WorldWideScience

Sample records for residual cellular dna

  1. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  2. Oxidatively generated base damage to cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, Jean [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no.3 - CEA/UJF, Institut nano-sciences et Cryogenie, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France); Departement de Medecine Nucleaire et Radiobiologie, Faculte de medecine de des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec, J1H 5N4 (Canada); Douki, Thierry; Ravanat, Jean-Luc [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no.3 - CEA/UJF, Institut nano-sciences et Cryogenie, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France)

    2010-07-01

    Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation. UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleo-base modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided. (authors)

  3. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    Science.gov (United States)

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dissecting and analyzing key residues in protein-DNA complexes.

    Science.gov (United States)

    Kulandaisamy, A; Srivastava, Ambuj; Nagarajan, R; Gromiha, M Michael

    2018-04-01

    Protein-DNA interactions are involved in various fundamental biological processes such as replication, transcription, DNA repair, and gene regulation. To understand the interaction in protein-DNA complexes, the integrative study of binding and stabilizing residues is important. In the present study, we have identified key residues that play a dual role in both binding and stability from a nonredundant dataset of 319 protein-DNA complexes. We observed that key residues are identified in very less number of complexes (29%) and only about 4% of stabilizing/binding residues are identified as key residues. Specifically, stabilizing residues have higher preference to be key residues than binding residues. These key residues include polar, nonpolar, aliphatic, aromatic, and charged amino acids. Moreover, we have analyzed and discussed the key residues in different protein-DNA complexes, which are classified based on protein structural class, function, DNA strand, and their conformations. Especially, Ser, Thr, Tyr, Arg, and Lys residues are commonly found in most of the subclasses of protein-DNA complexes. Further, we analyzed atomic contacts, which show that polar-nonpolar is more enriched than other types of contacts. In addition, the charged contacts are highly preferred in protein-DNA complexes compared with protein-protein and protein-RNA complexes. Finally, we have discussed the sequence and structural features of key residues such as conservation score, surrounding hydrophobicity, solvent accessibility, secondary structure, and long-range order. This study will be helpful to understand the recognition mechanism and structural and functional aspects of protein-DNA complexes. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase.

    Science.gov (United States)

    Sundlass, Nadia K; Raines, Ronald T

    2011-11-29

    Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, 10 of the 12 lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity toward human cancer cells. Analysis of denaturation induced with guanidine-HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization but can compromise other aspects of protein structure and function.

  6. Analysis of cellular and extracellular DNA in fingerprints

    Energy Technology Data Exchange (ETDEWEB)

    Button, Julie M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implications for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.

  7. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  8. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Salles-Passador, I.; Fotedar, R.; Fotedar, A.

    1999-01-01

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  9. Cellular sensing of viral DNA and viral evasion mechanisms.

    Science.gov (United States)

    Orzalli, Megan H; Knipe, David M

    2014-01-01

    Mammalian cells detect foreign DNA introduced as free DNA or as a result of microbial infection, leading to the induction of innate immune responses that block microbial replication and the activation of mechanisms that epigenetically silence the genes encoded by the foreign DNA. A number of DNA sensors localized to a variety of sites within the cell have been identified, and this review focuses on the mechanisms that detect viral DNA and how the resulting responses affect viral infections. Viruses have evolved mechanisms that inhibit these host sensors and signaling pathways, and the study of these antagonistic viral strategies has provided insight into the mechanisms of these host responses. The field of cellular sensing of foreign DNA is in its infancy, but our currently limited knowledge has raised a number of important questions for study.

  10. DNA mismatch repair and the cellular response to UVC radiation

    NARCIS (Netherlands)

    Borgdorff, Viola

    2006-01-01

    In this thesis the role of DNA mismatch repair (MMR) in the cellular response to several genotoxic agents is described. We show that MMR plays an important role in the protection against UVC-induced mutagenesis in mouse embryonic stem (ES) cells. UVC was shown to induce six times more mutations in

  11. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  12. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  13. [Construction and identification of Nogo extra cellular peptide residues 1-40 gene lentiviral vector].

    Science.gov (United States)

    Yuan, Haifeng; Song, Yueming; Liu, Hao; Zhou, Chunguang; Kong, Qingquan; Liu, Liming; Gong, Quan

    2012-02-01

    To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40 (NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. The DNA fragment of NEP1-40 coding sequence was amplified by PCR with designed primer from the cDNA library including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene delivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP 1-40.

  14. Measurement of oxidatively generated base damage in cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, Jean, E-mail: jean.cadet@cea.fr [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no3 (CEA/UJF), FRE CNRS 3200, Departement de Recherche Fondamentale sur la Matiere Condensee, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France); Douki, Thierry; Ravanat, Jean-Luc [Laboratoire ' Lesions des Acides Nucleiques' , SCIB-UMR-E no3 (CEA/UJF), FRE CNRS 3200, Departement de Recherche Fondamentale sur la Matiere Condensee, CEA/Grenoble, F-38054 Grenoble Cedex 9 (France)

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and {sup 32}P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  15. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication.

    Science.gov (United States)

    Holguera, Isabel; Muñoz-Espín, Daniel; Salas, Margarita

    2015-03-11

    Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130-190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  17. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  18. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  19. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  20. Detection, characterization and measure of a new radiation-induced damage in isolated and cellular DNA

    International Nuclear Information System (INIS)

    Regulus, P.

    2006-10-01

    Deoxyribonucleic acid (DNA) contains the genetic information and chemical injury to this macromolecule may have severe biological consequences. We report here the detection of 4 new radiation-induced DNA lesions by using a high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) approach. For that purpose, the characteristic fragmentation of most 2'-deoxy-ribo nucleosides, the loss of 116 Da corresponding to the loss of the 2-deoxyribose moiety, was used in the so-called neutral loss mode of the HPLC-MS/MS. One of the newly detected lesions, named dCyd341 because it is a 2'-deoxycytidine modification exhibiting a molecular weight of 341 Da, was also detected in cellular DNA. Characterization of this modified nucleoside was performed using NMR and exact mass determination of the product obtained by chemical synthesis. A mechanism of formation was then proposed, in which the first event is the H-abstraction at the C4 position of a 2-deoxyribose moiety. Then, the sugar modification produced exhibits a reactive aldehyde that, through reaction with a vicinal cytosine base, gives rise to dCyd341. dCyd341 could be considered as a complex damage since its formation involves a DNA strand break and a cross-link between a damaged sugar residue and a vicinal cytosine base located most probably on the complementary DNA strand. In addition to its characterization, preliminary biological studies revealed that cells are able to remove the lesion from DNA. Repair studies have revealed the ability of cells to excise the lesion. Identification of the repair systems involved could represent an interesting challenge. (author)

  1. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  2. A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles.

    Science.gov (United States)

    Ndungo, Esther; Herbert, Andrew S; Raaben, Matthijs; Obernosterer, Gregor; Biswas, Rohan; Miller, Emily Happy; Wirchnianski, Ariel S; Carette, Jan E; Brummelkamp, Thijn R; Whelan, Sean P; Dye, John M; Chandran, Kartik

    2016-01-01

    Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. One obstacle to controlling these epidemics is our poor understanding of the host range of filoviruses and their natural reservoirs. Here, we investigated the role of the intracellular filovirus receptor, Niemann-Pick C1 (NPC1) as a molecular determinant of Ebola virus (EBOV) host range at the cellular level. Whereas human cells can be infected by EBOV, a cell line derived from a Russell's viper (Daboia russellii) (VH-2) is resistant to infection in an NPC1-dependent manner. We found that VH-2 cells are resistant to EBOV infection because the Russell's viper NPC1 ortholog bound poorly to the EBOV spike glycoprotein (GP). Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Significantly, this single residue change perturbed neither NPC1's endosomal localization nor its housekeeping role in cellular cholesterol trafficking. Together with other recent work, these findings identify sequences in NPC1 that are important for viral receptor activity by virtue of their direct interaction with EBOV GP and suggest that they may influence filovirus host range in nature. Broader surveys of NPC1 orthologs from vertebrates may delineate additional sequence polymorphisms in this gene that control susceptibility to filovirus infection. IMPORTANCE Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell's viper are not susceptible to infection because EBOV cannot bind to

  3. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  4. Quantitation by flow microfluorometry of total cellular DNA in Acanthamoeba

    Energy Technology Data Exchange (ETDEWEB)

    Coulson, P.B.; Tyndall, R.

    1978-01-01

    The DNA content of five speciea of Acanthamoeba was determined by flow microfluorometry. Acanthamoeba castellanii (AC-30), acanthamoeba polyphaga (APG and P-23), acanthamoeba rhysodes, acanthamoeba culbertsoni (A-1), and acanthamoeba royreba were grown in a casitone based medium 24 to 48 hr. The trophozoites were harvested, fixed in 70% ethanol (acidified), pretreated with RNase, stained with propidium diiodide, and evaluated for DNA-bound fluorescence. All species tested had DNA values between 2.0 to 5.0 pg/cell. These results placed DNA/cell values of Acanthamoeba slightly lower than DNA/cell values of other eucaryotic cells and much lower than Amoeba proteus values. These results indicate that FMF may be a useful adjunct in distinguishing Acanthamoeba cells from either eucaryotic cells or some other amoeba. However, differences in DNA/cell between species of Acanthamoeba are small and would not be useful in identification of species.

  5. Methods of introducing nucleic acids into cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, Marc J.; Gregg, Christopher J.; Mosberg, Joshua A.; Church, George M.

    2017-06-27

    A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.

  6. Total cellular HIV-1 DNA decreases after switching to raltegravir-based regimens in patients with suppressed HIV-1 RNA.

    Science.gov (United States)

    Rossetti, Barbara; Meini, Genny; Bianco, Claudia; Lamonica, Silvia; Mondi, Annalisa; Belmonti, Simone; Fanti, Iuri; Ciccarelli, Nicoletta; Di Giambenedetto, Simona; Zazzi, Maurizio; De Luca, Andrea

    2017-06-01

    The integrase inhibitor raltegravir has been used to intensify antiretroviral therapy in patients with undetectable plasma HIV-1RNA, resulting in variable perturbation of HIV-1 nucleic acids levels in peripheral blood. We aimed at monitoring residual plasma HIV-1RNA and total cellular HIV-1DNA in virologically suppressed patients switching to raltegravir-based regimens. Fifty-eight subjects on protease inhibitor (PI) or nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens, with plasma HIV-1RNA levels 200cells/μl for ≥12 months were enrolled. Thirty-four patients were from the treatment simplification RASTA randomized study switching standard therapy to a raltegravir-based regimen (RASTA group), while 24 continued a PI or NNRTI based-regimen (controls). Residual plasma HIV-1RNA (5-40copies/mL) and HIV-1DNA were assessed at 0, 24 and 48 weeks. At week 0 (W0), HIV-1DNA was detected in all patients while at W48 it was detectable in 82.4% of the RASTA group vs 100% of controls (p=0.03). There was a significant decline of HIV-1DNA at W48 in the RASTA group (mean change from baseline -0.21 [95% CI -0.41; -0.01] log 10 copies/10 6 CD4; p=0.03) but not in controls. Ultrasensitive HIV-1RNA was detectable at baseline in 50% of RASTA group vs 67% of controls and at W48 in 32.4% vs 42%, respectively. No differences were found between HIV-1RNA levels at baseline and W48 within and between groups. Switching successful therapy to raltegravir-based regimens may be associated with a decrease of the HIV-1 reservoir, as measured by peripheral blood cellular HIV-1DNA levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues.

    Science.gov (United States)

    Yan, Jing; Friedrich, Stefanie; Kurgan, Lukasz

    2016-01-01

    Motivated by the pressing need to characterize protein-DNA and protein-RNA interactions on large scale, we review a comprehensive set of 30 computational methods for high-throughput prediction of RNA- or DNA-binding residues from protein sequences. We summarize these predictors from several significant perspectives including their design, outputs and availability. We perform empirical assessment of methods that offer web servers using a new benchmark data set characterized by a more complete annotation that includes binding residues transferred from the same or similar proteins. We show that predictors of DNA-binding (RNA-binding) residues offer relatively strong predictive performance but they are unable to properly separate DNA- from RNA-binding residues. We design and empirically assess several types of consensuses and demonstrate that machine learning (ML)-based approaches provide improved predictive performance when compared with the individual predictors of DNA-binding residues or RNA-binding residues. We also formulate and execute first-of-its-kind study that targets combined prediction of DNA- and RNA-binding residues. We design and test three types of consensuses for this prediction and conclude that this novel approach that relies on ML design provides better predictive quality than individual predictors when tested on prediction of DNA- and RNA-binding residues individually. It also substantially improves discrimination between these two types of nucleic acids. Our results suggest that development of a new generation of predictors would benefit from using training data sets that combine both RNA- and DNA-binding proteins, designing new inputs that specifically target either DNA- or RNA-binding residues and pursuing combined prediction of DNA- and RNA-binding residues. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Participation of ATM in cellular response to DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Meng Xiangbing; Song Yi; Mao Jianping; Gong Bo; Dong Yan; Liu Bin; Sun Zhixian

    2000-01-01

    Objective: To clone ATM full length cDNA and cDNA fragments containing some functional domains and to identify proteins that interact with ATM and mediate DNA damage signal transduction in cellular response to DNA damage. Methods: ATM cDNA was amplified from MarthomTM-Ready cDNA kit of human leukocytes by LD-PCR. ATM-interacting proteins were screened by yeast two hybrid system. Results: ATM full-length cDNA and cDNA fragments containing PI3K kinase domain, leucine zipper and proline rich region were amplified from human cDNAs. Several candidate clones that interacted with ATM PI3K domain were identified. Conclusion: ATM mediates DNA damage signal transduction by interacting with many proteins

  9. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.

    Science.gov (United States)

    Hendershot, Jenna M; O'Brien, Patrick J

    2017-09-29

    DNA repair enzymes recognize and remove damaged bases that are embedded in the duplex. To gain access, most enzymes use nucleotide flipping, whereby the target nucleotide is rotated 180° into the active site. In human alkyladenine DNA glycosylase (AAG), the enzyme that initiates base excision repair of alkylated bases, the flipped-out nucleotide is stabilized by intercalation of the side chain of tyrosine 162 that replaces the lesion nucleobase. Previous kinetic studies provided evidence for the formation of a transient complex that precedes the stable flipped-out complex, but it is not clear how this complex differs from nonspecific complexes. We used site-directed mutagenesis and transient-kinetic approaches to investigate the timing of Tyr 162 intercalation for AAG. The tryptophan substitution (Y162W) appeared to be conservative, because the mutant protein retained a highly favorable equilibrium constant for flipping the 1, N 6 -ethenoadenine (ϵA) lesion, and the rate of N -glycosidic bond cleavage was identical to that of the wild-type enzyme. We assigned the tryptophan fluorescence signal from Y162W by removing two native tryptophan residues (W270A/W284A). Stopped-flow experiments then demonstrated that the change in tryptophan fluorescence of the Y162W mutant is extremely rapid upon binding to either damaged or undamaged DNA, much faster than the lesion-recognition and nucleotide flipping steps that were independently determined by monitoring the ϵA fluorescence. These observations suggest that intercalation by this aromatic residue is one of the earliest steps in the search for DNA damage and that this interaction is important for the progression of AAG from nonspecific searching to specific-recognition complexes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Protoparvovirus Interactions with the Cellular DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Kinjal Majumder

    2017-10-01

    Full Text Available Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM infects murine and transformed human cells provoking a sustained DNA damage response (DDR. This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.

  11. Protoparvovirus Interactions with the Cellular DNA Damage Response

    Science.gov (United States)

    Majumder, Kinjal; Etingov, Igor

    2017-01-01

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection. PMID:29088070

  12. Effects of ionising radiation on isolated and cellular DNA

    International Nuclear Information System (INIS)

    Cadet, J.; Artignan, X.; Berger, M.; Douki, T.; Gromova, M.; Polverelli, M.; Ravanat, J.L.

    1997-01-01

    In the present survey, emphasis has been placed on mechanistic aspects of the radiation-induced decomposition of the base moities of DNA and model compounds. An almost complete description of the radical reactions mediated by both OH radicals (indirect effects) and one-electron oxidation (direct effects) is now possible for guanine compounds in aerated aqueous solution. In addition, the results of a comparison of a targeted assay (high performance liquid chromatography-electrochemical method) and a non specific method ('comet assay') for monitoring radiation-induced DNA damage within human cells are reported. (authors)

  13. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  14. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  15. The Yin-Yang of DNA Damage Response: Roles in Tumorigenesis and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2013-01-01

    Full Text Available Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.

  16. Cellular aging of mitochondrial DNA-depleted cells

    International Nuclear Information System (INIS)

    Park, Sun Young; Choi, Bongkun; Cheon, Hwanju; Pak, Youngmi Kim; Kulawiec, Mariola; Singh, Keshav K.; Lee, Myung-Shik

    2004-01-01

    We have reported that mitochondrial DNA-depleted ρ 0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ 0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ 0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ 0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ 0 cells. These results support the mitochondrial theory of aging, and suggest that ρ 0 cells could serve as an in vitro model for aged cells

  17. A near-infrared BSA coated DNA-AgNCs for cellular imaging.

    Science.gov (United States)

    Mu, Wei-Yu; Yang, Rui; Robertson, Akrofi; Chen, Qiu-Yun

    2018-02-01

    Near-infrared silver nanoclusters, have potential applications in the field of biosensing and biological imaging. However, less stability of most DNA-AgNCs limits their application. To obtain stable near-infrared fluorescence DNA-AgNCs for biological imaging, a new kind of near-infrared fluorescent DNA-Ag nanoclusters was constructed using the C3A rich aptamer as a synthesis template, GAG as the enhancer. In particular, a new DNA-AgNCs-Trp@BSA was obtained based on the self-assembly of bovine serum albumin (BSA) and tryptophan loaded DNA-AgNCs by hydrophobic interaction. This self-assembly method can be used to stabilize DNAn-Ag (n = 1-3) nanoclusters. Hence, the near-infrared fluorescence DNA-AgNCs-Trp@BSA was applied in cellular imaging of HepG-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  19. Quantitative detection of residual E. coli host cell DNA by real-time PCR.

    Science.gov (United States)

    Lee, Dong Hyuck; Bae, Jung Eun; Lee, Jung Hee; Shin, Jeong Sup; Kim, In Seop

    2010-10-01

    E. coli has been widely used as a host system to manufacture recombinant proteins for human therapeutic use. Among impurities to be eliminated during the downstream process, residual host cell DNA is a major interest for safety. Residual E. coli host cell DNA in the final products are usually determined using conventional slot blot hybridization assay or total DNA Threshold assay, although these methods are time consuming, expensive, and relatively insensitive. Therefore a sensitive real-time PCR assay for specific detection of residual E. coli DNA was developed and compared with slot blot hybridization assay and Threshold assay to validate the overall capability of these methods. Specific primer pair for amplification of the E. coli 16S rRNA gene was selected to improve the sensitivity, and E. coli host cell DNA was quantified by use of SYBR Green 1. The detection limit of real-time PCR assay in the optimized condition was calculated to be 0.042 pg genomic DNA, which is much higher than those of slot blot hybridization assay and Threshold assay of which detection limit were 2.42 and 3.73 pg genomic DNA, respectively. The real-time PCR assay was validated to be more reproducible, accurate, and precise than slot blot hybridization assay and Threshold assay. The real-time PCR assay may be a useful tool for quantitative detection and clearance validation of residual E. coli DNA during the manufacturing process for recombinant therapeutics.

  20. Cellular bases of radiation-induced residual insufficiency in the haematopoietic system

    International Nuclear Information System (INIS)

    Wangenheim, K.H. v.; Peterson, H.P.; Feinendegen, L.E.

    1984-01-01

    Following radiation exposure, man's survival and further well-being largely depends on the degree of damage to his heamatopietic system. Stem cells are particualarly sensitive to radiation. Over and beyond acute radiation damge, residual radiation damage is of significance since it reduces the performance of the haematopietic system and enhances the risk of leukaemia. Knowledge concerning cellular bases may be important for preventive and therapeutic measures. The measurement method presented is based on the fact that stem cells from transfused bone marrow will settle in the spleen of highly irradiated mice and be able to reconstruct the haematopietic system. Initally individual colonies can be observed which originate from a single stem cell and the proliferation of its descendants. Counting these colonies will give the number of stem cells. The reduction of the proliferation factor measured in the stem-cell quality test apparently is not due to a shift in the age structure of the stem cell compartment but to a damage which is located within a more or less substantial proportion of the stem cells themselves. This damage is the cause of stem cell descendant growth retarded on an average. It is probable that recovery observed after irradiation is brought about by less-damaged or undamaged stem cells replacing damaged ones. Initial results point to the fact that this replacement can be influenced by treatment after irradiation. (orig./MG) [de

  1. Radiation damage on sub-cellular scales: beyond DNA.

    Science.gov (United States)

    Byrne, H L; McNamara, A L; Domanova, W; Guatelli, S; Kuncic, Z

    2013-03-07

    of a high-dose radiation DNA target in tumour cells.

  2. Radiation damage on sub-cellular scales: beyond DNA

    International Nuclear Information System (INIS)

    Byrne, H L; McNamara, A L; Domanova, W; Kuncic, Z; Guatelli, S

    2013-01-01

    of a high-dose radiation DNA target in tumour cells. (paper)

  3. Role of DNA-PK in cellular responses to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  4. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  5. Coupling mechanisms between nucleosome assembly and the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Lautrette, Aurelie

    2006-01-01

    Cells are continuously exposed to genotoxic stresses that induce a variety of DNA lesions. To protect their genome, cells have specific pathways that orchestrate the detection, signaling and repair of DNA damages. This work is dedicated to the characterization of such pathways that couple the DNA damage response to the assembly of chromatin, a complex that protects and regulates DNA accessibility. We have focused our study on two multifunctional proteins: Rad53, a central checkpoint kinase in the cellular response to DNA damage and Asf1, a histone chaperone involved in chromatin assembly. We have characterized in vitro the binding mode of Asf1 with Rad53 and Asfl with histones. This study is associated with the functional analysis of the role of these interactions in vivo in yeast cells. (author) [fr

  6. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Residual cellular proliferation on the internal limiting membrane in macular pucker surgery.

    Science.gov (United States)

    Gandorfer, Arnd; Haritoglou, Christos; Scheler, Renate; Schumann, Ricarda; Zhao, Fei; Kampik, Anselm

    2012-03-01

    To provide pathology data on the completeness of epiretinal membrane (ERM) removal with and without internal limiting membrane (ILM) peeling. Twenty-two patients with idiopathic ERM formation underwent vitrectomy with ERM removal and subsequent staining of the vitreomacular interface with brilliant blue. If the ILM was still present after ERM removal, it was peeled off. Both ERM and ILM specimens were harvested in different containers and prepared for flat-mount phase-contrast and interference microscopy, immunocytochemistry, and transmission electron microscopy. In 14 patients (64%), the ILM was still present at the macula after ERM removal. On average, 20% (range, 2-51%) of the total cell count was left behind at the ILM if the ERM was removed only. There were mainly glial cells on the ILM, and few hyalocytes. In nine eyes, the cells were forming cell clusters. In 8 patients (36%), both ERM and ILM were removed together. Electron microscopy showed cellular proliferation directly attached to the ILM in these eyes, whereas in the sequentially peeled group, there was collagen interposed between the ERM and the ILM. Surgical ERM removal resulted in splitting of the vitreous cortex in these eyes, leaving the ILM with residual cells behind. Simple ERM removal results in sufficient separation of fibrocellular tissue in one third of cases, only. In 2 of 3 patients with idiopathic ERM, the vitreous cortex splits when the ERM is removed, leaving an average of 20% of the total cell count behind on the ILM. As these cells are capable of proliferation and causing ERM recurrence, staining of the ILM with subsequent removal seems beneficial in macular pucker surgery.

