, residual stresses and the inclined angles are studied. The results show the smallest FWHM of MgO (002) is 4.968°, the residual stress of MgO thin films is compressive stress, and the residual stress of MgO thin films deposited at the inclined angle of 55° is the smallest. So the microstructures of MgO thin films fabricated by the oblique angle deposition (OAD) technique effectively control the residual stresses. - Highlights: • MgO thin films are deposited by oblique angle deposition technique. • The FWHMs of MgO is the smallest at the inclined angle of 55°. • Residual stress of MgO is the smallest at the inclined angle of 55°.

  6. Density dependent effective interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1994-01-01

    An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs

  7. THE EFFECT OF COOKING AND STORAGE ON FLORFENICOL AND FLORFENICOL AMINE RESIDUES IN EGGS

    Directory of Open Access Journals (Sweden)

    Ayhan Filazi

    2015-09-01

    Full Text Available The aim of this study was to evaluate the effects of storage conditions (room temperature, refrigerator and cooking methods (frying, boiling on florfenicol (FF and florfenicol amine (FFA residue levels in eggs. Without any significant difference between storage conditions at 20˚C and +4˚C, residue levels decreased within days, but were still present on day 28. Frying and boiling for 1 and 5 min yielded similar results to the storage conditions just described; there was a significant decrease in residue levels, but still not enough for decomposing. These findings indicate that FF and FFA residues are heat-labile.

  8. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  9. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  10. The effect of commercial processing procedures on {sup 14}C-carbendazim residues in soybean oil and tomato

    Energy Technology Data Exchange (ETDEWEB)

    Genyuan, Peng; Huaguo, Wang; Mengwen, Qi; Fujun, Wang; Changjiu, Zhou [Laboratory for the Application of Nuclear Techniques, Beijing Agricultural University, Beijing (China)

    1994-06-01

    Under simulated agricultural practices, soybean plants were treated with {sup 14}C-labelled carbendazim during the blooming stage. The residue in seeds was determined to be 0.067 ppm; corresponding to 0.076 ppm respectively. After subjecting the oil to degumming, alkali treatment, bleaching and deodorization, 53.7% of original radioactivity was removed. Deodorization was the most effect process, removing about 20% of the residue. The concentration of residues in the deodorized oil decreased about 30%. In soybean seed and cake, the residue was mainly present as carbendazim, the concentration of the other metabolites did not exceed 30% of the residue. Tomatoes grown on a field plot were treated with {sup 14}C-carbendazim. After harvest, the tomatoes were processed into tomato juice and canned whole fruit. The magnitude and nature of residues in samples taken at several processing steps were determined to evaluate the effect of commercial processing on removing or eliminating the residues. The results showed that the surface residues on tomato would be removed efficiently by simple washing of tomato. A buffer solution of phosphate had the highest efficiency. Tomato juice contained lower residues than canned whole fruit.

  11. Embrittling effects of residual elements on steels

    International Nuclear Information System (INIS)

    Brear, J.M.; King, B.L.

    1979-01-01

    In a review of work related to reheat cracking in nuclear pressure vessel steels, Dhooge et al referred to work of the authors on the relative embrittling parameter for SA533B steels. The poor agreement when these parameters were applied to creep ductility data for SA508 class 2 lead the reviewers to conclude that the relative importance of impurity elements is a function of base alloy composition. The authors briefly describe some of their more recent work which demonstrates that when various mechanical, and other, effects are taken into consideration, the relative effects of the principal residual elements are similar, despite differing base compositions, and that the embrittling parameters derived correlate well with the data for SA Class 2 steel. (U.K.)

  12. Effect of the weld groove shape and pass number on residual stresses in butt-welded pipes

    International Nuclear Information System (INIS)

    Sattari-Far, I.; Farahani, M.R.

    2009-01-01

    This study used finite element techniques to analyze the thermo-mechanical behaviour and residual stresses in butt-welded pipes. The residual stresses were also measured in some welds by using the Hole-Drilling method. The results of the finite element analysis were compared with experimentally measured data to evaluate the accuracy of the finite element modelling. Based on this study, a finite element modelling procedure with reasonable accuracy was developed. The developed FE modelling was used to study the effects of weld groove shape and weld pass number on welding residual stresses in butt-welded pipes. The hoop and axial residual stresses in pipe joints of 6 and 10 mm thickness of different groove shapes and pass number were studied. It is shown that these two parameters may have significant effects on magnitude and distribution of residual stresses in welded pipes.

  13. Effect of preemptive weld overlay on residual stress of repaired weldment in surge nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Young; Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    In the welding process, weldments usually include repair weld during the manufacturing process. Repair welds is supposed to cause strong tensile residual stress. Moreover weldments, usually made by Alloy 82/182, is susceptible to PWSCC. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

  14. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  15. Development of residual stress analysis procedure for fitness-for-service assessment of welded structure

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Jin, Tae Eun; Dong, P.; Prager, M.

    2003-01-01

    In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develop the residual stress analysis procedure for Fitness-For-Service(FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific thermomechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation

  16. Interaction of the alpha-toxin of Staphylococcus aureus with the liposome membrane.

    Science.gov (United States)

    Ikigai, H; Nakae, T

    1987-02-15

    When the liposome membrane is exposed to the alpha-toxin of Staphylococcus aureus, fluorescence of the tryptophan residue(s) of the toxin molecule increases concomitantly with the degree of toxin-hexamer formation (Ikigai, H., and Nakae, T. (1985) Biochem. Biophys. Res. Commun. 130, 175-181). In the present study, the toxin-membrane interaction was distinguished from the hexamer formation by the fluorescence energy transfer from the tryptophan residue(s) of the toxin molecule to the dansylated phosphatidylethanolamine in phosphatidylcholine liposome. Measurement of these two parameters yielded the following results. The effect of the toxin concentration and phospholipid concentration on these two parameters showed first order kinetics. The effect of liposome size on the energy transfer and the fluorescence increment of the tryptophan residue(s) was only detectable in small liposomes. Under moderately acidic or basic conditions, the fluorescence energy transfer always preceded the fluorescence increment of the tryptophan residue(s). The fluorescence increment at 336 nm at temperatures below 20 degrees C showed a latent period, whereas the fluorescence energy transfer did not. These results were thought to indicate that when alpha-toxin damages the target membrane, the molecule interacts with the membrane first, and then undergoes oligomerization within the membrane.

  17. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  18. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal; Li, Jianguo; Shaikh, Abdul Rajjak; Rajagopalan, Raj

    2011-01-01

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP's indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine's preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine's interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  19. Effects of residual aberrations explored on single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Biskupek, Johannes; Hartel, Peter; Haider, Maximilian; Kaiser, Ute

    2012-01-01

    The effects of geometric residual aberrations such as coma B 2 and two-fold astigmatism A 1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C S -corrector. We demonstrate how coma B 2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C S the coma B 2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B 2 , A 1 , and C S are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B 2 in a single HRTEM image is determined.

  20. Gender effects in gaming research: a case for regression residuals?

    Science.gov (United States)

    Pfister, Roland

    2011-10-01

    Numerous recent studies have examined the impact of video gaming on various dependent variables, including the players' affective reactions, positive as well as detrimental cognitive effects, and real-world aggression. These target variables are typically analyzed as a function of game characteristics and player attributes-especially gender. However, findings on the uneven distribution of gaming experience between males and females, on the one hand, and the effect of gaming experience on several target variables, on the other hand, point at a possible confound when gaming experiments are analyzed with a standard analysis of variance. This study uses simulated data to exemplify analysis of regression residuals as a potentially beneficial data analysis strategy for such datasets. As the actual impact of gaming experience on each of the various dependent variables differs, the ultimate benefits of analysis of regression residuals entirely depend on the research question, but it offers a powerful statistical approach to video game research whenever gaming experience is a confounding factor.

  1. Effect of cooking on14 C-tetrachlorvinphos residues in faba beans

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.

    1986-01-01

    The effect of cooking on 14 C-tetrachlorvinphos in stored vicia faba beans was studied. The results indicated that over 50% of the dose originally present inside the grains (37 ppm), could be recovered in the aqueous extract of the cooked grains. Considerable portion of radioactivity (About 22%) was associated with the grains in a non-extractable from. Residues in cooked beans included, in addition to a small amount of the parent insecticide, desmethyl tetrachlorvinphos, mono methyl phosphate and dimethyl phosphate. The results obtained indicate that tetrachlorvinphos residues are not appreciably affected by cooking. 1 tab

  2. Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues

    DEFF Research Database (Denmark)

    Mayer, J.; Buegger, F.; Jensen, E.S.

    2004-01-01

    The turnover of N derived from rhizodeposition of faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) and the effects of the rhizodeposition on the subsequent C and N turnover of its crop residues were investigated in an incubation experiment (168 days, 15 degrees....... In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller...... amount of 15-17% was present as microbial biomass and between 30 and 55% of mineralised rhizodeposition N was present as microbial residue pool, which consists of microbial exoenzymes, mucous substances and dead microbial biomass. The effect of rhizodeposition on the C and N turnover of crop residues...

  3. The presence of modifiable residues in the core peptide part of precursor nisin is not crucial for precursor nisin interactions with NisB- and NisC.

    Directory of Open Access Journals (Sweden)

    Rustem Khusainov

    Full Text Available Precursor nisin is a model posttranslationally modified precursor lantibiotic that can be structurally divided into a leader peptide sequence and a modifiable core peptide part. The nisin core peptide clearly plays an important role in the precursor nisin-nisin modification enzymes interactions, since it has previously been shown that the construct containing only the nisin leader sequence is not sufficient to pull-down the nisin modification enzymes NisB and NisC. Serines and threonines in the core peptide part are the residues that NisB specifically dehydrates, and cysteines are the residues that NisC stereospecifically couples to the dehydrated amino acids. Here, we demonstrate that increasing the number of negatively charged residues in the core peptide part of precursor nisin, which are absent in wild-type nisin, does not abolish binding of precursor nisin to the modification enzymes NisB and NisC, but dramatically decreases the antimicrobial potency of these nisin mutants. An unnatural precursor nisin variant lacking all serines and threonines in the core peptide part and an unnatural precursor nisin variant lacking all cysteines in the core peptide part still bind the nisin modification enzymes NisB and NisC, suggesting that these residues are not essential for direct interactions with the nisin modification enzymes NisB and NisC. These results are important for lantibiotic engineering studies.

  4. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O.; Liu, Yuxin

    2017-03-01

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  5. Roles of the β 146 histidyl residue in the molecular basis of the Bohr Effect of hemoglobin: A proton nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Busch, M.R.; Mace, J.E.; Ho, N.T.; Ho, Chien

    1991-01-01

    Assessment of the roles of the carboxyl-terminal β146 histidyl residues in the alkaline Bohr effect in human and normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146β)-hemoglobin, and the mutant hemoglobins Cowtown (β146His → Leu) and York (β146His → Pro), the authors have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The results indicate that the contribution of the β146 histidyl residues is 0.52 H + /hemoglobin tetramer at pH 7.6, markedly less than 0.8 H + /hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (β146His → Leu) by Shih and Perutz. They have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and they suggest that these pK differences may in part account for this discrepancy. The results show that the pK values of β146 histidyl residues in the carbonmonoxy form of hemoglobin are substantially affected by the presence of chloride and other anions in the solvent, and thus, the contribution of this amino acid residue to the alkaline Bohr effect can be shown to vary widely in magnitude, depending on the solvent composition. These results demonstrate that the detailed molecular mechanisms of the alkaline Bohr effect are not unique but are affected both by the hemoglobin structure and by the interactions with the solvent components in which the hemoglobin molecule resides

  6. Plasticity effect of rider-horse interaction on genetic evaluations for Show Jumping discipline in sport horses.

    Science.gov (United States)

    Bartolomé, E; Menéndez-Buxadera, A; Molina, A; Valera, M

    2018-04-01

    To obtain a sport horse that excels in the highest levels of competition, breeders must take into account certain genetic and environmental factors that could influence the sport horse's performance, such as the rider-horse interaction (RHI). The main aim of this study was to describe this interaction in a genetic model by modelling it in relation to the horse's age. A total of 31,129 sport results from Spanish Sport Horses were used from a total of 1,101 animals evaluated, and these were grouped in three age levels and had been ridden by 606 different riders. Only riders who had ridden more than one horse (and vice-versa) were considered for the analyses. Five linear models with different random effects were analysed according to the covariates, the homogeneity/heterogeneity of the RHI and the relevant residual random effects. The model of best fit was then selected for the genetic evaluation of the animal. In general, models including the RHI effect (M2, M4 and M5) fitted better than the other models, and the best fit was obtained for M4 (with heterogeneous residual variance). The genetic variance increased constantly with age, whereas heritability showed a response on three intervals. This study revealed the varied evolution of the RHI with age, showing the different "plastic abilities" of this relationship. © 2018 Blackwell Verlag GmbH.

  7. Efeito residual de sulfentrazone, isoxaflutole e oxyfluorfen em três solos Residual effect of sulfentrazone, isoxaflutole and oxyfluorfen in three soils

    Directory of Open Access Journals (Sweden)

    C.A.D Melo

    2010-12-01

    oxyfluorfen, que apresentou controle praticamente constante em todas as épocas avaliadas, e do sulfentrazone, que mostrou elevado efeito residual ao longo do período avaliado. As características inerentes a cada herbicida, bem como as diferenças nos teores de matéria orgânica e de textura entre os solos, influenciam na persistência do sulfentrazone, isoxaflutole e oxyfluorfen no solo. Maior efeito residual de oxyfluorfen foi observado no solo franco-arenoso e de isoxaflutole no solo argiloso com alto teor de matéria orgânica. Já o sulfentrazone apresentou elevado efeito residual nos três solos estudados.The physical and chemical properties of soils, as well as climatic conditions, influence the behavior of herbicides applied in pre-emergence. This work aimed to evaluate the residual effect of sulfentrazone, isoxaflutole and oxyfluorfen in three soils. The trial was conducted in a protected environment in a randomized block experimental design, with four replications. The treatments for each soil were arranged in a 3 x 5 factorial, being three herbicides and five sowing periods after herbicide application. Sulfentrazone, isoxaflutole and oxyfluorfen were applied at 0.5 kg ha-1, 0.72 kg ha-1 and 0.113 kg ha-1, respectively, on plastic pots with 250 mL volume, previously filled with the two clay texture soils and the sandy loam texture soil. Subsequently, the bioindicator species Sorghum bicolor was sown at 0, 15, 30, 45 and 60 days after application (DAA. A control with no herbicide treatment was sown at different times for each soil and used as a comparison in the evaluations. At 21 days after sowing in each season, intoxication and plant growth were evaluated by means of shoot dry mass. Sorghum plants in the clay soil with 9.0 dag kg-1 of organic matter (O.M., submitted to the application of isoxaflutole, sulfentrazone and oxyfluorfen, produced shoot dry mass over the control to 34, 20 and 40%, respectively, at 60 DAA. In the sandy loam soil, it was observed a high

  8. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  9. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    Science.gov (United States)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  10. Residual stress concerns in containment analysis

    International Nuclear Information System (INIS)

    Costantini, F.; Kulak, R. F.; Pfeiffer, P. A.

    1997-01-01

    The manufacturing of steel containment vessels starts with the forming of flat plates into curved plates. A steel containment structure is made by welding individual plates together to form the sections that make up the complex shaped vessels. The metal forming and welding process leaves residual stresses in the vessel walls. Generally, the effect of metal forming residual stresses can be reduced or virtually eliminated by thermally stress relieving the vesseL In large containment vessels this may not be practical and thus the residual stresses due to manufacturing may become important. The residual stresses could possibly tiect the response of the vessel to internal pressurization. When the level of residual stresses is significant it will affect the vessel's response, for instance the yielding pressure and possibly the failure pressure. The paper will address the effect of metal forming residual stresses on the response of a generic pressure vessel to internal pressurization. A scoping analysis investigated the effect of residual forming stresses on the response of an internally pressurized vessel. A simple model was developed to gain understanding of the mechanics of the problem. Residual stresses due to the welding process were not considered in this investigation

  11. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  12. Irradiation and modified atmosphere packaging effects on residual nitrite, ascorbic acid, nitrosomyoglobin, and color in sausage.

    Science.gov (United States)

    Ahn, Hyun-Joo; Jo, Cheorun; Lee, Ju-Woon; Kim, Jae-Hyun; Kim, Kee-Hyuk; Byun, Myung-Woo

    2003-02-26

    The present study was undertaken to evaluate the irradiation and modified atmosphere packaging effects on emulsion-type cooked pork sausage during storage for 4 weeks. CO(2) (100%), N(2) (100%), or 25% CO(2)/75% N(2) packaged sausage were irradiated at 0, 5, and 10 kGy, and residual nitrite, residual ascorbic acid, nitrosomyoglobin (NO-Mb), color values, and their correlation were observed. Irradiation significantly reduced the residual nitrite content and caused partial reduction of NO-Mb during storage. No difference was observed in ascorbic acid content by irradiation. Irradiation decreased the Hunter color a value of sausage. CO(2) or CO(2)/N(2) packaging were more effective for reducing residual nitrite and inhibiting the loss of the red color of sausage compared to N(2) packaging. Results indicated that the proper combination of irradiation and modified atmosphere packaging could reduce the residual nitrite in sausage with minimization of color change.

  13. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  14. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  15. Responses of Pea (Pisum sativum Growth and Yield to Residual Effects of Organic and Urea Fertilizers from Previous Crop

    Directory of Open Access Journals (Sweden)

    S. Fallah

    2016-07-01

    Full Text Available Application of organic manure in organic farming and long-term mineralization may lead to residual effects on the succeeding crop. So, residual effects of combined cattle manure and urea fertilizer of previous crop (black cumin on growth and yield of pea were examined in a randomized complete block design. Treatments included of  cattle manure (CM, urea (U, three ratios of CM+U full dose application (2:1; 1:1; 1:2 and three ratios of CM+U split application (2:1; 1:1; 1:2, and unfertilized control to previous crop (black cumin in 2012. Pea planted without any fertilizer in 2013. There was no significant difference between control and residual of urea treatment for some parameters including dry matter in flowering stage, plant nitrogen and phosphorus concentration, plant height, yield components, grain yield and biological yield of pea. Biological and grain yields were greater under both residual of cattle manure treatment and integrated treatments compared to residual of urea treatment. The highest grain yield (4000 kg ha-1 was observed in residual of CM:U full dosed application treatment, to the extent that grain yield in this treatment indicated a 1.5-fold increase in comparison with residual of urea treatment. The highest biological yield (8325 kg ha-1 was obtained in residual of CM treatment, though it was not significant different from that of residual of CM:U (1:2 treatments. In general, although residual of urea fertilizer did not leave a notable effect on pea production, but production of this crop relying on residual of cattle manure deems effective to lowering of fertilization cost and ameliorating environmental contaminations.

  16. Residual stress effects on the impact resistance and strength of fiber composites

    Science.gov (United States)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  17. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  18. Final State Interactions Effects in Neutrino-Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Tomasz [Univ. of Wroctaw (Poland); Juszczak, Cezary [Univ. of Wroctaw (Poland); Sobczyk, Jan T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  19. Effects of residual stress on fatigue strength of small diameter welded pipe joint

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Hattori, Takahiro; Nomoto, Toshiharu; Iida, Kunihiro; Sato, Masanobu

    1996-01-01

    A power plant consists of many welded components, therefore, it is essential in establishing the reliability of the power plant to maintain the reliability of all welded components. The fatigue failure caused by mechanical vibrations of small diameter welded joints, which is represented by socket welded joints, is one of the major causes of trouble for the welded parts of the power plant. Here, bending fatigue tests were conducted to investigate the fatigue strength of small diameter socket welded pipe joints. In the most cases of large diameter socket joints, a fatigue crack started from the root of the fillet weld though the stress amplitude at the root was smaller than that at the toe of fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength, therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small diameter welded pipe joints in the present work

  20. Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs.

    Science.gov (United States)

    Nakamura, Kenta; Katayama, Tsutomu

    2010-04-01

    Escherichia coli ATP-DnaA initiates chromosomal replication. For preventing extra-initiations, a complex of ADP-Hda and the DNA-loaded replicase clamp promotes DnaA-ATP hydrolysis, yielding inactive ADP-DnaA. However, the Hda-DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg-153) and DnaA sensor II Arg-334 within each AAA(+) domain are crucial for the DnaA-ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP-Hda with DnaA requires the Hda residues Ser-152, Phe-118 and Asn-122 as well as Hda Arg-153 and DnaA Arg-334. Structural analyses suggest intermolecular interactions between Hda Ser-152 and DnaA Arg-334 and between Hda Phe-118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn-122 and Arg-153. These interactions likely sustain a specific association of ADP-Hda and DnaA, promoting DnaA-ATP hydrolysis. Consistently, ATP-DnaA and ADP-DnaA interact with the ADP-Hda-DNA-clamp complex with similar affinities. Hda Phe-118 and Asn-122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA(+) proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda-DnaA as well as a potentially fundamental mechanism in AAA(+) protein interactions.

  1. Effect of residual stress on the integrity of a branch connection

    International Nuclear Information System (INIS)

    Law, M.; Kirstein, O.; Luzin, V.

    2012-01-01

    A new connection to an existing gas pipeline was made by hot-tapping, welding directly onto a pressurised pipeline. The welds were not post-weld heat treated, causing significant residual stresses. The critical weld had residual stresses determined by neutron diffraction using ANSTO's residual stress diffractometer, Kowari. The maximum measured residual stress (290 MPa) was 60% of the yield strength. The magnitudes of errors from a number of sources were estimated. An integrity assessment of the welded branch connection was performed with the measured residual stress values and with residual stress distributions from the BS 7910 and API 579 analysis codes. Analysis using estimates of residual stress from API 579 overestimated the critical crack size. Highlights: ► Residual stresses were measured by neutron diffraction in a thick section, non post-weld heat treated ferritic weld. ► There is little published data on these welds. ► The work compares the measured residual stresses with code-based residual stress distributions.

  2. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  3. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  4. Influence of heat input and radius to pipe thickness ratio on the residual stresses in circumferential arc welded pipes of API X46 steels

    International Nuclear Information System (INIS)

    Hemmatzadeh, Majid; Moshayedi, Hessamoddin; Sattari-Far, Iradj

    2017-01-01

    The present work aims to study residual stresses caused by circumferentially welding of two similar API X46 steel pipes by means of finite element modeling. Considering the metallurgical phase transformations and through thermal-mechanical uncoupled analysis, the 3D modeling was carried out by SYSWELD software. Materialistic thermal and mechanical properties of all phases were defined in terms of temperature as well as phase transformation properties. Residual stress was measured through hole-drilling method. The obtained results were used to verify the finite element model. By means of full factorial experiment designing method, effects of heat input and radius to pipe thickness ratio on maximum values of hoop and axial residual stresses were investigated. The effect of each factor was studied in 3 levels and by 9 experiments. Results of statistical analysis revealed that increase in heat input and radius-thickness ratio would lead to higher values of maximum hoop and axial residual stresses. However, interactions of high level of heat input and a low level of radius-thickness ratio increased inter-pass temperature and consequently caused a sudden raise in maximum values of residual stresses. - Highlights: • A FEM model was developed to simulate welding considering phase transformations. • The obtained residual stresses were validated by experiments. • Effect of heat input and radius-to-thickness ratio on residual stress were investigated. • Increasing heat input for 100% caused increasing hoop and axial residual stress until 200%. • Interaction of high heat input and low R/t causes a sudden increase in axial residual stresses.

  5. Effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish.

    Science.gov (United States)

    Steffenak, I; Hormazabal, V; Yndestad, M

    1994-01-01

    The effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish was investigated. Salmon containing residues of oxolinic acid and flumequine was boiled or baked in the oven. Samples of raw and cooked muscle, skin, and bone, as well as of the water in which the fish was boiled and juice from the baked fish, were analysed. Oxolinic acid and flumequine did not degrade at the temperatures reached when cooking the fish. However, fish muscle free from drug residues may be contaminated during boiling and baking due to leakage of the drug from reservoirs in the fish.

  6. Reclamation of Herb Residues Using Probiotics and Their Therapeutic Effect on Diarrhea

    Directory of Open Access Journals (Sweden)

    Fanjing Meng

    2017-01-01

    Full Text Available Residues from herbal medicine processing in pharmaceutical plants create a large amount of waste (herb residues, which consists mainly of environmental pollution and medicinal waste. In order to resolve this problem, probiotics of Bacillus (B. subtilis, Aspergillus (A. oryzae, and Lactobacillus (L. plantarum M3 are selected to reuse herb residue of Jianweixiaoshi tablets (JT, and an antibiotic-associated diarrhea (AAD mouse model was established to evaluate the therapeutic effects of the herb residue fermentation supernatant. Our results indicated that the fermentation supernatant had scavenged 77.8% of 2,2-diphenyl-1-picrylhydrazyl (DPPH, 78% of O2•−, 36.7% of •OH, 39% of Fe2+ chelation, and 716 mg/L reducing power. The inhibition zones for Salmonella (S. typhimurium, S. enteritidis, Shigella (Sh. flexneri, Escherichia (E. coli, Listeria (L. monocytogenes, Sh. dysenteriae 301, and Staphylococcus (S. aureus were 17, 14, 19, 18, 20, 19, and 20 mm, respectively. The in vivo results indicated that the fermentation supernatant resulted in a high diarrhea inhibition rate (56%, p<0.05, greatly enhanced the disruption of bacterial diversity caused by antibiotics, and restored the dominant position of L. johnsonii in the treatment and recovery stages. Therefore, the combination of the herb residue and probiotics suggests a potential to explore conversion of these materials for the possible development of therapies for AAD.

  7. Computational studies on the interactions of nanomaterials with proteins and their impacts

    International Nuclear Information System (INIS)

    An De-Yi; Li Jing-Yuan; Su Ji-Guo; Li Chun-Hua

    2015-01-01

    The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications, many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic and π-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups. The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. (paper)

  8. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, Annual Report 1998

    International Nuclear Information System (INIS)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-01-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m ± 0.2 m and 0.26 m/s ± 0.19 m/s, and during the fall 0.5 m ± 0.2 m and 0.24 m/s ± 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree

  9. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  10. Efeito residual de herbicidas aplicados em pré-emergência em diferentes solos Residual effect of herbicides applied in pre-emergence in different soils

    Directory of Open Access Journals (Sweden)

    M.H. Inoue

    2011-06-01

    Full Text Available O objetivo deste trabalho foi monitorar o efeito residual dos herbicidas ametryne, clomazone e diuron, aplicados em pré-emergência, utilizando amostras de um Neossolo Quartzarênico e de um Latossolo Vermelho, com texturas e composições contrastantes. Para isso, foram conduzidos seis bioensaios em casa de vegetação, com amostras de um Neossolo Quartzarênico (textura arenosa e de um Latossolo Vermelho (textura argilosa. Foi avaliado o efeito residual de ametryne (0, 1,60 e 2,40 kg ha-1, clomazone (0, 0,90 e 1,10 kg ha-1 e diuron (0, 1,60 e 3,20 kg ha-1, por meio de semeadura de bioindicador previamente selecionado (Cucumis sativus ou Brachiaria decumbens aos 0, 25, 50, 75 e 100 dias após a aplicação (DAA. Verificou-se que ametryne proporcionou 80% de controle até os 40 DAA, independentemente do solo e da dose. O clomazone apresentou efeito residual satisfatório quando aplicado na dose recomendada em solo argiloso, mantendo o controle acima de 80% até os 71 DAA. Em solo arenoso, o controle não foi satisfatório já aos 25 DAA, mesmo na dose recomendada para solo argiloso. Diuron apresentou alta estabilidade em solo argiloso, observando-se controle superior a 91% até os 100 DAA na dose recomendada e controle acima de 80% até os 54 DAA na dose recomendada para solo arenoso. No entanto, em solo arenoso não houve aumento do efeito residual, mesmo com a aplicação da dose recomendada para solo argiloso.The objective of this work was to monitor the residual effect of the herbicides ametryne, clomazone and diuron, applied in pre-emergence, using Psament and Red Latosol with contrasting texture and composition. Thus, six experiments were conducted under greenhouse conditions with samples of Psament (sandy texture and Red Latosol (clay texture. The residual effect of ametryne (0, 1.60 and 2.40 kg ha-1, clomazone (0, 0.90 and 1.10 kg ha-1 and diuron (0, 1.60 and 3.20 kg ha 1 was evaluated by sowing the test plant (Cucumis sativus or

  11. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  12. Clarifying the role of mean centring in multicollinearity of interaction effects.

    Science.gov (United States)

    Shieh, Gwowen

    2011-11-01

    Moderated multiple regression (MMR) is frequently employed to analyse interaction effects between continuous predictor variables. The procedure of mean centring is commonly recommended to mitigate the potential threat of multicollinearity between predictor variables and the constructed cross-product term. Also, centring does typically provide more straightforward interpretation of the lower-order terms. This paper attempts to clarify two methodological issues of potential confusion. First, the positive and negative effects of mean centring on multicollinearity diagnostics are explored. It is illustrated that the mean centring method is, depending on the characteristics of the data, capable of either increasing or decreasing various measures of multicollinearity. Second, the exact reason why mean centring does not affect the detection of interaction effects is given. The explication shows the symmetrical influence of mean centring on the corrected sum of squares and variance inflation factor of the product variable while maintaining the equivalence between the two residual sums of squares for the regression of the product term on the two predictor variables. Thus the resulting test statistic remains unchanged regardless of the obvious modification of multicollinearity with mean centring. These findings provide a clear understanding and demonstration on the diverse impact of mean centring in MMR applications. ©2011 The British Psychological Society.

  13. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea

    NARCIS (Netherlands)

    Duran-Matute, M.; Gerkema, T.; Sassi, M.

    2016-01-01

    In multiple-inlet coastal systems like the western Dutch Wadden Sea, the tides (and their interaction with the bathymetry), the fresh water discharge, and the wind drive a residual flow through the system. In the current paper, we study the effect of the wind on the residual volume transport through

  14. Effects of Adopting Different Kinds of Collecting Method for Years on Film Residual Coefficient and Maize Yields

    Directory of Open Access Journals (Sweden)

    TANG Wen-xue

    2017-03-01

    Full Text Available Wide usage of mulching technology has increased crop yields, but the large amounts of mulching film residue resulting from widespread use of plastic film in China has brought about a series of pollution hazards. Based on a 4-year (2011-2014 long-term experiment, the effects of different kinds of collecting mothod (zero plastic film residues, conventional plastic film residues, whole plastic film residues remainded on plastic film residues, residual coefficient and maize yield were explored. Plastic film residues mainly remained in 0~10 cm, 10~20 cm soil layers. In 0~30 cm soil layers, the two types of mulch residues (>25 cm2, 4~25 cm2 under zero plastic film residues treatment were much less than conventional plastic film residues and whole plastic film residues remainded treatments, no significant differences were observed in the mulch residues (2 among 3 treatments. After maize harvest, the amount of plastic film residues under zero plastic film residues, conventional plastic film residues and whole plastic film residues remainded treatments were 52.71, 80.85 kg·hm-2 and 152.65 kg·hm-2, respectively, the residual coefficient for zero plastic film residues, conventional plastic film residues and whole plastic film residues remainded treatments were -9.45%, 8.53% and 54.42%, respectively. The stem diameter, ear length, ear width, ear row number, grain number per row and 100-grain weight of maize decreased with the increase of residual film amount. Compared with the conventional plastic film residues, the mean grain yield of whole plastic film residues remainded treatment decreased by 15.08%, whereas the zero plastic film residues treatment increased by 4.70%. The plastic film residues, residual coefficient and maize yield were comprehensively analyzed, the conventional plastic film residues practice should be adopted currently without appropriate plastic film residues collector. But from the long-term development, we should speed up the

  15. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    International Nuclear Information System (INIS)

    Kawashima, Hiroko; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-01-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations

  16. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Hiroko E-mail: hirokok@med.kanazawa-u.ac.jp; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-10-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations.

  17. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  18. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    International Nuclear Information System (INIS)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  19. Impact of sugarcane field residue and mill bagasse on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  20. Effective interactions in p-shell nuclei and the realistic interactions - I

    International Nuclear Information System (INIS)

    Upadhyaya, G.K.; Joshi, K.P.

    1984-04-01

    The effective interaction of Jain et al. derived from the Yale interaction by including the prominent core polarization diagrams is analyzed in terms of the interaction radial integrals and their spin tensor components. The interaction is also compared with some phenomenological effective interactions. The general features of the effective force in the 1 p shell region are discussed. (author)

  1. Eviromental Economic and Technological Residues Management Demands: An Optimization Tool.

    Directory of Open Access Journals (Sweden)

    Marisa Soares Borges

    2012-12-01

    Full Text Available Industrial residues management is a very demanding task since many different goals must be achieved. The combination of different approaches used by people from different stuff is very challenging activity that can misuse the residues potential value and applicability. An interactive WEB base tool, to integrate different sectors and overcome residues management difficulties will be presented. The system must be loaded with all data concerning the residue life cycle, and through data integration and modeling routine will give the best alternative as output. As wider and complete the system data becomes, by information loading from differen t segment, more efficient the residues management becomes. The user friendly tool will encourage the participation of industries, labs and research institutions to obtain qualified information about industrial residues inventory, raw materials recovery, characteristics, treatment and alternative uses, to achieve residues management sustainability.

  2. A new method for weakening the combined effect of residual errors on multibeam bathymetric data

    Science.gov (United States)

    Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue

    2014-12-01

    Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.

  3. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  4. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  5. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel.

    Science.gov (United States)

    Kshatri, Aravind S; Gonzalez-Hernandez, Alberto J; Giraldez, Teresa

    2018-04-01

    BK channels are dually regulated by voltage and Ca 2+ , providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca 2+ concentration is sensed by a large cytoplasmic region in the channel known as "gating ring", which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca 2+ coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca 2+ . Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca 2+ in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca 2+ sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca 2+ coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca 2+ binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca 2+ binding sites regulating the Ca 2+ dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Residual symptoms and functioning in depression, does the type of residual symptom matter? A post-hoc analysis

    Directory of Open Access Journals (Sweden)

    Romera Irene

    2013-02-01

    Full Text Available Abstract Background The degrees to which residual symptoms in major depressive disorder (MDD adversely affect patient functioning is not known. This post-hoc analysis explored the association between different residual symptoms and patient functioning. Methods Patients with MDD who responded (≥50% on the 17-item Hamilton Rating Scale for Depression; HAMD-17 after 3 months of treatment (624/930 were included. Residual core mood-symptoms (HAMD-17 core symptom subscale ≥1, residual insomnia-symptoms (HAMD-17 sleep subscale ≥1, residual anxiety-symptoms (HAMD-17-anxiety subscale ≥1, residual somatic-symptoms (HAMD-17 Item 13 ≥1, pain (Visual Analogue Scale ≥30, and functioning were assessed after 3 months treatment. A stepwise logistic regression model with normal functioning (Social and Occupational Functioning Assessment Scale ≥80 as the dependent variable was used. Results After 3 months, 59.5% of patients (371/624 achieved normal functioning and 66.0% (412/624 were in remission. Residual symptom prevalence was: core mood symptoms 72%; insomnia 63%; anxiety 78%; and somatic symptoms 41%. Pain reported in 18%. Factors associated with normal functioning were absence of core mood symptoms (odds ratio [OR] 8.7; 95% confidence interval [CI], 4.6–16.7, absence of insomnia symptoms (OR 1.8; 95% CI, 1.2–2.7, episode length (4–24 weeks vs. ≥24 weeks [OR 2.0; 95% CI, 1.1–3.6] and better baseline functioning (OR 1.0; 95% CI, 1.0–1.1. A significant interaction between residual anxiety symptoms and pain was found (p = 0.0080. Conclusions Different residual symptoms are associated to different degrees with patient functioning. To achieve normal functioning, specific residual symptoms domains might be targeted for treatment.

  7. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Otoguro, Saori; Miura, Takahiro; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2014-01-01

    A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems.

  8. Effect of Dodonaea viscosa Jacq. residues on growth and yield of ...

    African Journals Online (AJOL)

    This study was to evaluate the effect of Dodonaea viscosa Jacq. residues on mungbean (Vigna mungo L.Hepper) local cultivar. An experiment [using randomized complete block design (RCBD) design] with three replications was conducted in 2010. The trial comprised of four treatments such as mulching, incorporation into ...

  9. Multilevel Modelling with Spatial Interaction Effects with Application to an Emerging Land Market in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Guanpeng Dong

    Full Text Available This paper develops a methodology for extending multilevel modelling to incorporate spatial interaction effects. The motivation is that classic multilevel models are not specifically spatial. Lower level units may be nested into higher level ones based on a geographical hierarchy (or a membership structure--for example, census zones into regions but the actual locations of the units and the distances between them are not directly considered: what matters is the groupings but not how close together any two units are within those groupings. As a consequence, spatial interaction effects are neither modelled nor measured, confounding group effects (understood as some sort of contextual effect that acts 'top down' upon members of a group with proximity effects (some sort of joint dependency that emerges between neighbours. To deal with this, we incorporate spatial simultaneous autoregressive processes into both the outcome variable and the higher level residuals. To assess the performance of the proposed method and the classic multilevel model, a series of Monte Carlo simulations are conducted. The results show that the proposed method performs well in retrieving the true model parameters whereas the classic multilevel model provides biased and inefficient parameter estimation in the presence of spatial interactions. An important implication of the study is to be cautious of an apparent neighbourhood effect in terms of both its magnitude and statistical significance if spatial interaction effects at a lower level are suspected. Applying the new approach to a two-level land price data set for Beijing, China, we find significant spatial interactions at both the land parcel and district levels.

  10. Amino Acid Interaction (INTAA) web server.

    Science.gov (United States)

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  12. Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, H. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Hattingh, D.G. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); Steuwer, A. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); FaME38 at the ILL-ESRF, 6 rue J Horowitz, 38042 Grenoble (France); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: steuwer@ill.fr; James, M.N. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-02-15

    This paper investigates the effect of varying welding parameters on the residual stress profiles in friction stir welds of aluminium alloy AA5083-H321, which were created on a fully instrumented friction welding machine. The residual stresses were determined non-destructively using synchrotron X-ray diffraction. The width and maximum of the residual stress profile show clear correlation with the heat input, and in particular feed rate, which was found to be the dominant parameter.

  13. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  14. Accumulative effect of food residues on intestinal gas production.

    Science.gov (United States)

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  15. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    Science.gov (United States)

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  16. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    Science.gov (United States)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  17. Cumulative effects of white clover residues on the changes in soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... The residual effects of white clover on soil properties indicated a significant increase in saturation percentage (17–23%) and .... determined by leaching the soil with KCl followed by extraction of ...... accumulation, and oil quality of French basil. ... of the Final Workshop of the Farming System Integrated Pest.

  18. Residual Effect Of Organic Fertilizer And Addition Inorganik Fertilizer To Nutrient Uptake Growth And Productions Of Black Soy Bean Glycine Max L. Merr At Rainfed Areas.

    Directory of Open Access Journals (Sweden)

    Elli Afrida

    2015-02-01

    Full Text Available Abstract Research that have theme Residual Effect of Organic Fertilizer and Addition Anorganik Fertilizer to Nutrient Uptake Growth and pruductions of Black Soy Bean Glycine max L. Merr at Rainfed Wetland. Research was conducted at Suka Makmur village sub-distric Binjai Distric Langkat. Research was arranged in split plot design main plot is applications of phonska fertilizerwith 4 level i.e 0 t ha-1 A0 0.20 t ha-1 A1 0.25 t ha-1 A2 dan 0.30 t ha-1 A3 and sub plot is residual effect from first research with 16 combinations. Research was replicated 3 times. Result of research was showed application organic fertilizer that was combinated with anorganic fertilizer can increased N and K uptake. Application organic and anorganic fertilizer as single factor showed significantly effect of number of pods and soy bean productions but at interaction treatment not significantly effect however generally occurs increased production at O33A3 tratment until 80 comparison with control.

  19. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    Directory of Open Access Journals (Sweden)

    Yumiko Urano-Tashiro

    Full Text Available Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2 of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N or Arg365 to Asn (R365N substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins.

  20. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    Science.gov (United States)

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  1. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  2. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance.

    Science.gov (United States)

    Rojas-Sossa, Juan Pablo; Murillo-Roos, Mariana; Uribe, Lidieth; Uribe-Lorio, Lorena; Marsh, Terence; Larsen, Niels; Chen, Rui; Miranda, Alberto; Solís, Kattia; Rodriguez, Werner; Kirk, Dana; Liao, Wei

    2017-12-01

    The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Contribution to the study of the interactions between residual stresses and oxygen dissolution in a reactive deformable solid

    International Nuclear Information System (INIS)

    Raceanu, Laura

    2011-01-01

    The aim of this PhD work is to highlight the interactions between the mechanical stress and the chemical composition within diffusion of matter process for a reactive solid. The chronological evolution of our work goes from a parametric numerical study to an experimental study and reveals the role of mechanical stresses on the oxygen diffusion process. Different origins of mechanical stress were first numerically analysed from the point of view of their impacts on the process of oxygen diffusion into a metal (Zr) or a ceramic (UO 2 ) subjected to an oxidizing environment. This approach allowed us: - to identify a surface treatment (shot-peening) able to generate a residual specific stress field, as a starting point for an experimental study implementation in order to validate the numerical study conclusions; - to highlight the ability of the stress field on the stabilisation of the morphology of an undulated metal/oxide interface (case of Zr). In the experimental approach, different techniques were used to characterize the material (GDOS, SEM, TGA, hole-drilling method, micro-hardness tests). They permitted the detection of a strong influence of shot-peening on the oxidation rate. The comparison of experimental and numerical simulation results reveals strong interactions between stress and compositions fields induced by the different treatments (shot-peening and/or pre-oxidation). This study opens up many opportunities in the understanding of multi-physics coupling effects being very useful for the optimization of mechanical and chemical surface-treatments, able furthermore to favour the diffusion (nitriding, cementation) or to slow it down (corrosion). (author) [fr

  4. Cumulative effects of white clover residues on the changes in soil ...

    African Journals Online (AJOL)

    White clover grows naturally all over the Himalayan regions including the hilly areas of the state of Azad Jammu and Kashmir (AJK), Pakistan. This study was conducted to investigate the effects of white clover residues alone or in combination with phosphorus (P) fertilizer on maize (Zea mays L.) yield, nutrient uptake and ...

  5. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    Science.gov (United States)

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  6. Effectiveness of the compound chlorpyrifos+ cypermethrin+citronellal against Alphitobius diaperinus: laboratory analysis and residue determination in carcasses

    Directory of Open Access Journals (Sweden)

    GS Silva

    2007-09-01

    Full Text Available Effectiveness, biological security and the absence of residues in meat and/or eggs must be considered when recommending options for the control Alphitobius diaperinus in poultry production environments. This research study evaluated the effectiveness of cypermethrin+ chlorpyrifos+citronellal in the control of A. diaperinus, including analysis for the presence of residues of this compound in poultry carcasses (experimental farm. Two studies were carried out under laboratory conditions. One used paper filters a four dilutions of the compound, and the other used a container including with pulverized broiler litter and the compound. The analysis of carcasses for residues was conducted in broilers that raised in a broiler house treated (floor and/or litter with the compound at a dilution of 1:800. Birds were regularly sacrificed, submitted to necropsy, and liver, muscle and fat fragments were collected. Gas chromatography was used to identify the possible presence of any chemical residue in these samples. High effectiveness rates against A.diaperinus were observed in the two laboratory studies, as well as the absence of residues in the carcasses. This compound, used in the studied concentrations, can be recommended as a valuable alternative for the control and treatment of A. diaperinus.