  8. Removing residual DNA from Vero-cell culture-derived human rabies vaccine by using nuclease.

    Science.gov (United States)

    Li, Si-Ming; Bai, Fu-Liang; Xu, Wen-Juan; Yang, Yong-Bi; An, Ying; Li, Tian-He; Yu, Yin-Hang; Li, De-Shan; Wang, Wen-Fei

    2014-09-01

    The clearance of host cell DNA is a critical indicator for Vero-cell culture-derived rabies vaccine. In this study, we evaluated the clearance of DNA in Vero-cell culture-derived rabies vaccine by purification process utilizing ultrafiltration, nuclease digestion, and gel filtration chromatography. The results showed that the bioprocess of using nuclease decreased residual DNA. Dot-blot hybridization analysis showed that the residual host cell DNA was rabies vaccine was less than 0.1 ng/ml protein. The residual nuclease could not paly the biologically active role of digestion of DNA. Experiments of stability showed that the freeze-drying rabies virus vaccine was stable and titers were >5.0 IU/ml. Immunogenicity test and protection experiments indicated mice were greatly induced generation of neutralizing antibodies and invoked protective effects immunized with intraperitoneal injections of the rabies vaccine. These results demonstrated that the residual DNA was removed from virus particles and nuclease was removed by gel filtration chromatography. The date indicated that technology was an efficient method to produce rabies vaccine for human use by using nuclease. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    Science.gov (United States)

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  10. Harmonising measurements of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cellular DNA and urine

    DEFF Research Database (Denmark)

    Møller, Peter; Cooke, Marcus S; Collins, Andrew

    2012-01-01

    Levels of oxidatively damaged cellular DNA and urinary excretion of damaged 2'-deoxyribonuclosides are widely measured in biomonitoring studies examining the role of oxidative stress induced by environmental exposures, lifestyle factors and development of disease. This has promoted efforts...... to harmonise measurements of oxidised guanine nucleobases by the variety of analytical approaches for DNA and urinary levels of damage, in multi-laboratory trials that are centred in Europe. The large inter-laboratory variation reported of values of oxidatively damaged DNA is reduced by harmonising assay...... protocols. Recent attention on optimal conditions for the comet assay may lead to better understanding of the most critical steps in procedure, which generate variation in DNA damage levels between laboratories. Measurements of urinary excretion of oxidatively generated 8-oxo-7,8-dihydro-2'-deoxyguanosine...

  11. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1994-01-01

    Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. (author)

  12. Distinct cellular and molecular environments support aging-related DNA methylation changes in the substantia nigra.

    Science.gov (United States)

    Fasolino, Maria; Liu, Shuo; Wang, Yinsheng; Zhou, Zhaolan

    2017-01-01

    We aimed to couple brain region-specific changes in global DNA methylation over aging to underlying cellular and molecular environments. We measured two major forms of DNA methylation and analyzed Dnmt, Tet and metabolite levels in the striatum and substantia nigra (SN) over aging in healthy male mice. The ratio of 5-hydroxymethylcytosine to 5-methylcytosine increases over aging in the SN, and 5-hydroxymethylcytosine increases preferentially in dopaminergic neurons. Additionally, this age-dependent alteration in methylation correlates with a reduction in the ratio of α-ketoglutarate to succinate in the SN. Distinct cellular and molecular environments correlate with aging-associated methylation changes in the SN, implicating this epigenetic mechanism in the susceptibility of this brain region to age-related cell loss.

  13. Determination of thymine glycol residues in irradiated or oxidized DNA by formation of methylglyceric acid

    International Nuclear Information System (INIS)

    Schellenberg, K.A.; Shaeffer, J.

    1986-01-01

    Treatment of DNA solutions with X-irradiation various oxidants including hydrogen peroxide plus ferrous ion, hydrogen peroxide plus copper ion and ascorbate, permanganate, or sonication in the presence of dissolved oxygen all produced varying amounts of thymine glycol residues. After denaturing the DNA with heat, the glycol residues were reduced and labeled at the 6 position with tritium- labeled sodium borohydride. Subsequent reaction with anhydrous methanolic HCl gave a quantitative yield of the methyl ester of methylglyceric acid, which was determined by thin layer chromatography. The method, developed using thymidine as a model, was used to ascertain the requirements for glycol formation in DNA. It was shown that hydroxyl radical generating systems, permanganate, X-irradiation, or sonication in presence of oxygen were required, but hydrogen peroxide in the absence of iron or copper and ascorbate was inactive. Application to determination of DNA damage in vivo is being explored

  14. Bacterial Intoxication Evokes Cellular Senescence with Persistent DNA Damage and Cytokine Signaling

    DEFF Research Database (Denmark)

    Blazkova, Hana; Krejcikova, Katerina; Moudry, Pavel

    2009-01-01

    features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may...... to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic...... phenotype included persistently activated DNA damage signaling (detected as 53BP1/gammaH2AX-positive foci), enhanced senescence-associated beta-galactosidase activity, expansion of PML nuclear compartments, and induced expression of several cytokines (especially interleukins IL-6, IL-8 and IL-24), overall...

  15. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  16. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  17. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kitanovic, Ana; Woelfl, Stefan

    2006-01-01

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism

  18. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Vengatesh Ganapathy

    Full Text Available Electronic cigarette (EC aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs.The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells.Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS and total antioxidant capacity (TAC were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively.EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1, an enzyme essential for the removal of oxidative DNA damage.Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.

  19. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  20. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  1. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  2. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    Science.gov (United States)

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  3. Effects of heavy particles on cellular DNA - measurement of DNA base damage

    International Nuclear Information System (INIS)

    Cadet, J.

    1993-01-01

    It is now assumed that nucleic acids are one of the major targets of the deleterious effects of cosmic radiation and particularly of charged heavy particles having a TEL higher than 50 keV/μm. This may be inferred from numerous spatial experiments involving various biological materials. The author explains how the importance of DNA in the biological effects of heavy ions has been shown, from ground experiments by using acceleration of particles

  4. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents.

    Science.gov (United States)

    Meador, J A; Zhao, M; Su, Y; Narayan, G; Geard, C R; Balajee, A S

    2008-09-25

    Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.

  5. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  6. Dual Role of φ29 DNA Polymerase Lys529 in Stabilisation of the DNA Priming-Terminus and the Terminal Protein-Priming Residue at the Polymerisation Site

    Science.gov (United States)

    del Prado, Alicia; Lázaro, José M.; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2013-01-01

    Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3′ terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA. PMID:24023769

  7. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  8. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing.

    Science.gov (United States)

    Rossiello, Francesca; Herbig, Utz; Longhese, Maria Pia; Fumagalli, Marzia; d'Adda di Fagagna, Fabrizio

    2014-06-01

    The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres. Since the vast majority of the cells in mammals are non-proliferating, how do they age? Are telomeres involved? Also oncogene activation causes cellular senescence due to altered DNA replication and DDR activation in particular at the telomeres. Is there a common mechanism shared among apparently distinct types of cellular senescence? And what is the role of telomeric DNA damage? Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Assessment of the cellular internalization of thermolytic phosphorothioate DNA oligonucleotide prodrugs.

    Science.gov (United States)

    Jain, Harsh V; Takeda, Kazuyo; Tami, Cecilia; Verthelyi, Daniela; Beaucage, Serge L

    2013-10-15

    The bioactivity of a CpG-containing phosphorothioate DNA oligonucleotide with thermolytic 2-(N-formyl-N-methylamino)ethyl (fma) thiophosphate groups in mice led us to investigate the parameters affecting the internalization of these thermosensitive DNA prodrugs in various cell lines. Flow cytometry and confocal microscopy analyses indicate that 5'-fluoresceinated fma-phosphorothioate DNA sequences are poorly internalized in Vero, HeLa and GC-2 cells. However, when four fma-thiophosphate groups of a 15-nucleotide long oligothymidylate prodrug are replaced with 3-(N,N-dimethylamino)prop-1-yl thiophosphate functions, internalization of the positively charged prodrug, under physiological conditions, increased fourfold in HeLa and 40-fold in Vero or GC-2 cells. No cytotoxic effects are observed in Vero cells even at an extracellular prodrug concentration of 50 μM over a period of 72 h. Confocal microscopy studies show that internalization of the positively charged oligothymidylate prodrug in Vero cells is time-dependent with early trafficking of the DNA sequence through endosomal vesicles and, eventually, to the nucleus of the cells. Thus, the incorporation of four 3-(N,N-dimethylamino)prop-1-yl thiophosphate groups into thermosentive fma-phosphorothioate DNA prodrugs is an attractive strategy for efficient cellular internalization of these nucleic acid-based drugs for potential therapeutic indications. Published by Elsevier Ltd.

  10. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Katrin G.; Ruff, Julie [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany); Mohr, Anne; Goertz, Dieter; Recker, Tobias; Rinis, Natalie [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Rech, Claudia; Elling, Lothar [RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering (Germany); Mueller-Newen, Gerhard [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Simon, Ulrich, E-mail: ulrich.simon@ac.rwth-aachen.de [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany)

    2013-10-15

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal({beta}1-4)GlcNAc({beta}1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA-di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  11. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Hamm, R.N.; Waker, A.J.; Prestwich, W.V.

    1988-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3x10 9 dm 3 mol -1 s-1. Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (author)

  12. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light

    International Nuclear Information System (INIS)

    Lehmann, A.R.; Arlett, C.F.; Broughton, B.C.

    1988-01-01

    Trichothiodystrophy (TTD) is an autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and physical retardation. Some patients are photosensitive. A previous study by Stefanini et al. showed that cells from four photosensitive patients with TTD had a molecular defect in DNA repair, which was not complemented by cells from xeroderma pigmentosum, complementation group D. In a detailed molecular and cellular study of the effects of UV light on cells cultured from three further TTD patients who did not exhibit photosensitivity we have found an array of different responses. In cells from the first patient, survival, excision repair, and DNA and RNA synthesis following UV irradiation were all normal, whereas in cells from the second patient all these responses were similar to those of excision-defective xeroderma pigmentosum (group D) cells. With the third patient, cell survival measured by colony-forming ability was normal following UV irradiation, even though repair synthesis was only 50% of normal and RNA synthesis was severely reduced. The excision-repair defect in these cells was not complemented by other TTD cell strains. These cellular characteristics of patient 3 have not been described previously for any other cell line. The normal survival may be attributed to the finding that the deficiency in excision-repair is confined to early times after irradiation. Our results pose a number of questions about the relationship between the molecular defect in DNA repair and the clinical symptoms of xeroderma pigmentosum and TTD

  13. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A.R.; Arlett, C.F.; Broughton, B.C.; Harcourt, S.A.; Steingrimsdottir, H.; Stefanini, M.; Malcolm, A.; Taylor, R.; Natarajan, A.T.; Green, S.

    1988-11-01

    Trichothiodystrophy (TTD) is an autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and physical retardation. Some patients are photosensitive. A previous study by Stefanini et al. showed that cells from four photosensitive patients with TTD had a molecular defect in DNA repair, which was not complemented by cells from xeroderma pigmentosum, complementation group D. In a detailed molecular and cellular study of the effects of UV light on cells cultured from three further TTD patients who did not exhibit photosensitivity we have found an array of different responses. In cells from the first patient, survival, excision repair, and DNA and RNA synthesis following UV irradiation were all normal, whereas in cells from the second patient all these responses were similar to those of excision-defective xeroderma pigmentosum (group D) cells. With the third patient, cell survival measured by colony-forming ability was normal following UV irradiation, even though repair synthesis was only 50% of normal and RNA synthesis was severely reduced. The excision-repair defect in these cells was not complemented by other TTD cell strains. These cellular characteristics of patient 3 have not been described previously for any other cell line. The normal survival may be attributed to the finding that the deficiency in excision-repair is confined to early times after irradiation. Our results pose a number of questions about the relationship between the molecular defect in DNA repair and the clinical symptoms of xeroderma pigmentosum and TTD.

  14. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV

    Directory of Open Access Journals (Sweden)

    J Hinkula

    2017-06-01

    Conclusions: HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.

  15. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Science.gov (United States)

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  16. Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.

    Science.gov (United States)

    Fujibayashi, Kenichi; Hariadi, Rizal; Park, Sung Ha; Winfree, Erik; Murata, Satoshi

    2008-07-01

    Bottom-up fabrication of nanoscale structures relies on chemical processes to direct self-assembly. The complexity, precision, and yield achievable by a one-pot reaction are limited by our ability to encode assembly instructions into the molecules themselves. Nucleic acids provide a platform for investigating these issues, as molecular structure and intramolecular interactions can encode growth rules. Here, we use DNA tiles and DNA origami to grow crystals containing a cellular automaton pattern. In a one-pot annealing reaction, 250 DNA strands first assemble into a set of 10 free tile types and a seed structure, then the free tiles grow algorithmically from the seed according to the automaton rules. In our experiments, crystals grew to approximately 300 nm long, containing approximately 300 tiles with an initial assembly error rate of approximately 1.4% per tile. This work provides evidence that programmable molecular self-assembly may be sufficient to create a wide range of complex objects in one-pot reactions.

  17. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Hernández, Alba, E-mail: alba.hernandez@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-09-15

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO{sub 3}, MMA{sup III} or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1{sup +/+} and Ogg1{sup −/−} genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1{sup +/+} and Ogg1{sup −/−} cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1{sup −/−} cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1{sup −/−} cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency

  18. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    International Nuclear Information System (INIS)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam; Marcos, Ricard; Hernández, Alba

    2015-01-01

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO 3 , MMA III or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1 +/+ and Ogg1 −/− genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1 +/+ and Ogg1 −/− cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1 −/− cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1 −/− cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency—exacerbates this phenomenon. The

  19. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    International Nuclear Information System (INIS)

    Roper, Katherine; Coverley, Dawn

    2012-01-01

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: ► A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. ► Damage-activated extracts impose the cellular response to DNA damage on naïve nuclei. ► PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. ► Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. ► LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening approach.

  20. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  1. Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences.

    Science.gov (United States)

    Wagatsuma, M; Hashimoto, K; Matsukura, T

    1990-01-01

    We have isolated four clones of integrated human papillomavirus type 16 (HPV-16) DNA from four different primary cervical cancer specimens. All clones were found to be monomeric or dimeric forms of HPV-16 DNA with cellular flanking sequences at both ends. Analysis of the viral sequences in these clones showed that E6/E7 open reading frames and the long control region were conserved and that no region specific for the integration was detected. Analysis of the cellular flanking sequences revealed no significant homology with any known human DNA sequences, except Alu sequences, and no homology among the clones, indicating no cellular sequence specific for the integration. By probing with single-copy cellular flanking sequences from the clones, it was demonstrated that the integrated HPV-16 DNAs, with different sizes in the same specimens, shared the same cellular flanking sequences at the ends. Furthermore, it was shown that the viral sequences together with cellular flanking sequences were amplified. The possible process of viral integration into cell chromosomes in cervical cancer is discussed. Images PMID:2153245

  2. Environmental DNA from Residual Saliva for Efficient Noninvasive Genetic Monitoring of Brown Bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Rachel E Wheat

    Full Text Available Noninvasive genetic sampling is an important tool in wildlife ecology and management, typically relying on hair snaring or scat sampling techniques, but hair snaring is labor and cost intensive, and scats yield relatively low quality DNA. New approaches utilizing environmental DNA (eDNA may provide supplementary, cost-effective tools for noninvasive genetic sampling. We tested whether eDNA from residual saliva on partially-consumed Pacific salmon (Oncorhynchus spp. carcasses might yield suitable DNA quality for noninvasive monitoring of brown bears (Ursus arctos. We compared the efficiency of monitoring brown bear populations using both fecal DNA and salivary eDNA collected from partially-consumed salmon carcasses in Southeast Alaska. We swabbed a range of tissue types from 156 partially-consumed salmon carcasses from a midseason run of lakeshore-spawning sockeye (O. nerka and a late season run of stream-spawning chum (O. keta salmon in 2014. We also swabbed a total of 272 scats from the same locations. Saliva swabs collected from the braincases of salmon had the best amplification rate, followed by swabs taken from individual bite holes. Saliva collected from salmon carcasses identified unique individuals more quickly and required much less labor to locate than scat samples. Salmon carcass swabbing is a promising method to aid in efficient and affordable monitoring of bear populations, and suggests that the swabbing of food remains or consumed baits from other animals may be an additional cost-effective and valuable tool in the study of the ecology and population biology of many elusive and/or wide-ranging species.

  3. Effects of trypsin on cellular, chromosomal and DNA damage induced by X-rays

    Science.gov (United States)

    Sprunt, Elizabeth A.

    When cells are trypsinized before irradiation, potentiation of cell killing is seen; this is known as the 'trypsin effect'. The trypsin effect is re-examined here in the light of experiments in which enzymatic modifications of DNA in permeabilized cells has become a powerful experimental tool (Bryant et al, 1978, Ahnstrom and Bryant,1982; Natarajan et al, 1980; Bryant, 1984, 1985; Natarajan and Obe, 1984) and where in some cases it is suspected that trypsinization as part of the technique could significantly alter cell membrane permeability and chromatin structure (Obe et al, 1985; Obe and Winkel, 1985; Bryant and Christie, 1989). The trypsin effect was investigated at various cellular levels, assaying for cell survival (to verify the potentiation), anaphase chromosomal aberrations, DNA damage and repair and lastly using a nucleoid assay to investigate the effect of trypsin on DNA-nuclear matrix interactions. Each of these are considered in separate chapters as individual studies, then all compared in the final discussion. A small potentiation effect of X-ray damage on cell killing was seen when using Chinese Hamster Ovary (CHO) cells but no potentiating effect was found in the murine Ehrlich ascites tumour (EAT) cell line. Trypsinization was found to increase the number of X-ray induced chromosomal anaphase abnormalities in EAT cells. To investigate the possibility that the basis of the trypsin effect lies in its action at the DNA level, further experiments were performed to monitor DNA damage and repair using the DNA unwinding and neutral elution techniques. No difference was seen in the unwinding kinetics or in the DNA unwinding dose-effect curves for induction of DNA single strand breakage (ssb); when using neutral elution however. treatment of cells with trypsin or buffer alone increased the incidence of X-ray induced double strand breaks (dsb) at higher doses. Trypsinized EAT cells were found to repair ssb after 12 Gy less rapidly than those treated with

  4. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans.

    Science.gov (United States)

    Abegglen, Lisa M; Caulin, Aleah F; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S; Kiso, Wendy K; Schmitt, Dennis L; Waddell, Peter J; Bhaskara, Srividya; Jensen, Shane T; Maley, Carlo C; Schiffman, Joshua D

    2015-11-03

    Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. Ionizing radiation and doxorubicin. Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis

  5. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Claudia Addamiano

    2016-08-01

    Full Text Available Construction and physico-chemical behavior of DNA three way junction (3WJ functionalized by protein-like residues (imidazole, alcohol and carboxylic acid at unpaired positions at the core is described. One 5′-C(S-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5′-C(S-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.

  6. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  7. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA.

    Science.gov (United States)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-07-10

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 microM) for 1h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties.

  8. Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV).

    Science.gov (United States)

    Walsh, Jason M; Parasuram, Ramya; Rajput, Pradyumna R; Rozners, Eriks; Ondrechen, Mary Jo; Beuning, Penny J

    2012-12-01

    DinB is one of two Y family polymerases in E. coli and is involved in copying damaged DNA. DinB is specialized to bypass deoxyguanosine adducts that occur at the N(2) position, with its cognate lesion being the furfuryl adduct. Active site residues have been identified that make contact with the substrate and carry out deoxynucleotide triphosphate (dNTP) addition to the growing DNA strand. In DNA polymerases, these include negatively charged aspartate and glutamate residues (D8, D103, and E104 in E. coli DNA polymerase IV DinB). These residues position the essential magnesium ions correctly to facilitate nucleophilic attack by the primer hydroxyl group on the α-phosphate group of the incoming dNTP. To study the contribution of DinB residues to lesion bypass, the computational methods THEMATICS and POOL were employed. These methods correctly predict the known active site residues, as well as other residues known to be important for activity. In addition, these methods predict other residues involved in substrate binding as well as more remote residues. DinB variants with mutations at the predicted positions were constructed and assayed for bypass of the N(2) -furfuryl-dG lesion. We find a wide range of effects of predicted residues, including some mutations that abolish damage bypass. Moreover, most of the DinB variants constructed are unable to carry out the extension step of lesion bypass. The use of computational prediction methods represents another tool that will lead to a more complete understanding of translesion DNA synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  9. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.

    Science.gov (United States)

    Zhou, Jiyun; Lu, Qin; Xu, Ruifeng; He, Yulan; Wang, Hongpeng

    2017-08-29

    Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance

  10. Optimization and validation of DNA extraction and real-time PCR assay for the quantitative measurement of residual host cell DNA in biopharmaceutical products.

    Science.gov (United States)

    Hu, B; Sellers, J; Kupec, J; Ngo, W; Fenton, S; Yang, T-Y; Grebanier, A

    2014-01-01

    Host cell DNA contamination occurs during the production of biopharmaceuticals and must be controlled and monitored for the purity and safety of the drug products. A sodium iodide-based DNA extraction and a subsequent real time PCR assay were developed and validated for the quantitative measurement of residual host cell DNA impurity in monoclonal antibody therapeutic products. A sodium iodide-based commercial kit was optimized for the removal of interfering matrices. Several incubation steps from the kit protocol were combined and a neutralization buffer was introduced to protein digestion step to eliminate any precipitation from the detergent. The elimination of the two washing steps significantly reduced assay variability from loss of DNA pellets. The optimized DNA extraction procedure can recover DNA close to 100% for DNA concentrations from 10 to 100,000pg/mL. Of the published sequences of repetitive interspersed nuclear elements, we identified a nucleotide mismatch from the published CHO probe. Correction of this nucleotide increased DNA amplification by a thousand fold. The optimized assay was further validated for the quantitation of residual CHO DNA according to ICH guidelines with preset assay acceptance criteria. The method met all assay acceptance criteria and was found linear, accurate and precise for the quantitation of residual CHO in the linear range of 10-100,000pg DNA/mL. LOQ was measured at 10pg DNA/mL and LOD at 1pg DNA/mL. No matrix interference to our validated assay was detected from bioreactor harvest, Protein A eluate or eluate from ion exchange columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Directory of Open Access Journals (Sweden)

    Tuomas Rönnberg

    Full Text Available Hantaviruses (Bunyaviridae are negative-strand RNA viruses with a tripartite genome. The small (S segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs. The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  12. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions.

    Directory of Open Access Journals (Sweden)

    Isabel Caetano de Abreu da Silva

    Full Text Available BACKGROUND: The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1, a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1 is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. PRINCIPAL FINDINGS: We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. CONCLUSIONS: We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.

  13. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties.

    Science.gov (United States)

    Scipioni, Matteo; Kay, Graeme; Megson, Ian; Kong Thoo Lin, Paul

    2018-01-01

    Antioxidants have been the subject of intense research interest mainly due to their beneficial properties associated with human health and wellbeing. Phenolic molecules, such as naturally occurring Resveratrol and Vanillin, are well known for their anti-oxidant properties, providing a starting point for the development of new antioxidants. Here we report, for the first time, the synthesis of a number of new vanillin through the reductive amination reaction between vanillin and a selection of amines. All the compounds synthesised, exhibited strong antioxidant properties in DPPH, FRAP and ORAC assays, with compounds 1b and 2c being the most active. The latter also demonstrated the ability to protect plasmid DNA from oxidative damage in the presence of the radical initiator AAPH. At cellular level, neuroblastoma SH-SY5Y cells were protected from oxidative damage (H 2 O 2 , 400 μM) with both 1b and 2c. The presence of a tertiary amino group, along with the number of vanillin moieties in the molecule contribute for the antioxidant activity. Furthermore, the delocalization of the electron pair of the nitrogen and the presence of an electron donating substituent to enhance the antioxidant properties of this new class of compounds. In our opinion, vanillin derivatives 1b and 2c described in this work can provide a viable platform for the development of antioxidant based therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes

    Directory of Open Access Journals (Sweden)

    Eric Sherman

    2017-03-01

    Full Text Available Integration of new DNA into cellular genomes mediates replication of retroviruses and transposons; integration reactions have also been adapted for use in human gene therapy. Tracking the distributions of integration sites is important to characterize populations of transduced cells and to monitor potential outgrow of pathogenic cell clones. Here, we describe a pipeline for quantitative analysis of integration site distributions named INSPIIRED (integration site pipeline for paired-end reads. We describe optimized biochemical steps for site isolation using Illumina paired-end sequencing, including new technology for suppressing recovery of unwanted contaminants, then software for alignment, quality control, and management of integration site sequences. During library preparation, DNAs are broken by sonication, so that after ligation-mediated PCR the number of ligation junction sites can be used to infer abundance of gene-modified cells. We generated integration sites of known positions in silico, and we describe optimization of sample processing parameters refined by comparison to truth. We also present a novel graph-theory-based method for quantifying integration sites in repeated sequences, and we characterize the consequences using synthetic and experimental data. In an accompanying paper, we describe an additional set of statistical tools for data analysis and visualization. Software is available at https://github.com/BushmanLab/INSPIIRED.

  15. Residual γH2AX foci as an indication of lethal DNA lesions

    International Nuclear Information System (INIS)

    Banáth, Judit P; Klokov, Dmitry; MacPhail, Susan H; Banuelos, C Adriana; Olive, Peggy L

    2010-01-01

    Evidence suggests that tumor cells exposed to some DNA damaging agents are more likely to die if they retain microscopically visible γH2AX foci that are known to mark sites of double-strand breaks. This appears to be true even after exposure to the alkylating agent MNNG that does not cause direct double-strand breaks but does produce γH2AX foci when damaged DNA undergoes replication. To examine this predictive ability further, SiHa human cervical carcinoma cells were exposed to 8 DNA damaging drugs (camptothecin, cisplatin, doxorubicin, etoposide, hydrogen peroxide, MNNG, temozolomide, and tirapazamine) and the fraction of cells that retained γH2AX foci 24 hours after a 30 or 60 min treatment was compared with the fraction of cells that lost clonogenicity. To determine if cells with residual repair foci are the cells that die, SiHa cervical cancer cells were stably transfected with a RAD51-GFP construct and live cell analysis was used to follow the fate of irradiated cells with RAD51-GFP foci. For all drugs regardless of their mechanism of interaction with DNA, close to a 1:1 correlation was observed between clonogenic surviving fraction and the fraction of cells that retained γH2AX foci 24 hours after treatment. Initial studies established that the fraction of cells that retained RAD51 foci after irradiation was similar to the fraction of cells that retained γH2AX foci and subsequently lost clonogenicity. Tracking individual irradiated live cells confirmed that SiHa cells with RAD51-GFP foci 24 hours after irradiation were more likely to die. Retention of DNA damage-induced γH2AX foci appears to be indicative of lethal DNA damage so that it may be possible to predict tumor cell killing by a wide variety of DNA damaging agents simply by scoring the fraction of cells that retain γH2AX foci

  16. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV.

    Science.gov (United States)

    Hinkula, J; Petkov, S; Ljungberg, K; Hallengärd, D; Bråve, A; Isaguliants, M; Falkeborn, T; Sharma, S; Liakina, V; Robb, M; Eller, M; Moss, B; Biberfeld, G; Sandström, E; Nilsson, C; Markland, K; Blomberg, P; Wahren, B

    2017-06-01

    In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct

  17. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains.

    Science.gov (United States)

    Zhang, Jian; Ma, Zhiqiang; Kurgan, Lukasz

    2017-12-15

    Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  19. A direct qPCR method for residual DNA quantification in monoclonal antibody drugs produced in CHO cells.

    Science.gov (United States)

    Hussain, Musaddeq

    2015-11-10

    Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing of monoclonal antibody (mAb) drugs in the biopharmaceutical industry. Host cell DNA is an impurity of such manufacturing process and must be controlled and monitored in order to ensure drug purity and safety. A conventional method for quantification of host residual DNA in drug requires extraction of DNA from the mAb drug substance with subsequent quantification of the extracted DNA using real-time PCR (qPCR). Here we report a method where the DNA extraction step is eliminated prior to qPCR. In this method, which we have named 'direct resDNA qPCR', the mAb drug substance is digested with a protease called KAPA in a 96-well PCR plate, the protease in the digest is then denatured at high temperature, qPCR reagents are added to the resultant reaction wells in the plate along with standards and controls in other wells of the same plate, and the plate subjected to qPCR for analysis of residual host DNA in the samples. This direct resDNA qPCR method for CHO is sensitive to 5.0fg of DNA with high precision and accuracy and has a wide linear range of determination. The method has been successfully tested with four mAbs drug, two IgG1 and two IgG4. Both the purified drug substance as well as a number of process intermediate samples, e.g., bioreactor harvest, Protein A column eluate and ion-exchange column eluates were tested. This method simplifies the residual DNA quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage.

    Science.gov (United States)

    Serrano, Diego; D'Amours, Damien

    2014-09-01

    The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

  1. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  2. Melting profiles may affect detection of residual HPV L1 gene DNA fragments in Gardasil®.

    Science.gov (United States)

    Lee, Sin Hang

    2014-03-01

    Gardasil® is a quadrivalent human papillomavirus (HPV) protein-based vaccine containing genotype-specific L1 capsid proteins of HPV-16, HPV-18, HPV-6 and HPV-11 in the form of virus-like-particles (VLPs) as the active ingredient. The VLPs are produced by a DNA recombinant technology. It is uncertain if the residual HPV L1 gene DNA fragments in the vaccine products are considered contaminants or excipients of the Gardasil® vaccine. Because naked viral DNA fragments, if present in the vaccine, may bind to the insoluble amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvant which may help deliver the foreign DNA into macrophages, causing unintended pathophysiologic effects, experiments were undertaken to develop tests for HPV L1 gene DNA fragments in the final products of Gardasil® by polymerase chain reaction (PCR) and direct DNA sequencing. The results showed that while the HPV-11 and HPV-18 L1 gene DNA fragments in Gardasil® were readily amplified by the common GP6/MY11 degenerate consensus primers, the HPV-16 L1 gene DNA may need specially designed non-degenerate PCR primers for amplification at different regions of the L1 gene and different stringency conditions for detection. These variable melting profiles of HPV DNA in the insoluble fraction of the Gardasil® vaccine suggest that the HPV DNA fragments are firmly bound to the aluminum AAHS adjuvant. All methods developed for detecting residual HPV DNA in the vaccine Gardasil® for quality assurance must take into consideration the variable melting profiles of the DNA to avoid false negative results.

  3. Quantification of cellular uptake of DNA nanostructures by qPCR

    DEFF Research Database (Denmark)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias

    2014-01-01

    interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed...... is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples......DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides...

  4. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment.

    Science.gov (United States)

    Klvaňa, Martin; Murphy, Drew L; Jeřábek, Petr; Goodman, Myron F; Warshel, Arieh; Sweasy, Joann B; Florián, Jan

    2012-11-06

    We carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods. Kinetic studies on five of the mutants have been published previously using different experimental conditions, e.g., primer-template sequences. We have performed a presteady kinetic analysis for the six mutants for comparison with wild-type Pol β using the same conditions, including the same primer/template DNA sequence proximal to the dNTP insertion site used for X-ray crystallographic studies. This consistent set of kinetic and structural data allowed us to eliminate the DNA sequence from the list of factors that can adversely affect calculated Ω values. The calculations using the FEP free energies scaled by 0.5 yielded 0.9 and 1.1 standard deviations from the experimental log Ω values for the insertion of the right and wrong dNTP, respectively. We examined a hybrid FEP/LIE method in which the FEP van der Waals term for the interaction of the mutated amino acid residue with its surrounding environment was replaced by the corresponding van der Waals term calculated using the LIE method, resulting in improved 0.4 and 1.0 standard deviations from the experimental log Ω values. These scaled FEP and FEP/LIE methods were also used to predict log Ω for R283A and R283L Pol

  5. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    In recent years, growing evidence has shown that mutations of mitochondrial DNA (mtDNA) are an important cause of mitochondrial disorders in humans, and have been associated with common neurodegenerative disorders, aging and cancers...

  6. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  7. Genetically modified cellular vaccines against human papillomavirus type 16 (HPV16)-associated tumors: adjuvant treatment of minimal residual disease after surgery/chemotherapy

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan; Šímová, Jana

    2009-01-01

    Roč. 14, č. 1 (2009), s. 169-173 ISSN 1107-0625 R&D Projects: GA ČR GA301/06/0774; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Keywords : residual tumour disease * HPV 16 * cellular vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.600, year: 2009

  8. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    Energy Technology Data Exchange (ETDEWEB)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-02-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells.

  9. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  10. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    International Nuclear Information System (INIS)

    Paul, J.H.; Pichard, S.L.

    1989-01-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of [ 3 H]- or [ 32 P]DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments

  11. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  12. Alpha, beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage, formation of topoisomerase I- and II-DNA complexes and cancer cell death.

    Science.gov (United States)

    Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Orta, Manuel Luis; Pastor, Nuria; Austin, Caroline A; Mateos, Santiago; López-Lázaro, Miguel

    2013-09-12

    The alpha, beta-unsaturated lactones 2-furanone and 2-pyrone are part of the chemical structure of a variety of naturally occurring compounds (e.g., cardenolides, bufadienolides, acetogenins, coumarins, and food-flavoring furanones), some of which have shown anticancer activity and/or DNA damaging effects. Here we report that 2-furanone and 2-pyrone induce cellular DNA damage (assessed by the comet assay and the gamma-H2AX focus assay) and the formation of topoisomerase I- and topoisomerase II-DNA complexes in cells (visualized and quantified in situ by the TARDIS assay). Cells mutated in BRCA2 (deficient in homologous recombination repair) were significantly hypersensitive to the cytotoxic activity of 2-pyrone, therefore suggesting that BRCA2 plays an important role in the repair of DNA damage induced by this lactone. Both lactones were cytotoxic in A549 lung cancer cells at lower concentrations than in MRC5 non-malignant lung fibroblasts. The possible involvement of 2-furanone and 2-pyrone in the anticancer and DNA-damaging activities of compounds containing these lactones is discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. DNA damage and repair proteins in cellular response to sulfur mustard in Iranian veterans more than two decades after exposure.

    Science.gov (United States)

    Khateri, Shahriar; Balali-Mood, Mahdi; Blain, Peter; Williams, Faith; Jowsey, Paul; Soroush, Mohammad Reza; Behravan, Effat; Sadeghi, Mahmood

    2017-12-05

    Delayed effects of sulfur mustard (SM) exposure on the levels of five important damage/repair proteins were investigated in 40 SM-exposed veterans of Iran-Iraq war and 35 unexposed controls. A major DNA damage biomarker protein - phosphorylated H2AX - along with four DNA repair proteins in cell response to the genome damage MRE11, NBS1, RAD51, and XPA were evaluated in blood lymphocytes from the veterans and controls using western blotting. Mean levels of XPA, MRE11, RAD51 and NBS1 were lower in SM-exposed patients and the decrease in NBS1 was significant. Even though the raised level of phosphor-H2AX in SM-poisoned group compared to the controls was not significant it was consistent with DNA damage findings confirming the severity of damage to the DNA after exposure to SM. There were correlations between the values of RAD51 and NBS1 proteins as well as XPA and MRE11 proteins. More than two decades after exposure to SM, there is still evidences of DNA damage as well as impaired repair mechanisms in cells of exposed individuals. Such disorders in cellular level may contribute to long term health problems of the SM veterans. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Amplification of bleomycin-induced DNA cleavage at cytosine residues 3' to GGG sequences by pyrrole triamide.

    Science.gov (United States)

    Hiraku, Y; Oikawa, S; Kuroki, K; Sugiyama, H; Saito, I; Kawanishi, S

    2001-02-01

    We investigated the amplification of bleomycin-induced DNA cleavage by synthetic triamides containing N-methylpyrrole (Py) and/or N-methylimidazole (Im), PyPyPy, PyPyIm, PyImPy, and PyImIm, using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1 and p53 genes. Peplomycin, a bleomycin analog, plus Fe(II) caused DNA cleavage at the 5'-GC-3' and 5'-GT-3' sequences (damaged bases are underlined). The addition of PyPyPy dramatically enhanced the cleavage, particularly at cytosine residues 3' to consecutive guanines. Alteration in the site specificity was not observed with other triamides (PyPyIm, PyImPy, and PyImIm). DNase I footprinting revealed that PyPyPy bound to the sites adjacent to the sites where DNA cleavage was enhanced by PyPyPy, and that PyPyPy enhanced DNase I-induced cleavage in GC-rich regions. These findings suggest that binding of PyPyPy to the DNA minor groove changes the DNA conformation to allow peplomycin to cleave DNA more efficiently at GC-rich sequences, resulting in intensive site-specific DNA cleavage particularly at cytosines at the 3'-side of polyguanines. The present study on amplifiers of antitumor drugs would appear to offer a novel approach to the establishment of more effective chemotherapy.

  15. Residues of E. coli topoisomerase I conserved for interaction with a specific cytosine base to facilitate DNA cleavage

    Science.gov (United States)

    Narula, Gagandeep; Tse-Dinh, Yuk-Ching

    2012-01-01

    Bacterial and archaeal topoisomerase I display selectivity for a cytosine base 4 nt upstream from the DNA cleavage site. Recently, the solved crystal structure of Escherichia coli topoisomerase I covalently linked to a single-stranded oligonucleotide revealed that R169 and R173 interact with the cytosine base at the −4 position via hydrogen bonds while the phenol ring of Y177 wedges between the bases at the −4 and the −5 position. Substituting R169 to alanine changed the selectivity of the enzyme for the base at the −4 position from a cytosine to an adenine. The R173A mutant displayed similar sequence selectivity as the wild-type enzyme, but weaker cleavage and relaxation activity. Mutation of Y177 to serine or alanine rendered the enzyme inactive. Although mutation of each of these residues led to different outcomes, R169, R173 and Y177 work together to interact with a cytosine base at the −4 position to facilitate DNA cleavage. These strictly conserved residues might act after initial substrate binding as a Molecular Ruler to form a protein–DNA complex with the scissile phosphate positioned at the active site for optimal DNA cleavage by the tyrosine hydroxyl nucleophile to facilitate DNA cleavage in the reaction pathway. PMID:22833607

  16. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    .... To test such a hypothesis in Parkinson's disease we proposed to: 1) develop an animal model with accumulated mtDNA mutations in catecholaminergic neurons by creating a transgenic mouse containing a tyrosine hydroxylase (TH...

  17. Stability of Dry Probiotic Bacteria in Relation to the Cellular Membrane and Genomic DNA

    DEFF Research Database (Denmark)

    Hansen, Marie-Louise Rittermann W

    was to investigate the processes, which occur in the probiotic cell during dry storage and could lead to loss of cell culturability. Interest was more specifically on the cytoplasmic membrane and the genomic DNA. The bacterial response to fatty acid supplementation was investigated with respect to the cytoplasmic...... DNA of B. animalis subsp. lactis BB-12 and L. acidophilus La-5 was investigated. During dry storage the loss of cell culturability was found to correlate well with the degradation of DNA for both strains. Integrity of DNA was, similarly to the loss of culturability, negatively affected by the presence......Lactic acid bacteria are used in a wide range of fermented dairy and meat products. Several strains of lactic acid bacteria are associated with health benefits upon digestion, and are known as probiotic bacteria. Probiotic bacteria can be produced for dietary supplements, but are also added as dry...

  18. Chromosome number distribution and cellular DNA content in colorectal adenomas from polyposis and nonpolyposis patients

    DEFF Research Database (Denmark)

    Petersen, S E; Madsen, A L; Bak, Martin

    1991-01-01

    and a correspondingly increased nuclear DNA content. In another two adenomas, the DNA analyses showed small hyperploid populations constituting 6% and 2% of the cells. The most striking difference between the DNA analyses and chromosome number distributions was that 13% of all metaphases were hyperploid with chromosome......Ploidy analyses of colorectal adenomas were performed by combined flow cytometric DNA analysis of unfixed isolated nuclei and direct chromosome preparation after Colcemid incubation for 9-20 hours. Ten of 18 adenomas from nonpolyposis patients and 4 of 13 adenomas from patients with familial...... adenomatous polyposis yielded a mean of 25 countable metaphases (range 7-44) per tumor. Of 343 metaphases, only 38% had 46 chromosomes, and 62% were nondiploid. All but one adenoma had diploid or peridiploid modes in the range of 46-50 chromosomes. One adenoma was hyperploid, with a mode of 74 chromosomes...

  19. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2018-01-01

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay, cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS or cyclophosphamide (CPA. Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.

  20. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.

    Science.gov (United States)

    Fillingame, R H; Jorstad, C M; Morris, D R

    1975-01-01

    There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087

  1. The effects of exposure route on DNA adduct formation and cellular proliferation by 1,2,3-trichloropropane.

    Science.gov (United States)

    La, D K; Schoonhoven, R; Ito, N; Swenberg, J A

    1996-09-01

    1,2,3-Trichloropropane (TCP) induces high incidences of tumors at multiple sites in mice and rats when administered chronically by gavage. The animal tumor data are being used to predict human risk from potential exposure to TCP in drinking water. Risk assessment may be affected by differences in the route of exposure. Gavage administration, which results in high bolus concentrations compared to drinking water exposure, may quantitatively affect toxicokinetics, cytotoxicity, and genotoxicity. We have examined the effects of TCP exposure by the two routes on the formation of DNA adducts and the induction of cellular proliferation. Male B6C3F1 mice were administered [14C]TCP for 1 week by gavage or in drinking water at the low dose (6 mg/kg) used in the NTP carcinogenesis bioassay. Two target organs (forestomach and liver) and two nontarget organs (glandular stomach and kidney) were examined for DNA adduct formation. Adducts were hydrolyzed from DNA, isolated by HPLC, and quantitated by measuring HPLC fractions for radioactivity. In the forestomach, liver, and kidney, gavage administration of TCP resulted in 1.4-to 2.4-fold greater yields of the major DNA adduct, previously identified as S-[1-(hydroxymethyl)-2-(N7-guanyl)ethyl]glutathione. Significant differences in cell proliferation, as determined by incorporation of bromodeoxyuridine into DNA, were also observed for the two routes. Gavage administration of TCP for 2 weeks resulted in up to a threefold greater cell proliferation rate relative to administration in drinking water. Our findings of exposure-related differences in TCP-induced DNA adduct formation and cell proliferation suggest that a risk assessment based on the existing gavage study may overestimate human risk.

  2. p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells

    Science.gov (United States)

    Zhao, Ming; Howard, Erin W.; Guo, Zhiying; Parris, Amanda B.; Yang, Xiaohe

    2017-01-01

    Alcohol consumption is associated with increased breast cancer risk; however, the underlying mechanisms that contribute to mammary tumor initiation and progression are unclear. Alcohol is known to induce oxidative stress and DNA damage; likewise, p53 is a critical modulator of the DNA repair pathway and ensures genomic integrity. p53 mutations are frequently detected in breast and other tumors. The impact of alcohol on p53 is recognized, yet the role of p53 in alcohol-induced mammary carcinogenesis remains poorly defined. In our study, we measured alcohol-mediated oxidative DNA damage in MCF-7 cells using 8-OHdG and p-H2AX foci formation assays. p53 activity and target gene expression after alcohol exposure were determined using p53 luciferase reporter assay, qPCR, and Western blotting. A mechanistic study delineating the role of p53 in DNA damage response and cell cycle arrest was based on isogenic MCF-7 cells stably transfected with control (MCF-7/Con) or p53-targeting siRNA (MCF-7/sip53), and MCF-7 cells that were pretreated with Nutlin-3 (Mdm2 inhibitor) to stabilize p53. Alcohol treatment resulted in significant DNA damage in MCF-7 cells, as indicated by increased levels of 8-OHdG and p-H2AX foci number. A p53-dependent signaling cascade was stimulated by alcohol-induced DNA damage. Moderate to high concentrations of alcohol (0.1–0.8% v/v) induced p53 activation, as indicated by increased p53 phosphorylation, reporter gene activity, and p21/Bax gene expression, which led to G0/G1 cell cycle arrest. Importantly, compared to MCF-7/Con cells, alcohol-induced DNA damage was significantly enhanced, while alcohol-induced p21/Bax expression and cell cycle arrest were attenuated in MCF-7/sip53 cells. In contrast, inhibition of p53 degradation via Nutlin-3 reinforced G0/G1 cell cycle arrest in MCF-7 control cells. Our study suggests that functional p53 plays a critical role in cellular responses to alcohol-induced DNA damage, which protects the cells from DNA damage

  3. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  4. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  5. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    International Nuclear Information System (INIS)

    Oikawa, Shinji; Kobayashi, Hatasu; Tada-Oikawa, Saeko; Isono, Yoshiaki; Kawanishi, Shosuke

    2009-01-01

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H 2 O 2 )-resistant clone HP100 cells, suggesting the involvement of H 2 O 2 . In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using 32 P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H 2 O 2 with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis

  6. Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT

    Science.gov (United States)

    Jungmann, R.; Avendano, M.S.; Woehrstein, J.B.; Dai, M.; Shih, W.M.; Yin, P.

    2014-01-01

    While super-resolution fluorescence microscopy is a powerful tool for biological research, obtaining multiplexed images for a large number of distinct target species remains challenging. Here we use the transient binding of short fluorescently labeled oligonucleotides (DNA-PAINT, point accumulation for imaging in nanoscale topography) for simple and easy-to-implement multiplexed 3D super-resolution imaging inside fixed cells and achieve sub-10 nm spatial resolution in vitro using synthetic DNA structures. We also report a novel approach for multiplexing (Exchange-PAINT) that allows sequential imaging of multiple targets using only a single dye and a single laser source. We experimentally demonstrate ten-“color” super-resolution imaging in vitro on synthetic DNA structures and four-“color” imaging of proteins in a fixed cell. PMID:24487583

  7. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  8. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Science.gov (United States)

    Renis, M.; Borghesi, M.; Favetta, M.; Malfa, G.; Manti, L.; Romano, F.; Schettino, G.; Tomasello, B.; Cirrone, G. A. P.