  7. The effect of gamma irradiation on in vitro digestible energy of some agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1993-03-01

    Experiments have been carried out on the effect of gamma irradiation on total energy, dry organic matter digestibility and on digestible energy of organic matter for some agricultural residues (maize straw, lentils straw, cottonwood, residues of apple-tree pruning, olive-cake first and second treatment). Sample were irradiated at 0, 50 and 100 KGy. Total energy was estimated by calorimeter. Digestibility was estimated in vitro by the method of Tilly and Terry (1963). Two sheep with rumen fistula were used as rumen liquor donating animals. Irradiation resulted in increasing the digestion of organic and dry matter and also the digestible energy of organic matter in all residues used except lentils straw and olive-cake first treatment. The increase in digestible energy values of organic matter (kJ) at dose of 100 KGy were: 155, 105, 71 and 25 for residue of apple-tree pruning, maize straw, cottonwood and olive-cake second treatment, respectively. (author).28 refs., 10 figs., 5 tabs

  8. Hemodynamic effects of closure of residual arteriovenous fistulae during in situ graft procedures

    DEFF Research Database (Denmark)

    Laustsen, Jesper; Nielsen, Henriette Svarre; Pedersen, Erik Morre

    2011-01-01

    lower limb ischemia were obtained. Direct measurements of proximal and distal blood pressures in the graft were taken and simultaneous determinations of volume blood flow proximally and distally in the graft with ultrasound transit time technique before and after closure of residual fistulae were made......The objective was to study the intraoperative hemodynamic effects of closure of residual arteriovenous fistulae during in situ saphenous vein graft procedures. Data on 60 residual arteriovenous fistulae in nine patients (five men) with a median age of 74 years (range 64-83 years) with critical....... Closure of a fistula with blood flow around or below 100 mL/min did not increase distal outflow, whereas closure of fistulae with higher blood flow resulted in unpredictable changes in distal outflow. Only fistulae with a blood flow above approximately 100 mL/min may be of hemodynamic significance....

  9. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    Science.gov (United States)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  10. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    Science.gov (United States)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  11. Allelopathic impact of HoCP 96-540 field residue on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  12. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Pedersen, Anders Gorm

    2007-01-01

    ABSTRACT: BACKGROUND: Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues - coevolution. Our goal is to find these coevolving residues. RESULTS: We present six new methods for detecting coevolving...... residues. Among other things, we suggest measures that are variants of Mutual Information, and measures that use a multidimensional representation of each residue in order to capture the physico-chemical similarities between amino acids. We created a benchmarking system, in silico, able to evaluate...

  13. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  14. Effect of Household Coffee Processing on Pesticide Residues as a Means of Ensuring Consumers' Safety.

    Science.gov (United States)

    Mekonen, Seblework; Ambelu, Argaw; Spanoghe, Pieter

    2015-09-30

    Coffee is a highly consumed and popular beverage all over the world; however, coffee beans used for daily consumption may contain pesticide residues that may cause adverse health effects to consumers. In this monitoring study, the effect of household coffee processing on pesticide residues in coffee beans was investigated. Twelve pesticides, including metabolites and isomers (endosulfan α, endosulfan β, cypermethrin, permethrin, deltamethrin, chlorpyrifos ethyl, heptachlor epoxide, hexachlorobenzene, p'p-DDE, p'p-DDD, o'p-DDT, and p'p-DDT) were spiked in coffee beans collected from a local market in southwestern Ethiopia. The subsequent household coffee processing conditions (washing, roasting, and brewing) were established as closely as possible to the traditional household coffee processing in Ethiopia. Washing of coffee beans showed 14.63-57.69 percent reduction, while the roasting process reduced up to 99.8 percent. Chlorpyrifos ethyl, permethrin, cypermethrin, endosulfan α and β in roasting and all of the 12 pesticides in the coffee brewing processes were not detected. Kruskal-Wallis analysis indicated that the reduction of pesticide residues by washing is significantly different from roasting and brewing (P coffee roasting and brewing (P > 0.05). The processing factor (PF) was less than one (PF coffee beans. The cumulative effect of the three processing methods has a paramount importance in evaluating the risks associated with ingestion of pesticide residues, particularly in coffee beans.

  15. A feature-based approach to modeling protein-protein interaction hot spots.

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  16. A feature-based approach to modeling protein–protein interaction hot spots

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  17. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    OpenAIRE

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage is likely to be a dominant effect on the formation of compressive residual stresses along the clad. Furthermore, martensitic structure and unequal concentration of alloying elements was observed on...

  18. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  19. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  20. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  1. Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Tshidi Tsibane

    Full Text Available Most monoclonal antibodies (mAbs to the influenza A virus hemagglutinin (HA head domain exhibit very limited breadth of inhibitory activity due to antigenic drift in field strains. However, mAb 1F1, isolated from a 1918 influenza pandemic survivor, inhibits select human H1 viruses (1918, 1943, 1947, and 1977 isolates. The crystal structure of 1F1 in complex with the 1918 HA shows that 1F1 contacts residues that are classically defined as belonging to three distinct antigenic sites, Sa, Sb and Ca(2. The 1F1 heavy chain also reaches into the receptor binding site (RBS and interacts with residues that contact sialoglycan receptors and determine HA receptor specificity. The 1F1 epitope is remarkably similar to the previously described murine HC63 H3 epitope, despite significant sequence differences between H1 and H3 HAs. Both antibodies potently inhibit receptor binding, but only HC63 can block the pH-induced conformational changes in HA that drive membrane fusion. Contacts within the RBS suggested that 1F1 may be sensitive to changes that alter HA receptor binding activity. Affinity assays confirmed that sequence changes that switch the HA to avian receptor specificity affect binding of 1F1 and a mAb possessing a closely related heavy chain, 1I20. To characterize 1F1 cross-reactivity, additional escape mutant selection and site-directed mutagenesis were performed. Residues 190 and 227 in the 1F1 epitope were found to be critical for 1F1 reactivity towards 1918, 1943 and 1977 HAs, as well as for 1I20 reactivity towards the 1918 HA. Therefore, 1F1 heavy-chain interactions with conserved RBS residues likely contribute to its ability to inhibit divergent HAs.

  2. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer.

    Science.gov (United States)

    Jang, Mi; Trung, Tran Quang; Jung, Jin-Heak; Kim, Bo-Yeong; Lee, Nae-Eung

    2014-03-07

    One of the most significant issues that occurs when applying chemical-vapor deposited (CVD) graphene (Gr) to various high-performance device applications is the result of polymeric residues. Polymeric residues remain on the Gr surface during Gr polymer support transfer to an arbitrary substrate, and these residues degrade CVD Gr electrical properties. In this paper, we propose that a thin layer of gold be used as a CVD Gr transfer layer, instead of a polymer support layer, to enable a polymer residue-free transfer. Comparative investigation of the surface morphological and qualitative analysis of residues on Gr surfaces and Gr field-effect transistors (GFETs) using two transfer methods demonstrates that gold-transferred Gr, with uniform, smooth, and clean surfaces, enable GFETs to perform better than Gr transferred by the polymer, polymethylmethacrylate (PMMA). In GFETs fabricated by the gold transfer method, field-effect carrier mobility was greatly enhanced and the position of the Dirac point was significantly reduced compared to GFETs fabricated by the PMMA transfer method. In addition, compared to the PMMA-transferred GFETs, the gold-transferred GFETs showed greatly increased stability with smaller hysteresis and higher resistance to gate bias stress effects. These results suggest that the gold transfer method for Gr provides significant improvements in GFET performance and reliability by minimizing the polymeric residues and defects on Gr.

  3. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  4. Contribution of cation-π interactions to the stability of Sm/LSm oligomeric assemblies.

    Science.gov (United States)

    Mucić, Ivana D; Nikolić, Milan R; Stojanović, Srđan Đ

    2015-07-01

    In this work, we have analyzed the influence of cation-π interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the π group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-π interactions is much higher than that of single cation-π interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-π interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81 kcal mol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ΔΔG of binding for residues in the core and also for hot spot residues cation-π bonded across the interface. Secondary structure of the cation-π residues shows that Arg and Lys preferred to be in strand. Among the π residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-π interactions are important in locating one or more of such centers. More than 50 % of the cation-π interacting residues are highly conserved. It is likely that the cation-π interactions contribute significantly to the overall stability of Sm/LSm proteins.

  5. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    Science.gov (United States)

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  6. The Effect of Kaffir Lime Leaves Distillation Residue Oleoresin Concentration on Active Paper Packaging Characteristics

    Science.gov (United States)

    Kawiji; Utami, R.; Ulum, S.; Khasanah, L. U.; Manuhara, G. J.; Atmaka, W.

    2018-03-01

    Oleoresin of kaffir lime leaves distillation residue still contains some active compounds such as Citronellal, β-Citronellol, and Linalool which potential to incorporated on the active paper packaging. The purposes of this study were to determine the effect of kaffir lime leaves distillation residue oleoresin concentration on the physical characteristics, sensory characteristics, and antimicrobial activity of the active paper packaging incorporated with kaffir lime leaves distillation residue oleoresin and to determine the functional groups of active paper packaging. The concentration of kaffir lime leaves distillation residue oleoresin were varied at 0%, 2%, 4% and 6%. The result showed that the addition of kaffir lime leaves distillation residue oleoresin increased the thickness and moisture content of the paper and decreased the tensile strengths and folding endurances of active paper packaging. The microbial inhibition tends to increase along with the higher oleoresin concentration addition. Aromatic CH group were found at a wavelength of 897.90 cm-1 of on paper packaging with 2% oleoresin indicated as functional aromatic functional group allegedly obtained from the kaffir lime leaves oleoresin.

  7. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al

  9. The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds

    International Nuclear Information System (INIS)

    Altenkirch, J.; Steuwer, A.; Peel, M.; Richards, D.G.; Withers, P.J.

    2008-01-01

    Using synchrotron X-ray diffraction the residual stress distribution has been measured in a series of AA7449-W51 aluminium friction stir welds that had been tensioned to different loads during welding. By modifying the stress accumulation path, the application of a tensioning stress has reduced the tensile magnitude of the final residual weld stresses. In the present case the residual stresses were minimised when the applied load is ∼35% of the room temperature yield stress of the parent material. Subsequent sectioning of the weld into shorter test lengths, as might be necessary for weld testing, resulted in a progressive and significant relaxation of the residual stress field. The effect of tensioning on the weld component distortion also has been investigated

  10. Efeito residual do lodo de esgoto na produtividade do milho safrinha Residual effect of sewage sludge on off-season corn yield

    Directory of Open Access Journals (Sweden)

    Graziela Moraes de Cesare Barbosa

    2007-06-01

    Full Text Available Das opções de disposição final do lodo de esgoto, a reciclagem agrícola tem sido uma das mais utilizadas em diversos países desenvolvidos, sendo considerada a forma mais adequada em termos técnicos, econômicos e ambientais. Este trabalho teve por objetivo avaliar o efeito residual do lodo de esgoto na produtividade do milho safrinha, após dois anos de aplicação consecutiva desse resíduo em um Latossolo Vermelho eutroférrico. O experimento foi realizado em campo, em delineamento em blocos ao acaso com três repetições, e os tratamentos foram os seguintes: testemunha e adubações com lodo de esgoto nas doses de 6, 12, 24 e 36 t ha-1 (peso de matéria seca. Houve efeito residual do uso do lodo de esgoto caleado na produtividade de milho safrinha; a dose de 36 t ha-1 foi estatisticamente superior às doses de 6 e 12 t ha-1.Among the possibilities of final disposal of sewage sludge, agricultural recycling has become one of the most widely used in several developed countries, and is considered the most appropriate in technical, economical and environmental terms. This study aimed at evaluating the sewage sludge residual effect on off-season corn yield on an Eutroferric Red Latossol (Oxisol. The field experiment was in a randomized block design with three replications, with treatments consisting of increasing doses of sewage sludge (0, 6, 12, 24 and 36 t ha-1, on a dry weight basis, applied in the two previous cropping seasons.. The residual effect of the application of lime-stabilized sewage sludge increased the yield of off-season corn; the grain yield under a rate of 36 t ha-1 was statistically higher than those under 6 and 12 t ha-1.

  11. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  12. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering

  13. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  14. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  15. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Tang, Dapei

    2015-01-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained. (paper)

  16. Differential residual effects of zaleplon and zopiclone on actual driving: a comparison with a low dose of alcohol.

    Science.gov (United States)

    Vermeeren, Annemiek; Riedel, Wim J; van Boxtel, Martin P J; Darwish, Mona; Paty, Isabelle; Patat, Alain

    2002-03-15

    To compare residual effects of zaleplon 10 mg, zopiclone 7.5 mg, and placebo, and a social dose of alcohol on car driving, memory, and psychomotor performance. Two-part placebo controlled, crossover study. Part 1 was single blind, Part 2 double blind. University research institute. Thirty healthy volunteers (15 men and 15 women, mean age 32 +/- 7 years) In Part 1 alcohol and alcohol-placebo drinks were administered around noon. In Part 2 single oral doses of zaleplon 10 mg, zopiclone 7.5 mg and placebo were administered at bedtime. A highway driving test, laboratory tests of word learning, critical tracking and divided attention, and subjective assessments of sleep, mood, and effects of treatments on driving. Driving started 40 minutes after a second alcohol dose in Part 1, and 10 hours after drug intake in Part 2. The results demonstrated that alcohol, at average plasma concentrations of approximately 0.030 g/dl, significantly impaired performance in all tests. Zaleplon's residual effects did not differ significantly from those of placebo in any test. In contrast, zopiclone had significant residual effects on driving, divided attention, and memory. The magnitude of impairment in the driving test observed the morning after zopiclone 7.5 mg was twice that observed with alcohol. Zaleplon 10 mg has no residual effects on driving when taken at bedtime, 10 hours before driving. In contrast, zopiclone 7.5 mg can cause marked residual impairment. Patients should be advised to avoid driving the morning after zopiclone administration.

  17. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects.

    Science.gov (United States)

    Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J

    2012-08-14

    Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

  18. Effect of irradiation on oxytetracycline residues in poultry meat

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, P [Warsaw Agricultural University, Faculty of Veterinary Medicine, Department of Food Hygiene, Warsaw (Poland)

    1994-12-31

    The purpose of the study was an evaluation of the effect of ionizing radiation on detection of oxytetracycline residues in poultry meat. Oxytetracycline was chosen as a representative of tetracyclines which are often applied in poultry for therapeutical reasons. The experiment was conducted using both broiler meat treated by oxytetracycline and slurry of broiler meat containing appropriate concentration of this antibiotic. A traditional microbiological method for determination of antibiotics antimicrobial activity was used. A significant decrease of oxytetracycline concentration in meat slurry as a result of irradiation was noted. A dose of 1 kGy reduced concentration of tetracycline to ca 40% and a dose of 3 kGy reduced it to ca 3%. In ground poultry meat a dose of 1 kGy reduced this antibiotic concentration to 70%, a dose of 3 kGy reduced oxytetracycline concentration to 35% and a 5 kGy dose reduced it up to ca 18% of initial concentration. It can be concluded that irradiation of poultry meat with radurization doses can cause some difficulties in detection of tetracycline residues in meat using traditional microbiological methods of detection. (author).

  19. Effect of irradiation on oxytetracycline residues in poultry meat

    International Nuclear Information System (INIS)

    Mazurowski, P.

    1994-01-01

    The purpose of the study was an evaluation of the effect of ionizing radiation on detection of oxytetracycline residues in poultry meat. Oxytetracycline was chosen as a representative of tetracyclines which are often applied in poultry for therapeutical reasons. The experiment was conducted using both broiler meat treated by oxytetracycline and slurry of broiler meat containing appropriate concentration of this antibiotic. A traditional microbiological method for determination of antibiotics antimicrobial activity was used. A significant decrease of oxytetracycline concentration in meat slurry as a result of irradiation was noted. A dose of 1 kGy reduced concentration of tetracycline to ca 40% and a dose of 3 kGy reduced it to ca 3%. In ground poultry meat a dose of 1 kGy reduced this antibiotic concentration to 70%, a dose of 3 kGy reduced oxytetracycline concentration to 35% and a 5 kGy dose reduced it up to ca 18% of initial concentration. It can be concluded that irradiation of poultry meat with radurization doses can cause some difficulties in detection of tetracycline residues in meat using traditional microbiological methods of detection. (author)

  20. Log bioassay of residual effectiveness of insecticides against bark beetles

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  1. Total effects of contact and residual exposure of bifenthrin and λ-cyhalothrin on the predatory mite Galendromus occidentalis (Acari: Phytoseiidae).

    Science.gov (United States)

    Hamby, Kelly A; Alifano, Jesse A; Zalom, Frank G

    2013-10-01

    Pyrethroid insecticides are generally regarded as acutely toxic to predatory phytoseiid mites; however, persistence of hull split spray pyrethroid residues on almond trees and their effects on phytoseiids have not been quantified over time. Hull split, the separation of the almond hull along the suture, exposes the new crop nuts to infestation by Amyelois transitella (Walker) larvae, and is the preferred timing for insecticides applied for their control. Galendromus occidentalis (Nesbitt) is the most important phytoseiid biocontrol agent for web-spinning spider mites in California (USA) almond orchards, and the impact of bifenthrin and λ-cyhalothrin pyrethroid residue on their survival, fertility, and fecundity was determined. The total effects of direct contact with esfenvalerate, permethrin, bifenthrin and λ-cyhalothrin were also evaluated for comparison. The total effects (E) of direct contact treatments of the four pyrethroids ranged from 77.8 % for esfenvalerate to 98.8 % for bifenthrin. Both bifenthrin and λ-cyhalothrin twig residue would be considered harmful (IOBC class 4) following field application at hull split timing. Bifenthrin twig residue would be considered slightly harmful (IOBC class 2) for up to 3.5 months and harmless (IOBC class 1) after 6 months. λ-cyhalothrin residue would be considered moderately harmful (IOBC class 3) for up to 3.5 months following application and harmless (IOBC class 1) after 6 months. Bifenthrin and λ-cyhalothrin twig residue on treated trees significantly reduced G. occidentalis female survival for up to 6 months post-treatment, however total effects (E) classify these residues as harmless (IOBC class 1) after 6 months. Harmful effects of direct and residual exposure following application have implications for the use of these pyrethroids in an integrated mite management program for perennial crops.

  2. Residual stress effects on the K parameter of the fracture mechanics

    International Nuclear Information System (INIS)

    Soares, Maria da Conceiccao B. Vieira; Andrade, Arnaldo H. Paes de

    1996-01-01

    Compressive residual stresses are beneficial and improve resistance to fracture and crack growth. Residual stresses can be introduced in fabricated components by a variety of means and a number of methods such as laser surface treatment, cold expanded hole, and shot peening. Neutrons diffraction measurements of residual stress were performed at a pulsed neutron source (ISIS, Didcot, UK), on shot peened plates of nickel base superalloy Udimet 720 and titanium alloy IMI 834. The stress intensity factor (K) of residual stress was evaluated by finite element modeling and weight function method. Finite element modeling of a 2D plate with a single edge-notch was applied and, due to symmetry only half of the plate was actually modeled. The stress intensity factor (K) was evaluated for both case of remote tension stress and residual stress. Crack surface overlapping, which is physically unacceptable, was noted for small cracks under residual and boundary lading. Overlap correction was proposed and applied in order to obtain reliable values for (K). (author)

  3. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  4. Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach.

    Science.gov (United States)

    Keikotlhaile, B M; Spanoghe, P; Steurbaut, W

    2010-01-01

    Pesticides are widely used in food production to increase food security despite the fact that they can have negative health effects on consumers. Pesticide residues have been found in various fruits and vegetables; both raw and processed. One of the most common routes of pesticide exposure in consumers is via food consumption. Most foods are consumed after passing through various culinary and processing treatments. A few literature reviews have indicated the general trend of reduction or concentration of pesticide residues by certain methods of food processing for a particular active ingredient. However, no review has focused on combining the obtained results from different studies on different active ingredients with differences in experimental designs, analysts and analysis equipment. In this paper, we present a meta-analysis of response ratios as a possible method of combining and quantifying effects of food processing on pesticide residue levels. Reduction of residue levels was indicated by blanching, boiling, canning, frying, juicing, peeling and washing of fruits and vegetables with an average response ratio ranging from 0.10 to 0.82. Baking, boiling, canning and juicing indicated both reduction and increases for the 95% and 99.5% confidence intervals. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. The Effect of Washing and Peeling on Reduction of Dithiocarbamates Residues in Cucumber and Tomato

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mehrasebi

    2016-03-01

    Full Text Available Background: Dithiocarbamates, the main group of fungicides, are used to control about 400 pathogens in more than 70 crops. These pesticides are widely applied to crops including potato, cereal, apple, pear and leafy vegetables throughout the world since 1960. From the late 1980s, using these fungicides has caused much debate among regulators about their long-term effects on consumers and occupational users. Method: In this study the residues of Dithiocarbamates in cucumber and tomato using the colorimetric method (Keppel method was measured. Respectively 80 and 45 samples of greenhouse cucumber and tomato were collected from Zanjan vegetables center in autumns and winter 2013. The samples were analyzed in 4 treatments of: unwashed, washing with water, washing whit detergent and peeling. Result: The results showed that the average concentration of Dithiocarbamates residues in unwashed greenhouse cucumber and tomatoes were 384.5 µg/kg and 65 µg/kg respectively. 35% and 5% of unwashed and water washed cucumber and tomato samples (respectively had higher Dithiocarbamates residue than MRL recommended by Institute of Standards and Industrial Research of Iran (0.5mg/kg. Conclusion: The treatments of washing and peeling had significant effect on the reduction of Dithiocarbamates residues in the all samples.

  6. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  7. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    Science.gov (United States)

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  8. Effects of distance from center of a weld to fixed end on residual stress and stress intensity factor of a piping weld. Evaluation of SCC growth under residual stress field. Report 1

    International Nuclear Information System (INIS)

    Miyazaki, Katsumasa; Numata, Masanori; Saito, Koichi; Mochizuki, Masahito

    2006-01-01

    The fixed conditions of butt welds between straight pipe and valve or pump in the actual piping system are different from those of straight pipes. However, the effect of fixed condition on the residual stress and the stress intensity factor for evaluation of structural integrity of cracked piping was not clear. In this study, the finite element analyses were conducted by considering the differences in the distance from the center of weld to the fixed end L to clarify the effect of fixed condition on the residual stress and the stress intensity factor. For the 600 A piping, the axial residual stress distribution was not affected by the distance L. Furthermore, the stress intensity factor of circumferential crack under the residual stress field with fixed condition could be estimated by using the existing simplified solution for piping. (author)

  9. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  10. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  11. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process.