    2013-07-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  9. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex.

    Science.gov (United States)

    Batebi, Hossein; Dragelj, Jovan; Imhof, Petra

    2018-04-01

    Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg 2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule. © 2018 Wiley Periodicals, Inc.

  10. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    Science.gov (United States)

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  11. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Markiewicz, Ewa; Bekker-Jensen, Simon

    2015-01-01

    damage. Lamins A/C regulate 53BP1 levels and consequently lamin A/C-null HDF display a 53BP1 null-like phenotype. Our data favour a model in which lamins A/C maintain a nucleoplasmic pool of 53BP1 in order to facilitate its rapid recruitment to sites of DNA damage and could explain why an absence...

  12. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    Science.gov (United States)

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA

  13. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Czech Academy of Sciences Publication Activity Database

    Macůrek, Libor; Benada, Jan; Müllers, E.; Halim, V.A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Soňa; Hodný, Zdeněk; Lindqvist, A.; Medema, R.H.; Bartek, Jiří

    2013-01-01

    Roč. 12, č. 2 (2013), s. 251-262 ISSN 1538-4101 R&D Projects: GA ČR GPP305/10/P420; GA ČR GAP301/10/1525 Grant - others:Netherlands Genomic Initiative of NWO(NL) CGC; EK(XE) 259893 Institutional support: RVO:68378050 Keywords : DNA damage response * Wip1 phosphatase * cell cycle * mitotic progression * γH2AX Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.006, year: 2013

  14. Cytotoxicity, cellular uptake, and DNA interactions of new monodentate ruthenium(II) complexes containing terphenyl arenes

    Czech Academy of Sciences Publication Activity Database

    Bugarcic, T.; Nováková, Olga; Halámiková, Anna; Zerzánková, Lenka; Vrána, Oldřich; Kašpárková, Jana; Habtemariam, A.; Parsons, S.; Sadler, P.J.; Brabec, Viktor

    2008-01-01

    Roč. 51, - (2008), s. 5310-5319 ISSN 0022-2623 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA ČR(CZ) GA203/06/1239; GA AV ČR(CZ) IAA400040803; GA MZd(CZ) NR8562 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * ruthenium * cancer Subject RIV: BO - Biophysics Impact factor: 4.898, year: 2008

  15. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage

    Czech Academy of Sciences Publication Activity Database

    Moudrý, Pavel; Lukas, C.; Macůrek, Libor; Hanzlíková, Hana; Hodný, Zdeněk; Lukas, J.; Bartek, Jiří

    2012-01-01

    Roč. 11, č. 8 (2012), s. 1573-1582 ISSN 1538-4101 R&D Projects: GA ČR GA301/08/0353; GA ČR GAP301/10/1525 Grant - others:7.RP EU(XE) CZ.1.05/2.1.00/01.0030 Institutional research plan: CEZ:AV0Z50520514 Keywords : 53BP1 * DNA damage response * UBA1 * UBA6 * ubiquitylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.243, year: 2012

  16. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    International Nuclear Information System (INIS)

    Angelieri, Fernanda; Oliveira, Gabriela R. de; Sannomiya, Eduardo K.; Ribeiro, Daniel A.

    2007-01-01

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  17. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Angelieri, Fernanda; Oliveira, Gabriela R. de [Sao Paulo Metodista University (UMESP), Department of Orthodontics, Sao Bernardo do Campo, Sao Paulo (Brazil); Sannomiya, Eduardo K. [Sao Paulo Metodista University (UMESP), Department of Dento-Maxillofacial Radiology, Sao Bernardo do Campo, Sao Paulo (Brazil); Ribeiro, Daniel A. [Federal University of Sao Paulo (UNIFESP), Department of Health Sciences, Santos, Sao Paulo (Brazil); Universidade Federal de Sao Paulo (UNIFESP), Departamento de Ciencias da Saude, Santos, Sao Paulo (Brazil)

    2007-06-15

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  18. Recapitulation of the cellular xeroderma pigmentosum-variant phenotypes using short interfering RNA for DNA polymerase H.

    Science.gov (United States)

    Laposa, Rebecca R; Feeney, Luzviminda; Cleaver, James E

    2003-07-15

    The lesion-specific DNA polymerase POLH gene is mutated in xeroderma pigmentosum variant (XP-V) patients who exhibit an increased skin cancer incidence from UV exposure. Normal cells in which POLH expression was reduced using short interfering RNAs (siRNAs) were compared with the XP-V cellular phenotype that results from naturally occurring inactivating mutations. Stable clones expressing siRNA had partially reduced POLH protein levels, and intermediate levels of UV sensitivity and S phase checkpoint activation, but similar levels of Mre11 foci as in XP-V cells. Therefore, suppression of POLH expression levels by siRNA recapitulates most of the phenotypes seen in cells from XP-V patients with inactivating mutations in POLH.

  19. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.

    Science.gov (United States)

    Gu, Jijin; Hao, Junguo; Fang, Xiaoling; Sha, Xianyi

    2016-04-01

    Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role?

    Science.gov (United States)

    Piechota, Malgorzata; Pawlowska, Elzbieta; Szatkowska, Magdalena; Sikora, Ewa; Kaarniranta, Kai

    2017-01-01

    Age-related macular degeneration (AMD) is the main reason of blindness in developed countries. Aging is the main AMD risk factor. Oxidative stress, inflammation and some genetic factors play a role in AMD pathogenesis. AMD is associated with the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillaris. Lost RPE cells in the central retina can be replaced by their peripheral counterparts. However, if they are senescent, degenerated regions in the macula cannot be regenerated. Oxidative stress, a main factor of AMD pathogenesis, can induce DNA damage response (DDR), autophagy, and cell senescence. Moreover, cell senescence is involved in the pathogenesis of many age-related diseases. Cell senescence is the state of permanent cellular division arrest and concerns only mitotic cells. RPE cells, although quiescent in the retina, can proliferate in vitro. They can also undergo oxidative stress-induced senescence. Therefore, cellular senescence can be considered as an important molecular pathway of AMD pathology, resulting in an inability of the macula to regenerate after degeneration of RPE cells caused by a factor inducing DDR and autophagy. It is too early to speculate about the role of the mutual interplay between cell senescence, autophagy, and DDR, but this subject is worth further studies. PMID:29225722

  1. Cellular Tug-of-War: Forces at Work and DNA Stretching in Mitosis

    Science.gov (United States)

    Griffin, Brian; Kilfoil, Maria L.

    2013-03-01

    In the microscopic world of the cell dominated by thermal noise, a cell must be able to successfully segregate its DNA with high fidelity in order to pass its genetic information on to its progeny. In this process of mitosis in eukaryotes, driving forces act on the cytoskeleton-based architecture called the mitotic spindle to promote this division. Our preliminary data demonstrates that the dynamics of this process in yeast cells is universal. Moreover, the dynamics suggest an increasing load as the chromosomes are pulled apart. To investigate this, we use three-dimensional imaging to track the dynamics of the poles of this architecture and the points of attachment to chromosomes simultaneously and with high spatial resolution. We analyze the relative motions of chromosomes as they are organized before segregation and as they are pulled apart, using this data to investigate the force-response behavior of this cytoskeleton-chromosome polymer system.

  2. DNA Methylation Adds Prognostic Value to Minimal Residual Disease Status in Pediatric T-Cell Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Borssén, Magnus; Haider, Zahra; Landfors, Mattias

    2016-01-01

    BACKGROUND: Despite increased knowledge about genetic aberrations in pediatric T-cell acute lymphoblastic leukemia (T-ALL), no clinically feasible treatment-stratifying marker exists at diagnosis. Instead patients are enrolled in intensive induction therapies with substantial side effects....... In modern protocols, therapy response is monitored by minimal residual disease (MRD) analysis and used for postinduction risk group stratification. DNA methylation profiling is a candidate for subtype discrimination at diagnosis and we investigated its role as a prognostic marker in pediatric T......-ALL. PROCEDURE: Sixty-five diagnostic T-ALL samples from Nordic pediatric patients treated according to the Nordic Society of Pediatric Hematology and Oncology ALL 2008 (NOPHO ALL 2008) protocol were analyzed by HumMeth450K genome wide DNA methylation arrays. Methylation status was analyzed in relation...

  3. The merits of DNA content and cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high-LET neutron irradiation

    International Nuclear Information System (INIS)

    Theron, C.S.; Serafin, A.; Bohm, L.; Slabbert, J.P.

    1997-01-01

    Differences of the intrinsic cellular radiosensitivity between tumours make the selection of patients for specific radiation schedules very difficult. The reasons for these variations are still unclear, but are thought to be due to genomic and cellular characteristics. Radiosensitivities vary between cell cycle stages, with S-phase cells being most radioresistant and G2/M phase cells most radiosensitive. It is also well established that most tumour cells have an abnormal ploidy. DNA content and cellular proliferation kinetics therefore could influence the intrinsic radiosensitivity. This prompted us to assess the merits of these parameters as predictors of radiation response. (authors)

  4. DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Ana L. Arellano-Ortiz

    2016-01-01

    Full Text Available This study determined the methylation status of cellular retinoic acid-binding protein (CRABP gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV in patients with cervical cancer (CC, low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158 were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2. Methylation in CRABP1 was associated with age (≥35 years, P = 0.002, family history of cancer (P = 0.032, the presence of HPV-16 (P = 0.013, and no alcohol intake (P = 0.035. These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response.

  5. DOE contractors' workshop: Cellular and molecular aspects of radiation induced DNA damage and repair

    International Nuclear Information System (INIS)

    1987-01-01

    For four decades the US Department of Energy and its predecessors have been the lead federal agency in supporting radiation biology research. Over the years emphasis in this program has gradually shifted from dose-effect studies on animals to research on the effects of radiations of various qualities on cells and molecules. Mechanistic studies on the action of radiation at the subcellular level are few in number and there is a need for more research in this area if we are to gain a better understanding of how radiation affects living cells. The intent of this workshop was to bring together DOE contractors and grantees who are investigating the effects of radiation at the cellular and molecular levels. The aims were to foster the exchange of information on research projects and experimental results, promote collaborative research efforts, and obtain an overview of research currently supported by the Health Effects Research Division of the Office of Health and Environmental Research. The latter is needed by the Office for program planning purposes. This report on the workshop which took place in Albuquerque, New Mexico on March 10-11, 1987, includes an overview with future research recommendations, extended abstracts of the plenary presentations, shorter abstracts of each poster presentation, a workshop agenda and the names and addresses of the attendees

  6. DOE contractors' workshop: Cellular and molecular aspects of radiation induced DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    For four decades the US Department of Energy and its predecessors have been the lead federal agency in supporting radiation biology research. Over the years emphasis in this program has gradually shifted from dose-effect studies on animals to research on the effects of radiations of various qualities on cells and molecules. Mechanistic studies on the action of radiation at the subcellular level are few in number and there is a need for more research in this area if we are to gain a better understanding of how radiation affects living cells. The intent of this workshop was to bring together DOE contractors and grantees who are investigating the effects of radiation at the cellular and molecular levels. The aims were to foster the exchange of information on research projects and experimental results, promote collaborative research efforts, and obtain an overview of research currently supported by the Health Effects Research Division of the Office of Health and Environmental Research. The latter is needed by the Office for program planning purposes. This report on the workshop which took place in Albuquerque, New Mexico on March 10-11, 1987, includes an overview with future research recommendations, extended abstracts of the plenary presentations, shorter abstracts of each poster presentation, a workshop agenda and the names and addresses of the attendees.

  7. An Algorithm Measuring Donor Cell-Free DNA in Plasma of Cellular and Solid Organ Transplant Recipients That Does Not Require Donor or Recipient Genotyping

    Directory of Open Access Journals (Sweden)

    Paul MK Gordon

    2016-09-01

    Full Text Available Cell-free DNA (cfDNA has significant potential in the diagnosis and monitoring of clinical conditions but accurately and easily distinguishing the relative proportion of DNA molecules in a mixture derived from two different sources (i.e. donor and recipient tissues after transplantation is challenging. In human cellular transplantation there is currently no useable method to detect in vivo engraftment and blood-based non-invasive tests for allograft rejection in solid organ transplantation are either non-specific (e.g. creatinine in kidney transplantation, liver enzymes in hepatic transplantation or absent (i.e. heart transplantation. Elevated levels of donor cfDNA have been shown to correlate with solid organ rejection but complex methodology limits implementation of this promising biomarker. We describe a cost-effective method to quantify donor cfDNA in recipient plasma using a panel of high-frequency single nucleotide polymorphisms, next-generation (semiconductor sequencing and a novel mixture model algorithm. In vitro, our method accurately and rapidly determined donor/recipient DNA admixture. For in vivo testing, donor cfDNA was serially quantified in an infant with a urea cycle disorder after receiving six daily infusions of donor liver cells. Donor cfDNA isolated from 1-2 ml of recipient plasma was detected as late as 24 weeks after infusion suggesting engraftment. The percentage of circulating donor cfDNA was also assessed in pediatric and adult heart transplant recipients undergoing routine endomyocardial biopsy with levels observed to be stable over time and generally measuring <1% in cases without moderate or severe cellular rejection. Unlike existing non-invasive methods used to define the proportion of donor cfDNA in solid organ transplant patients, our assay does not require sex mismatch, donor genotyping or whole-genome sequencing and potentially has broad application to detect cellular engraftment or allograft injury after

  8. Retroviral DNA integration: viral and cellular determinants of target-site selection.

    Directory of Open Access Journals (Sweden)

    Mary K Lewinski

    2006-06-01

    Full Text Available Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV integrates preferentially within active transcription units, whereas murine leukemia virus (MLV integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN coding region into HIV (to make HIVmIN caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb, and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.

  9. Human cellular protein patterns and their link to genome DNA mapping and sequencing data: towards an integrated approach to the study of gene expression

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1993-01-01

    Analysis of cellular protein patterns by computer-aided two-dimensional gel electrophoresis together with recent advances in protein sequence analysis and expression systems have made possible the establishment of comprehensive two-dimensional gel protein databases that may link protein and DNA...

  10. Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Mohd Farhan

    2016-12-01

    Full Text Available Epidemiological as well as experimental evidence exists in support of chemopreventive and anticancer properties of green tea and its constituents. The gallocatechin, epicatechin-3-gallate is a major polyphenol present in green tea, shown responsible for these effects. Plant-derived polyphenolic compounds are established natural antioxidants which are capable of catalyzing oxidative DNA degradation of cellular DNA, alone as well as in the presence of transition metal ions, such as copper. Here we present evidence to support that, similar to various other polyphenoic compounds, epicatechin-3-gallate also causes oxidative degradation of cellular DNA. Single cell alkaline gel electrophoresis (Comet assay was used to assess DNA breakage in lymphocytes that were exposed to various concentrations of epicatechin-3-gallate. Inhibition of DNA breakage in the presence of scavengers of reactive oxygen species (ROS suggested involvement of ROS generation. Addition of neocuproine (a cell membrane permeable Cu(I chelator inhibited DNA degradation, dose-dependently, in intact lymphocytes. In contrast, bathocuproine, which does not permeate cell membrane, was observed to be ineffective. We further show that epicatechin-3-gallate degrades DNA in cell nuclei, which can also be inhibited by neocuproine, suggesting mobilization of nuclear copper in this reaction as well. Our results are indicative of ROS generation, possibly through mobilization of endogenous copper ions, and support our long-standing hypothesis of a prooxidant activity of plant-derived polyphenols as a mechanism for their documented anticancer properties.

  11. Detection, characterization and measure of a new radiation-induced damage in isolated and cellular DNA; Detection, caracterisation et mesure d'un nouveau dommage radio-induit de l'ADN isole et cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Regulus, P

    2006-10-15

    Deoxyribonucleic acid (DNA) contains the genetic information and chemical injury to this macromolecule may have severe biological consequences. We report here the detection of 4 new radiation-induced DNA lesions by using a high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) approach. For that purpose, the characteristic fragmentation of most 2'-deoxy-ribo nucleosides, the loss of 116 Da corresponding to the loss of the 2-deoxyribose moiety, was used in the so-called neutral loss mode of the HPLC-MS/MS. One of the newly detected lesions, named dCyd341 because it is a 2'-deoxycytidine modification exhibiting a molecular weight of 341 Da, was also detected in cellular DNA. Characterization of this modified nucleoside was performed using NMR and exact mass determination of the product obtained by chemical synthesis. A mechanism of formation was then proposed, in which the first event is the H-abstraction at the C4 position of a 2-deoxyribose moiety. Then, the sugar modification produced exhibits a reactive aldehyde that, through reaction with a vicinal cytosine base, gives rise to dCyd341. dCyd341 could be considered as a complex damage since its formation involves a DNA strand break and a cross-link between a damaged sugar residue and a vicinal cytosine base located most probably on the complementary DNA strand. In addition to its characterization, preliminary biological studies revealed that cells are able to remove the lesion from DNA. Repair studies have revealed the ability of cells to excise the lesion. Identification of the repair systems involved could represent an interesting challenge. (author)

  12. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  13. A residue-specific view of the association and dissociation pathway in protein−DNA recognition

    NARCIS (Netherlands)

    Kalodimos, Ch.; Boelens, R.|info:eu-repo/dai/nl/070151407; Kaptein, R.|info:eu-repo/dai/nl/074334603

    2002-01-01

    Signal propagation in biological systems occurs through a series of inter- and intramolecular events, the precise pathways of which remain elusive in most cases. With respect to protein−DNA interactions in particular, little is known about the association and dissociation reaction pathways. Here we

  14. Residual Cdk1/2 activity after DNA damage promotes senescence

    Czech Academy of Sciences Publication Activity Database

    Müllers, E.; Cascales, H.S.; Burdová, Kamila; Macůrek, Libor; Lindqvist, A.

    2017-01-01

    Roč. 16, č. 3 (2017), s. 575-584 ISSN 1474-9726 R&D Projects: GA ČR GA13-18392S Institutional support: RVO:68378050 Keywords : Cdk1 * Cdk2 * cell cycle * checkpoint recovery * DNA damage response * G2phase * p21 * senescence Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  15. Quantitative real-time PCR technique for the identification of E. coli residual DNA in streptokinase recombinant product.

    Science.gov (United States)

    Fazelahi, Mansoureh; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-11-26

    Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli's and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (10 1 to 10 7 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.

  16. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents.

    Science.gov (United States)

    Banerjee, Swagata; Veale, Emma B; Phelan, Caroline M; Murphy, Samantha A; Tocci, Gillian M; Gillespie, Lisa J; Frimannsson, Daniel O; Kelly, John M; Gunnlaugsson, Thorfinnur

    2013-02-21

    The development of functional 1,8-naphthalimide derivatives as DNA targeting, anticancer and cellular imaging agents is a fast growing area and has resulted in several such derivatives entering into clinical trials. This review gives an overview of the many discoveries and the progression of the use of 1,8-naphthalimides as such agents and their applications to date; focusing mainly on mono-, bis-naphthalimide based structures, and their various derivatives (e.g. amines, polyamine conjugates, heterocyclic, oligonucleotide and peptide based, and those based on metal complexes). Their cytotoxicity, mode of action and cell-selectivity are discussed and compared. The rich photophysical properties of the naphthalimides (which are highly dependent on the nature and the substitution pattern of the aryl ring) make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules. This also makes them useful species for monitoring their uptake and location within cells without the use of co-staining. The photochemical properties of the compounds have also been exploited, for example, for photocleavage of nucleic acids and for the destruction of tumour cells.

  17. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    Science.gov (United States)

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  18. The Strictly Conserved Arg-321 Residue in the Active Site of Escherichia coli Topoisomerase I Plays a Critical Role in DNA Rejoining*

    Science.gov (United States)

    Narula, Gagandeep; Annamalai, Thirunavukkarasu; Aedo, Sandra; Cheng, Bokun; Sorokin, Elena; Wong, Agnes; Tse-Dinh, Yuk-Ching

    2011-01-01

    The strictly conserved arginine residue proximal to the active site tyrosine of type IA topoisomerases is required for the relaxation of supercoiled DNA and was hypothesized to be required for positioning of the scissile phosphate for DNA cleavage to take place. Mutants of recombinant Yersinia pestis topoisomerase I with hydrophobic substitutions at this position were found in genetic screening to exhibit a dominant lethal phenotype, resulting in drastic loss in Escherichia coli viability when overexpressed. In depth biochemical analysis of E. coli topoisomerase I with the corresponding Arg-321 mutation showed that DNA cleavage can still take place in the absence of this arginine function if Mg2+ is present to enhance the interaction of the enzyme with the scissile phosphate. However, DNA rejoining is inhibited in the absence of this conserved arginine, resulting in accumulation of the cleaved covalent intermediate and loss of relaxation activity. These new experimental results demonstrate that catalysis of DNA rejoining by type IA topoisomerases has a more stringent requirement than DNA cleavage. In addition to the divalent metal ions, the side chain of this arginine residue is required for the precise positioning of the phosphotyrosine linkage for nucleophilic attack by the 3′-OH end to result in DNA rejoining. Small molecules that can interfere or distort the enzyme-DNA interactions required for DNA rejoining by bacterial type IA topoisomerases could be developed into novel antibacterial drugs. PMID:21478161

  19. The Roles of Several Residues of Escherichia coli DNA Photolyase in the Highly Efficient Photo-Repair of Cyclobutane Pyrimidine Dimers

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2010-01-01

    Full Text Available Escherichia coli DNA photolyase is an enzyme that repairs the major kind of UV-induced lesions, cyclobutane pyrimidine dimer (CPD in DNA utilizing 350–450 nm light as energy source. The enzyme has very high photo-repair efficiency (the quantum yield of the reaction is ~0.85, which is significantly greater than many model compounds that mimic photolyase. This suggests that some residues of the protein play important roles in the photo-repair of CPD. In this paper, we have focused on several residues discussed their roles in catalysis by reviewing the existing literature and some hypotheses.

  20. Concerted bis-alkylating reactivity of clerocidin towards unpaired cytosine residues in DNA

    Science.gov (United States)

    Richter, Sara N.; Menegazzo, Ileana; Fabris, Daniele; Palumbo, Manlio

    2004-01-01

    Clerocidin (CL) is a topoisomerase II poison, which cleaves DNA irreversibly at guanines (G) and reversibly at cytosines (C). Furthermore, the drug can induce enzyme-independent strand breaks at the G and C level. It has been previously shown that G-damage is induced by alkylation of the guanine N7, followed by spontaneous depurination and nucleic acid cleavage, whereas scission at C is obtained only after treatment with hot alkali, and no information is available to explain the nature of this damage. We present here a systematic study on the reactivity of CL towards C both in the DNA environment and in solution. Selected synthetic derivatives were employed to evaluate the role of each chemical group of the drug. The structure of CL–dC adduct was then characterized by tandem mass spectrometry and NMR: the adduct is a stable condensed ring system resulting from a concerted electrophilic attack of the adjacent carbonyl and epoxide groups of CL towards the exposed NH2 and N3, respectively. This reaction mechanism, shown here for the first time, is characterized by faster kinetic rates than alkylation at G, due to the fact that the rate-determining step, alkylation at the epoxide, is an intramolecular process, provided a Schiff base linking CL and C can rapidly form, whereas the corresponding reaction of G N7 is intermolecular. These results provide helpful hints to explain the reversible/irreversible nature of topoisomerase II mediated DNA damage produced by CL at C/G steps. PMID:15494453

  1. Combination of pentafluorophenylhydrazine derivatization and isotope dilution LC-MS/MS techniques for the quantification of apurinic/apyrimidinic sites in cellular DNA.

    Science.gov (United States)

    Li, Jie; Leung, Elvis M K; Choi, Martin M F; Chan, Wan

    2013-05-01

    Apurinic/apyrimidinic (AP) sites are common DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and base-excision repair mechanisms of the modified bases. Due to the strong association of AP site formation with physically/chemically induced DNA damage, quantifying AP sites provides important information for risk assessment of exposure to genotoxins and oxidative stress. However, rigorous quantification of AP sites in DNA has been hampered by technical problems relating to the sensitivity and selectivity of existing analytical methods. We have developed a new isotope dilution liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) method for the rigorous quantification of AP sites in genomic DNA. The method entails enzymatic digestion of AP site-containing DNA by endo- and exonucleases, derivatization with pentafluorophenylhydrazine (PFPH), addition of an isotopically labeled PFPH derivative as internal standard, and quantification by LC-MS/MS. The combination of PFPH derivatization with LC-MS/MS analysis on a triple quadrupole mass spectrometer allows for sensitive and selective quantification of AP sites in DNA at a detection limit of 6.5 fmol, corresponding to 4 AP sites/10(9) nt in 5 μg of DNA, which is at least ten times more sensitive than existing analytical methods. The protocol was validated by AP site-containing oligonucleotides and applied in quantifying methyl methanesulfonate-induced formation of AP sites in cellular DNA.

  2. RNA/DNA co-analysis on aged bloodstains from adhesive tapes used for gunshot residue collection from hands.

    Science.gov (United States)

    Grabmüller, Melanie; Schyma, Christian; Madea, Burkhard; Eichhorst, Tim; Courts, Cornelius

    2017-06-01

    In cases of firearm related fatalities a systematic investigation at the scene of death is indispensable to differentiate between self-inflicted and homicidal gunshot injuries. A common method to preserve gunshot residues (GSR) is their collection using adhesive tapes. However, the biological material gathered at the same time by the tapes would be of special interest if backspatter, ejected from the entrance wound against the direction of fire, could be detected. In the present study we examined the success rate of co-analysis of RNA and DNA recovered from biological traces sampled with adhesive tapes. The material originated from eight cases of fatal gunshots, taken from the hands of suspects or victims, examined 5 to 19 years ago for GSR. For all types of adhesive tapes tested, quantity and quality of the co-extracted nucleic acids was insufficient for successful DNA profiling, but was sufficient for the detection of blood-specific micro RNA (miRNA). In summary, sampling trace evidence from the hands of persons involved in fatal gunshots with adhesive tapes has a long-term detrimental effect on biological traces.

  3. Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication.

    Science.gov (United States)

    Kim, Young-Eui; Park, Mi Young; Kang, Kyeong Jin; Han, Tae Hee; Lee, Chan Hee; Ahn, Jin-Hyun

    2015-08-01

    The UL112-113 region of the human cytomegalovirus (HCMV) genome encodes four phosphoproteins of 34, 43, 50, and 84 kDa that promote viral DNA replication. Co-transfection assays have demonstrated that self-interaction of these proteins via the shared N-termini is necessary for their intranuclear distribution as foci and for the efficient relocation of a viral DNA polymerase processivity factor (UL44) to the viral replication sites. However, the requirement of UL112-113 N-terminal residues for viral growth and DNA replication has not been fully elucidated. Here, we investigated the effect of deletion of the N-terminal regions of UL112-113 proteins on viral growth and oriLyt-dependent DNA replication. A deletion of the entire UL112 region or the region encoding the 25 N-terminal amino-acid residues from the HCMV (Towne strain) bacmid impaired viral growth in bacmid-transfected human fibroblast cells, indicating their requirement for viral growth. In co-immunoprecipitation assays using the genomic gene expressing the four UL112-113 proteins together, the 25 N-terminal amino-acid residues were found to be necessary for stable expression of UL112-113 proteins and their self-interaction. These residues were also required for efficient binding to and relocation of UL44, but not for interaction with IE2, an origin-binding transcription factor. In co-transfection/replication assays, replication of the oriLyt-containing plasmid was promoted by expression of intact UL112-113 proteins, but not by the expression of 25-amino-acid residue-deleted proteins. Our results demonstrate that the 25 N-terminal amino-acid residues of UL112-113 proteins that mediate self-interaction contribute to viral growth by promoting their binding to UL44 and the initiation of oriLyt-dependent DNA replication.

  4. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions.

    Directory of Open Access Journals (Sweden)

    Kouji Hirota

    2010-10-01

    Full Text Available Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR and translesion DNA synthesis (TLS. TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V, and DNA polymerase ζ by generating POLη(-/-/POLζ(-/- cells from the chicken DT40 cell line. POLζ(-/- cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη(-/-/POLζ(-/- cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ(-/- cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.

  5. Impaired cellular responses to cytosolic DNA or infection with Listeria monocytogenes and vaccinia virus in the absence of the murine LGP2 protein.

    Directory of Open Access Journals (Sweden)

    Darja Pollpeter

    2011-04-01

    Full Text Available Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA. Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity.

  6. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation.

    OpenAIRE

    Rawls, J A; Pusztai, R; Green, M

    1990-01-01

    The human papillomavirus type 16 E7 protein belongs to a family of nuclear oncoproteins that share amino acid sequences and functional homology. To localize biochemical activities associated with E7, we chemically synthesized the full-length 98-amino-acid polypeptide and several deletion mutant peptides. We show that the E7 polypeptide is biologically active and possesses at least two functional domains; the first induces cellular DNA synthesis in quiescent rodent cells, and the second trans ...

  7. Ubiquitin-specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage.

    Science.gov (United States)

    Zhang, Mu; Hu, Chen; Tong, Dan; Xiang, Shengyan; Williams, Kendra; Bai, Wenlong; Li, Guo-Min; Bepler, Gerold; Zhang, Xiaohong

    2016-05-13

    MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating enzymes, which regulate MSH2 remain unknown. Here we report that ubiquitin-specific peptidase 10 (USP10) interacts with and stabilizes MSH2. USP10 deubiquitinates MSH2 in vitro and in vivo Moreover, the protein level of MSH2 is positively correlated with the USP10 protein level in a panel of lung cancer cell lines. Knockdown of USP10 in lung cancer cells exhibits increased cell survival and decreased apoptosis upon the treatment of DNA-methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and antimetabolite 6-thioguanine (6-TG). The above phenotypes can be rescued by ectopic expression of MSH2. In addition, knockdown of MSH2 decreases the cellular mismatch repair activity. Overall, our results suggest a novel USP10-MSH2 pathway regulating DNA damage response and DNA mismatch repair. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    Science.gov (United States)

    Edelbrock, Michael A.; Kaliyaperumal, Saravanan; Williams, Kandace J.

    2013-01-01

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch Syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O6meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6. PMID:23391514

  9. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    Science.gov (United States)

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Autoclave sterilization of instruments used on women with cervical neoplasia is an effective method of eradicating residual human papillomavirus DNA: a polymerase chain reaction-based evaluation.

    Science.gov (United States)

    Estes, Jacob M; Kirby, Tyler O; Huh, Warner K

    2007-01-01

    To determine whether autoclave sterilization eradicates human papillomavirus (HPV) DNA on specula and instruments used to treat women with cervical neoplasia. Specula and instruments used in two referral colposcopy clinics were evaluated to determine the PGMY9/11 primer system's ability to amplify residual HPV DNA. Each speculum and instrument was sampled with a Dacron swab and stored in PreservCyt solution (Cytyc Corporation, Marlborough, MA) at 4 degrees C. DNA amplification was performed under standard conditions with appropriate controls followed by HPV typing using the reverse line blot test (Roche Molecular Systems, Alameda, CA). Once validated, the same polymerase chain reaction method was used on autoclave-sterilized specula and biopsy instruments and heated glass bead- and Cidex bath (Johnson & Johnson, New Brunswick, NJ)-sterilized instruments. All results, with appropriate positive and negative controls, were confirmed in triplicate. A total of 140 instruments (70 used and 70 autoclaved) were sampled for residual HPV DNA. Five samples in the contaminated specula arm were excluded from analysis secondary to insufficient sampling. Of the remaining samples, 52.3% (34/65) of contaminated instruments-both specula and biopsy instruments-had detectable HPV DNA. Fifty-five percent of contaminated biopsy instruments (11/20) were positive and 51.1% of contaminated specula (23/45) were positive. All 70 autoclaved samples (50 specula and 20 biopsy instruments) were negative for residual HPV DNA or beta-globin. One instrument in the glass bead and Cidex group that was presumed sterile was positive for HPV 16 DNA. The PGMY9/11 primer system is an effective method to detect residual HPV DNA. Autoclave sterilization appears to eradicate HPV DNA to levels undetectable with this sensitive assay, whereas heated glass beads followed by Cidex bath appears to be inadequate methods. These results suggest that autoclave sterilization is effective when using nondisposable

  11. KIN17, XPC, DNA-PKCS and XRCC4 proteins in the cellular response to DNA damages. Relations between nucleotide excision repair and non-homologous end joining in a human syn-genic model

    International Nuclear Information System (INIS)

    Despras, Emmanuelle

    2006-01-01

    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blockage. Moreover, the reduction of total HSAkin17 protein level sensitizes RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syn-genic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific extinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected

  12. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    Full Text Available BACKGROUND: Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES: To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS: Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS: Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs, but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS: RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.

  13. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation.

    Science.gov (United States)

    Rawls, J A; Pusztai, R; Green, M

    1990-12-01

    The human papillomavirus type 16 E7 protein belongs to a family of nuclear oncoproteins that share amino acid sequences and functional homology. To localize biochemical activities associated with E7, we chemically synthesized the full-length 98-amino-acid polypeptide and several deletion mutant peptides. We show that the E7 polypeptide is biologically active and possesses at least two functional domains; the first induces cellular DNA synthesis in quiescent rodent cells, and the second trans activates the adenovirus E1A-inducible early E2 promoter and binds zinc. Further, each domain is autonomous and can function on separate peptides. DNA synthesis induction activity maps within the N-terminal portion of the molecule, which contains sequences related to adenovirus E1A conserved domains 1 and 2 required for cell transformation and binding of the retinoblastoma gene product. trans-Activation and Zn-binding activities map within the C-terminal portion of the molecule, a region which contains Cys-X-X-Cys motifs. trans Activation does not require protein synthesis, implying a mechanism that involves interaction with a preexisting cellular factor(s). E7 trans activates the adenovirus E2 promoter but not other E1A-inducible viral promoters, suggesting the possibility that E7 trans activation involves interaction, directly or indirectly, with cellular transcription factor E2F.

  14. Effects of thiourea and ammonium bicarbonate on the formation and stability of bifunctional cisplatin-DNA adducts : consequences for the accurate quantification of adducts in (cellular) DNA

    NARCIS (Netherlands)

    Fichtinger-Schepman, A.M.J.; Dijk-Knijnenburg, H.C.M. van; Dijt, F.J.; Velde-Visser, S.D. van der; Berends, F.; Baan, R.A.

    1995-01-01

    Cisplatin reacts with DNA by forming mainly bifunctional adducts via reactive monofunctional intermediates. When freshly platinated DNA was postincubated with thiourea (10 mM, at 23 or 37°C) for periods of up to 24 h, followed by determination of mono- and diadducts, a rapid initial decrease was

  15. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses.

    Science.gov (United States)

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.

  16. The role of human equilibrative nucleoside transporter 1 on the cellular transport of the DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells.

    Science.gov (United States)

    Hummel-Eisenbeiss, Johanna; Hascher, Antje; Hals, Petter-Arnt; Sandvold, Marit Liland; Müller-Tidow, Carsten; Lyko, Frank; Rius, Maria

    2013-09-01

    The nucleoside analog 5-azacytidine is an archetypical drug for epigenetic cancer therapy, and its clinical effectiveness has been demonstrated in the treatment of myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). However, therapy resistance in patients with MDS/AML remains a challenging issue. Membrane proteins that are involved in drug uptake are potential mediators of drug resistance. The responsible proteins for the transport of 5-azacytidine into MDS/AML cells are unknown. We have now systematically analyzed the expression and activity of various nucleoside transporters. We identified the human equilibrative nucleoside transporter 1 (hENT1) as the most abundant nucleoside transporter in leukemia cell lines and in AML patient samples. Transport assays using [¹⁴C]5-azacytidine demonstrated Na⁺-independent uptake of the drug into the cells, which was inhibited by S-(4-nitrobenzyl)-6-thioinosine (NBTI), a hENT1 inhibitor. The cellular toxicity of 5-azacytidine and its DNA demethylating activity were strongly reduced after hENT1 inhibition. In contrast, the cellular activity of the 5-azacytidine derivative 5-azacytidine-5'-elaidate (CP-4200), a nucleoside transporter-independent drug, persisted after hENT1 inhibition. A strong dependence of 5-azacytidine-induced DNA demethylation on hENT1 activity was also confirmed by array-based DNA methylation profiling, which uncovered hundreds of loci that became demethylated only when hENT1-mediated transport was active. Our data establish hENT1 as a key transporter for the cellular uptake of 5-azacytidine in leukemia cells and raise the possibility that hENT1 expression might be a useful biomarker to predict the efficiency of 5-azacytidine treatments. Furthermore, our data suggest that CP-4200 may represent a valuable compound for the modulation of transporter-related 5-azacytidine resistances.

  17. Pesticide residues, heavy metals, and DNA damage in sentinel oysters Crassostrea gigas from Sinaloa and Sonora, Mexico.

    Science.gov (United States)

    Vázquez-Boucard, Celia; Anguiano-Vega, Gerardo; Mercier, Laurence; Rojas del Castillo, Emilio

    2014-01-01

    Pesticides and heavy metals were analyzed in sentinel Crassostrea gigas oysters placed in six aquaculture sites close to a contaminated agricultural region. Each site was sampled twice. Tests revealed the presence of organochlorine (OC) pesticides in the oysters at concentrations varying from 31.8 to 72.5 μg/kg for gamma-hexachlorocyclohexane (γ-HCH); from 1.2 to 3.1 μg/kg for dichlorodiphenyldichloroethylene (4,4-DDE); from 1.6 to 2.3 μg/kg for endosulfan I; and from 1.4 to 41.2 μg/kg for endosulfan II, as well as heavy metals in concentrations that exceeded Mexican tolerance levels (405.5 to 987.8 μg/g for zinc; 4.2 to 7.3 μg/g for cadmium; and 7.2 to 9.9 μg/g for lead). Significant levels of DNA damage in oyster hemocytes were also detected. There was a significant, positive correlation between genotoxic damage and concentration of nickel or the presence of endosulfan II. Cellular viability evaluated by cytotoxic analyses was found to be high at 80%. Marked inhibition in activity of acetylcholinesterase (AChE ) and induction of glutathione S-transferase (GST) activity was noted. Data demonstrated a significant relation between AChE activity inhibition and presence of endosulfan II, γ-HCH, copper, lead, and 4,4-DDE, as well as between AChE and GST activity at different sites.

  18. Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy and Cellular Biology.

    Directory of Open Access Journals (Sweden)

    Hugo eGattuso

    2015-12-01

    Full Text Available We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects.

  19. Design and validation of a new method to detect and quantify residual host cell DNA in human recombinant erythropoietin (rEPO).

    Science.gov (United States)

    Zamanian, Shima; Mohammadi-Yeganeh, Samira; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-10-21

    During the purification of human recombinant erythropoietin (rEPO) from host cells, residual DNA may remain in final products. This contamination is a risk factor for patients and may result in the inactivation of some tumor suppressor genes or activation of oncogenes if its concentration is more than the standard defined by WHO. Based on WHO's criteria, acceptable level of residual DNA in biopharmaceuticals is less than 10-100 pg/dose. In this study, we have designed a sensitive and specific quantitative real-time polymerase chain reaction (PCR) assay for the detection of residual DNA in human rEPO products. All reported sequences of CHO's GAPDH gene were retrieved from GenBank, and a multiple alignment was performed using Mega 6 software to find conserved regions of the gene. Primers and probe were designed by AlleleID7 software for the highly conserved region. Quantitative real-time PCR showed an R 2 value more than 0.99 and the efficiency equal to 101% indicating a highly accurate and efficiency of the reaction, respectively. Based on the standard curve, the limit of detection of the assay was determined to be 10 copies/µL (0.00967 fg/µL). In addition, the inter- and intra-assay of the test were determined to be 1.14% and 0.65%, respectively, which are in acceptable range according to the WHO's guidelines.

  20. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Yang, Jianyi; Peng, Zhenling; Uversky, Vladimir N; Kurgan, Lukasz

    2015-09-14

    We provide first large scale analysis of the peculiarities of surface areas of 5658 dissimilar (below 50% sequence similarity) proteins with known 3D-structures that bind to proteins, DNA or RNAs. We show here that area of the protein surface is highly correlated with the protein length. The size of the interface surface is only modestly correlated with the protein size, except for RNA-binding proteins where larger proteins are characterized by larger interfaces. Disordered proteins with disordered interfaces are characterized by significantly larger per-residue areas of their surfaces and interfaces when compared to the structured proteins. These result are applicable for proteins involved in interaction with DNA, RNA, and proteins and suggest that disordered proteins and binding regions are less compact and more likely to assume extended shape. We demonstrate that disordered protein binding residues in the interfaces of disordered proteins drive the increase in the per residue area of these interfaces. Our results can be used to predict in silico whether a given protomer from the DNA, RNA or protein complex is likely to be disordered in its unbound form. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly.

    Science.gov (United States)

    Hori, Takanori; Takeuchi, Hiroaki; Saito, Hideki; Sakuma, Ryuta; Inagaki, Yoshio; Yamaoka, Shoji

    2013-07-01

    Since HIV-1 replication is modulated at multiple stages by host cell factors, identification and characterization of those host cell factors are expected to contribute to the development of novel anti-HIV therapeutics. Previous studies showed that a C-terminally truncated cytosolic form of cleavage and polyadenylation-specific factor 6 (CPSF6-358) inhibits HIV-1 infection through interference with HIV-1 trafficking to the nucleus. Here we identified and characterized a different configuration of C-terminally truncated human CPSF6 (hCPSF6-375) through cDNA expression cloning coupled with ganciclovir-mediated lethal selection. Notably, hCPSF6-375, but not mouse CPSF6-358 (mCPSF6-358) as previously reported, remarkably interfered with viral cDNA synthesis after HIV-1 infection. Moreover, we found that hCPSF6-375 aberrantly accelerated the disassembly of the viral capsid in target cells, while CPSF6-358 did not. Sequence comparison of CPSF6-375 and CPSF6-358 cDNAs showed a lack of exon 6 and additional coding sequence for 54 amino acid residues in the C terminus of hCPSF6-375. Mutational analyses revealed that the residues encoded by exon 6, but not the C-terminal 54 residues in hCPSF6-375, is responsible for impaired viral cDNA synthesis by hCPSF6-375. This is the first report demonstrating a novel mode of HIV-1 inhibition by truncated forms of CPSF6 that involves rapid capsid disassembly and inhibition of viral cDNA synthesis. These findings could facilitate an increased understanding of viral cDNA synthesis in light of the viral capsid disassembly.

  2. Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA.

    Science.gov (United States)

    Kondo, Keiko; Mashima, Tsukasa; Oyoshi, Takanori; Yagi, Ryota; Kurokawa, Riki; Kobayashi, Naohiro; Nagata, Takashi; Katahira, Masato

    2018-02-12

    The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.

  3. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    International Nuclear Information System (INIS)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B.

    2000-01-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  4. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  5. The DNA damage repair protein Ku70 interacts with FOXO4 to coordinate a conserved cellular stress response

    NARCIS (Netherlands)

    A.B. Brenkman (Arjan); N.J.F. van den Broek (Niels); P.L.J. de Keizer (Peter); D.C. van Gent (Dik); B.M. Burgering (Boudewijn)

    2010-01-01

    textabstractIn this study, we searched for proteins regulating the tumor suppressor and life-span regulator FOXO4. Through an unbiased tandem-affinity purification strategy combined with mass spectrometry, we identified the heterodimer Ku70/Ku80 (Ku), a DNA double-strand break repair component.

  6. Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling.

    Science.gov (United States)

    Bristol, Molly L; Das, Dipon; Morgan, Iain M

    2017-09-21

    Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals.

  7. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.

    Directory of Open Access Journals (Sweden)

    Agata Jacewicz

    Full Text Available Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A, that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced k pol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.

  8. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Xiao, Zhao; Juan, Long; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P 0.05), with the exception of Treg cells, which were significantly

  9. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  10. Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Fugger, Kasper; Danielsen, Jannie Rendtlew

    2007-01-01

    in the C terminus of Xip1. The initial recruitment kinetics of Xip1 closely paralleled that of XRCC1, a central organizer of single strand break (SSB) repair, and its accumulation was both delayed and sustained when the detection of SSBs was abrogated by inhibition of PARP-1. Xip1 and XRCC1 stably...... identify the previously uncharacterized human protein Xip1 (C2orf13) as a novel component of the checkpoint response to DNA strand breaks. Green fluorescent protein-tagged Xip1 was rapidly recruited to sites of DNA breaks, and this accumulation was dependent on a novel type of zinc finger motif located...... interacted through recognition of CK2 phosphorylation sites in XRCC1 by the Forkhead-associated (FHA) domain of Xip1, and XRCC1 was required to maintain steady-state levels of Xip1. Moreover, Xip1 was phosphorylated on Ser-116 by ataxia telangiectasia-mutated in response to ionizing radiation, further...

  11. A DNA Vaccine-Encoded Nucleoprotein of Influenza Virus Fails To Induce Cellular Immune Responses in a Diabetic Mouse Model▿

    OpenAIRE

    Jamali, Abbas; Sabahi, Farzaneh; Bamdad, Taravat; Hashemi, Hamidreza; Mahboudi, Fereidoun; Kheiri, Masume Tavasoti

    2010-01-01

    International audience; Influenza virus infections cause yearly epidemics and are a major cause of lower respiratory tract illnesses in humans worldwide. Influenza virus has long been recognized to be associated with higher morbidity and mortality in diabetic patients. Vaccination is an effective tool to prevent influenza virus infection in this group of patients. Vaccines employing recombinant-DNA technologies are an alternative to inactivated virus and live attenuated virus vaccines. Intern...

  12. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins

    Directory of Open Access Journals (Sweden)

    Sailaja Gangadhara

    2017-12-01

    Full Text Available Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1. To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP, and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env. DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN-γ, and spleen cells producing interleukin (IL-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  13. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-12-14

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.

  14. An improved and robust DNA immunization method to develop antibodies against extra-cellular loops of multi-transmembrane proteins

    Science.gov (United States)

    Hazen, Meredith; Bhakta, Sunil; Vij, Rajesh; Randle, Steven; Kallop, Dara; Chiang, Vicki; Hötzel, Isidro; Jaiswal, Bijay S; Ervin, Karen E; Li, Bing; Weimer, Robby M; Polakis, Paul; Scheller, Richard H; Junutula, Jagath R; Hongo, Jo-Anne S

    2014-01-01

    Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation. PMID:24121517

  15. Cytotoxicity, mutagenicity, cellular uptake, DNA and glutathione interactions of lipophilic trans-platinum complexes tethered to 1-adamantylamine

    Czech Academy of Sciences Publication Activity Database

    Halámiková, Anna; Heringová, Pavla; Kašpárková, Jana; Intini, F.P.; Natile, G.; Nemirovski, A.; Gibson, D.; Brabec, Viktor

    2008-01-01

    Roč. 102, 5-6 (2008), s. 1077-1089 ISSN 0162-0134 R&D Projects: GA ČR(CZ) GA305/05/2030; GA MZd(CZ) NR8562; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * platinum * cancer Subject RIV: BO - Biophysics Impact factor: 3.133, year: 2008

  16. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response.