    Science.gov (United States)

    Gueto-Tettay, Carlos; Martinez-Consuegra, Alejandro; Zuchniarz, Joshua; Gueto-Tettay, Luis Roberto; Drosos-Ramírez, Juan Carlos

    2017-09-01

    BACE1 is an enzyme of scientific interest because it participates in the progression of Alzheimer's disease. Hydroxyethylamines (HEAs) are a family of compounds which exhibit inhibitory activity toward BACE1 at a nanomolar level, favorable pharmacokinetic properties and oral bioavailability. The first step in the inhibition of BACE1 by HEAs consists of their entrance into the protease active site and the resultant conformational change in the protein, from Apo to closed form. These two conformations differ in the position of an antiparallel loop (called the flap) which covers the entrance to the catalytic site. For BACE1, closure of this flap is vital to its catalytic activity and to inhibition of the enzyme due to the new interactions thereby formed with the ligand. In the present study a dynamic energy landscape of residue-ligand interaction energies (ReLIE) measured for 112 amino acids in the BACE1 active site and its immediate vicinity during the closure of the flap induced by 8 HEAs of different inhibitory power is presented. A total of 6.272 million ReLIE calculations, based on the PM7 semiempirical method, provided a deep and quantitative view of the first step in the inhibition of the aspartyl protease. The information suggests that residues Asp93, Asp289, Thr292, Thr293, Asn294 and Arg296 are anchor points for the ligand, accounting for approximately 45% of the total protein-ligand interaction. Additionally, flap closure improved the BACE1-HEA interaction by around 25%. Furthermore, the inhibitory activity of HEAs could be related to the capacity of these ligands to form said anchor point interactions and maintain them over time: the lack of some of these anchor interactions delayed flap closure or impeded it completely, or even caused the flap to reopen. The methodology employed here could be used as a tool to evaluate future structural modifications which lead to improvements in the favorability and stability of BACE1-HEA ReLIEs, aiding in the design of

  13. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  14. Residual flow patterns and morphological changes along a macro- and meso-tidal coastline

    Science.gov (United States)

    Leonardi, Nicoletta; Plater, Andrew James

    2017-11-01

    The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-term morphological changes tend to develop or augment sand banks features, with an increase in elevation and steepening of the bank contours.

  15. The differences in hadronic cross-sections and the residues of secondary reggeons in the quark-gluon model for strong interactions

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    In the framework of the quark-gluon picture for strong interactions based on the topological expansion and the string model, the relations between t differences of hadronic cross- section are obtained. The system of equations for the contribution of secondary reggeons (rho, ω, f, A 2 and phi and f' poles) to the elastic scattering amplitudes for arbitrary hadrons is derived. It is shown that this system has a factorized solution and the secondary reggeon residues for all hadrons are expressed in terms of the universal function g(t). The model predictions are in a good agreement with experimental data [ru

  16. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers

  17. Effect of routine preoperative fasting on residual gastric volume and ...

    African Journals Online (AJOL)

    2016-02-10

    Feb 10, 2016 ... Key words: Fasting, myomectomy, pH, residual gastric volume. Date of Acceptance: ... gastric volume and acid in patients undergoing myomectomy. Niger J Clin ..... of gastric residual volume: A simulated, controlled study.

  18. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  19. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.

    Science.gov (United States)

    Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying

    2018-04-26

    Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.

  20. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Gomez-Rosas, G.; Ocana, J.L.; Molpeceres, C.; Banderas, A.; Porro, J.; Morales, M.

    2006-01-01

    Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm 2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy

  1. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  2. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    International Nuclear Information System (INIS)

    Sheng Guangyao; Yang Yaning; Huang Minsheng; Yang Kai

    2005-01-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs ∼3.0 and ∼7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH ∼7.0 than at pH ∼3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH ∼7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH ∼3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH ∼3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides

  3. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guangyao [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)]. E-mail: gsheng@uark.edu; Yang Yaning [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Huang Minsheng [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China); Yang Kai [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China)

    2005-04-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs {approx}3.0 and {approx}7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH {approx}7.0 than at pH {approx}3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH {approx}7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH {approx}3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH {approx}3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides.

  4. Effect of oil refining processes on 14 C-tetrachlorvinphos residues in soya bean oil

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.

    1986-01-01

    Crude soya bean oil extracted from grains treated with 14 C-tetrachlorvinphos and stored for 30 weeks was subjected to different refining processes. The effect of commercial refining processes, namely: alkali treatment, bleaching, winterization and deodorization on the nature and magnitude of the originally present residues was investigated. A high percentage (52%) of the residues was eliminated during alkali neutralization. No potentially toxic materials were detected among the identified degradation products. The obtained data showed that the ultimate degradation products were dimethyl phosphate and mono methyl phosphate.2 tab.,2 scheme

  5. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  6. Acute effects of high-dose furosemide on residual renal function in CAPD patients

    NARCIS (Netherlands)

    van Olden, Rudolf W.; Guchelaar, Henk-Jan; Struijk, Dirk G.; Krediet, Raymond T.; Arisz, Lambertus

    2003-01-01

    BACKGROUND: High doses of furosemide can increase urine volume in chronic peritoneal dialysis (CAPD) patients. However, no information is available about effects on urinary solute excretion in relation to residual glomerular filtration rate (GFR), urinary furosemide excretion, and peritoneal solute

  7. Effect of residual ascorbate on determination of nitrite in commercial cured meat products.

    Science.gov (United States)

    Fox, J B; Doerr, R C; Gates, R

    1984-01-01

    Residual ascorbate in cured meat slurries results in different amounts of pigment being produced from different Griess reagent combinations. The phenomenon was used to study residual ascorbate in commercial cured meat products which had a variety of textures, acidities, moisture and meat content, fat, homogeneity, initial nitrite, and processing conditions. Diluting and heating the samples according to the AOAC procedure did not completely eliminate the ascorbate interference, but making the sample alkaline did. Determining nitrite separately in supernate and precipitate from the first dilution showed the effect of heating to be the elimination of interferences and solubilization or extraction of nitrite from the precipitate.

  8. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  9. COMBINED EFFECTS OF GALAXY INTERACTIONS AND LARGE-SCALE ENVIRONMENT ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young

    2009-01-01

    We inspect the coupled dependence of physical parameters of the Sloan Digital Sky Survey galaxies on the small-scale (distance to and morphology of the nearest neighbor galaxy) and the large-scale (background density smoothed over 20 nearby galaxies) environments. The impacts of interaction on galaxy properties are detected at least out to the neighbor separation corresponding to the virial radius of galaxies, which is typically between 200 and 400 h -1 kpc for the galaxies in our sample. To detect these long-range interaction effects, it is crucial to divide galaxy interactions into four cases dividing the morphology of target and neighbor galaxies into early and late types. We show that there are two characteristic neighbor-separation scales where the galaxy interactions cause abrupt changes in the properties of galaxies. The first scale is the virial radius of the nearest neighbor galaxy r vir,nei . Many physical parameters start to deviate from those of extremely isolated galaxies at the projected neighbor separation r p of about r vir,nei . The second scale is at r p ∼ 0.05r vir,nei = 10-20 h -1 kpc, and is the scale at which the galaxies in pairs start to merge. We find that late-type neighbors enhance the star formation activity of galaxies while early-type neighbors reduce it, and that these effects occur within r vir,nei . The hot halo gas and cold disk gas must be participating in the interactions at separations less than the virial radius of the galaxy plus dark halo system. Our results also show that the role of the large-scale density in determining galaxy properties is minimal once luminosity and morphology are fixed. We propose that the weak residual dependence of galaxy properties on the large-scale density is due to the dependence of the halo gas property on the large-scale density.

  10. Resistance of pathogenic and spoilage microorganisms to disinfectants in the presence of organic matter and their residual effect on stainless steel and polypropylene.

    Science.gov (United States)

    Iñiguez-Moreno, Maricarmen

    2018-04-23

    The effectiveness of disinfectants can vary according to the microorganism, type of residues and surface. Hence, the aim of this study was to determine the effectiveness of four disinfectants in the presence of organic matter and their residual effect on stainless steel grade 304 (SS) and polypropylene B (PP-B). The disinfectant effectiveness in the presence of meat extract, yolk egg and whole milk was determined according to AOAC and UNE-EN 1040:2015; the residual effect was realized according to UNE-EN 13697:2015, using approved strains. The disinfectant effectiveness was affect at different grades depending on the organic matter present; disinfectant A (400μgmL -1 , fifth generation quaternary ammonium compound, QAC) was most effective in the presence of 10% meat extract, while the disinfectant C (200μgmL -1 , peracetic acid) had better activity in the presence of 10% egg yolk and whole milk. In the evaluation of residual effect onto SS and PP-B, the QAC had the better effect, reducing 6 Log 10 CFU mL -1 of Listeria monocytogenes ATCC 19111 24h after their application. Conversely, the disinfectants had no residual effect against Pseudomonas aeruginosa ATCC 15442. The antimicrobial activity of disinfectants tested against pathogenic and spoilage microorganisms was affected according to the type of organic matter. Disinfectant A had a more residual effect than the other disinfectants evaluated. Moreover, the residual effect of a disinfectant is greater on SS than on PP-B and dependent on the microorganism tested. Copyright © 2018. Published by Elsevier Ltd.

  11. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    Science.gov (United States)

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  12. Use of ultrasound in petroleum residue upgradation

    Energy Technology Data Exchange (ETDEWEB)

    Sawarkar, A.N.; Pandit, A.B.; Samant, S.D.; Joshi, J.B. [Mumbai Univ., Mumbai (India). Inst. of Chemical Technology

    2009-06-15

    The importance of bottom-of-the barrel upgrading has increased in the current petroleum refining scenario because of the progressively heavier nature of crude oil. Heavy residues contain large concentrations of metals such as vanadium and nickel which foul catalysts and reduce the potential effect of residue fluidized catalytic cracking. This study showed that the cavitational energy induced by ultrasound be be successfully used to upgrade hydrocarbon mixtures. Conventional processes for the upgrading of residual feedstocks, such as thermal cracking and catalytic cracking, were carried out in the temperature range of 400-520 degrees C. Experiments were performed on 2 vacuum residues, Arabian mix vacuum residue (AMVR) and Bombay high vacuum residue (BHVR) and 1 Haldia asphalt (HA). These were subjected to acoustic cavitation for different reaction times from 15 to 120 minutes at ambient temperature and pressure. Two acoustic cavitation devices were compared, namely the ultrasonic bath and ultrasonic horn. In particular, this study compared the ability of these 2 devices to upgrade the petroleum residues to lighter, more value-added products. Different surfactants were used to examine the effect of ultrasound on upgrading the residue when emulsified in water. In order to better understand the reaction mechanism, a kinetic model was developed based on the constituents of the residue. The ultrasonic horn was found to be more effective in bringing about the upgrading than ultrasonic bath. The study also showed that the acoustic cavitation of the aqueous emulsified hydrocarbon mixture could reduce the asphaltenes content to a greater extent than the acoustic cavitation of non-emulsified hydrocarbon mixture. 20 refs., 11 tabs., 17 figs.

  13. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Interactions between residue placement and earthworm ecological strategy affect aggregate turnover and N2O dynamics in agricultural soil

    NARCIS (Netherlands)

    Giannopoulos, G.; Pulleman, M.M.; Groenigen, van J.W.

    2010-01-01

    Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain

  15. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  16. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    Science.gov (United States)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  17. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  18. Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: a 1-year field study.

    Science.gov (United States)

    Higgins, Derek; Curtin, Teresa; Courtney, Ronan

    2017-03-01

    Increasing volumes of bauxite residues and their associated leachates represent a significant environmental challenge to the alumina industry. Constructed wetlands have been proposed as a potential approach for leachate treatment, but there is limited data on field-scale applications. The research presented here provides preliminary evaluation of a purpose-built constructed wetland to buffer leachate from a bauxite residue disposal site in Ireland. Data collected over a 1-year period demonstrated that the pH of bauxite residue leachates could be effectively reduced from ca. pH 10.3 to 8.1 but was influenced by influent variability and temporal changes. The wetland was also effective in decreasing elemental loading, and sequential extractions suggested that the bulk of the sediment-bound metal inventory was in hard-to-leach phases. Elemental analysis of Phragmites australis showed that although vegetation displayed seasonal variation, no trace elements were at concentrations of concern.

  19. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.

    Directory of Open Access Journals (Sweden)

    Daniel Y Little

    Full Text Available The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1 removes a significant, non-coevolutionary bias and 2 accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations.

  20. Effect of microwave postpolymerization treatment on residual monomer content and the flexural strength of autopolymerizing reline resin

    Directory of Open Access Journals (Sweden)

    Patil Padmakar

    2009-01-01

    Full Text Available Background : Microwave postpolymerization has been suggested as a method to improve the flexural strength of an autopolymerizing denture reline resin. However, the effect of microwave postpolymerization on the residual monomer content and its influence on flexural strength have not been investigated. Objectives : This study analyzed the effect of microwave postpolymerization on the residual monomer content and its influence on the flexural strength of an autopolymerizing reline resin (Denture Liner. Materials and Methods : A total of 70 specimens (64 Χ 10 Χ 3.3 mm were polymerized according to the manufacturer′s instructions and divided into 7 groups (n = 10. Control group specimens were not subjectedto any further processing. Before testing, the specimens were subjected to postpolymerization in a microwave oven using different power (550 and 650 W and time (3, 4, and 5 min settings. Two specimens of each group were then manually ground into fine powder and samples extracted from the specimens using reflux method. The samples were then subjected to gas chromatography for residual monomer determination in area%. Eight specimens were subjected to a three-point bending device with a span of 50 mm and crosshead speed of 5 mm/min, and the flexural strength was determined in MPa. Data analyses included Student′s t-test and one-way analysis of variance. Results : For the Denture Liner reline resin, the residual monomer content decreased and the flexural strength increased significantly with the application of microwave irradiation using different time/power combinations. The specimens with the lowest residual monomer content were the similar specimens which presented with the highest flexural strength. Conclusion : Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of denture liner (at 650 W for 5 min by reducing the residual monomer content by further polymerization at free radical sites.

  1. Estimation of average causal effect using the restricted mean residual lifetime as effect measure

    DEFF Research Database (Denmark)

    Mansourvar, Zahra; Martinussen, Torben

    2017-01-01

    with respect to their survival times. In observational studies where the factor of interest is not randomized, covariate adjustment is needed to take into account imbalances in confounding factors. In this article, we develop an estimator for the average causal treatment difference using the restricted mean...... residual lifetime as target parameter. We account for confounding factors using the Aalen additive hazards model. Large sample property of the proposed estimator is established and simulation studies are conducted in order to assess small sample performance of the resulting estimator. The method is also......Although mean residual lifetime is often of interest in biomedical studies, restricted mean residual lifetime must be considered in order to accommodate censoring. Differences in the restricted mean residual lifetime can be used as an appropriate quantity for comparing different treatment groups...

  2. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    Science.gov (United States)

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel

    International Nuclear Information System (INIS)

    Campos, M.F. de; Sablik, M.J.; Landgraf, F.J.G.; Hirsch, T.K.; Machado, R.; Magnabosco, R.; Gutierrez, C.J.; Bandyopadhyay, A.

    2008-01-01

    Cold-rolled (0-19% of reduction) 0.5% Si electrical steel sheets were studied in detail, including macro and micro residual stress measurements, crystallographic texture, dc-hysteresis curves and iron losses. Even for the smallest deformation, losses increase significantly, with large increase of the hysteresis losses, whereas the anomalous losses reduce slightly. The residual microstresses are ∼150-350 MPa, whereas residual macrostresses are compressive, ∼50 MPa. The large increase of the hysteresis losses is attributed to the residual microstresses. The dislocation density estimated by X-ray diffraction is in reasonable agreement with that predicted from the Sablik et al. model for effect of plastic deformation on hysteresis. The intensity of the texture fibers {1 1 1} and //RD (RD=rolling direction) increases with the reduction

  5. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  6. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  7. Petroleum residue upgrading with dispersed catalysts: Part 2. Effect of operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil (Italy); Carniti, P. [Universita degli Studi di Milano, Dip. Chimica Fisica ed Elettrochimica, Via Celoria 20, Milan (Italy)

    2000-12-04

    The hydrotreatment of a petroleum residue in the presence of dispersed molybdenite was carried out within a wide range of operating conditions and catalyst loading. The effect of reaction severity as well as of molybdenum concentration on product distribution and quality was studied. Based on the experimental results, a simplified reaction scheme was proposed. The hydroprocessing of the residue was described in terms of the competition between two reactions: the direct conversion of the feedstock to distillate and coke, and the catalytic hydrogenation. Compared to thermal conditions, the presence of dispersed molybdenite controls very well coke formation; however, a trend of increasing formation of solids was observed at high catalyst concentrations. The overall upgrading of the feedstock requires significant amounts of molybdenum as well as relatively high hydrogen pressure.

  8. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  9. Nonlinear Model of Pseudoelastic Shape Memory Alloy Damper Considering Residual Martensite Strain Effect

    Directory of Open Access Journals (Sweden)

    Y. M. Parulekar

    2012-01-01

    Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.

  10. Nitrogen availability of biogas residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Fouda, Sara

    2011-09-07

    The objectives of this study were to characterize biogas residues either unseparated or separated into a liquid and a solid phase from the fermentation of different substrates with respect to their N and C content. In addition, short and long term effects of the application of these biogas residues on the N availability and N utilization by ryegrass was investigated. It is concluded that unseparated or liquid separated biogas residues provide N at least corresponding to their ammonium content and that after the first fertilizer application the C{sub org}:N{sub org} ratio of the biogas residues was a crucial factor for the N availability. After long term application, the organic N accumulated in the soil leads to an increased release of N.

  11. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  12. Some progress towards ''universal'' effective interactions

    International Nuclear Information System (INIS)

    Gomez, J.M.G.

    1983-01-01

    The approximation methods introduced to treat the nuclear many-body problem usually imply that the appropriate nuclear force is an effective interaction, different from the free nucleon-nucleon interaction. An effective interaction is thus intimately related to a given nuclear model and its scope is generally confined to the description of a limited number of nuclei or nuclear states. However, in recent years there has been some progress towards ''universal'' effective nucleon-nucleon interactions, in the sense that they may be reasonably suitable to describe bulk properties of nuclear ground states throughout the periodic table and also properties of excited states. The authors conclude that a finite-range density-dependent effective interaction of the Gogny's type is capable of describing a large number of static and dynamical nuclear properties throughout the periodic table, including open-shell nuclei. Hopefully it may provide clues for the definition of some ''universal'' effective force

  13. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel

    International Nuclear Information System (INIS)

    Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, Krzysztof

    2008-01-01

    The effect of cryogenic treatment on the distribution of residual stress in the case carburized steel (En 353) was studied using X-ray diffraction technique. Two types of cryogenic treatment: shallow cryogenic treatment (193 K) and deep cryogenic treatment (77 K) were adopted, as a supplement to conventional heat treatment. The amount of retained austenite in conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples was found to be 28%, 22% and 14%, respectively. The conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples in untempered condition had a surface residual stress of -125 MPa, -115 MPa and -235 MPa, respectively. After tempering the conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples had a surface residual stress of -150 MPa, -80 MPa and -80 MPa, respectively. A comparative study of the three treatments revealed that there was an increase in the compressive residual stress in steel that was subjected to cryogenic treatment prior to tempering. The experimental investigation revealed that deep cryogenically treated steel when subjected to tempering has undergone a reduction in compressive residual stress. Such stress relieving behaviour was mainly due to the increased precipitation of fine carbides in specimens subjected to DCT with tempering

  14. Effects on residual stresses of aluminum alloy LC4 by laser shock processing

    Science.gov (United States)

    Zhang, Yong-kang; Lu, Jin-zhong; Kong, De-jun; Yao, Hui-xue; Yang, Chao-jun

    2007-12-01

    The influences of processing parameters on laser-induced shock waves in metal components are discussed and analyzed. The effects of different parameters of laser shock processing (LSP) on residual stress of aerospace aluminum alloy LC4 were investigated. LSP was performed by using an Nd: glass phosphate laser with 23 ns pulse width and up to ~45 J pulse energy at power densities above GW/mm -2. Special attention is paid to the residual stresses from laser shock processing. Modification of microstructure, surface morphology by laser shock processing is also discussed. Results to date indicate that laser shock processing has great potential as a means of improving the mechanical performance of components.

  15. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  16. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Thomsen, Ingrid Kaag; Rasmussen, Jim

    2018-01-01

    ) as reference treatments. In the test years, the customary nutrient treatments were withheld and each plot divided into six subplots randomly allocated increasing rates of mineral fertilizer N (0–250 kg N ha−1). The winter wheat yielded more in the first test year due to crop rotational effects and more benign...... climatic conditions, substantiating that more test years are needed when estimating residual N effects. The residual value of N added previously with NPK was negligible. In the first year, grain yields at N optimum were similar for NPK and SLU, but the amount of fertilizer N needed to reach optimum yield...... in cattle slurry (50, 100 and 150 kg total-N ha−1 termed ½, 1 and 1½ SLU), we estimated the residual N value over two consecutive growth periods (2014/2015 and 2015/2016). We used winter wheat as test crop and soils with a history of mineral fertilizers only (1 PK (no N)) and 1 NPK (100 kg N ha−1...

  17. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  18. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  19. Effect of bentonite addition on residual strength of microwave-hardened waterglass-containing moulding sands

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2011-07-01

    Full Text Available The paper presents results of a preliminary research of the effect of bentonite addition on residual strength of microwave-hardened moulding sands, containing sodium waterglass. Strength was determined at ambient temperature, on cylindrical specimens baked in an oven. Moulding sands for examinations were based on high-silica sand with addition of 2.5 % of non-modified, domestic-made waterglass grade 145. The prepared standard cylindrical specimens were hardened using the innovative microwave heating process and next baked for 30 minutes at temperatures between 100 and 1200 °C. Strength parameters of the specimens were determined on the specimens cooled- down to ambient temperature. The obtained results were compared with literature data to evaluate the effect of the applied hardening method and of the special additive on residual strength as a function of baking temperature. A favourable effect was found of both the innovative heating process and the applied bentonite addition.