    Science.gov (United States)

    Cataldo, Alessandra; Cheung, Douglas G; Balsari, Andrea; Tagliabue, Elda; Coppola, Vincenzo; Iorio, Marilena V; Palmieri, Dario; Croce, Carlo M

    2016-01-05

    The identification of the molecular mechanisms involved in the establishment of the resistant phenotype represents a critical need for the development of new strategies to prevent or overcome cancer resistance to anti-neoplastic treatments.Breast cancer is the leading cause of cancer-related deaths in women, and resistance to chemotherapy negatively affects patient outcomes. Here, we investigated the potential role of miR-302b in the modulation of breast cancer cell resistance to cisplatin.miR-302b overexpression enhances sensitivity to cisplatin in breast cancer cell lines, reducing cell viability and proliferation in response to the treatment. We also identified E2F1, a master regulator of the G1/S transition, as a direct target gene of miR-302b. E2F1 transcriptionally activates ATM, the main cellular sensor of DNA damage. Through the negative regulation of E2F1, miR-302b indirectly affects ATM expression, abrogating cell-cycle progression upon cisplatin treatment. Moreover miR-302b, impairs the ability of breast cancer cells to repair damaged DNA, enhancing apoptosis activation following cisplatin treatment.These findings indicate that miR-302b plays a relevant role in breast cancer cell response to cisplatin through the modulation of the E2F1/ATM axis, representing a valid candidate as therapeutic tool to overcome chemotherapy resistance.

  17. Reducing residual stresses and deformations in selective laser melting through multi-level multi-scale optimization of cellular scanning strategy

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential......, there is still dearth of techniques to tackle the issue. Numerical modelling of selective laser melting process has thus been an active area of research in the last few years. However, large computational resource requirements have slowed the usage of these models for optimizing the process.In this paper......, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process...

  18. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  19. Effect of alterations of key active site residues in O6-alkylguanine-DNA Alkyltransferase on its ability to modulate the genotoxicity of 1,2-dibromoethane.

    Science.gov (United States)

    Liu, Liping; Watanabe, Kengo; Fang, Qingming; Williams, Kevin M; Guengerich, F Peter; Pegg, Anthony E

    2007-01-01

    The production of mutations and the reduction in survival of cells treated with alpha,omega-dihaloalkanes is greatly enhanced by the presence of O6-alkylguanine-DNA alkyltransferase (AGT), a DNA repair protein that removes O6-alkylguanine adducts from DNA [Liu, L., Hachey, D. L., Valadez, G., Williams, K. M., Guengerich, F. P., Loktionova, N. A., Kanugula, S., and Pegg, A. E. (2004) J. Biol. Chem. 279, 4250-4259]. The effects of alterations to key residues in the active site of AGT were studied using AGTs with point mutations. It was found that mutants of AGT at positions Tyr114, Arg128, Pro140, Gly156, Gly160, and Tyr158 did not bring about the increase in genotoxicity of 1,2-dibromoethane seen with wild-type AGT, although these mutants, with the exception of those at Tyr114 and Arg128, are known to have sufficient AGT repair function to be able to protect cells from alkylating agents. The R128A mutant was able to react with 1,2-dibromoethane at the Cys145 acceptor site, but the resulting AGT-Cys145S-(CH2)2Br was much less able to produce a covalent adduct with DNA. This result is explained by the need for AGT to induce a structural change in the DNA "flipping" of a guanine nucleotide into the substrate binding pocket where Cys145 is located since the side chain of residue Arg128 plays a critical role in this reaction. Point mutations in AGT at the other sites (Y114A, P140K, and Y158H) reduced the ability of the protein to react with 1,2-dibromoethane as measured by the loss of activity. These results were confirmed by MS analysis of the tryptic peptide that contains the modified Cys145. There was no change in the stability of the AGT-Cys145S-(CH2)2Br intermediate formed in mutants Y158H and P140K. The reaction was studied in detail with mutant P140K using dihaloalkanes of different length; no effect of the mutations was seen with dibromomethane, but an enhanced difference was observed with 1,3-dibromopropane and 1,5-dibromopentane. These results show that even

  20. Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours

    International Nuclear Information System (INIS)

    Menegakis, Apostolos; Eicheler, Wolfgang; Yaromina, Ala; Thames, Howard D.; Krause, Mechthild; Baumann, Michael

    2011-01-01

    Purpose: Micromilieu-dependent quantification of γH2AX after irradiation in vivo and correlation with local tumour control. Materials and methods: Local tumour control was evaluated after irradiation of FaDu and SKX xenografts with ambient single doses. γH2AX foci were quantified in perfused and unperfused regions after different irradiation doses and at different time points. Results: The TCD 50 of FaDu was 2-times higher compared to SKX (28.0 Gy [95% C.I. 24.6; 31.3 Gy] for FaDu; 14.9 Gy [10.9; 18.9] for SKX, p < 0.001). The induction of foci did not differ between the tumour models. Residual foci were twice higher in perfused SKX regions compared to FaDu, no difference was observed in the non-perfused region between both tumour models. The number of residual foci increased with a 2-times higher slope in perfused SKX-regions compared to FaDu, while no difference was detected in unperfused regions. Already within the perfused regions, this slope decreased with distance from perfused vessels. Conclusion: The dose-response of residual γH2AX foci is highly dependent on tumour cell oxygenation in well perfused areas. This dependence decreases further away from tumour vessels. Only γH2AX evaluation in perfused tumour areas can distinguish between the different radiocurability of the two tumour models.

  1. Studies on the repair of double strand break of DNA and cellular carcinogenesis, and consideration on the concept of extinction of nuclear power

    International Nuclear Information System (INIS)

    Teraoka, Hirobumi

    2013-01-01

    This paper describes the relationship between the repair of double strand break (DSB) of DNA and cellular carcinogenesis mainly on author's investigations, and his recent thought aiming at the extinction of nuclear power. The molecular repairing system is explained about DNA DSB induced by radiation and chemicals. When DSB occurs, nucleosome consisting from 4 core-histones participates to link the broken ends and then repair mechanisms of homologous recombination (HRR) and non-homologous end joining (NHEJ) begin to work. The latter is dominant in mammalians. Thus the genetic defect in these systems of DSB response and repair is a course of disorders such as ataxia telangiectasia (AT) (DSB sensor defect), genetic breast cancer (HRR defect), and radiosensitive-severe combined immunodeficiency (RS-SCID) (NHEJ defect), all of which result in cancer formation. NHEJ repair is known to be error-prone. Against multi-step carcinogenesis where accumulated gene mutations lead to the cancer formation, the author thinks chromosomal instability is one of important carcinogenic causes: the instability can be a trigger of producing cancer stem cells because the cells can be yielded from mouse embryonic stem cells where DSB is shown to participate in the process. Low dose radiation produces a small amount of DSB, to which the repair response is less sensitive at G2/M checkpoint, ultimately leading to genomic instability. Considering effects of the low dose radiation exposure above, and of the internal exposure to 3 H-thymidine beta ray in cells, of indoor Rn participating 16% of lung cancer incidence (Canadian epidemiological data) and so on, together with moral and social responsibility of scientist and technologist, the author says to have attained to the concept of the ''Extinction of Nuclear Power''. (T.T)

  2. Analysis for residual host cell proteins and DNA in process streams of a recombinant protein product expressed in Escherichia coli cells.

    Science.gov (United States)

    Rathore, Anurag Singh; Sobacke, S E; Kocot, T J; Morgan, D R; Dufield, R L; Mozier, N M

    2003-08-21

    Analyses of crude samples from biotechnology processes are often required in order to demonstrate that residual host cell impurities are reduced or eliminated during purification. In later stages of development, as the processes are further developed and finalized, there is a tremendous volume of testing required to confirm the absence of residual host cell proteins (HCP) and DNA. Analytical tests for these components are very challenging since (1). they may be present at levels that span a million-fold range, requiring substantial dilutions; (2). are not a single component, often existing as fragments and a variety of structures; (3). require high sensitivity for final steps in process; and (4). are present in very complex matrices including other impurities, the product, buffers, salts and solvents. Due to the complex matrices and the variety of potential analytes, the methods of analysis are not truly quantitative for all species. Although these limitations are well known, the assays are still very much in demand since they are required for approval of new products. Methods for final products, described elsewhere, focus on approaches to achieve regulatory requirements. The study described herein will describe the technical rationale for measuring the clearance of HCP and DNA in the entire bioprocessing to purification from an Escherichia coli-derived expression system. Three analytical assays, namely, reversed-phase high-performance liquid chromatography (RP-HPLC), enzyme-linked immunosorbent assay (ELISA), and Threshold Total DNA Assay, were utilized to quantify the protein product, HCP and DNA, respectively. Product quantification is often required for yield estimation and is useful since DNA and HCP results are best expressed as a ratio to product for calculation of relative purification factors. The recombinant E. coli were grown to express the protein of interest as insoluble inclusion bodies (IB) within the cells. The IB were isolated by repeated

  3. Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis

    International Nuclear Information System (INIS)

    Meyers-Schoene, L.; Shugart, L.R.; Beauchamp, J.J.; Walton, B.T.

    1993-01-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of freshwater ecosystems where both low-level radioactive and nonradioactive contaminants are present. The pond slider (Trachemys scripta) and common snapping turtle (Chelydra serpentina) were analyzed for the presence of 90 Sr, 137 Cs, 60 Co, and Hg, radionuclides and chemicals known to be present at the contaminated site, and single-strand breaks in liver DNA. The integrity of the DNA was examined by the alkaline unwinding assay, a technique that detects strand breaks as a biological marker of possible exposure to genotoxic agents. This measure of DNA damage was significantly increased in both species of turtles at the contaminated site compared with turtles of the same species at a reference site, and shows that contaminant-exposed populations were under more severe genotoxic stress than those at the reference site. The level of strand breaks observed at the contaminated site was high and in the range reported for other aquatic species exposed to deleterious concentrations of genotoxic agents such as chemicals and ionizing radiation. Statistically significantly higher concentrations of radionuclides and Hg were detected in the turtles from the contaminated area. Mercury concentrations were significantly higher in the more carnivorous snapping turtle compared with the slider; however, both species were effective monitors of the contaminants

  4. Fit for purpose? A case study: validation of immunological endpoint assays for the detection of cellular and humoral responses to anti-tumour DNA fusion vaccines.

    Science.gov (United States)

    Mander, Ann; Chowdhury, Ferdousi; Low, Lindsey; Ottensmeier, Christian H

    2009-05-01

    Clinical trials are governed by an increasingly stringent regulatory framework, which applies to all levels of trial conduct. Study critical immunological endpoints, which define success or failure in early phase clinical immunological trials, require formal pre-trial validation. In this case study, we describe the assay validation process, during which the sensitivity, and precision of immunological endpoint assays were defined. The purpose was the evaluation of two multicentre phase I/II clinical trials from our unit in Southampton, UK, which assess the effects of DNA fusion vaccines on immune responses in HLA-A2+ patients with carcinoembryonic antigen (CEA)-expressing malignancies and prostate cancer. Validated immunomonitoring is being performed using ELISA and IFNgamma ELISPOTs to assess humoral and cellular responses to the vaccines over time. The validated primary endpoint assay, a peptide-specific CD8+ IFNgamma ELISPOT, was tested in a pre-trial study and found to be suitable for the detection of low frequency naturally occurring CEA- and prostate-derived tumour-antigen-specific T cells in patients with CEA-expressing malignancies and prostate cancer.

  5. Using high-sensitivity sequencing for the detection of mutations in BTK and PLCγ2 genes in cellular and cell-free DNA and correlation with progression in patients treated with BTK inhibitors.

    Science.gov (United States)

    Albitar, Adam; Ma, Wanlong; DeDios, Ivan; Estella, Jeffrey; Ahn, Inhye; Farooqui, Mohammed; Wiestner, Adrian; Albitar, Maher

    2017-03-14

    Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). We developed a high sensitivity (HS) assay utilizing wild-type blocking polymerase chain reaction achieved via bridged and locked nucleic acids. We used this high sensitivity assay in combination with Sanger sequencing and next generation sequencing (NGS) and tested cellular DNA and cell-free DNA (cfDNA) from patients with CLL treated with the BTK inhibitor, ibrutinib. We also tested ibrutinib-naïve patients with CLL. HS testing achieved 100x greater sensitivity than Sanger. HS Sanger sequencing was capable of detecting sequencing, plasma cfDNA is more reliable than cellular DNA in detecting mutations. Our studies indicate that wild-type blocking and HS sequencing is necessary for proper and early detection of BTK or PLCγ2 mutations in monitoring patients treated with BTK inhibitors. Furthermore, cfDNA from plasma is very reliable sample-type for testing.

  6. Residue-and-polymer-free graphene transfer: DNA-CTMA/graphene/GaN bio-hybrid photodiode for light-sensitive applications

    Science.gov (United States)

    Reddy, M. Siva Pratap; Park, Herie; Lee, Jung-Hee

    2018-02-01

    In this work, we present a residue-and-polymer-free graphene transfer method by using the adhesive force between graphene and a target substrate, the hydrophobic property of graphene, and the surface tension of the solutions. We used an n-type GaN substrate as the target substrate to make a photodiode (PD). Recently, the inclusion of biomolecules in photodetection technology has attracted considerable attention in the electronics and photonics research, particularly due to the rapid evolution of organic-inorganic bio-hybrid PDs (Bio-HPDs). This report presents a significant photoresponse of the bioinspired graphene-based PD fabricated with deoxyribonucleic acid-cetyltrimetylammonium chloride (DNA-CTMA) biomolecules on the n-type GaN substrate. Bio-HPDs respond to the infrared, visible, and ultraviolet wavelengths. Moreover, the Bio-HPDs show photosensitivities (Iphoto/Idark) of 21, 143, and 1194 for infrared, visible, and ultraviolet wavebands, respectively, which can be attributed to the integration of high-mobility graphene and photosensitive DNA-CTMA biomolecules. In addition, the corresponding charge transfer mechanisms in the PDs are explained by energy band diagrams.

  7. Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: use in lethal lesion determination

    International Nuclear Information System (INIS)

    Radford, I.R.

    1986-01-01

    The effect of three radiomodifying agents, cysteamine, hyperthermia, and hypoxia, on the induction of the major classes of X-ray-induced DNA lesions, was studied using mouse L cells and Chinese hamster V79 cells. The use of filter elution techniques allowed most of these studies to be conducted at X-ray doses within the survival-curve range. Cysteamine was found to protect against DNA single-strand breakage (ssb), DNA base damage, and DNA-protein crosslinkage. Hyperthermia had no effect on the level of DNA ssb or DNA base damage, but in L cells (but not in V79 cells) it increased the level of DNA-protein crosslinkage relative to DNA ssb. Hypoxia protected against DNA ssb, had no significant effect on the level of DNA base damage, and enhanced the level of DNA-protein crosslinkage relative to DNA ssb. These results support the previous suggestion that the X-ray-induced lethal lesion is DNA double-strand breakage. Implications of these findings for the mechanisms of formation of X-ray-induced DNA lesions are also discussed. (author)

  8. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  9. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  10. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  11. Deoxyribonucleoprotein structure and radiation injury - Cellular radiosensitivity is determined by LET-infinity-dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair

    Science.gov (United States)

    Lett, J. T.; Peters, E. L.

    1992-01-01

    Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.

  12. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    Science.gov (United States)

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Suk Hang Cheng

    Full Text Available Minimal residual disease, or MRD, is an important prognostic indicator in childhood acute lymphoblastic leukemia. In ALL-IC-BFM 2002 study, we employed a standardized method of flow cytometry MRD monitoring for multiple centers internationally using uniformed gating, and determined the relevant MRD-based risk stratification strategies in our local patient cohort. We also evaluated a novel method of PCR MRD quantitation using peripheral blood plasma. For the bone marrow flow MRD study, patients could be stratified into 3 risk groups according to MRD level using a single time-point at day-15 (Model I (I-A: 10%, or using two time-points at day-15 and day-33 (Model II (II-A: day-15<10% and day-33<0.01%, II-B: day-15 ≥ 10% or day-33 ≥ 0.01% but not both, II-C: day-15 ≥ 10% and day-33 ≥ 0.01%, which showed significantly superior prediction of relapse (p = .00047 and <0.0001 respectively. Importantly, patients with good outcome (frequency: 56.0%, event-free survival: 90.1% could be more accurately predicted by Model II. In peripheral blood plasma PCR MRD investigation, patients with day-15-MRD ≥ 10(-4 were at a significantly higher risk of relapse (p = 0.0117. By multivariate analysis, MRD results from both methods could independently predict patients' prognosis, with 20-35-fold increase in risk of relapse for flow MRD I-C and II-C respectively, and 5.8-fold for patients having plasma MRD of ≥ 10(-4. We confirmed that MRD detection by flow cytometry is useful for prognostic evaluation in our Chinese cohort of childhood ALL after treatment. Moreover, peripheral blood plasma DNA MRD can be an alternative where bone marrow specimen is unavailable and as a less invasive method, which allows close monitoring.

  14. Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction.

    Science.gov (United States)

    Cheng, Suk Hang; Lau, Kin Mang; Li, Chi Kong; Chan, Natalie P H; Ip, Rosalina K L; Cheng, Chi Keung; Lee, Vincent; Shing, Matthew M K; Leung, Alex W K; Ha, Shau Yin; Cheuk, Daniel K L; Lee, Anselm C W; Li, Chak Ho; Luk, Chung Wing; Ling, Siu Cheung; Hrusak, Ondrej; Mejstrikova, Ester; Leung, Yonna; Ng, Margaret H L

    2013-01-01

    Minimal residual disease, or MRD, is an important prognostic indicator in childhood acute lymphoblastic leukemia. In ALL-IC-BFM 2002 study, we employed a standardized method of flow cytometry MRD monitoring for multiple centers internationally using uniformed gating, and determined the relevant MRD-based risk stratification strategies in our local patient cohort. We also evaluated a novel method of PCR MRD quantitation using peripheral blood plasma. For the bone marrow flow MRD study, patients could be stratified into 3 risk groups according to MRD level using a single time-point at day-15 (Model I) (I-A: 10%), or using two time-points at day-15 and day-33 (Model II) (II-A: day-15<10% and day-33<0.01%, II-B: day-15 ≥ 10% or day-33 ≥ 0.01% but not both, II-C: day-15 ≥ 10% and day-33 ≥ 0.01%), which showed significantly superior prediction of relapse (p = .00047 and <0.0001 respectively). Importantly, patients with good outcome (frequency: 56.0%, event-free survival: 90.1%) could be more accurately predicted by Model II. In peripheral blood plasma PCR MRD investigation, patients with day-15-MRD ≥ 10(-4) were at a significantly higher risk of relapse (p = 0.0117). By multivariate analysis, MRD results from both methods could independently predict patients' prognosis, with 20-35-fold increase in risk of relapse for flow MRD I-C and II-C respectively, and 5.8-fold for patients having plasma MRD of ≥ 10(-4). We confirmed that MRD detection by flow cytometry is useful for prognostic evaluation in our Chinese cohort of childhood ALL after treatment. Moreover, peripheral blood plasma DNA MRD can be an alternative where bone marrow specimen is unavailable and as a less invasive method, which allows close monitoring.

  15. Modulation of glutathione peroxidase expression by selenium: effect on human MCF-7 breast cancer cell transfectants expressing a cellular glutathione peroxidase cDNA and doxorubicin-resistant MCF-7 cells.

    OpenAIRE

    Chu, F F; Esworthy, R S; Akman, S; Doroshow, J H

    1990-01-01

    We have studied the effect of selenium on the expression of a cellular glutathione peroxidase, GSHPx-1, in transfected MCF-7 cells and in doxorubicin-resistant (Adrr) MCF-7 cells. A GSHPx-1 cDNA with a Rous Sarcoma virus promoter was transfected into a human mammary carcinoma cell line, MCF-7, which has very low endogenous cytosolic glutathione (GSH) peroxidase activity and no detectable message. The transfectant with the highest GSH peroxidase activity among the isolates, MCF-7H6, was charac...

  16. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  17. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  18. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.

    Science.gov (United States)

    Kisby, Glen E; Fry, Rebecca C; Lasarev, Michael R; Bammler, Theodor K; Beyer, Richard P; Churchwell, Mona; Doerge, Daniel R; Meira, Lisiane B; Palmer, Valerie S; Ramos-Crawford, Ana-Luiza; Ren, Xuefeng; Sullivan, Robert C; Kavanagh, Terrance J; Samson, Leona D; Zarbl, Helmut; Spencer, Peter S

    2011-01-01

    Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O⁶-methyldeoxyguanosine lesions, O⁶-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O⁶-mG DNA methyltransferase (MGMT) showed elevated O⁶-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease.

  19. CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

    Science.gov (United States)

    Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao

    2014-09-01

    It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed

  20. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... with the optimized DNA vaccine resulted in specific, dose-dependent immunity down to the lowest dose (200μg DNA/vaccination). Both the antibody-mediated and the recall lymphocyte immune responses demonstrated high reactivity against vaccine-specific strains and cross-reactivity to vaccine-heterologous strains...

  1. Conserved residues in the delta subunit help the E. coli clamp loader, gamma complex, target primer-template DNA for clamp assembly.

    Science.gov (United States)

    Chen, Siying; Coman, Maria Magdalena; Sakato, Miho; O'Donnell, Michael; Hingorani, Manju M

    2008-06-01

    The Escherichia coli clamp loader, gamma complex (gamma(3)deltadelta'lambdapsi), catalyzes ATP-driven assembly of beta clamps onto primer-template DNA (p/tDNA), enabling processive replication. The mechanism by which gamma complex targets p/tDNA for clamp assembly is not resolved. According to previous studies, charged/polar amino acids inside the clamp loader chamber interact with the double-stranded (ds) portion of p/tDNA. We find that dsDNA, not ssDNA, can trigger a burst of ATP hydrolysis by gamma complex and clamp assembly, but only at far higher concentrations than p/tDNA. Thus, contact between gamma complex and dsDNA is necessary and sufficient, but not optimal, for the reaction, and additional contacts with p/tDNA likely facilitate its selection as the optimal substrate for clamp assembly. We investigated whether a conserved sequence-HRVW(279)QNRR--in delta subunit contributes to such interactions, since Tryptophan-279 specifically cross-links to the primer-template junction. Mutation of delta-W279 weakens gamma complex binding to p/tDNA, hampering its ability to load clamps and promote proccessive DNA replication, and additional mutations in the sequence (delta-R277, delta-R283) worsen the interaction. These data reveal a novel location in the C-terminal domain of the E. coli clamp loader that contributes to DNA binding and helps define p/tDNA as the preferred substrate for the reaction.