  20. BLAST-based structural annotation of protein residues using Protein Data Bank.

    Science.gov (United States)

    Singh, Harinder; Raghava, Gajendra P S

    2016-01-25

    In the era of next-generation sequencing where thousands of genomes have been already sequenced; size of protein databases is growing with exponential rate. Structural annotation of these proteins is one of the biggest challenges for the computational biologist. Although, it is easy to perform BLAST search against Protein Data Bank (PDB) but it is difficult for a biologist to annotate protein residues from BLAST search. A web-server StarPDB has been developed for structural annotation of a protein based on its similarity with known protein structures. It uses standard BLAST software for performing similarity search of a query protein against protein structures in PDB. This server integrates wide range modules for assigning different types of annotation that includes, Secondary-structure, Accessible surface area, Tight-turns, DNA-RNA and Ligand modules. Secondary structure module allows users to predict regular secondary structure states to each residue in a protein. Accessible surface area predict the exposed or buried residues in a protein. Tight-turns module is designed to predict tight turns like beta-turns in a protein. DNA-RNA module developed for predicting DNA and RNA interacting residues in a protein. Similarly, Ligand module of server allows one to predicted ligands, metal and nucleotides ligand interacting residues in a protein. In summary, this manuscript presents a web server for comprehensive annotation of a protein based on similarity search. It integrates number of visualization tools that facilitate users to understand structure and function of protein residues. This web server is available freely for scientific community from URL http://crdd.osdd.net/raghava/starpdb .

  1. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  2. The Ising model for prediction of disordered residues from protein sequence alone

    International Nuclear Information System (INIS)

    Lobanov, Michail Yu; Galzitskaya, Oxana V

    2011-01-01

    Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database

  3. Effect of turning frequency on co-composting pig manure and fungus residue.

    Science.gov (United States)

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  4. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: Bioavailability and dietary risk.

    Science.gov (United States)

    Camara, Miguel A; Barba, Alberto; Cermeño, Sandra; Martinez, Gracia; Oliva, Jose

    2017-12-02

    The aim of this research is to establish the processing factors of six pesticides durong the preparation of fresh-cut lettuce and to assess the risk of ingestion of pesticide residues associated with the consumption of the same. A field study was carried out on the dissipation of three insecticides (imidacloprid, tebufenozide, cypermethrin) and three fungicides (metalaxyl, tebuconazole, azoxystrobin) during treatment conditions simulating those used for commercial fresh-cut lettuce. A simultaneous residue analysis method is validated using QuEChERS extraction with acetonitrile and CG-MS and LC-MS/MS analysis. The residues detected after field application never exceed the established Maximum Residue Limits. The processing factors were generally less than 1 (between 0.34 for tebufenozide and 0.53 for imidacloprid), indicating that the process, as a whole, considerably reduces residue levels in processed lettuce compared to fresh lettuce. It is confirmed that cutting, followed by washing and drying, considerably reduces the residues. A matrix effect in the dialyzation of the pesticides is observed and the in vitro study of bioavailability establishes a low percentage of stomach absorption capacity (lettuce showed no concerns for consumer health.

  5. Cover crop residue management for optimizing weed control

    NARCIS (Netherlands)

    Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J.

    2009-01-01

    Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and

  6. Low-energy structure studies of odd-odd deformed nuclei and the coriolis and residual interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.A.

    1980-08-01

    The nuclear level structure of /sup 176/Lu, /sup 170/Tm, /sup 166/Ho, and /sup 160/Tb have been studied by means of the /sup 177/Hf(t,..cap alpha..)/sup 176/Lu, /sup 171/Yb(t,..cap alpha..)/sup 170/Tm, /sup 167/Er(t,..cap alpha..)/sup 166/Ho, and /sup 161/Dy(t,..cap alpha..)/sup 160/Tb reactions and with the use of previously published (d,p) spectroscopy and gamma transitions from the (n,..gamma..) reactions. The (t,..cap alpha..) reactions have been performed and analyzed with 17 MeV tritons and the Los Alamos Q3D spectrometer. Eighty-one new rotational states in excited proton configurations or vibrational excited states are proposed. An independent parameterization of the Coriolis interaction is presented, which leads to satisfactory results in reproducing experimental single-particle transfer reaction cross-sections by theoretical calculations. The anomalous population of the excited neutron configurations (404 reduces to -624 up arrow) in /sup 176/Lu and (411 reduces to +- 512 up arrow) in /sup 170/Tm, and the anomalously low (t,..cap alpha..) cross-sections of the (411 up arrow +- 633 up arrow) configuration in /sup 166/Ho are observed. Qualitative explanation of the anomalies is presented in terms of the mixing of states which satisfy the requirement delta/sub I'/,/sub I/delta/sub K'/,/sub K/. Off-diagonal H/sub INT/ matrix elements are calculated, which show that the residual interaction cannot be used to account for the magnitude of the cross-sections observed.

  7. Effect of irradiation on erythromycin residues in poultry meat

    International Nuclear Information System (INIS)

    Mazurowski, P.

    1993-01-01

    Ionising radiation in doses used for radurisation (Recommendations of international organizations admit for poultry meat doses up to 5 kGy. Practically doses up to 3 kGy are applied does not influence erythromycin concentration in poultry meat. Doses on a level 10 kGy reduce its concentration in slurry more effectively, but results of earlier studies on penicillin and streptomycin suggest, that reduction of erythromycin level in meat should be smaller than in slurry. This allows an assumption that poultry meat irradiation with radurisation doses (up to 5 kGy), does not cause danger of overlooking of erythromycin residues in meat, with traditional, microbiological methods of detection. (orig.)

  8. [Effects of mushroom residue compost on growth and nutrient accumulation of Larix principis-rupprechtii containerized transplants].

    Science.gov (United States)

    Teng, Fei; Liu, Yong; Lou, Jun Shan; Sun, Qiao Yu; Wan, Fang Fang; Yang, Chen; Zhang, Jin

    2016-12-01

    Excessive use of peat may cause some environmental problems. To alleviate the negative effect, an experiment was conducted with the mushroom residue compost to replace peat in Larix principis-rupprechtii containerized transplant production, and the proportion of mushroom residue compost was 0% (T 0 , control), 15% (T 1 ), 18.75% (T 2 ), 25% (T 3 ), 37.50% (T 4 ), 50% (T 5 ), 56.25% (T 6 ) and 60% (T 7 ), respectively. The physical and chemical features of the substrates and its effect on the vegetative growth and nutrient accumulation of L. principis-rupprechtii containerized transplants were studied. The results showed when the proportion of mushroom residue compost in the substrate accounted for 50% or less, there was no significant difference in the transplant height, diameter, and biomass compared with the control, and the nutrient concentration in T 2 , T 4 , T 5 treatments was significantly higher than in T 0 . The pH value was sub-acidic to neutral which was suitable to the transplant growth. When the compost proportion accounted for more than 50%, the pH value was altered to alkali and was not suitable to the transplant growth. When the proportion of mushroom residue compost accounted for 15%, the plant grew best, and the height, diameter, and total biomass got the highest. Therefore, using mushroom residue compost to replace peat in L. principis-rupprechtii containerized transplants cultivation was feasible and the maximum replacement ratio could reach 50%. The high quality transplants could be obtained when the compost replacement ratio was 15%.

  9. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    Yan, Xiaoyuan; Ti, Chaopu; Zhu, Zhaoliang; Vitousek, Peter; Chen, Deli; Leip, Adrian; Cai, Zucong

    2014-01-01

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  10. The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

    Directory of Open Access Journals (Sweden)

    Jeong-ung Park

    2018-03-01

    Full Text Available A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress. In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180

  11. Effective deleting of residual photoconductivity in high-resistance layers GaAs

    International Nuclear Information System (INIS)

    Sadaev, B.S.; Kadirova, I.T.; Sharipov, E.I.

    2004-01-01

    Full text: The phenomenon of residual photoconductivity as the storage of optical memory (OM) represents practical interest in micro and optoelectronics. The finding - out of the nature OM represents undoubtedly and scientific interest. Now residual photoconductivity (RPC) is explained by potential barriers arising because of non-monocharacteristical of distribution components of the semiconductor or carriers of a current in volume. Depending on a nature non-monocharacteristical the time relaxation RPC changes in a wide limit. The special interest represents RPC created by impurity. In the given work the results of research of a nature RPC created photos by ionization of the filled centres of chrome in compensated epitaxilogic layers arsenide galls are resulted. Epitaxilogic layers were brought up by a vertical method ZFE. Highness was reached (achieved) by special indemnification of the residual donors deep acceptors of chrome. Substrates served n-GoAs. Lassitude of i-layers has made 70-80 microns. Specific resistance of layers has made (1/3) 108 om·sm. (T= 300 K). The structures were photosensitive as at low (T = 77 K) and at room temperatures. The photosensitivity of structures in impurity to a strip of absorption chrome (= 1,4 microns) was comparable (compared) with own. The researches show, that the structures have RPC. Size RPC the greatest ambassador impurity of illumination is carrying out photoionization Cr2 + - of the centres. That is established, RPC impurity of a photocurrent is effectively erased only at certain length of a wave of external illumination

  12. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Science.gov (United States)

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  13. Thermodynamic study of the effects of ethanol on the interaction of ochratoxin A with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yin [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság 13, H-7624, Pécs (Hungary); Lecomte, Sophie [Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); and others

    2014-04-15

    Ethanol effect on the interaction of ochratoxin A (OTA) with human serum albumin (HSA) was investigated by using fluorescence spectroscopy and Raman spectroscopy. The Raman results showed that after the binding of OTA, the microenvironment of tryptophan residue on HSA became less hydrophobic. The fluorescence quenching observations revealed that the binding constant for the binding of OTA to HSA decreased as ethanol concentration increased. The thermodynamic studies showed that the binding process of OTA to HSA switched from being entropy-driven to enthalpy-driven in the presence of increasing concentrations (0.7–24.7%, vol/vol) of ethanol. Enthalpy–entropy compensation effect for the binding of OTA to HSA in the presence of different ethanol concentrations had been found. Based on the thermodynamic analyses, we concluded that the ethanol-induced variation of the shape of binding site of OTA on HSA and the solvent reorganization surrounding the OTA–HSA complex are the two dominant effects. -- Highlights: • The presence of ethanol can prohibit the binding of OTA to HSA. • Microenvironment of Trp214 on HSA becomes less hydrophobic after the binding of OTA. • Ethanol induces the interaction from being entropy-driven to enthalpy-driven. • Enthalpy–entropy compensation for the interaction was found.

  14. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    Science.gov (United States)

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  15. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea

    Directory of Open Access Journals (Sweden)

    Yating Zhang

    2017-03-01

    Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  16. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    Science.gov (United States)

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  17. The effect of gamma irradiation on crude fibre NDF, ADF, and ADL of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1992-07-01

    The effects of 150 KGy of gamma irradiation on crude fibre and its main components (cellulose, hemicellulose-cellulose and lignin) and on neutral detergent fibre (NDF), acid detergent lignin (ADL), and acid detergent fibre (ADF) were investigated. The results indicate that gamma irradiation decreased Cf content by 30%, 28%, 29%, and 17% for cottonwood, lentils straw, apple-tree pruning products and olive-oil cake, respectively. NDF values also decreased by 5%, 23%, 13% and 3% for, cottonwood, lentils straw, olive-oil cake and apple-tree pruning products respectively. Gamma irradiation (150 KGy) had no effects on ADF and ADL for lentils straw, apple-tree pruning products and olive-oil cake whereas, ADF decreased by 8.5% and ADL by 8.3 for cottonwood. Hemicellulose content increased by 12% for cottonwood while decreased by 54% for lentils straw and by 33% for apple-tree pruning products with no effects for olive-oil cake. Cellulose content decreased by 8.6% for cottonwood whereas no effects for the remaining residues were seen. Gamma irradiation treatment improved the nutritive value of the agriculture residues examined. The reduction in crude fibre content varies with the residue. (author). 15 refs., 5 tabs

  18. Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide

    International Nuclear Information System (INIS)

    Kim, Jongsoo; Kim, Heesan

    2010-01-01

    Effects of the preferred plane and the residual stress of an electroplated copper on polyethylene glycol (PEG) and 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid (DPS) were studied. Polyimide film coated with sputtered copper was used as a substrate. Preferred plane, residual stress, and impurity level in the electroplated copper were measured by an X-ray diffractometry (XRD), calculated by Stoney's equation, and analyzed with secondary ion mass spectroscopy (SMS), respectively. With increasing the concentration of PEG, the preferred plane changed in the order (1 0 0) and (1 1 0) while with increasing the concentration of DPS, the preferred plane changed in the order (1 1 0), (1 0 0), and (1 1 1). Based on the modified preferred growth model, where the amount of additive adsorbed on a plane is newly assumed to be proportional to its surface energy in vacuum, the predicted preferred planes correspond to the experimental results. The residual stress of the electroplated copper depended on the type of additive as well as its concentration but was independent of the preferred plane. For example, PEG and DPS induced tensile and compressive residual stresses in the electroplated copper, respectively, and their magnitudes increased with their concentrations. The dependency of residual stress on the additives was explained by the incorporated additives into the electroplated copper.

  19. Detection of pyridaben residue levels in hot pepper fruit and leaves by liquid chromatography-tandem mass spectrometry: effect of household processes.

    Science.gov (United States)

    Kim, Sung-Woo; Abd El-Aty, A M; Rahman, Md Musfiqur; Choi, Jeong-Heui; Choi, Ok-Ja; Rhee, Gyu-Seek; Chang, Moon-Ik; Kim, Heejung; Abid, Morad D N; Shin, Sung Chul; Shim, Jae-Han

    2015-07-01

    Following quick, easy, cheap, effective, rugged and safe (QuEChERS) and LC/MS/MS analysis, pyridaben residual levels were determined in unprocessed and processed hot pepper fruit and leaves. The linearities were satisfactory with determination coefficients (R(2)) in excess of 0.995 in processed and unprocessed pepper fruit and leaves. Recoveries at various concentrations were 79.9-105.1% with relative standard deviations ≤15%. The limits of quantitation of 0.003-0.012 mg/kg were very low compared with the maximum residue limits (2-5 mg/kg) set by the Ministry of Food and Drug Safety, Republic of Korea. The effects of various household processes, including washing, blanching, frying and drying under different conditions (water volume, blanching time and temperature) on residual concentrations were evaluated. Both washing and blanching (in combination with high water volume and time factor) significantly reduced residue levels in hot pepper fruit and leaves compared with other processes. In sum, the developed method was satisfactory and could be used to accurately detect residues in unprocessed and processed pepper fruit and leaves. It is recommended that pepper fruit/leaves be blanched after washing before being consumed to protect consumers from the negative health effects of detected pesticide residues. Copyright © 2014 John Wiley & Sons, Ltd.

  20. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  1. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy

    Science.gov (United States)

    Liu, Shu-Xia; Geng, Yi-Zhao; Yan, Shi-Wei

    2017-06-01

    Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53-MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2-p53 interaction and replacement of p53 from the MDM2-p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

  2. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Science.gov (United States)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  3. Effects of LSP on micro-structures and residual stresses in a 4 mm CLAM steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xizhang, E-mail: chenxizhang@wzu.edu.cn [School of Mechanical and Electrical Engineering, Wenzhou University., Wenzhou 325035 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Fang, Yuanyuan [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Zhang, Shuyan; Kelleher, Joe F. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Zhou, Jianzhong [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China)

    2015-05-15

    The effects of laser shock processing (LSP) on the distribution of residual stress and micro-structure of China Low Activation Martensitic (CLAM) steel weldment were investigated via neutron diffraction and optical microscope (OM). A pair of 4 mm CLAM steel plates joined by GTA welding. Special attention is paid to the generation of high level compressive residual stresses introduced by LSP. Residual stress in longitudinal, normal and transversal direction at weldment surface and longitudinal stress through thickness are evaluated via neutron diffraction. Compressive residual stress after LSP occurred at more than 90% areas within the weld joint, it is almost double the areas of compressive stress compare to weldment surface before LSP. The maximum compressive normal residual stress becomes to −183 MPa after LSP from −63 MPa before LSP. The Modification of surface micro-structures including weld zone (WZ), heat affected zone (HAZ) and base metal (BM) are also discussed. Results to date demonstrate that laser shock processing has been a great potential method for the improvement of mechanical performance of components.

  4. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  5. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  6. Investigation of effect of post weld heat treatment conditions on residual stress for ITER blanket shield blocks

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun-Chea, E-mail: hcjung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Sa-Woong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Yun-Hee [Division of Convergence Technology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Baek, Seung-Wook [Division of Industrial Metrology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Ha, Min-Su; Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • PWHT for ITER blanket shield block should be performed for dimensional stability. • Investigation of the effect of PWHT conditions on properties was performed. • Instrumented indentation method for evaluation of properties was used. • Residual stress and hardness decreased with increasing PWHT temperature. • Optimization of PWHT conditions would be needed for satisfaction of requirement. - Abstract: The blanket shield block (SB) shall be required the tight tolerance because SB interfaces with many components, such as flexible support keypads, First Wall (FW) support contact surfaces, FW central bolt, electrical strap contact surfaces and attachment inserts for both FW and Vacuum Vessel (VV). In order to fulfil the tight tolerance requirement, stress relieving shall be performed for dimensional stability after cover welding operation. In this paper, effect of Post Weld Heat Treatment (PWHT) conditions, temperature and holding time, was investigated on the residual stress and hardness. The 316L Stainless Steel (SS) was prepared and welded by manual TIG welding by using filler material with 2.4 mm of diameter. Welded 316L SS plate was machined to prepare the specimen for PWHT. PWHT was implemented at 250, 300, 400 °C for 2 and 3 h (400 °C only) and residual stress after relaxation were determined. The evaluation of residual stress and hardness for each specimen was carried out by instrumented indentation technique. The residual stress and hardness were decreased with increasing the heat treatment temperature and holding time.

  7. Optimization of ethanol production from garcinia cambogia residues and the effects of its medicinal component on production yield

    International Nuclear Information System (INIS)

    Ma, H.; Zhang, F.

    2017-01-01

    Garcinia cambogia, a Chinese herbal medicine, was popular due to its effect for weight loss. The main medical component inside was determined to be hydroxycitric acid (HCA). To realize the resource technology of garcinia cambogia residue, Optimum ethanol production from residues was investigated, and the effects of remaining HCA on the ethanol yield were investigated. A Plackett-Burman experimental design was used to screen the significance of several influencing factors, and cellulase, yeast extract, and KH2PO4 were observed to exert important effects. The optimum ethanol fermentation conditions were determined through an orthogonal design to include a cellulase concentration of 100 U/g, a yeast extract concentration of 15 g/L, and a KH2PO4 concentration of 1.0 g/L. The ethanol concentration obtained under optimal conditions was 4.0 g/L. The remained HCA in the residues showed minimal influences on ethanol fermentation and could even increase ethanol yield at low concentrations. (author)

  8. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  9. Effects of shot peening on the residual stress of welded SS400 steel

    International Nuclear Information System (INIS)

    Lee, Jong Man; Kim, Tae Hyung; Cheong, Seong Kyun; Lee, Seung Ho

    2002-01-01

    The fatigue life of structures is usually determined by welding zone. The tensile residual stress, which is induced by welding, reduces the fatigue life and fatigue strength of welded structures. If we remove the tensile residual stress or induce the compressive residual stress, the fatigue life of welded structures will be improved. The change of hardness and compressive residual stress of welded zone after shot peening was investigated in this paper. The results show that the hardness was increased by shot peening. The residual stress was reduced by shot peening

  10. Protein-protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM.

    Science.gov (United States)

    Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal

    2015-10-01

    Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

  11. Applications of bauxite residue: A mini-review.

    Science.gov (United States)

    Verma, Ajay S; Suri, Narendra M; Kant, Suman

    2017-10-01

    Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.

  12. Effect of Elevated Temperature on the Residual Properties of Quartzite, Granite and Basalt Aggregate Concrete

    Science.gov (United States)

    Masood, A.; Shariq, M.; Alam, M. Masroor; Ahmad, T.; Beg, A.

    2018-05-01

    In the present study, experimental investigations have been carried out to determine the effect of elevated temperature on the residual properties of quartzite, granite and basalt aggregate concrete mixes. Ultrasonic pulse velocity and unstressed residual compressive strength tests on cube specimens have been conducted at ambient and after single heating-cooling cycle of elevated temperature ranging from 200 to 600 °C. The relationship between ultrasonic pulse velocity and residual compressive strength of all concrete mixes have been developed. Scanning electron microscopy was also carried out to study micro structure of quartzite, granite and basalt aggregate concrete subjected to single heating-cooling cycle of elevated temperature. The results show that the residual compressive strength of quartzite aggregate concrete has been found higher than granite and basalt aggregate concrete at ambient and at all temperatures. It has also been found that the loss of strength in concrete is due to the development of micro-cracks result in failure of cement matrix and coarse aggregate bond. Further, the basalt aggregate concrete has been observed lower strength due to low affinity with Portland cements ascribed to its ferro-magnesium rich mineral composition.

  13. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  14. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  15. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... measured at PACU entry. Zero out of 74 sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch® SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], P

  16. Effect of residual patient motion on dose distribution during image-guided robotic radiosurgery for skull tracking based on log file analysis

    International Nuclear Information System (INIS)

    Inoue, Mitsuhiro; Shiomi, Hiroya; Sato, Kengo

    2014-01-01

    The present study aimed to assess the effect of residual patient motion on dose distribution during intracranial image-guided robotic radiosurgery by analyzing the system log files. The dosimetric effect was analyzed according to the difference between the original and estimated dose distributions, including targeting error, caused by residual patient motion between two successive image acquisitions. One hundred twenty-eight treatments were analyzed. Forty-two patients were treated using the isocentric plan, and 86 patients were treated using the conformal (non-isocentric) plan. The median distance from the imaging center to the target was 55 mm, and the median interval between the acquisitions of sequential images was 79 s. The median translational residual patient motion was 0.1 mm for each axis, and the rotational residual patient motion was 0.1 deg for Δpitch and Δroll and 0.2 deg for Δyaw. The dose error for D 95 was within 1% in more than 95% of cases. The maximum dose error for D 10 to D 90 was within 2%. None of the studied parameters, including the interval between the acquisitions of sequential images, was significantly related to the dosimetric effect. The effect of residual patient motion on dose distribution was minimal. (author)

  17. The effect of dipolar interaction on the magnetic isotope effect

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita

    2010-01-01

    A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...... interaction is responsible for the effect. Our calculations provide support for the proposed mechanism....

  18. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    Science.gov (United States)

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  19. Marginal and Interaction Effects in Ordered Response Models

    OpenAIRE

    Debdulal Mallick

    2009-01-01

    In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...

  20. Effect of cellulase producing fungi on plant residues degradation used as organic fertilizer

    International Nuclear Information System (INIS)

    Ibrahim, R.M.M

    2009-01-01

    Series of laboratory and field experiments were conducted at Soil microbiology Unit and Farm of soil and Water research department, Nuclear Research Center, Atomic Energy Authority, Egypt. Laboratory experiments revealed that between nine fungal strain, A. niger was the most potent cellulolytic fungus able to degrade many cellulosic sources (CP, CMC, and FP). Study the effect of cellulolytic fungi on degradation of plant residues used as organic fertilizer in addition to nitrogen fixing bacteria (symbiotically) on lupine growth, yield and nutrients uptake (Field experiment) had been carried out. This objective aims to recycling different plant residues in soil which is consistent with (sustainable development) and utilization of these organic residues as a single carbon source for cellulolytic fungi.Application of 15 N- tracer technique gave us the chance and opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to lupine plant under the effect of cellulolytic fungi on different plant residues.The obtained results could be summarized as following:I.Laboratory Technique Selection of the most potent cellulolytic fungi 1-Nine fungal strains of Aspergillus niger; Penicillium oxalicum; Trichoderma longibranchiatum; Aspergillus terreus; Aspergillus flavus; Alterrnaria sp.; Trichderma harzianum ; Rhizopus sp. and Syncephalastrum sp. obtained from different sources and tested for their cellulolytic activity. 2-Aspergillus niger and Pencillium oxalicum exhibited the highest cellulase productivity followed by Trichoderma longibranchiatum and Aspergillus terreus.3- fungal mixtures of the most potent four genera Aspergillus niger; Penicillium oxalicum; Trichoderma longibranchiatum and Aspergillus terreus found to have a lower cellulolytic activities for all substrates compared with single inoculation with A. niger.4-Highest FPase activities were exhibited by A. niger when filter paper (FP) used as a carbon source.5-A. niger is

  1. EFFECTS OF MUCUNA ( MUCUNA UTILIS L.) RESIDUE ...

    African Journals Online (AJOL)

    The field experiment was conducted at two locations: University of Agriculture, Abeokuta (UNAAB) and Olowo-Papa (OP) in Ogun state both in Forest-savannah transition zone of Nigeria to investigate the response of three upland rice cultivars (O.sativa) to mucuna residue incorporation and Nitrogen (N) fertilizer and the ...

  2. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    Energy Technology Data Exchange (ETDEWEB)

    Price, Oliver R., E-mail: oliver.price@unilever.co [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Oliver, Margaret A. [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Walker, Allan [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); Wood, Martin [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom)

    2009-05-15

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  3. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    International Nuclear Information System (INIS)

    Price, Oliver R.; Oliver, Margaret A.; Walker, Allan; Wood, Martin

    2009-01-01

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  4. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  5. A parametrisation scheme for effective interactions

    International Nuclear Information System (INIS)

    Geramb, H.V. von; Amos, K.; Berge, L.

    1991-01-01

    An algorithm is developed by which two nucleon effective interactions are constructed to fit on- and off-shell t- and/or g-matrix elements. The effective interaction is defined as plane wave matrix elements of local operators that may have explicit energy and medium dependencies. It comprises central, tensor, spin-orbit, quadratic spin-orbit and angular momentum square operators, all with Yukawa form factors. As examples, the Paris and Bonn potentials are used to construct t-matrices for projection onto chosen forms of effective interactions. 23 refs., 3 tabs., 5 figs

  6. Ensemble Kalman filtering with residual nudging

    KAUST Repository

    Luo, X.

    2012-10-03

    Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  7. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  8. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    Science.gov (United States)

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  10. Limits on CP nonconserving interactions from electric dipole moments

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss bounds on CP-nonconserving (CPNC) and parity-nonconserving (PNC) hadronic interactions that result from measurements of atomic electric dipole moments. In most models of hadronic CPNC, the nuclear edm arises primarily from the polarization of the ground state by the CPNC PNC NN interaction, rather than from the edms of valence nucleons. When the atom is placed in an external field, the nucleus is fully shielded apart from nuclear finite size effects and relativistic corrections arising from hyperfine interactions, so that careful atomic calculations must be performed to deduce the residual sensitivity to the nuclear edm. I describe these shielding effects qualitatively, and present results from more detailed calculations. Atomic limits, when translated into effective bounds on the neutron edm, have now reached sensitivities that are comparable to direct neutron edm limits. I also discuss limits that can be extracted on CPNC parity-conserving (PC) hadronic interactions. Such interactions can generate atomic edms when combined with weak radiative corrections

  11. Combined Role of Two Tryptophane Residues of α-Factor Pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Young [Yeungnam Univ., Gyungsan (Korea, Republic of); Hong, Nam Joo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-02-15

    Amide analogs of tridecapeptide α-factor (WHWLQLKPGQPMYCONH{sub 2}) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide [Ala{sup 3}]α-factor amide (2) and [Aib{sup 3}]α-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one [Ala{sup 1}]α-factor amide (1) and [Aib{sup 1}]α-factor amide (4), reflecting that Trp{sup 3} may plays more important role than Trp{sup 1} for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of α-factor ligand to activation of Ste2p through interaction with residue Tyr{sup 266} and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, [Ala{sup 1,3}]α-factor amide (3), [Aib{sup 1,3}]α-factor amide (6), [D-Trp{sup 3}]α-factor amide (8) and [des-Trp{sup 1},Phe{sup 3}]α-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

  12. Combined Role of Two Tryptophane Residues of α-Factor Pheromone

    International Nuclear Information System (INIS)

    Hong, Eun Young; Hong, Nam Joo

    2013-01-01

    Amide analogs of tridecapeptide α-factor (WHWLQLKPGQPMYCONH 2 ) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide [Ala 3 ]α-factor amide (2) and [Aib 3 ]α-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one [Ala 1 ]α-factor amide (1) and [Aib 1 ]α-factor amide (4), reflecting that Trp 3 may plays more important role than Trp 1 for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of α-factor ligand to activation of Ste2p through interaction with residue Tyr 266 and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, [Ala 1,3 ]α-factor amide (3), [Aib 1,3 ]α-factor amide (6), [D-Trp 3 ]α-factor amide (8) and [des-Trp 1 ,Phe 3 ]α-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10

  13. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  14. The role of a second-shell residue in modifying substrate and inhibitor interactions in the SHV beta-lactamase: a study of ambler position Asn276.

    Science.gov (United States)

    Drawz, Sarah M; Bethel, Christopher R; Hujer, Kristine M; Hurless, Kelly N; Distler, Anne M; Caselli, Emilia; Prati, Fabio; Bonomo, Robert A

    2009-06-02

    Inhibitor-resistant class A beta-lactamases of the TEM and SHV families that arise by single amino acid substitutions are a significant threat to the efficacy of beta-lactam/beta-lactamase inhibitor combinations. To better understand the basis of the inhibitor-resistant phenotype in SHV, we performed mutagenesis to examine the role of a second-shell residue, Asn276. Of the 19 variants expressed in Escherichia coli, only the Asn276Asp enzyme demonstrated reduced susceptibility to ampicillin/clavulanate (MIC increased from 50/2 --> 50/8 microg/mL) while maintaining high-level resistance to ampicillin (MIC = 8192 microg/mL). Steady-state kinetic analyses of Asn276Asp revealed slightly diminished k(cat)/K(m) for all substrates tested. In contrast, we observed a 5-fold increase in K(i) for clavulanate (7.4 +/- 0.9 microM for Asn276Asp vs 1.4 +/- 0.2 microM for SHV-1) and a 40% reduction in k(inact)/K(I) (0.013 +/- 0.002 microM(-1 )s(-1) for Asn276Asp vs 0.021 +/- 0.004 microM(-1) s(-1) for SHV-1). Timed electrospray ionization mass spectrometry of clavulanate-inhibited SHV-1 and SHV Asn276Asp showed nearly identical mass adducts, arguing for a similar pathway of inactivation. Molecular modeling shows that novel electrostatic interactions are formed between Arg244Neta2 and both 276AspOdelta1 and Odelta2; these new forces restrict the spatial position of Arg244, a residue important in the recognition of the C(3)/C(4) carboxylate of beta-lactam substrates and inhibitors. Testing the functional consequences of this interaction, we noted considerable free energy costs (+DeltaDeltaG) for substrates and inhibitors. A rigid carbapenem (meropenem) was most affected by the Asn276Asp substitution (46-fold increase in K(i) vs SHV-1). We conclude that residue 276 is an important second-shell residue in class A beta-lactamase-mediated resistance to substrates and inhibitors, and only Asn is able to precisely modulate the conformational flexibility of Arg244 required for successful

  15. Exact and Effective Pair-Wise Potential for Protein-Ligand Interactions Obtained from a Semiempirical Energy Partition

    Directory of Open Access Journals (Sweden)

    André Melo

    2008-09-01

    Full Text Available In this work, the partition method introduced by Carvalho and Melo was used to study the complex between Cucurbita maxima trypsin inhibitor (CMTI-I and glycerol at the AM1 level. An effective potential, combining non-bonding and polarization plus charge transfer (PLCT terms, was introduced to evaluate the magnitude of the interaction between each amino acid and the ligand. In this case study, the nonbonding–PLCT noncompensation characterizes the stabilization energy of the association process in study. The main residues (Gly29, Cys3 and Arg5 with net attractive effects and Arg1 (with a net repulsive effect, responsible by the stability of protein-ligand complex, are associated with large nonbonding energies non-compensated by PLCT effects. The results obtained enable us to conclude that the present decomposition scheme can be used for understanding the cohesive phenomena in proteins.

  16. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  17. The Effect of Residual Stress on the Electromechanical Behavior of Electrostatic Microactuators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2008-01-01

    Full Text Available This work simulates the nonlinear electromechanical behavior of different electrostatic microactuators. It applies the differential quadrature method, Hamilton's principle, and Wilson-θ integration method to derive the equations of motion of electrostatic microactuators and find a solution to these equations. Nonlinear equation difficulties are overcome by using the differential quadrature method. The stresses of electrostatic actuators are determined, and the residual stress effects of electrostatic microactuators are simulated.

  18. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  19. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  20. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  1. Residual magnetic field in rotary machines; Campo magnetico residual en maquinas rotatorias

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez V, Esteban A; Apanco R, Marcelino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    The residual magnetism is a phenomenon in which the magnetic dipoles of a substance are oriented in a certain degree. On the other hand, when internal forces exist capable of aligning elementary magnetic dipoles of a material, a permanent magnet is obtained. Just as in a conductor or in a material, in the elements of a rotary electrical machine magnetic fields can be induced that produce a residual magnetism or magnetization. In the rotary electrical machines, the magnetization phenomenon causes serious problems, such as the generation of induced currents that propitiate the mechanical wear in bearings, collars, trunnions and inclusive in the shaft, by effects known as pitting, frosting and spark tracks, as well as erroneous readings in vibration and temperature sensors, that in some cases can cause the shut down of the machine. In this article are presented the general concepts on the residual magnetism in rotary electrical machines, the causes that originate it and the problems that arises, as well as the demagnetization of the components that have residual magnetic field. The results obtained by the area of Electrical Equipment of the Instituto de Investigaciones Electricas are revised, during the execution of activities related to the measurement and elimination of the residual magnetic field in rotary electrical machines. [Spanish] El magnetismo residual es un fenomeno en el que los dipolos magneticos de una sustancia se encuentran orientados en un grado determinado. Por otro lado, cuando existen fuerzas internas capaces de alinear los dipolos magneticos elementales de un material, se tiene un iman permanente. Al igual que en un conductor o un material, en los elementos de una maquina electrica rotatoria se pueden inducir campos magneticos que producen un magnetismo residual o magnetizacion. En las maquinas electricas rotatorias, el fenomeno de magnetizacion causa graves problemas, como la generacion de corrientes inducidas que propician el desgaste mecanico

  2. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  3. The effects of forest residual debris disposal on perennial grass emergence, growth, and survival in a ponderosa pine ecotone

    Science.gov (United States)

    Darin J. Law; Peter F. Kolb

    2007-01-01

    Soil surface conditions can have profound effects on plant seedling emergence and subsequent seedling survival. To test the hypothesis that different soil-surface treatments with logging residue affect range grass seedling emergence and survival, 6 alternative forest-residual treatments were established in the summer of 1998 following thinning of mature trees from...

  4. Reactivity of Athabasca residue and of its SARA fractions during residue hydroconversion

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, J.; Danial-Fortain, P.; Gauthier, T.; Merdrignac, I. [IFP-Lyon, Vermaison (France); Budzinski, H. [Bordeaux Univ. (France). ISM-LPTC, UMR CNRS

    2009-07-01

    Residue conversion processes are becoming increasingly important because of the declining market for residual fuel oil and a greater demand for middle distillates. Ebullated-bed hydroconversion is a commercially proven technology for converting heavy feedstocks with high amounts of impurities. The process enables the conversion of atmospheric or vacuum residues at temperatures up to 440 degrees C, and at liquid hourly space velocity (LHSV) conditions in the range of 0.15 to 0.5 per hour. A 540 degrees C conversion of up to 80 weight per cent can be achieved under these conditions. This paper reported on a research study conducted at IFP Lyon in which the residue hydroconversion in a large-scale ebullated bed bench unit was investigated to determine the impact of operating conditions and feed properties on yield and product qualities. Hydrogen was added to the feed in the bench units to keep a high hydrogen partial pressure and favour the catalytic hydroconversion reactions. In a typical test, the reactor was fed with 50 g of feedstock and 0.45 g of crushed equilibrium industrial NiMo catalyst, pressurized hydrogen and quickly heated at the reaction temperature. This paper also discussed the conversion of Athabasca bitumen residue in the large-scale pilot plant and also in the small scale batch reactor. The effect of operating temperature and space velocity was examined. The reactivity of the saturates, aromatics, resins and asphaltenes (SARA) fractions of the bitumen was studied separately in order to better understand the conversion mechanisms and reactivities. The Athabasca bitumen feed and SARA fractions were also analyzed in terms of standard petroleum analysis, SARA fractionation, elemental analysis, size exclusion chromatography (SEC) and 13C NMR. Hydroconversion experiments were conducted in the batch unit at different reaction temperatures and reaction times. A comparison of small-scale batch results with those obtained with the continuous large-scale bench

  5. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    Science.gov (United States)

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

    International Nuclear Information System (INIS)

    Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E.

    2012-01-01

    Highlights: ► Effect of laser peen intensity on local residual stress fields in 2024 aluminium. ► Peening induces significant changes in surface topography and local hardness. ► Residual stress at peen spot centre in tension, spot overlap in compression. ► Notched fatigue lives increased; crack morphology correlated to residual stress field. ► Large peening power densities can cause fatigue life reduction in notched samples. - Abstract: Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 μm deep scribes, and slight improvement for samples with 150 μm scribes. Use of the residual stress intensity K resid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.

  7. Dissimilar friction stir welds in AA5083-AA6082: The effect of process parameters on residual stress

    International Nuclear Information System (INIS)

    Steuwer, A.; Peel, M.J.; Withers, P.J.

    2006-01-01

    The effect of tool traverse and rotation speeds on the residual stresses are quantified for welds between non-age-hardening AA5083 and age-hardening AA6082 and compared to single alloy joints made from each of the two constituents. The residual stresses have been characterised non-destructively by neutron diffraction and synchrotron X-ray diffraction. The region around the weld line was characterised by significant tensile residual stress fields which are balanced by compressive stresses in the parent material. The rotation speed of the tool has been found to have a substantially greater influence than the transverse speed on the properties and residual stresses in the welds, particularly on the AA5083 side where the location of the peak stress moves from the stir zone to beyond the edge of the tool shoulder. The changes in residual stress are related to microstructural and hardness changes as determined in a previous study . In particular the larger stresses under the weld tool on the AA5083 side compared to the AA6082 side are related to a transient reduction in yield stress due to dissolution of the hardening precipitates during welding prior to natural aging after welding

  8. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization

    Directory of Open Access Journals (Sweden)

    Sengupta Dhriti

    2012-06-01

    Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at

  9. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  10. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  11. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  12. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    Science.gov (United States)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  13. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  14. Assessing Spurious Interaction Effects in Structural Equation Modeling

    Science.gov (United States)

    Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming

    2015-01-01

    Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…

  15. Void analysis of target residues at SPS energy -evidence of correlation with fractal behaviour

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Das, Rupa . E-mail : dipakghosh_in@yahoo.com

    2007-01-01

    This paper presents an analysis of the target residues in 32 S -AgBr and 16 0 -AgBr interactions at 200 AGeV and 60AGeV respectively in terms of fractal moment by Takagi method and void probability scaling. The study reveals an interesting feature of the production process. In 16 O- AgBr interactions multifractal behaviour is present in both hemispheres and void probability does not show a scaling behaviour, but at high energy the situation changes. In 32 S -AgBr interactions for both hemisphere monofractal behaviour is indicated by that data and void probability also shows good scaling behaviour. This suggests that a possible correlation of void probability with fractal behaviour of target residues. (author)

  16. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  17. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  18. Thermodynamic Effects of Replacements of Pro Residues in Helix Interiors of Maltose-Binding Protein

    OpenAIRE

    Prajapati, RS; Lingaraju, GM; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-01-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by...

  19. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  20. Effectiveness of the GAEC cross-compliance standard management of stubble and crop residues in the maintenance of adequate contents of soil organic carbon

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2011-08-01

    Full Text Available Several studies carried out on the effects of stubble and crop residue incorporation have shown positive effects on chemical-physical soil characteristics. However, not all studies agree on the extent of soil organic matter increase which derives from this process, as this effect is strongly affected by other factors: the pedo-climatic features of the area in which the study is carried out, the type of crop residue incorporation and the agronomical management adopted to improve the decomposition of the incorporated fresh organic material. The burning of stubble and straw is common in the areas where cereals are traditionally grown. The adoption of this method is based on different technical and work-related factors, which become less important when taking into account the impact on the local environment and soil. A research is currently carried out at the CRA-SCA experimental farm in Foggia (Southern Italy on the effects of either residues incorporation or burning on the chemical-physical characteristics of the soil and on the wheat yield performance since 1977. This experiment allows for a comparison among the effects of burning, the simple incorporation of stubble and crop residues and incorporation carried out with some agronomical techniques (such as the distribution of increasing amounts of nitrogen on crop residue before incorporation and the simulation of rain (50 mm on the decomposition of organic material. The objective of the study was to understand the effect of the different residues management practices on soil chemical properties after 32 years of experimentation. The simple incorporation of straw and stubble showed a slight increase in organic soil matter of 0.7% with respect to burning. The best results for soil organic carbon and soil quality were obtained when residual incorporation included a treatment with additional mineral nitrogen.

  1. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Ra, Myoung Soo; Lee, Kyoung Soo

    2015-01-01

    This study investigated the effects of various geometric variables on the residual stresses and PWSCC growth of RPV BMI penetration nozzles. An FE residual stress analysis procedure was developed and validated from the viewpoint of FFS assessment. The validated FE residual stress analysis procedure and the PWSCC growth assessment procedure in the ASME B and PV Code, Sec.XI were applied to the BMI penetration nozzles with specified ranges of the geometric variables. The total stresses at steady state during normal operation including welding residual stresses increase with increasing inclination angle of the BMI nozzles, and with tilt angle, depth, and root width of the J-groove weld. The lifetime from the assumed initial crack to the acceptance criteria according to the ASME B and PV Code, Sec.XI also decreases under these conditions. The total stresses decrease and the lifetime increases with increasing nozzle thickness, but outer radius of the BMI nozzles has an insignificant effect on both of these factors.

  2. Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation.

    Science.gov (United States)

    Odore, R; De Marco, M; Gasco, L; Rotolo, L; Meucci, V; Palatucci, A T; Rubino, V; Ruggiero, G; Canello, S; Guidetti, G; Centenaro, S; Quarantelli, A; Terrazzano, G; Schiavone, A

    2015-08-01

    Tetracyclines, which represent one of the most commonly used antibiotics for poultry, are known to be deposited in bones, where they can remain, despite the observation of appropriate withdrawal times. The aim of the study was to determine the concentration of oxytretracycline (OTC) residues in the bone and muscle of chickens, following the oral administration of a commercially available liquid formulation, and to test their cytotoxic effects on an in vitro cell culture model. Seventy-two 1-day-old broiler chickens were randomly allotted into 2 groups (control and treated animals). OTC (40 mg/kg BW) was administered via drinking water during the 1 to 5 and 20 to 25 days of life periods. At the end of the trial, the birds were slaughtered and the OTC residues in the target tissues were measured by means of liquid chromatography (LC) - tandem mass spectrometry (MS/MS). Cytotoxicity was assessed by evaluating the pro-apoptotic effect of the bone residues on the K562 erythroleukemic line and on the peripheral blood mononuclear cells (PBMC). In all the animals, the OTC residues in the muscle were far below the established MRL of 100 μg/kg. The OTC levels in the bones of the treated animals were instead found in the parts per million (ppm) range. Cell cytotoxicity was assessed by evaluating the pro-apoptotic effect of OTC bone residues on the haematopoietic cell system. This in vitro system has revealed a significant pro-apoptotic effect on both the K562 cell line and PBMC cultures. This result suggests potential human and animal health risks due to the entry of tetracycline residues contained in the bones of treated livestock into the food-chain. This could be of concern, particularly for canine and feline diets, as meat, bone meal, and poultry by-products represent some of the main ingredients of pet foods, especially in the case of dry pet food. Further studies are needed to define the underlying mechanisms of cytotoxicity and to evaluate the in vivo toxicological

  3. Residual antibiofilm effects of various concentrations of double antibiotic paste used during regenerative endodontics after different application times.