  2. The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment.

    Science.gov (United States)

    Harris, Leanne; McFarlane-Majeed, Laura; Campos-León, Karen; Roberts, Sally; Parish, Joanna L

    2017-01-01

    In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2 Y131A ) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2 Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2 WT ), the chromatin-bound pool of E2 Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2 Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2 WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2 Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes. Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection

  3. Cellular proviral HIV type 1 DNA load persists after long-term RT-inhibitor therapy in HIV type 1 infected persons

    NARCIS (Netherlands)

    Bruisten, S. M.; Reiss, P.; Loeliger, A. E.; van Swieten, P.; Schuurman, R.; Boucher, C. A.; Weverling, G. J.; Huisman, J. G.

    1998-01-01

    In a set of 42 antiretroviral naive HIV-1 infected persons who were treated with either Zidovudine (AZT) monotherapy, or a combination of AZT + ddC (Zalcitabine) or AZT + ddI (Didanosine), the HIV-1 DNA load was measured by competitive polymerase chain reaction (PCR) and related to the HIV-1 RNA

  4. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism.

    Science.gov (United States)

    Liu, Juan; Zhou, Yayan; Hingorani, Manju M

    2017-09-22

    DNA polymerases depend on circular sliding clamps for processive replication. Clamps must be loaded onto primer-template DNA (ptDNA) by clamp loaders that open and close clamps around ptDNA in an ATP-fueled reaction. All clamp loaders share a core structure in which five subunits form a spiral chamber that binds the clamp at its base in a twisted open form and encloses ptDNA within, while binding and hydrolyzing ATP to topologically link the clamp and ptDNA. To understand how clamp loaders perform this complex task, here we focused on conserved arginines that might play a central coordinating role in the mechanism because they can alternately contact ptDNA or Walker B glutamate in the ATPase site and lie close to the clamp loader-clamp-binding interface. We mutated Arg-84, Arg-88, and Arg-101 in the ATPase-active B, C, and D subunits of Saccharomyces cerevisiae replication factor C (RFC) clamp loader, respectively, and assessed the impact on multiple transient events in the reaction: proliferating cell nuclear antigen (PCNA) clamp binding/opening/closure/release, ptDNA binding/release, and ATP hydrolysis/product release. The results show that these arginines relay critical information between the PCNA-binding, DNA-binding, and ATPase sites at all steps of the reaction, particularly at a checkpoint before RFC commits to ATP hydrolysis. Moreover, their actions are subunit-specific with RFC-C Arg-88 serving as an accelerator that enables rapid ATP hydrolysis upon contact with ptDNA and RFC-D Arg-101 serving as a brake that confers specificity for ptDNA as the correct substrate for loading PCNA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Differential humoral and cellular immunity induced by vaccination using plasmid DNA and protein recombinant expressing the NS3 protein of dengue virus type 3.

    Science.gov (United States)

    Hurtado-Melgoza, M L; Ramos-Ligonio, A; Álvarez-Rodríguez, L M; Meza-Menchaca, T; López-Monteon, A

    2016-12-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serine-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work we evaluated the potential of the NS3 (protease domain) as a protective antigen by comparing the administration of a recombinant protein versus a DNA vaccine in the mouse model. BALB/c mice were immunized with the recombinant protein NS3-DEN3 via intraperitoneal and with plasmid pcDNA3/NS3-DEN3 intramuscularly and the immune response was evaluated. The activity of T lymphocytes was analyzed by the MTT assay, and cells of mice immunized with the recombinant protein showed no activity when stimulated with the homologous protein. However, cells from mice immunized with DNA, responded to stimulation with the recombinant protein. When the expression (RT-PCR) and cytokine production (ELISA) was evaluated in the splenocytes, different behavior depending on the type of immunization was observed, splenocytes of mice immunized with the recombinant protein expressed cytokines such as IL-4, IL-10 and produced high concentrations of IL-1, IL-6 and TNFα. Splenocytes from mice immunized with DNA expressed IL-2 and IFNγ and did not produce IL-6. In addition, immunization with the recombinant protein induced the production of antibodies that are detected up to a dilution 1:3200 by ELISA and Western blot assays, however, the serum of mice immunized with DNA presented no detectable antibody titers. The results obtained in this study show that administration of pcDNA3/NS3-DEN3 induces a favorable response in the activation of T lymphocytes with low production of specific

  6. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    Science.gov (United States)

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  7. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  8. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  9. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2 '-Deoxyuridine in Cellular DNA under Various Conditions

    Czech Academy of Sciences Publication Activity Database

    Ligasová, A.; Liboska, Radek; Rosenberg, Ivan; Koberna, K.

    2015-01-01

    Roč. 10, č. 7 (2015), e0132393/1-e0132393/16 E-ISSN 1932-6203 R&D Projects: GA TA ČR TA03010598; GA TA ČR TA03010719; GA MŠk(CZ) LO1304; GA MZd NV15-31604A Grant - others:GA TA ČR(CZ) TE02000058 Program:TE Institutional support: RVO:61388963 Keywords : anti-halodeoxyuridine antibodies * affinity assay * DNA Subject RIV: CE - Biochemistry Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132393

  10. Molecular aspects of cellular responses to radiotherapy

    International Nuclear Information System (INIS)

    Yarnold, John

    1997-01-01

    Advances have been made in unravelling the molecular chains of cause and effect that determine cellular responses to radiotherapy, including cell cycle arrest, DNA repair and apoptosis. To begin with, cells must have mechanisms that enable them to sense DNA damage. Little was known about this until recently, when a DNA-protein kinase (DNA-PK) system for detecting radiation-induced strand breaks was described. The ataxia telengiectasia (ATM) gene has amino acid sequence similarities to DNA-PK, raising the possibility that the ATM protein also functions in some way as a sensor of DNA damage. However, just knowing the DNA damage is present is not enough. Signals must be transmitted via afferent biochemical pathways to proteins, such as p53, that determine which cellular responses are activated. The responses include cell cycle arrest, apoptosis and DNA repair, all of which relate closely to loss of clonogenic capacity and the outcome of treatment in our patients

  11. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    Science.gov (United States)

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  12. Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex.

    Science.gov (United States)

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru

    2014-08-01

    Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at

  13. Direct determination of the redox status of cysteine residues in proteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Satoshi [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Tatenaka, Yuki; Ohuchi, Yuya [Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202 (Japan); Hisabori, Toru, E-mail: thisabor@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan)

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  14. Effects of garlic on cellular doubling time and DNA strand breaks caused by UV light and BPL, enhanced with catechol and TPA

    International Nuclear Information System (INIS)

    Baturay, N.Z.; Gayle, F.; Liu, S.; Kreidinger, C.

    1995-01-01

    3T3 cell cultures were exposed to UV light and Beta-Propiolactone. Neoplastic cell transformation (TF) was demonstrated after concurrent addition of catechol, or repeated addition of TPA. Addition of garlic to all fluences/concentrations of the carcinogen/cocarcinogen/promoter groups reduced the number of transformed foci/dish by at least 40%. Since the cell cycle is prolonged following exposure to carcinogens, it is likely the cell requires a longer time to repair this damage. The doubling time (DT) was extended from 12 to 36 hrs. when cells were exposed to BPL and from 12 o 28 hrs. when cells were exposed to 3.0J/M2/sec. If an anticarcinogenic compound is also added, it is reasonable to assume that the cell cycle may be further elongated. The cell cycle, denoted by DT was lengthened from 12 to 47 hrs and from 12 to 86 hrs for BPL and UVC, respectively. The extensions occurred in a dope dependent manner. The concentrations of the cocarcinogen and promoter remained constant throughout the experiment. When strand breaks were determined at the same dose sequences, by alkaline elution, more repair was seen with garlic where the lowest and middle doses of BPL were used and almost no decrease in % DNA eluted was seen with UVC exposed cells. With catechol, there was a two-fold decrease in % DNA eluted at the lowest and middle fluences. When TPA was added, all three fluences of UVC showed more than a threefold decrease in % DNA eluted. BPS with both TPA and catechol, again showed a reduction in strand breaks only low and middle doses. Both a direct-acting alkylating agent, BPL, and a physical carcinogen, UVC, were homogeneously affected, in terms of doubling time, but not when strand break repair was examined. A separate mechanism may be responsible for repair, and the mechanism associated with combinations of physical carcinogen enhancing agents combined with some non-carcinogens may be more profoundly affected by some natural products

  15. Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring PtII chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, Jana; Suchánková, T.; Halámiková, Anna; Zerzánková, Lenka; Vrána, Oldřich; Margiotta, N.; Natile, G.; Brabec, Viktor

    2010-01-01

    Roč. 79, č. 4 (2010), s. 552-564 ISSN 0006-2952 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) IAA400040803; GA AV ČR(CZ) GD301/09/H004 Grant - others:GA MŠk(CZ) OC09018 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * platinum * cancer Subject RIV: BO - Biophysics Impact factor: 4.889, year: 2010

  16. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  17. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  18. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  19. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches

    Science.gov (United States)

    Martínez, Alba; Sesé, Marta; Losa, Javier Hernandez; Robichaud, Nathaniel; Sonenberg, Nahum; Aasen, Trond; Ramón y Cajal, Santiago

    2015-01-01

    Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D) form of eIF4E, but not phospho-dead (S209A) eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin), starvation (glucose+glutamine withdrawal), and oxidative stress (arsenite). De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1). We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy. PMID:25923732

  20. Detection of cellular heterogeneity by DNA ploidy, 17 chromosome, and p53 gene in primary carcinoma and metastasis in a case of ovarian cancer.

    Science.gov (United States)

    Calugi, A; Eleuteri, P; Cavallo, D; Naso, G; Albonici, L; Lombardi, M P; Manzari, V; Romanini, C; DeVita, R

    1996-01-01

    An unusual case of a patient with ovarian carcinoma carrying the p53 point mutation in both metastases (omentum and lymph node), but not in the primary tumor, is described. The presence of a p53 single mutation (G:A) at the second base of codon 248 was examined by polymerase chain reaction-amplification refractory mutation system (PCR-ARMS) analysis. This case was examined also by fluorescent in situ hybrization (FISH) analysis and flow cytometry (FCM) to obtain further information at the single cell level and to detect heterogeneity within a population of cells. FCM analysis evidenced the same multiple aneuploid cell subpopulations in primary and in metastatic samples showing the presence of a cellular heterogeneity. FISH analysis showed a disomic condition for the 17 chromosome in the primary and in one metastasis, while in the other metastasis a monosomic together with a disomic subpopulation was revealed. Our results confirm the independent clonal evolution of the metastasis. The late mutation event observed only in metastatic specimens suggests the hypothesis that in the primary tumor the wild-type gene either does not perform its control role for unknown genetic structural events or the p53 gene in this case does not play a critical role in carcinogenesis.

  1. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress.

    Science.gov (United States)

    Manjulatha, M; Sreevathsa, Rohini; Kumar, A Manoj; Sudhakar, Chinta; Prasad, T G; Tuteja, Narendra; Udayakumar, M

    2014-02-01

    Peanut, a major edible oil seed crop globally is predominantly grown under rainfed conditions and suffers yield losses due to drought. Development of drought-tolerant varieties through transgenic technology is a valid approach. Besides superior water relation traits like water mining, intrinsic cellular level tolerance mechanisms are important to sustain the growth under stress. To achieve this objective, the focus of this study was to pyramid drought adaptive traits by overexpressing a stress responsive helicase, PDH45 in the background of a genotype with superior water relations. PCR, Southern, and RT-PCR analyses confirmed stable integration and expression of the PDH45 gene in peanut transgenics. At the end of T₃ generation, eight transgenic events were identified as promising based on stress tolerance and improvement in productivity. Several transgenic lines showed stay-green phenotype and increased chlorophyll stability under stress and reduced chlorophyll retardation under etherel-induced simulated stress conditions. Stress-induced root growth was also substantially higher in the case of transformants. This was reflected in increased WUE (low Δ¹³C) and improved growth rates and productivity. The transgenics showed 17.2 and 26.75 % increase in yield under non-stress and stress conditions over wild type ascertaining the feasibility of trait pyramiding strategy for the development of drought-tolerant peanut.

  2. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus Cholera Toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity

    OpenAIRE

    Maeto, Cynthia Alejandra; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, Maria Magdalena

    2017-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after thei...

  3. Synthesis, characterization, cellular uptake and interaction with native DNA of a bis(pyridyl)-1,2,4-oxadiazole copper(II) complex.

    Science.gov (United States)

    Terenzi, Alessio; Barone, Giampaolo; Piccionello, Antonio Palumbo; Giorgi, Gianluca; Guarcello, Annalisa; Portanova, Patrizia; Calvaruso, Giuseppe; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-10-14

    The copper(II) complex of 3,5-bis(2'-pyridyl)-1,2,4-oxadiazole was synthesized and characterized. X-Ray crystallography revealed that the complex consists of a discrete [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) cation and two ClO(4)(-) anions. The Cu(II) coordination sphere has a distorted octahedral geometry and each ligand chelates the copper ion through the N(4) nitrogen of the oxadiazole ring and the nitrogen of one pyridine moiety. The coordinated water molecules are in cis position and each of them is H-bonded to the 5-pyridyl nitrogen of the oxadiazole ligand and to an oxygen of the perchlorate anion. Biological assays showed that, despite the free ligand not being effective, [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) reduced the vitality of human hepatoblastoma HepG2 and colorectal carcinoma HT29 cells in a dose- and time-dependent manner. The interaction of the cationic copper complex with native DNA was investigated by variable-temperature UV-vis spectroscopy, circular dichroism, viscosity and gel electrophoresis, indicating that it is a groove binder with binding constant K(b) = 2.2 × 10(4) M(-1).

  4. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  5. Cellular Factors Shape 3D Genome Landscape

    Science.gov (United States)

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  6. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  7. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export.

    Science.gov (United States)

    Gatza, Michael L; Dayaram, Tajhal; Marriott, Susan J

    2007-12-14

    The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS). We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284) within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284. Ubiquitination of these residues facilitates the dissociation of Tax

  8. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schilling-Toth, Boglarka; Sandor, Nikolett; Kis, Eniko [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary); Kadhim, Munira [Genomic Instability Research Group, School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Safrany, Geza, E-mail: safrany.geza@osski.hu [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary); Hegyesi, Hargita [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary)

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2 Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  9. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-kappaB1 DNA binding domain.

    Science.gov (United States)

    Lambert, Cherie; Li, Jimei; Jonscher, Karen; Yang, Teng-Chieh; Reigan, Philip; Quintana, Megan; Harvey, Jean; Freed, Brian M

    2007-07-06

    Cigarette smoke is a potent inhibitor of pulmonary T cell responses, resulting in decreased immune surveillance and an increased incidence of respiratory tract infections. The alpha,beta-unsaturated aldehydes in cigarette smoke (acrolein and crotonaldehyde) inhibited production of interleukin-2 (IL-2), IL-10, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha by human T cells but did not inhibit production of IL-8. The saturated aldehydes (acetaldehyde, propionaldehyde, and butyraldehyde) in cigarette smoke were inactive. Acrolein inhibited induction of NF-kappaB DNA binding activity after mitogenic stimulation of T cells but had no effect on induction of NFAT or AP-1. Acrolein inhibited NF-kappaB1 (p50) binding to the IL-2 promoter in a chromatin immunoprecipitation assay by >99%. Using purified recombinant p50 in an electrophoretic mobility shift assay, we demonstrated that acrolein was 2000-fold more potent than crotonaldehyde in blocking DNA binding to an NF-kappaB consensus sequence. Matrix-assisted laser desorption/ionization time-of-flight and tandem mass spectrometry demonstrated that acrolein alkylated two amino acids (Cys-61 and Arg-307) in the DNA binding domain. Crotonaldehyde reacted with Cys-61, but not Arg-307, whereas the saturated aldehydes in cigarette smoke did not react with p50. These experiments demonstrate that aldehydes in cigarette smoke can regulate gene expression by direct modification of a transcription factor.

  10. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  11. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  12. Two high-mobility group box domains act together to underwind and kink DNA

    International Nuclear Information System (INIS)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.; Saperas, N.; Churchill, M. E. A.; Campos, J. L.

    2015-01-01

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA

  13. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  14. Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase.

    Science.gov (United States)

    Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J

    2015-12-23

    Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into

  15. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    in Arabidopsis KAS2 that results in a Leu337Phe substitution. The Leu337 residue is conserved among plant and bacterial KAS proteins, and in the crystal structures of E. coli KAS I and KAS II, this leucine abuts a phenylalanine whose imidazole ring extends into the substrate binding cavity causing the fatty acid...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  16. Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue

    Directory of Open Access Journals (Sweden)

    Smith Eric L

    2008-01-01

    Full Text Available Abstract Background The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1, and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3. PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members. Results We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo. Conclusion These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1

  17. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  18. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  19. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine...... (CHO-GHR1-638 Y333F, Y338F) were generated by cDNA transfection. Compared with the wild type receptor the Y333F,Y338F mutant possessed normal high affinity ligand binding, hormone internalization, and ligand-induced receptor down-regulation. GH activation of mitogen-associated protein kinase was also...... similar in CHO clones expressing similar wild type and Y333F,Y338F receptor number. However, two GH-regulated cellular events (lipogenesis, and protein synthesis) were deficient in the tyrosine substituted receptor. In contrast, transcriptional regulation by GH (as evidenced by chloramphenicol...

  20. Ribonucleotide triggered DNA damage and RNA-DNA damage responses.

    Science.gov (United States)

    Wallace, Bret D; Williams, R Scott

    2014-01-01

    Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.

  1. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  2. Cip29 is phosphorylated following activation of the DNA damage response in Xenopus egg extracts.

    Directory of Open Access Journals (Sweden)

    Janet Holden

    Full Text Available Acting through a complex signalling network, DNA lesions trigger a range of cellular responses including DNA repair, cell cycle arrest, altered gene expression and cell death, which help to limit the mutagenic effects of such DNA damage. RNA processing factors are increasingly being recognised as important targets of DNA damage signalling, with roles in the regulation of gene expression and also more directly in the promotion of DNA repair. In this study, we have used a Xenopus laevis egg extract system to analyse the DNA damage-dependent phosphorylation of a putative RNA export factor, Cip29. We have found that Cip29 is rapidly phosphorylated in response to DNA double-strand breaks in this experimental system. We show that the DNA damage-inducible modification of Cip29 is dependent on the activity of the key double-strand break response kinase, ATM, and we have identified a conserved serine residue as a damage-dependent phosphorylation site. Finally, we have determined that Cip29 is not required for efficient DNA end-joining in egg extracts. Taken together, these data identify Cip29 as a novel target of the DNA damage response and suggest that the damage-dependent modification of Cip29 may relate to a role in the regulation of gene expression after DNA damage.

  3. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Cellular senescence and tumor suppressor gene p16

    OpenAIRE

    Rayess, Hani; Wang, Marilene B.; Srivatsan, Eri S.

    2011-01-01

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. Whil...

  5. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  6. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  7. Miscoding and mutagenic properties of 8-oxoguanine and abasic sites: Ubiquitous lesions in damaged DNA

    International Nuclear Information System (INIS)

    Grollman, A.P.; Takeshita, Masaru

    1995-01-01

    More than twenty oxidatively-damaged bases, including 8-oxoguanine, have been found to occur in genomic DNA. Some of these lesions block DNA replication and are potentially lethal; others generate mutations which can initiate carcinogenesis and promote cellular aging. In this report, the authors focus attention on the mutagenicity and repair of 8-oxoguanine. Kasai and Nishimura's discovery that hydroxyl radicals react with guanine residues in DNA to form 8-oxoguanine and the development of sensitive methods for the detection and quantitation of this modified base led to the observation that approximately 1 in 10 5 guanine residues in mammalian DNA are oxidized at the C-8 position. DNA containing 8-oxoguanine and synthetic analogs of the abasic site have been used to investigate the miscoding and mutagenic potential of these ubiquitous lesions. Studies in the laboratory were facilitated by the development of solid state synthetic methods by which these lesions could be introduced at defined positions in DNA. In this paper, the authors review studies in which 8-oxoguanine and abasic sites have been used in model systems to explore various early events in the replication of selectively damaged DNA

  8. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  9. The immobilization of GOX in slides for comet sssay provides a useful tool for investigation of the efficiency of the cellular DNA-integrity protecting system of the target cells.

    Directory of Open Access Journals (Sweden)

    Nikolay Petrovich Sirota

    2015-06-01

    Variation of DNA damage was evaluated by measuring changes of DNA amount of tails of the DNA-comets (%TDNA within digital images of the DNA-comets. Reliability of the differences between the control and experimental data was estimated using Student’s t-test. At first we optimized concentration of the ROS –generating system components (GOX and glucose. For this purpose we analyzed the influence of different concentration of GOX and glucose on the level of hydrogen peroxide induced DNA damage. We observed the non linear dependence between the increase of the concentration of glucose (Fig.1 or GOX (data not shown and DNA damage. Prolongation of the incubation time of the slides with glucose also resulted in the increase of the DNA damage (Fig. 2. In the second part of the work we studied the response of the DNA-integrity defense system of human whole blood leukocytes to the hydrogen peroxide using newly established GOX – glucose ROS-generating approach. We measured level of DNA damage immediately after the 5 minute treatment period and after the incubation of treated cells in PBS without glucose for 30 minutes. The results are present in the Table 1. In conclusion we would like to summarize that in present work we have shown successful application of agarose-gel immobilized GOX – glucose ROS-generating system for inducing DNA damage and studying DNA-integrity defense system in mammalian cells. We suppose that this approach will be useful for measurement of the intracellular antioxidant systems efficiency and for many other applications for DNA damage studies.

  10. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, Sape J.; Polakos, P.; Rittenhouse, G.

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective

  11. Importance of uncharged polar residues and proline in the proximal two-thirds (Pro107–Ser128 of the highly conserved region of mouse ileal Na+-dependent bile acid transporter, Slc10a2, in transport activity and cellular expression

    Directory of Open Access Journals (Sweden)

    Saeki Tohru

    2013-02-01

    Full Text Available Abstract Background SLC10A2-mediated reabsorption of bile acids at the distal end of the ileum is the first step in enterohepatic circulation. Because bile acids act not only as detergents but also as signaling molecules in lipid metabolism and energy production, SLC10A2 is important as the key transporter for understanding the in vivo kinetics of bile acids. SLC10A family members and the homologous genes of various species share a highly conserved region corresponding to Gly104–Pro142 of SLC10A2. The functional importance of this region has not been fully elucidated. Results To elucidate the functional importance of this region, we previously performed mutational analysis of the uncharged polar residues and proline in the distal one-third (Thr130–Pro142 of the highly conserved region in mouse Slc10a2. In this study, proline and uncharged polar residues in the remaining two-thirds of this region in mouse Slc10a2 were subjected to mutational analysis, and taurocholic acid uptake and cell surface localization were examined. Cell surface localization of Slc10a2 is necessary for bile acid absorption. Mutants in which Asp or Leu were substituted for Pro107 (P107N or P107L were abundantly expressed, but their cell surface localization was impaired. The S126A mutant was completely impaired in cellular expression. The T110A and S128A mutants exhibited remarkably enhanced membrane expression. The S112A mutant was properly expressed at the cell surface but transport activity was completely lost. Replacement of Tyr117 with various amino acids resulted in reduced transport activity. The degree of reduction roughly depended on the van der Waals volume of the side chains. Conclusions The functional importance of proline and uncharged polar residues in the highly conserved region of mouse Slc10a2 was determined. This information will contribute to the design of bile acid-conjugated prodrugs for efficient drug delivery or SLC10A2 inhibitors for

  12. Bovine herpesvirus type 1 (BHV-1) mutant lacking U(L)49.5 luminal domain residues 30-32 and cytoplasmic tail residues 80-96 induces more rapid onset of virus neutralizing antibody and cellular immune responses in calves than the wild-type strain Cooper.