    Science.gov (United States)

    Jenks, Daniel B; Ehrlich, Ygal; Spolnik, Kenneth; Gregory, Richard L; Yassen, Ghaeth H

    2016-10-01

    We investigated the residual antibiofilm effects of different concentrations of double antibiotic paste (DAP) applied on radicular dentin for 1 or 4 weeks. Dentin samples were prepared (n=120), sterilized and pretreated for 1 or 4 weeks with the clinically used concentration of DAP (500mg/mL), low concentrations of DAP (1, 5 or 50mg/mL) loaded into a methylcellulose system, calcium hydroxide (Ca(OH) 2 ), or placebo paste. After the assigned treatment time, treatment pastes were rinsed off and the samples were kept independently in phosphate buffered saline for 3 weeks. Pretreated dentin samples were then inoculated with Enterococcus faecalis and bacterial biofilms were allowed to grow for an additional 3 weeks. Biofilms were then retrieved from dentin using biofilm disruption assays, diluted, spiral plated, and quantified. Fisher's Exact and Wilcoxon rank sum tests were used for statistical comparisons (α=0.05). Dentin pretreatment for 4 weeks with 5, 50 or 500mg/mL of DAP demonstrated significantly higher residual antibiofilm effects and complete eradication of E. faecalis biofilms in comparison to a 1 week pretreatment with similar concentrations. However, dentin pretreated with 1mg/mL of DAP or Ca(OH) 2 did not provide a substantial residual antibiofilm effect regardless of the application time. Dentin pretreatment with 5mg/mL of DAP or higher for 4 weeks induced significantly higher residual antibiofilm effects in comparison to a 1 week pretreatment with the same concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The effect of interactive digital storytelling gamification on microbiology classroom interactions

    OpenAIRE

    Molnar, Andreea

    2018-01-01

    In this research, we study the use of interactive digital storytelling in teaching microbiology. More specifically, we carried out an exploratory study assessing the effect of using the gamification of an interactive digital storytelling on classroom dynamics and students’ interaction. The results show that the presence of gamification led to an increase in classroom discussions and in students’ engagement with the learning objectives taught by the interactive digital storytelling.

  5. Ensemble Kalman filtering with residual nudging

    Directory of Open Access Journals (Sweden)

    Xiaodong Luo

    2012-10-01

    Full Text Available Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF by (in effect adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  6. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Directory of Open Access Journals (Sweden)

    Aysima Hacisuleyman

    2017-01-01

    Full Text Available It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  7. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  8. Hyperspherical effective interaction for nonlocal potentials

    International Nuclear Information System (INIS)

    Barnea, N.; Leidemann, W.; Orlandini, G.

    2010-01-01

    The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.

  9. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  10. Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Lee, Seong Ho; Park, Chi Yong; Yang, Jun Seok; Lee, Jeong Geun; Park, Jai Hak

    2011-01-01

    Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method

  11. Effects of residual hearing on cochlear implant outcomes in children: A systematic-review.

    Science.gov (United States)

    Chiossi, Julia Santos Costa; Hyppolito, Miguel Angelo

    2017-09-01

    to investigate if preoperative residual hearing in prelingually deafened children can interfere on cochlear implant indication and outcomes. a systematic-review was conducted in five international databases up to November-2016, to locate articles that evaluated cochlear implantation in children with some degree of preoperative residual hearing. Outcomes were auditory, language and cognition performances after cochlear implant. The quality of the studies was assessed and classified according to the Oxford Levels of Evidence table - 2011. Risk of biases were also described. From the 30 articles reviewed, two types of questions were identified: (a) what are the benefits of cochlear implantation in children with residual hearing? (b) is the preoperative residual hearing a predictor of cochlear implant outcome? Studies ranged from 04 to 188 subjects, evaluating populations between 1.8 and 10.3 years old. The definition of residual hearing varied between studies. The majority of articles (n = 22) evaluated speech perception as the outcome and 14 also assessed language and speech production. There is evidence that cochlear implant is beneficial to children with residual hearing. Preoperative residual hearing seems to be valuable to predict speech perception outcomes after cochlear implantation, even though the mechanism of how it happens is not clear. More extensive researches must be conducted in order to make recommendations and to set prognosis for cochlear implants based on children preoperative residual hearing. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    Science.gov (United States)

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Radioisotope studies of some effects and interactions of trace contaminants

    International Nuclear Information System (INIS)

    1976-01-01

    The coordinated programme of ''isotopic tracer-aided studies of the biological side-effects of foreign chemical residues in food and agriculture'', initiated in 1973, had involved the participation of 12 scientists from 10 countries. Pesticide residues, toxic metals, atmospheric sulphur dioxide were studied, and the use of radiotracer techniques as monitoring tools for existing contaminant levels or for their biological effects. The programme had been successful in the development and application of selected labelled substrate techniques. Specific aspects studied were the effects of environmental contaminants at the molecular level of the cell nucleus, the development and significance of radioimmunoassay procedure for trace contaminants, action and joint action of toxic elements, and the radiometric analysis of cholinesterase as an index of exposure to organophosphorus and carbamate pesticides. Ten papers were presented and 12 coordinated investigations discussed. A number of recommendations were made

  14. Experimental study on effect of roasting, boiling and microwave cooking methods on enrofloxacin antibiotic residues in edible poultry tissues

    Directory of Open Access Journals (Sweden)

    A Javadi

    2011-11-01

    Full Text Available The purpose of this study was to determine the effects of different cooking processes such as boiling, roasting and microwaving on enrofloxacin residues in muscle, liver and gizzard tissues of broiler chickens. Each of chicks was fed by routine diet and water with %0.05 of enrofloxacine for consecutive 5 days .Then; three locations including breast muscle, liver and gizzard were sampled aseptically from each carcass. Enrofloxacin residue was analyzed using microbial method by plates seeded with Escherichia coli. After doing different phases of the test on raw samples, the positive raw samples cooked by various cooking procedures and we surveyed cooked samples with similar method again for present of residue. The results were show reduction in concentration of enrofloxacin residue after different cooking processes. The most reduction of the residue in cooked meat and gizzard samples related to boiling process and roasting process for cooked liver samples and the highest detectable amount of residue belonged to microwaving process in all cooked samples. Regarding to the results of this study, we can conclude that cooking processes can’t annihilate total amounts of these drug and it can only decrease their amounts and the most of residue in boiling process excreted from tissue to cooking fluid.

  15. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  16. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    Science.gov (United States)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  17. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    Science.gov (United States)

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  18. Modeling the residual effects and threshold saturation of training: a case study of Olympic swimmers.

    Science.gov (United States)

    Hellard, Philippe; Avalos, Marta; Millet, Gregoire; Lacoste, Lucien; Barale, Frederic; Chatard, Jean-Claude

    2005-02-01

    The aim of this study was to model the residual effects of training on the swimming performance and to compare a model that includes threshold saturation (MM) with the Banister model (BM). Seven Olympic swimmers were studied over a period of 4 +/- 2 years. For 3 training loads (low-intensity w(LIT), high-intensity w(HIT), and strength training w(ST)), 3 residual training effects were determined: short-term (STE) during the taper phase (i.e., 3 weeks before the performance [weeks 0, 1, and 2]), intermediate-term (ITE) during the intensity phase (weeks 3, 4, and 5), and long-term (LTE) during the volume phase (weeks 6, 7, and 8). ITE and LTE were positive for w(HIT) and w(LIT), respectively (p measures indicated that MM compares favorably with BM. Identifying individual training thresholds may help individualize the distribution of training loads.

  19. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    Science.gov (United States)

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  20. Leveraging the Pre-DFG Residue Thr-406 To Obtain High Kinase Selectivity in an Aminopyrazole-Type PAK1 Inhibitor Series.

    Science.gov (United States)

    Rudolph, Joachim; Aliagas, Ignacio; Crawford, James J; Mathieu, Simon; Lee, Wendy; Chao, Qi; Dong, Ping; Rouge, Lionel; Wang, Weiru; Heise, Christopher; Murray, Lesley J; La, Hank; Liu, Yanzhou; Manning, Gerard; Diederich, François; Hoeflich, Klaus P

    2015-06-11

    To increase kinase selectivity in an aminopyrazole-based PAK1 inhibitor series, analogues were designed to interact with the PAK1 deep-front pocket pre-DFG residue Thr-406, a residue that is hydrophobic in most kinases. This goal was achieved by installing lactam head groups to the aminopyrazole hinge binding moiety. The corresponding analogues represent the most kinase selective ATP-competitive Group I PAK inhibitors described to date. Hydrogen bonding with the Thr-406 side chain was demonstrated by X-ray crystallography, and inhibitory activities, particularly against kinases with hydrophobic pre-DFG residues, were mitigated. Leveraging hydrogen bonding side chain interactions with polar pre-DFG residues is unprecedented, and similar strategies should be applicable to other appropriate kinases.

  1. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  2. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.

    1994-09-01

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  3. Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator

    Science.gov (United States)

    Gamelin, A.; Bruni, C.; Radevych, D.

    2018-05-01

    The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.

  4. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  5. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  6. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  7. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  8. Effect of processing conditions and methods on residual stress in CeO2 buffer layers and YBCO superconducting films

    International Nuclear Information System (INIS)

    Xiong Jie; Qin Wenfeng; Cui Xumei; Tao Bowan; Tang Jinlong; Li Yanrong

    2006-01-01

    CeO 2 layers have been fabricated by pulsed laser deposition (PLD) technique on (1 1 0 2) sapphire substrate. Microstructure of CeO 2 layers is characterized by X-ray diffraction as functions of substrate temperature. The effects of the substrate temperature on the residual stress have been studied. The results show that residual stress in CeO 2 film decreased with increasing substrate temperature, not the same development tendency as that of thermal stress. This means that the thermal stress is only a fraction of the residual stress. Moreover, YBCO superconducting films were prepared by direct current (DC) sputtering and pulsed laser deposition (PLD) technique. The residual stress and thermal stress of both YBCO films were measured. PLD processing apparently generated higher intrinsic compressive stresses in comparison to DC sputtering

  9. Surgical treatment for residual or recurrent strabismus

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2014-12-01

    Full Text Available Although the surgical treatment is a relatively effective and predictable method for correcting residual or recurrent strabismus, such as posterior fixation sutures, medial rectus marginal myotomy, unilateral or bilateral rectus re-recession and resection, unilateral lateral rectus recession and adjustable suture, no standard protocol is established for the surgical style. Different surgical approaches have been recommended for correcting residual or recurrent strabismus. The choice of the surgical procedure depends on the former operation pattern and the surgical dosages applied on the patients, residual or recurrent angle of deviation and the operator''s preference and experience. This review attempts to outline recent publications and current opinion in the management of residual or recurrent esotropia and exotropia.

  10. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    Science.gov (United States)

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel.

  11. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  12. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  13. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  14. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    Science.gov (United States)

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  15. Modeling of interaction effects in granular systems

    International Nuclear Information System (INIS)

    El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops

  16. Crop residue decomposition in Minnesota biochar amended plots

    OpenAIRE

    S. L. Weyers; K. A. Spokas

    2014-01-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with ...

  17. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  18. Evolution of titanium residue on the walls of a plasma-etching reactor and its effect on the polysilicon etching rate

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Kosa, E-mail: hirota-kousa@sme.hitachi-hitec.com; Itabashi, Naoshi; Tanaka, Junichi [Hitachi, Ltd., Central Research Laboratory, 1-280, Higashi-Koigakubo, Kokubunji, Tokyo 185-8601 (Japan)

    2014-11-01

    The variation in polysilicon plasma etching rates caused by Ti residue on the reactor walls was investigated. The amount of Ti residue was measured using attenuated total reflection Fourier transform infrared spectroscopy with the HgCdTe (MCT) detector installed on the side of the reactor. As the amount of Ti residue increased, the number of fluorine radicals and the polysilicon etching rate increased. However, a maximum limit in the etching rate was observed. A mechanism of rate variation was proposed, whereby F radical consumption on the quartz reactor wall is suppressed by the Ti residue. The authors also investigated a plasma-cleaning method for the removal of Ti residue without using a BCl{sub 3} gas, because the reaction products (e.g., boron oxide) on the reactor walls frequently cause contamination of the product wafers during etching. CH-assisted chlorine cleaning, which is a combination of CHF{sub 3} and Cl{sub 2} plasma treatment, was found to effectively remove Ti residue from the reactor walls. This result shows that CH radicals play an important role in deoxidizing and/or defluorinating Ti residue on the reactor walls.

  19. Crystal Structure of the Extended-Spectrum β-Lactamase PER-2 and Insights into the Role of Specific Residues in the Interaction with β-Lactams and β-Lactamase Inhibitors

    Science.gov (United States)

    Ruggiero, Melina; Kerff, Frédéric; Herman, Raphaël; Sapunaric, Frédéric; Galleni, Moreno; Gutkind, Gabriel; Charlier, Paulette; Sauvage, Eric

    2014-01-01

    PER-2 belongs to a small (7 members to date) group of extended-spectrum β-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most β-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward β-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A β-lactamases. PER β-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A (“A” indicates an insertion according to Ambler's scheme for residue numbering in PER β-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different β-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior. PMID:25070104

  20. Modeling of interaction effects in granular systems

    CERN Document Server

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  1. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  2. Assessment of the effect of washing and boiling on the levels of pesticide residues in vegetables cultivated in Akuapem North Municipality

    International Nuclear Information System (INIS)

    Opare-Boafo, Maame Serwa

    2016-07-01

    Vegetables play an important role in human nutrition and health. Pesticides are extensively used by vegetable farmers in crop production and this may contaminate the crop. Traditional method of washing vegetables prior to consumption has been assumed to reduce pesticide residues. The study seeks to assess the effect of washing with various solutions and with boiling on the concentration of pesticide residues in vegetables and to estimate the potential human health risk associated with pesticide ingestion via vegetable diet using the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. Results of the study indicated that the farmers involved in vegetable farming in the Akwapim North Municipality are in the middle age group and use pesticides in their farming activities. Majority (65%) of them have no formal training in pesticide usage and apply pesticides in mixtures made of combinations of up to four (4) pesticides in a single tank mixture. The farmers do not use any protective clothing and stores agrochemicals in multipurpose storage structures together with food containers and farm implements. As a result of pesticide exposure, 67% of farmers experienced various kinds of discomfort including headache, tingling or burning of skin, irritation of eyes or skin. Chloropyrifos residue was the only pesticide residue that gave positive detection in the analysed vegetable samples. The raw (non-spiked) vegetable samples (cabbage, lettuce and squash) had 0.29 mg kg -1 , 0.19 mg kg -1 and 0.14 mg kg -1 of Chloropyrifos residue in cabbage, squash and lettuce respectively. The level of chloropyrifos residues detected in raw cabbage samples from the study area was below the maximum permissible limit (MPLs) of 1 mg/kg (Codex, 2003) but the residues found in raw squash was above the maximum permissible limit of 0.01 mg/kg and that of lettuce was also above the maximum permissible limit (0.05mg/kg). Washing of vegetables vigorously in water for 2 minutes before

  3. Evaluation and optimization of nutritional and environmental impact of biogas residues

    International Nuclear Information System (INIS)

    Lichti, Fabian Heribert

    2013-01-01

    On the basis of the dynamic growth of biogas plants in Germany the fertilization with biogas residues has obtained an important role for recirculation of plant nutrients, particularly with regard to nitrogen. In this work the effect of N nutrition with biogas residues was assessed in a 3-year on-field trial conducted at four sites throughout Bavaria. The fertilizing effects were tested by varying rate and time of biogas residues application, using different application techniques and the addition of nitrification inhibitors on several crops. The biogas residues achieved mineral fertilizer equivalents of 30 - 45 %. Overall, the untreated biogas residues showed a slightly increased N efficiency compared to cattle manure, whereas particularly site-dependent differences resulted in large differences in N efficiency of biogas residues.

  4. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  5. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    Science.gov (United States)

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  6. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  7. Antioxidant Effect of Extracts from the Coffee Residue in Raw and Cooked Meat

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2016-07-01

    Full Text Available The residue of ground coffee obtained after the brewing process (spent coffee still contains various functional components with high antioxidant capacity and health benefits, but no attempts have been made to use it as a resource to produce value-added food ingredients. This study evaluates the antioxidant activity of ethanol or hot water extracts from the residues of coffee after brewing. An extraction experiment was carried out using the conventional solid–liquid methods, including ethanol and water as the extraction media at different temperatures and liquid/solid ratios. The antioxidant activity of extracts was tested for total phenolic compound (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and 2-thiobarbituric acid reactive substances (TBARS using oil emulsion and raw/cooked meat systems. The DPPH radical scavenging activity of the ethanol extracts with heating (HEE and without heating (CEE were higher than that of the hot water extracts (WE. The highest DPPH value of HEE and CEE at 1000 ppm was 91.22% and 90.21%, respectively. In oil emulsion and raw/cooked systems, both the water and ethanol extracts had similar antioxidant effects to the positive control (BHA, but HEE and CEE extracts showed stronger antioxidant activities than WE extract. These results indicated that the ethanol extracts of coffee residue have a strong antioxidant activity and have the potential to be used as a natural antioxidant in meat.

  8. Effects of lysine residues on structural characteristics and stability of tau proteins

    International Nuclear Information System (INIS)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo

    2015-01-01

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  9. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  10. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... process. The structural relaxation is taken into account using Narayanaswamy’s model. The motiva-tion for this work is to study the effect of the reduction of the hole and edge minimum distances, which are defined according to EN 12150-1. It is the objective of the paper to demonstrate and elucidate...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...

  11. Comparative modeling and docking studies of p16ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1

    Directory of Open Access Journals (Sweden)

    e Zahra Syeda Naqsh

    2013-01-01

    Full Text Available Abstract Background Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1 Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase (2 Growth inhibitory pathways (p53/Rb/P14ARF, STK11 (3 Apoptotic pathways (Bcl-2/Bax/Fas/FasL. Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. Results YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of −0.132 and −0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. Conclusion This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of

  12. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    International Nuclear Information System (INIS)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki; Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi; Dohmae, Naoshi; Takio, Koji; Sakamoto, Hiroshi; Shimura, Yoshiro

    2000-01-01

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5- 2 H]uridine phosphoramidite, and synthesized a series of 2 H-labeled RNAs, in which all of the uridine residues except one were replaced by [5- 2 H]uridine in the target sequence, GU 8 C. By observing the H5-H6 TOCSY cross peaks of the series of 2 H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU 2 GU 8 , AU 8 , and UAU 8 , were assigned by comparison with those of GU 8 C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex

  13. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki [University of Tokyo, Department of Biophysics and Biochemistry, Graduate School of Science (Japan); Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi [Chiba Institute of Technology, Department of Industrial Chemistry (Japan); Dohmae, Naoshi; Takio, Koji [Institute of Physical and Chemical Research (RIKEN) (Japan); Sakamoto, Hiroshi [Kobe University, Department of Biology, Faculty of Science (Japan); Shimura, Yoshiro [Biomolecular Engineering Research Institute (Japan)

    2000-06-15

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-{sup 2}H]uridine phosphoramidite, and synthesized a series of {sup 2}H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-{sup 2}H]uridine in the target sequence, GU{sub 8}C. By observing the H5-H6 TOCSY cross peaks of the series of {sup 2}H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU{sub 2}GU{sub 8}, AU{sub 8}, and UAU{sub 8}, were assigned by comparison with those of GU{sub 8}C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.

  14. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    Science.gov (United States)

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-02

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.

  15. Effect of Residence Time on Hydrothermal Carbonization of Corn Cob Residual

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-05-01

    Full Text Available Hydrothermal carbonization is a promising technique for conversion of industrial waste into valuable products. Producing hydrochar from corn cob residual (CCR in a cost-effective way is key, from an economic standpoint. For this purpose, the effect of residence time in the range of 0.5 to 6 h was studied under the optimal temperature of 250 °C. Results showed that the higher heating value (HHV of hydrochar increased approximately 40% in comparison to that of the raw material; however, prolonging the residence time beyond 0.5 h had a negligible effect on the HHV increase. Chemical compositions and H/C and O/C ratios of hydrochars revealed a minimal effect of longer residence time. Furthermore, thermogravimetric and derivative thermogravimetric analysis (TG/DTG, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD analysis of hydrochars also verified that the pyrolysis behavior and chemical structure of hydrochars with various residence times were similar.

  16. Effect of cooldown and residual magnetic field on the performance of niobium–copper clad superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi

    2017-01-01

    Here, we present the results of rf measurements on a niobium–copper clad superconducting radio-frequency cavity with different cooldown conditions and residual magnetic field in a vertical test Dewar in order to explore the effect of thermal current induced magnetic field and its trapping on the performance of the cavity. The residual resistance, extracted from the Q 0 (T) curves in the temperature range 4.3–1.5 K, showed no dependence on a temperature gradient along the cavity during the cooldown across the critical temperature up to ~50 K m –1 . The rf losses due to the trapping of residual magnetic field during the cavity cooldown were found to be ~4.3 nΩ μT –1 , comparable to the values measured in bulk niobium cavities. An increase of residual resistance following multiple cavity quenches was observed along with evidence of trapping of magnetic flux generated by thermoelectric currents.

  17. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes.

    Science.gov (United States)

    Forster, Brian M; Bitar, Alan Pavinski; Marquis, Hélène

    2014-01-01

    Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.

  18. The Shigella flexneri OmpA amino acid residues 188EVQ190 are essential for the interaction with the virulence factor PhoN2.

    Science.gov (United States)

    Scribano, Daniela; Damico, Rosanna; Ambrosi, Cecilia; Superti, Fabiana; Marazzato, Massimiliano; Conte, Maria Pia; Longhi, Catia; Palamara, Anna Teresa; Zagaglia, Carlo; Nicoletti, Mauro

    2016-12-01

    Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188 EVQ 190 are likely essential for PhoN2-OmpA interaction. The 188 EVQ 190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction.

  19. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  20. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  1. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation

  2. Effect of washing and boiling on residues of pirimiphos-methyl in soybeans

    International Nuclear Information System (INIS)

    Sulistiawaty, M.; Anwar, E.

    1996-01-01

    The residues of pirimiphos-methyl (0-2-diethylamino-6-methyl-pyrimidine-4-il-o-dimethyl phos-phorothioate) in soybean grains were studied using 14 C-labelled-pirimiphos-methyl. Jute sock containing soybean grains were sprayed with pirimiphos-methyl and then stored at room temperature. The results indicated than residues of pirimiphos-methyl in soybeans before washing, after washing, and after washing + boiling at 0 week storage were: 1.0, 0.42, and 0.01%: then increased to 42.01, 30.75, and 10.02%, respectively, after 12 weeks, and finally decreased to 38.33, 27.01, and 6.10%, respectively, after 24 weeks storage. The residues of pirimiphos-methyl in washing water at 0 week storage was 0.41%, then increased to 8.01% after 24 weeks storage. The percentage was calculated based on the amount of residue found compared to the initial pirimiphos-methyl used. (author)

  3. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenfei [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Wang, Ying [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Nianshuang; Wang, Dongli [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Guo, Jianying; Fu, Lili [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Shi, Xuanling, E-mail: shixuanlingsk@tsinghua.edu.cn [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  4. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    Science.gov (United States)

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  5. comparative assessment residual soils in residual soils in parts of e

    African Journals Online (AJOL)

    eobe

    residual soil formed from Zuma rock. The Zuma r is an igneous .... The liquid limit (LL) is the lowest water content above which soil .... where this effect begins to be counteracted by the saturation of the ... retaining walls, tunnel linings and timbering of excavation. .... event of pore pressure build up due to excessive moisture.

  6. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  7. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  8. Spectroscopic investigation on the interaction of titanate nanotubes with bovine serum albumin

    International Nuclear Information System (INIS)

    Zhao, L.Z.; Zhao, Y.S.; Teng, H.H.; Shi, S.Y.; Ren, B.X.

    2014-01-01

    In order to understand the transport mechanism and evaluate the biological safety of titanate nanotubes, the interactions of titanate nanotubes (TNTs) with bovine serum albumin (BSA) were investigated by applying spectroscopic methods under simulated physiological conditions. After taking into account the inner filter effect, the fluorescence intensity of BSA was found to be significantly enhanced by the presence of TNTs, indicating that the microenvironment of tryptophan and tyrosine residues in BSA became more hydrophobic. In addition, the absorption spectra of BSA showed a hyperchromic effect around 280 nm as the concentration of TNTs increased, suggesting that TNTs changed the microenvironment of the tryptophan and tyrosine residues. This is consistent with the results from fluorescence spectroscopy studies. However, circular dichroism spectroscopy revealed that no significant conformational change in BSA occurred during the interaction. We believe that Trp-213 was buried more compactly in the internal hydrophobic region, and hydrophobicity increased around Trp-134 with increasing TNTs concentration. From a spectroscopic point of view, this work elucidates the interaction mechanism of titanate nanotubes with BSA, and the methods used in this paper can also be applied to explore the molecular mechanism underlying toxicity of other nanomaterials. (authors)

  9. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    Science.gov (United States)

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  10. A four-country ring test of nontarget effects of ivermectin residues on the function of coprophilous communities of arthropods in breaking down livestock dung.

    Science.gov (United States)

    Tixier, Thomas; Blanckenhorn, Wolf U; Lahr, Joost; Floate, Kevin; Scheffczyk, Adam; Düring, Rolf-Alexander; Wohde, Manuel; Römbke, Jörg; Lumaret, Jean-Pierre

    2016-08-01

    By degrading the dung of livestock that graze on pastures, coprophilous arthropods accelerate the cycling of nutrients to maintain pasture quality. Many veterinary medicinal products, such as ivermectin, are excreted unchanged in the dung of treated livestock. These residues can be insecticidal and may reduce the function (i.e., dung-degradation) of the coprophilous community. In the present study, we used a standard method to monitor the degradation of dung from cattle treated with ivermectin. The present study was performed during a 1-yr period on pastures in Canada, France, The Netherlands, and Switzerland. Large effects of residue were detected on the coprophilous community, but degradation of dung was not significantly hampered. The results emphasize that failure to detect an effect of veterinary medicinal product residues on dung-degradation does not mean that the residues do not affect the coprophilous community. Rather, insect activity is only one of many factors that affect degradation, and these other factors may mask the nontarget effect of residues. Environ Toxicol Chem 2016;35:1953-1958. © 2015 SETAC. © 2015 SETAC.

  11. Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3

    Directory of Open Access Journals (Sweden)

    Ross eBathgate

    2013-02-01

    Full Text Available Relaxin-3 is a highly conserved neuropeptide in vertebrate species and binds to the Class A G protein-coupled receptor RXFP3. Relaxin-3 is involved in a wide range of behaviours, including feeding, stress responses, arousal and cognitive processes and therefore targeting of RXFP3 may be relevant for a range of neurological diseases. Structural knowledge of RXFP3 and its interaction with relaxin-3 would both increase our understanding of ligand recognition in GPCRs that respond to protein ligands and enable acceleration of the design of drug leads. In this study we have used comparative sequence analysis, molecular modelling and receptor mutagenesis to investigate the binding site of the native ligand human relaxin-3 (H3 relaxin on the human RXFP3 receptor. Previous structure function studies have demonstrated that arginine residues in the H3 relaxin B-chain are critical for binding interactions with the receptor extracellular loops and/or N-terminal domain. Hence we have concentrated on determining the ligand interacting sites in these domains and have focussed on glutamic (E and aspartic acid (D residues in these regions that may form electrostatic interactions with these critical arginine residues. Conserved D/E residues identified from vertebrate species multiple sequence alignments were mutated to Ala in human RXFP3 to test the effect of loss of amino acid side chain on receptor binding using both Eu-labelled relaxin-3 agonist. Finally data from mutagenesis experiments have been used in ligand docking simulations to a homology model of human RXFP3 based on the peptide-bound CXCR4 structure. These studies have resulted in a model of the relaxin-3 interaction with RXFP3 which will inform further interrogation of the agonist binding site.

  12. Potassium as topdressing in maize and the residual effects on soybean grown in succession= Potássio em cobertura no milho e efeito residual na soja em sucessão

    Directory of Open Access Journals (Sweden)

    Tiago de Lisboa Parente

    2016-10-01

    Full Text Available Potassium (K is the second most-extracted nutrient by the majority of agricultural crops, and can influence fruiting, grain weight and other physiological processes. However, there are still questions regarding possible residual effects in areas of direct seeding. The aim of this study therefore, was to evaluate the immediate effects of K on second-crop maize, and the possible residual effect on soybean crops grown in succession under a no-tillage system. The experimental design was of randomised blocks with nine doses of K2 O as topdressing (0, 15, 30, 45, 60, 75, 90, 120 and 150 kg ha-1, in the form of KCl applied in the V6 vegetative growth stage of the maize, with four replications. The study was carried out in an area of Cerrado, with soybean grown in succession. Morphological and production characteristics were evaluated in the two crops. There was an increase in maize productivity up to the dose of maximum technical efficiency, 89 kg ha-1 K2 O, and in the soybean, up to 80 kg ha-1, in addition to the increase in the number of pods per plant and thousand grain weight. The results therefore, demonstrate the residual effect of K in soybean crops grown in succession. = O potássio (K é o segundo nutriente mais extraído pela maioria das culturas agrícolas, podendo influenciar na frutificação, peso de grãos e em outros processos fisiológicos. No entanto, ainda há questionamentos quanto ao seu possível efeito residual em áreas de plantio direto. Assim, objetivou-se com esse trabalho avaliar a eficiência imediata do K no milho, segunda safra, e o possível efeito residual na cultura da soja cultivada em sucessão no sistema plantio direto. O delineamento experimental foi em blocos casualizados com nove doses de K2 O em cobertura (0, 15, 30, 45, 60, 75, 90, 120 e 150 kg ha-1 na forma de KCl, aplicadas no estádio vegetativo V6 no milho, com quatro repetições. O estudo foi desenvolvido em área de Cerrado. Foram avaliados os caracteres

  13. Effect of Interband Interaction on Isotope Effect Coefficient of Mg B2 Superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Maneeratanakul, S.

    2005-10-01

    In this research, the exact formula of Tc s equation and the isotope effect coefficient of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of interband interaction .In each band ,our model consist of two paring interactions : the electron-phonon interaction and non-electron-phonon interaction . According to the numerical calculation, we find that the isotope effect coefficient of MgB 2 , α=3 . 0 with T c 40 K can be found in the weak coupling regime and interband interaction of electron-phonon show more effect on isotope effect coefficient than interband interaction of non-phonon-electron

  14. The effects of lithographic residues and humidity on graphene field ...

    Indian Academy of Sciences (India)

    humidity at graphene field effect transistors (GFETs). While the exact means of humidity interacting with hydropho- bic graphene remains unknown, this work examines pristine and lithographic-process-applied graphene surfaces with surface ... temperature quantum Hall effect, linear electron dispersion at the vicinity of the ...

  15. InterProSurf: a web server for predicting interacting sites on protein surfaces

    Science.gov (United States)

    Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner

    2009-01-01

    Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856

  16. Injection, flow, and mixing of CO2 in porous media with residual gas.

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  17. Association between blood cholinesterase activity, organophosphate pesticide residues on hands, and health effects among chili farmers in Ubon Ratchathani Province, northeastern Thailand

    Science.gov (United States)

    Nganchamung, Thitirat; Robson, Mark G; Siriwong, Wattasit

    Use of pesticides has been documented to lead to several adverse health effects. Farmers are likely to be exposed to pesticides through dermal exposure as a result of mixing, loading, and spraying. Organophosphate pesticides (OPs) are widely used in most of the agricultural areas throughout Thailand. OPs are cholinesterase inhibitors and blood cholinesterase activity is used as a biomarker of OP effects. This study aims to determine the association between blood cholinesterase activity and organophosphate pesticide residues on chili farmer’s hands and their adverse health effects. Ninety chili farmers directly involved with pesticide applications (e.g. mixing, loading, spraying) were recruited and were interviewed face to face. Both enzymes, erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (PChE), were tested with the EQM Test-mate Cholinesterase Test System (Model 400). Hand wipe samples were used for collecting residues on both hands and OP residues for chlorpyrifos and profenofos were quantified using gas chromatography equipped with a flame photometric detector (GC-FPD). The average activity (±SD) of AChE and PChE was 2.73 (±0.88) and 1.58 (±0.56) U/mL, respectively. About 80.0% of the participants had detectable OP residues on hands. The median residues of chlorpyrifos and profenofos were found to be 0.02 and 0.03 mg/kg/two hands, respectively. Half of participants reported having some acute health symptoms within 48 hours after applying pesticides. When adjusted for gender, number of years working in chili farming, and frequency of pesticide use, AChE activity (Adjusted OR = 0.03, 95%CI: 0.01-0.13) and detected OP residues on hands (Adjusted OR = 0.15, 95%CI: 0.02-0.95) were significantly associated with having health effects, but no significant association was found in PChE activity (Adjusted OR = 2.09, 95%CI: 0.63-6.99). This study suggests that regular monitoring for blood cholinesterase and effective interventions to reduce pesticide

  18. Effect of the spray volume adjustment model on the efficiency of fungicides and residues in processing tomato

    Energy Technology Data Exchange (ETDEWEB)

    Ratajkiewicz, H.; Kierzek, R.; Raczkowski, M.; Hołodyńska-Kulas, A.; Łacka, A.; Wójtowicz, A.; Wachowiak, M.

    2016-11-01

    This study compared the effects of a proportionate spray volume (PSV) adjustment model and a fixed model (300 L/ha) on the infestation of processing tomato with potato late blight (Phytophthora infestans (Mont.) de Bary) (PLB) and azoxystrobin and chlorothalonil residues in fruits in three consecutive seasons. The fungicides were applied in alternating system with or without two spreader adjuvants. The proportionate spray volume adjustment model was based on the number of leaves on plants and spray volume index. The modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was optimized and validated for extraction of azoxystrobin and chlorothalonil residue. Gas chromatography with a nitrogen and phosphorus detector and an electron capture detector were used for the analysis of fungicides. The results showed that higher fungicidal residues were connected with lower infestation of tomato with PLB. PSV adjustment model resulted in lower infestation of tomato than the fixed model (300 L/ha) when fungicides were applied at half the dose without adjuvants. Higher expected spray interception into the tomato canopy with the PSV system was recognized as the reasons of better control of PLB. The spreader adjuvants did not have positive effect on the biological efficacy of spray volume application systems. The results suggest that PSV adjustment model can be used to determine the spray volume for fungicide application for processing tomato crop. (Author)

  19. Effect of the spray volume adjustment model on the efficiency of fungicides and residues in processing tomato

    Directory of Open Access Journals (Sweden)

    Henryk Ratajkiewicz

    2016-08-01

    Full Text Available This study compared the effects of a proportionate spray volume (PSV adjustment model and a fixed model (300 L/ha on the infestation of processing tomato with potato late blight (Phytophthora infestans (Mont. de Bary (PLB and azoxystrobin and chlorothalonil residues in fruits in three consecutive seasons. The fungicides were applied in alternating system with or without two spreader adjuvants. The proportionate spray volume adjustment model was based on the number of leaves on plants and spray volume index. The modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS method was optimized and validated for extraction of azoxystrobin and chlorothalonil residue. Gas chromatography with a nitrogen and phosphorus detector and an electron capture detector were used for the analysis of fungicides. The results showed that higher fungicidal residues were connected with lower infestation of tomato with PLB. PSV adjustment model resulted in lower infestation of tomato than the fixed model (300 L/ha when fungicides were applied at half the dose without adjuvants. Higher expected spray interception into the tomato canopy with the PSV system was recognized as the reasons of better control of PLB. The spreader adjuvants did not have positive effect on the biological efficacy of spray volume application systems. The results suggest that PSV adjustment model can be used to determine the spray volume for fungicide application for processing tomato crop.

  20. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  1. Effect of pretreatment on biomass residue structure and the application of pyrolysed and composted biomass residues in soilless culture.

    Directory of Open Access Journals (Sweden)

    Linna Suo

    Full Text Available The changes in the structural characteristics of biomass residues during pyrolysis and composting were investigated. The biomass residues particles were prepared by pyrolysing at temperatures ranging from 350 to 400. For soilless production of the ornamental plant Anthurium andraeanum, pure sphagnum peat moss (P has traditionally been used as the growing medium. This use of P must be reduced, however, because P is an expensive and nonrenewable resource. The current study investigated the use of biomass residues as substitutes for P in A. andraeanum production. Plants were grown for 15 months in 10 soilless media that contained different proportions of pyrolysed corn cobs (PC, composted corn cobs (C, pyrolysed garden wastes (PG, and P. Although the media altered the plant nutrient content, A. andraeanum growth, development, and yield were similar with media consisting of 50% P+50% PC, 50% P+35% PC+15% PG, and 100% P. This finding indicates that, when pyrolysed, organic wastes, which are otherwise an environmental problem, can be used to reduce the requirement for peat in the soilless culture of A. andraeanum.

  2. Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers

    Science.gov (United States)

    Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.

    2018-04-01

    In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.

  3. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum.

    Science.gov (United States)

    Huang, Yuanyuan; Zhang, Hao; Tian, Hongming; Li, Cheng; Han, Shuangyan; Lin, Ying; Zheng, Suiping

    2015-09-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine that is inhibited by its end product L-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized L-arginine producing strain.

  4. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.

    Science.gov (United States)

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob

    2016-12-15

    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  6. for indoor residuAl sprAying in rAkAi district, ugAndA

    African Journals Online (AJOL)

    2011-11-11

    Nov 11, 2011 ... for irs and factors associated with willingness to accept use of ddt. Results: ... system alone (1) accounting for 30 to 50 percent of outpatient ... 9 to 14 percent of inpatient deaths; making Uganda ... a long residual effect and has lower operational cost .... reasons for their decision: fear of health effects from.

  7. Residual learning rates in lead-acid batteries: Effects on emerging technologies

    International Nuclear Information System (INIS)

    Matteson, Schuyler; Williams, Eric

    2015-01-01

    The low price of lead-acid, the most popular battery, is often used in setting cost targets for emerging energy storage technologies. Future cost reductions in lead acid batteries could increase investment and time scales needed for emerging storage technologies to reach cost-parity. In this paper the first documented model of cost reductions for lead-acid batteries is developed. Regression to a standard experience curve using 1989–2012 data yield a poor fit, with R 2 values of 0.17 for small batteries and 0.05 for larger systems. To address this problem, battery costs are separated into material and residual costs, and experience curves developed for residual costs. Depending on the year, residual costs account for 41–86% of total battery cost. Using running-time averages to address volatility in material costs, a 4-year time average experience curve for residual costs yield much higher R 2 , 0.78 for small and 0.74 for large lead-acid batteries. The learning rate for residual costs in lead-acid batteries is 20%, a discovery with policy implications. Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy storage start-ups and public policy programs. Generalizing this result, learning in incumbent technologies must be understood to assess the potential of emerging ones. -- Highlights: •We analyze potential cost reductions in lead-acid batteries. •Modified experience curve for non-material costs gives good empirical fit. •Historical learning rate for non-material costs from 1985–2012 is 19–24%. •Progress in incumbent technology raises barrier to new entrants

  8. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  9. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity.

    Science.gov (United States)

    van de Heijning, Bert J M; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M

    2015-07-08

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%-75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  10. Screening for interaction effects in gene expression data.

    Directory of Open Access Journals (Sweden)

    Peter J Castaldi

    Full Text Available Expression quantitative trait (eQTL studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs and their respective target genes. However, identification of interaction effects in gene expression data pose a variety of methodological challenges, and it has become clear that such analyses should be conducted and interpreted with caution. Investigating the validity and interpretability of several interaction tests when screening for eQTL SNPs whose effect on the target gene expression is modified by the expression level of a transcription factor, we characterized two important methodological issues. First, we stress the scale-dependency of interaction effects and highlight that commonly applied transformation of gene expression data can induce or remove interactions, making interpretation of results more challenging. We then demonstrate that, in the setting of moderate to strong interaction effects on the order of what may be reasonably expected for eQTL studies, standard interaction screening can be biased due to heteroscedasticity induced by true interactions. Using simulation and real data analysis, we outline a set of reasonable minimum conditions and sample size requirements for reliable detection of variant-by-environment and variant-by-TF interactions using the heteroscedasticity consistent covariance-based approach.

  11. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  12. Effect of gamma irradiation and sodium hydroxide on cell wall constituents of some agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Almasri, M R [Department of Radiation Agriculture, Atomic Energy Commision, P.O. Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    The effect of various doses gamma irradiation and different concentrations of NaOH on cell-wall constituents of wheat straw (W.S), cotton seed shell (C.S.S), peanut shell (P.S), soybean shell (S B.S), extracted olive cake (O.C.E) and extracted sunflower of unpeel seeds (S.U.E) were investigated. Results indicated that Na OH in the concentrations at (2,4 and 6%) had significant effects in the crude fiber (C F) content of W.S, P.S and E.U.E, S B.S, C.S.S, O.C.E,respectively. Treating S.U.E, W.S and all other residues with NaOH (2,4 and 6%) respectively, decreased the neutral-detergent fiber (NDF) level. Irradiation dose of 200 kGy decreased C F for all residues, and it reduced the NDF for S.U.E and S B.S. however, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S., P.S. and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. 3 tabs.

  13. Effect of gamma irradiation and sodium hydroxide on cell wall constituents of some agricultural residues

    International Nuclear Information System (INIS)

    Almasri, M.R.

    1995-01-01

    The effect of various doses gamma irradiation and different concentrations of NaOH on cell-wall constituents of wheat straw (W.S), cotton seed shell (C.S.S), peanut shell (P.S), soybean shell (S B.S), extracted olive cake (O.C.E) and extracted sunflower of unpeel seeds (S.U.E) were investigated. Results indicated that Na OH in the concentrations at (2,4 and 6%) had significant effects in the crude fiber (C F) content of W.S, P.S and E.U.E, S B.S, C.S.S, O.C.E,respectively. Treating S.U.E, W.S and all other residues with NaOH (2,4 and 6%) respectively, decreased the neutral-detergent fiber (NDF) level. Irradiation dose of 200 kGy decreased C F for all residues, and it reduced the NDF for S.U.E and S B.S. however, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S., P.S. and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. 3 tabs

  14. Effects of economic interactions on credit risk

    International Nuclear Information System (INIS)

    Hatchett, J P L; Kuehn, R

    2006-01-01

    We study a credit-risk model which captures effects of economic interactions on a firm's default probability. Economic interactions are represented as a functionally defined graph, and the existence of both cooperative and competitive business relations is taken into account. We provide an analytic solution of the model in a limit where the number of business relations of each company is large, but the overall fraction of the economy with which a given company interacts may be small. While the effects of economic interactions are relatively weak in typical (most probable) scenarios, they are pronounced in situations of economic stress, and thus lead to a substantial fattening of the tails of loss distributions in large loan portfolios. This manifests itself in a pronounced enhancement of the value at risk computed for interacting economies in comparison with their non-interacting counterparts

  15. 1H and 31P nuclear magnetic resonance investigation of the interaction between 2,3-diphosphoglycerate and human normal adult hemoglobin.

    Science.gov (United States)

    Russu, I M; Wu, S S; Bupp, K A; Ho, N T; Ho, C

    1990-04-17

    High-resolution 1H and 31P nuclear magnetic resonance spectroscopy has been used to investigate the binding of 2,3-diphosphoglycerate to human normal adult hemoglobin and the molecular interactions involved in the allosteric effect of the 2,3-diphosphoglycerate molecule on hemoglobin. Individual hydrogen ion NMR titration curves have been obtained for 22-26 histidyl residues of hemoglobin and for each phosphate group of 2,3-diphosphoglycerate with hemoglobin in both the deoxy and carbonmonoxy forms. The results indicate that 2,3-diphosphoglycerate binds to deoxyhemoglobin at the central cavity between the two beta chains and the binding involves the beta 2-histidyl residues. Moreover, the results suggest that the binding site of 2,3-diphosphoglycerate to carbonmonoxyhemoglobin contains the same (or at least some of the same) amino acid residues responsible for binding in the deoxy form. As a result of the specific interactions with 2,3-diphosphoglycerate, the beta 2-histidyl residues make a significant contribution to the alkaline Bohr effect under these experimental conditions (up to 0.5 proton/Hb tetramer). 2,3-Diphosphoglycerate also affects the individual hydrogen ion equilibria of several histidyl residues located away from the binding site on the surface of the hemoglobin molecule, and, possibly, in the heme pockets. These results give the first experimental demonstration that long-range electrostatic and/or conformational effects of the binding could play an important role in the allosteric effect of 2,3-diphosphoglycerate on hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  17. Effective interactions from q-deformed inspired transformations

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    From the mass term for the transformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting transformed fields into quarks interacting via NJL contact terms are discussed

  18. Effective interactions from q-deformed quark fields

    International Nuclear Information System (INIS)

    Timoteo, V. S.; Lima, C. L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed

  19. KFC Server: interactive forecasting of protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  20. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)