    Science.gov (United States)

    Wei, Huiyong; He, Junyun; Paulsen, Daniel B; Chowdhury, Shafiqul I

    2012-06-30

    Bovine herpesvirus type 1 (BHV-1) envelope protein U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. Earlier, we have constructed a BHV-1U(L)49.5Δ30-32 CT-null virus and determined that in the infected cells, TAP inhibition and MHC-I down regulation properties of the virus are abolished. In this study, we compared the pathogenicity and immune responses in calves infected with BHV-1U(L)49.5Δ30-32 CT-null and BHV-1 wt viruses. Following primary infection, both BHV-1 wt and BHV-1U(L)49.5Δ30-32 CT-null virus replicated in the nasal epithelium with very similar yields. BHV-1 antigen-specific CD8+ T cell proliferation as well as CD8+ T cell cytotoxicity in calves infected with the BHV-1U(L)49.5Δ30-32 CT-null virus peaked by 7 dpi (P49.5 mutant virus-infected calves, also peaked 7 days (IFN-γ; P49.5 mutant virus-infected calves, primary neutralizing antibody and cellular immune responses were induced significantly more rapidly. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  14. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    International Nuclear Information System (INIS)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal

    2014-01-01

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair

  15. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  16. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F. Peter

    2016-01-01

    Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629

  18. Human papillomavirus type 16 E7 protein inhibits DNA binding by the retinoblastoma gene product.

    Science.gov (United States)

    Stirdivant, S M; Huber, H E; Patrick, D R; Defeo-Jones, D; McAvoy, E M; Garsky, V M; Oliff, A; Heimbrook, D C

    1992-05-01

    The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Peptide E7(2-32) did not block pRB60 binding to DNA, while peptide E7(20-57) and an E7 fragment containing residues 1 to 60 partially blocked DNA binding. E7 species containing residues 3 to 75 were fully effective at blocking pRB60 binding to DNA. These studies indicate that E7 protein specifically blocks pRB60 binding to DNA and suggest that the E7 region responsible for this property lies between residues 32 and 75. The functional significance of these observations is unclear. However, we have found that a point mutation in pRB60 that impairs DNA-binding activity also blocks the ability of pRB60 to inhibit cell growth. This correlation suggests that the DNA-binding activity of retinoblastoma proteins contributes to their biological

  19. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.

    Science.gov (United States)

    Zhang, Yaru; O'Brien, Patrick J

    2015-11-20

    Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated, and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein.

  20. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  1. Alternative end-joining of DNA breaks

    NARCIS (Netherlands)

    Schendel, Robin van

    2016-01-01

    DNA is arguably the most important molecule found in any organism, as it contains all information to perform cellular functions and enables continuity of species. It is continuously exposed to DNA-damaging agents both from endogenous and exogenous sources. To protect DNA against these sources of DNA

  2. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  3. Cellular senescence in aging and osteoarthritis.

    Science.gov (United States)

    Toh, Wei Seong; Brittberg, Mats; Farr, Jack; Foldager, Casper Bindzus; Gomoll, Andreas H; Hui, James Hoi Po; Richardson, James B; Roberts, Sally; Spector, Myron

    2016-12-01

    - It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.

  4. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  5. DNA damage in a human population affected by chronic psychogenic stress.

    Science.gov (United States)

    Dimitroglou, Eva; Zafiropoulou, Maria; Messini-Nikolaki, Niki; Doudounakis, Stavros; Tsilimigaki, Smaragdi; Piperakis, Stylianos M

    2003-01-01

    The effects of chronic psychogenic stress on the expression of DNA damage and cellular response to the damage were investigated. Using the comet assay, basal DNA damage was found to be similar in lymphocytes of both affected and non-affected populations (n = 30 in both groups). The induction of DNA damage in lymphocytes by external factors (H2O2 and gamma-irradiation), was also investigated. In these studies, cells were treated with 50, 100 and 150 microM H2O2 for 5 minutes or with 0.8, 2.5 and 4.2 Gy gamma-rays. A significant difference was found between the chronically stressed and the control populations, indicating the enhanced sensitivity of the former population. Cells were also held for 2 hours after the treatment, allowing time for the cells to deal with the induced DNA damage. Based on the level of residual DNA strand breaks, cells from the stressed population had more breaks than the controls. Gender does not alter these findings. In conclusion, our data indicate that cells from the stressed population were more sensitive to the induction of DNA damage and had higher level of residual damage. Therefore, stress conditions may cause the affected individuals to be susceptible to environmental mutagenic agents.

  6. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  7. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. hSSB1 phosphorylation is dynamically regulated by DNA-PK and PPP-family protein phosphatases.

    Science.gov (United States)

    Ashton, Nicholas W; Paquet, Nicolas; Shirran, Sally L; Bolderson, Emma; Kariawasam, Ruvini; Touma, Christine; Fallahbaghery, Azadeh; Gamsjaeger, Roland; Cubeddu, Liza; Botting, Catherine; Pollock, Pamela M; O'Byrne, Kenneth J; Richard, Derek J

    2017-06-01

    The maintenance of genomic stability is essential for cellular viability and the prevention of diseases such as cancer. Human single-stranded DNA-binding protein 1 (hSSB1) is a protein with roles in the stabilisation and restart of stalled DNA replication forks, as well as in the repair of oxidative DNA lesions and double-strand DNA breaks. In the latter process, phosphorylation of threonine 117 by the ATM kinase is required for hSSB1 stability and efficient DNA repair. The regulation of hSSB1 in other DNA repair pathways has however remained unclear. Here we report that hSSB1 is also directly phosphorylated by DNA-PK at serine residue 134. While this modification is largely suppressed in undamaged cells by PPP-family protein phosphatases, S134 phosphorylation is enhanced following the disruption of replication forks and promotes cellular survival. Together, these data thereby represent a novel mechanism for hSSB1 regulation following the inhibition of replication. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Suraj; Eichman, Brandt F. (Vanderbilt)

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  10. A structural basis for the regulatory inactivation of DnaA.

    Science.gov (United States)

    Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope A; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2009-01-16

    Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.

  11. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  12. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents.

    Directory of Open Access Journals (Sweden)

    Ryan W Benson

    Full Text Available DinB (DNA Pol IV is a translesion (TLS DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ, a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS. Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.

  13. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-01-01

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  14. Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance.

    Directory of Open Access Journals (Sweden)

    Kei-Ichi Takata

    2017-06-01

    Full Text Available DNA polymerase ν (pol ν, encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν-defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν-disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ. We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ supports such a specialized role.

  15. Dancing on DNA : Kinetic Aspects of Search Processes on DNA

    NARCIS (Netherlands)

    Tafvizi, Anahita; Mirny, Leonid A.; van Oijen, Antoine M.

    2011-01-01

    Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the search for its target site, the DNA-associated protein is facing both thermodynamic and kinetic difficulties. The thermodynamic challenge

  16. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  17. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA-binding pro......Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA...... assays.Results: In addition to the known tyrosine phosphorylation of SsbA on tyrosine 82, we identified a new phosphorylation site: threonine 38. The in vitro assays demonstrated that SsbA is preferentially phosphorylated by the B. subtilis Hanks-type kinase YabT, and phosphorylation of threonine 38...... leads to enhanced cooperative binding to DNA.Conclusions: Our findings contribute to the emerging picture that bacterial proteins, exemplified here by SsbA, undergo phosphorylation at multiple residues. This results in a complex regulation of cellular functions, and suggests that the complexity...

  18. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Bryder, K

    1998-01-01

    by gene gun was used for genetic immunization in a mouse model. Antibody and CTL responses to MN V3 and HBsAg were measured and compared with the immune responses obtained after vaccination with plasmids encoding the complete HIV-1 MN gp160 and HBsAg (pre-S2 + S), respectively. DNA vaccination...

  19. Multiplex Identification of Human Papillomavirus 16 DNA Integration Sites in Cervical Carcinomas.

    Science.gov (United States)

    Xu, Bo; Chotewutmontri, Sasithorn; Wolf, Stephan; Klos, Ursula; Schmitz, Martina; Dürst, Matthias; Schwarz, Elisabeth

    2013-01-01

    Cervical cancer is caused by high-risk human papillomaviruses (HPV), in more than half of the worldwide cases by HPV16. Viral DNA integration into the host genome is a frequent mutation in cervical carcinogenesis. Because integration occurs into different genomic locations, it creates unique viral-cellular DNA junctions in every single case. This singularity complicates the precise identification of HPV integration sites enormously. We report here the development of a novel multiplex strategy for sequence determination of HPV16 DNA integration sites. It includes DNA fragmentation and adapter tagging, PCR enrichment of the HPV16 early region, Illumina next-generation sequencing, data processing, and validation of candidate integration sites by junction-PCR. This strategy was performed with 51 cervical cancer samples (47 primary tumors and 4 cell lines). Altogether 75 HPV16 integration sites (3'-junctions) were identified and assigned to the individual samples. By comparing the DNA junctions with the presence of viral oncogene fusion transcripts, 44 tumors could be classified into four groups: Tumors with one transcriptionally active HPV16 integrate (n = 12), tumors with transcribed and silent DNA junctions (n = 8), tumors carrying episomal HPV16 DNA (n = 10), and tumors with one to six DNA junctions, but without fusion transcripts (n = 14). The 3'-breakpoints of integrated HPV16 DNA show a statistically significant (p<0.05) preferential distribution within the early region segment upstream of the major splice acceptor underscoring the importance of deregulated viral oncogene expression for carcinogenesis. Half of the mapped HPV16 integration sites target cellular genes pointing to a direct influence of HPV integration on host genes (insertional mutagenesis). In summary, the multiplex strategy for HPV16 integration site determination worked very efficiently. It will open new avenues for comprehensive mapping of HPV integration sites and for the

  20. Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity

    Directory of Open Access Journals (Sweden)

    Wu Shih-Lu

    2009-01-01

    Full Text Available Abstract Background Endonuclease G (EndoG, a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. Methods To identify the critical amino acid residues of human EndoG, we replaced the conserved histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-expressed EndoG variants were further analyzed by kinetic studies. Results Diethyl pyrocarbonate modification assay revealed that histidine residues were involved in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for catalysis and substrate specificity. H141A mutant required a higher magnesium concentration to achieve its activity, suggesting the unique role of His-141 in both catalysis and magnesium coordination. Furthermore, an additional catalytic residue (Asn-251 and an additional metal ion binding site (Glu-271 of human EndoG were identified. Conclusion Based on the mutational analysis and homology modeling, we proposed that human EndoG shared a similar catalytic mechanism with nuclease A from Anabaena.

  1. Apoptosis and DNA Methylation

    International Nuclear Information System (INIS)

    Meng, Huan X.; Hackett, James A.; Nestor, Colm; Dunican, Donncha S.; Madej, Monika; Reddington, James P.; Pennings, Sari; Harrison, David J.; Meehan, Richard R.

    2011-01-01

    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG

  2. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  3. Plasmonic Nanostructured Cellular Automata

    Science.gov (United States)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  4. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  5. Improved humoral and cellular immune response against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatites B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Nielsen, H.V.; Bryder, K.

    1998-01-01

    -2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2+S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation...... by gene gun was used for genetic immunization in a mouse model. Antibody and CTL responses to MN V3 and HBsAg were measured and compared with the immune responses obtained after vaccination with plasmids encoding the complete HIV-1 MN gp160 and HBsAg (pre-S2+S), respectively. DNA vaccination with the HIV...... MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...

  6. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  7. Cellular MR Imaging

    OpenAIRE

    Michel Modo; Mathias Hoehn; Jeff W.M. Bulte

    2005-01-01

    Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall) superparamagnetic iron oxide [(U)SPIO] particles or (polymeric) paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, ...

  8. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  9. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  10. DNA-reactive protein monoepoxides induce cell death and mutagenesis in mammalian cells.

    Science.gov (United States)

    Tretyakova, Natalia Y; Michaelson-Richie, Erin D; Gherezghiher, Teshome B; Kurtz, Jamie; Ming, Xun; Wickramaratne, Susith; Campion, Melissa; Kanugula, Sreenivas; Pegg, Anthony E; Campbell, Colin

    2013-05-07

    Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.

  11. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  12. Influence of occupational exposure to pesticides on the level of DNA damage induced in human lymphocytes (Polish group) by UV-C and X-rays

    International Nuclear Information System (INIS)

    Dyga, W.; Drag, Z.; Cebulska-Wasilewska, A.

    2002-01-01

    The aim of this study was to find out whether occupational exposure to pesticides might affect the individual susceptibility of various donors to the induction of DNA damage by genotoxic agents (UV-C, X-rays) and the efficiency of cellular repair. Previously cryo preserved lymphocytes were defrosted, and DNA damage in the lymphocytes prior to any in vitro studies was investigated with the application of the Comet assay. In order to evaluate the susceptibilities of human lymphocytes to genotoxic agents and the variability of repair capacities, the DNA migrations were estimated immediately after exposure to UV-C light or X-rays and after two hours. On average, the DNA damage detected in untreated lymphocytes was significantly higher in the group exposed to pesticides than in reference group. UV-C treated lymphocytes from group exposed to pesticides shows a greater statistically significant level of DNA migration compared to the reference group, detected after 2 hours incubation in the absence of PHA. Significantly lower responses to X-rays and higher levels of residual DNA damage were detected in the lymphocytes of donors from the group exposed to pesticides compared with the reference group. In conclusion, our results suggest that occupational exposure to pesticides influences the level of induced DNA damage, and the cellular capabilities of repair. (author)

  13. Conformational change in human DNA repair enzyme O6-methylguanine-DNA methyltransferase upon alkylation of its active site by SN1 (indirect-acting) and SN2 (direct-acting) alkylating agents: breaking a "salt-link".

    Science.gov (United States)

    Oh, H K; Teo, A K; Ali, R B; Lim, A; Ayi, T C; Yarosh, D B; Li, B F

    1996-09-24

    Human O6-methylguanine-DNA methyltransferase (MGMT) repairs DNA by transferring alkyl (R-) adducts from O6-alkylguanine (6RG) in DNA to its own cysteine residue at codon 145 (formation of R-MGMT). We show here that R-MGMT in cell extracts, which is sensitive to protease V8 cleavage at the glutamic acid residues at codons 30 (E30) and 172 (E172), can be specifically immunoprecipitated with an MGMT monoclonal antibody, Mab.3C7. This Mab recognizes an epitope of human MGMT including the lysine 107 (K107) which is within the most basic region that is highly conserved among mammalian MGMTs. Surprisingly, the K107L mutant protein is repair-deficient and readily cleaved by protease V8 similar to R-MGMT. We propose that R-MGMT adopted an altered conformation which exposed the Mab.3C7 epitope and rendered that protein sensitive to protease V8 attack. This proposal could be explained by the disruption of a structural "salt-link" within the molecule based on the available structural and biochemical data. The specific binding of Mab.3C7 to R-MGMT has been compared with the protease V8 method in the detection of R-MGMT in extracts of cells treated with low dosages of methyliodide (SN2) and O6-benzylguanine. Their identical behaviors in producing protease V8 sensitive R-MGMT and Mab.3C7 immunoprecipitates suggest that probably methyl iodide (an ineffective agent in producing 6RG in DNA) can directly alkylate the active site of cellular MGMT similar to O6-benzylguanine. The effectiveness of MeI in producing R-MGMT, i.e., inactivation of cellular MGMT, indicates that this agent can increase the effectiveness of environmental and endogenously produced alkylating carcinogens in producing the mutagenic O6-alkylguanine residues in DNA in vivo.

  14. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Bryder, K

    1998-01-01

    with the HIV MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...... response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V3/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL......The gp120-derived V3 loop of HIV-1 is involved in co-receptor interaction, it guides cell tropism, and contains an epitope for antibody neutralization. Thus, HIV-1 V3 is an attractive vaccine candidate. The V3 of the MN strain (MN V3) contains both B- and T-cell epitopes, including a known mouse H...

  15. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  16. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  17. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  18. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  1. The benefits of aging: cellular senescence in normal development.

    Science.gov (United States)

    Pérez-Garijo, Ainhoa; Steller, Herman

    2014-01-13

    Senescence is a form of cellular aging that limits the proliferative capacity of cells. Senescence can be triggered by different stress stimuli, such as DNA damage or oncogene activation. Two recent articles published in Cell have uncovered an unexpected role for cellular senescence during development, as a process that contributes to remodeling and patterning of the embryo. These findings are exciting and have important implications for the understanding of normal developmental and the evolutionary origin of senescence.

  2. BuD, a helix–loop–helix DNA-binding domain for genome modification

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  3. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules.

    Science.gov (United States)

    Singh, Deepa; Gawel, Damian; Itsko, Mark; Hochkoeppler, Alejandro; Krahn, Juno M; London, Robert E; Schaaper, Roel M

    2015-04-17

    The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Stable cellular senescence is associated with persistent DDR activation.

    Science.gov (United States)

    Fumagalli, Marzia; Rossiello, Francesca; Mondello, Chiara; d'Adda di Fagagna, Fabrizio

    2014-01-01

    The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged in vitro culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability in vitro, due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.

  5. Localized degradation of foreign DNA strands in cells: Only excising the first nucleotide of 5' region.

    Science.gov (United States)

    Li, Hui; Shen, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2017-09-15

    Intracellular delivery of foreign DNA probes sharply increases the efficiency of various biodetection protocols. Spherical nucleic acid (SNA) conjugate is a new type of probe that consists of a dense oligonucleotide shell attached typically to a gold nanoparticle core. They are widely used as novel labels for in vitro biodetection and intracellular assay. However, the degradation of foreign DNA still remains a challenge that can cause significant signal leakage (false positive signal). Hence, the site and behavior of intracellular degradation need to be investigated. Herein, we discover a localized degradation behavior that only excises the first nucleotide of 5' terminal from a DNA strand, whereas the residual portion of this strand is unbroken in MCF-7 cell. This novel degradation action totally differs from previous opinion that foreign DNA strand would be digested into tiny fragments or even individual nucleotides in cellular environment. On the basis of these findings, we propose a simple and effective way to avoid degradation-caused false positive that one can bypass the degradable site and choose a secure region to label fluorophore along the DNA stand, when using DNA probes for intracellular biodetection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cellular redox, cancer and human papillomavirus.

    Science.gov (United States)

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Lizano, Marcela

    2018-02-15

    High-risk Human Papillomavirus (HR-HPV) is the causative agent of different human cancers. A persistent HR-HPV infection alters several cellular processes involved in cell proliferation, apoptosis, immune evasion, genomic instability and transformation. Cumulative evidence from past studies indicates that HR-HPV proteins are associated with oxidative stress (OS) and has been proposed as a risk factor for cancer development. Reactive oxygen and nitrogen species (RONS) regulate a plethora of processes inducing cellular proliferation, differentiation and death. Oxidative stress (OS) is generated when an imbalance in the redox state occurs due to deregulation of the oxidant and antioxidant systems, which, in turn, promotes the damage of DNA, proteins and lipids, allowing the accumulation of mutations and genome instability. OS has been associated with the establishment and development of different cancers, and it has recently been proposed as a co-factor in cervical cancer development. This review is focused on evidence regarding the association of OS with HR-HPV proteins, and the interplay of the viral proteins with different elements of the antioxidant and DNA damage response (DDR) systems, emphasizing the processes that might be required for the viral life cycle and viral DNA integration into the host genome, which is a key element in the carcinogenic process induced by HR-HPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  8. Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity

    Science.gov (United States)

    Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.

    2015-01-01

    Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678

  9. Radiopharmaceutical cellular uptake mechanisms

    International Nuclear Information System (INIS)

    Stefanescu, Cipriana; Rusu, V.

    1996-01-01

    Cellular radiopharmaceutical specificity depends mainly of the uptake mechanisms. Usually, this can be one of the classical membrane transport type (a passive or active transport, a receptor mediated one or a combination of them). It can also be an electrochemical gradient dependent membrane transport in relation with Nernst equation, as in case of 99m Tc MIBI, the representative molecule of a widely studied family tracers, with applications in cardiac and oncological scintigraphy. Another mechanism can be an ATP dependent active transport, that results in the most important 201 Tl inflow. 201 Tl inflow is also an example of multiple mechanisms involved in cellular ionic inflow. Over 30% of 201 Tl transport imply other ways, like Na + - K + - Cl - co-transport. For a given tracer, the mechanism may depend also on the cell type. In conclusion, knowledge of the radiotracer uptake mechanisms allows finding the 'ideal' radiotracer with high specificity for the tissue to be visualized. (authors)

  10. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  11. Nested cellular automata

    International Nuclear Information System (INIS)

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  12. Radiolabeled cellular blood elements

    International Nuclear Information System (INIS)

    Thakur, M.L.; Ezikowitz, M.D.; Hardeman, M.R.

    1985-01-01

    This book contains papers delivered by guest lectures and participants at the Advanced Study Institute's colloquium on Radiolabeled Cellular Blood Elements at Maratea, Italy on August 29, to September 9, 1982. The book includes chapters on basic cell physiology and critical reviews of data and experience in the preparation and use of radiolabeled cells, as well as reports on very recent developments, from a faculty that included experts on cell physiology in health and disease and on the technology of in vivo labeling

  13. Wavefront cellular learning automata

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  14. Re: Epigenetics of Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  15. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.

    Science.gov (United States)

    Lawley, P D; Brookes, P

    1968-09-01

    1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and B(s-1) and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T(-) after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain B(s-1) removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8

  16. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  17. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly...... desired. Key inputs to such frameworks are protein residues that modulate the specificity of TF under consideration. Simple measures like mutual information (MI) to delineate specificity influencing residues (SIRs) from alignment fail due to structural constraints imposed by the three...

  18. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  19. Characterization of protein interactomes of DNA damages: application to oxidation injuries

    International Nuclear Information System (INIS)

    Pietras-Barbier, Ewa

    2013-01-01

    Cyclo-nucleosides are complex DNA damages implying both bases and sugar residues. They are generated by free radicals, in particular by the effect of ionizing radiations, and are not easily covered by cellular mechanisms. Using a protein trapping technique on probes containing these injuries, the negative influence of cyclo-nucleosides on the recognition of its target sequence by a DREF transcription factor and on the interactions of PARP1 with DNA have been identified. Interactions between Fpg bacterial glycosylase and cyclo-nucleosides have been analysed and it has been found that this enzyme has an affinity for them, without excision activity. Finally, a Thermococcus gammatolerans radiation resistant archae has been studied: the formation of simple and complex oxidation injuries at strong radiation doses has been measured and the action mechanism of two new glycosylases has been explained. (author) [fr

  20. Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein-Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation.

    Science.gov (United States)

    Ayoubian, Hiresh; Fröhlich, Thomas; Pogodski, Dagmar; Flatley, Andrew; Kremmer, Elisabeth; Schepers, Aloys; Feederle, Regina; Arnold, Georg J; Grässer, Friedrich A

    2017-08-01

    The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.

  1. Development of dengue DNA vaccines.

    Science.gov (United States)

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed. Published by Elsevier Ltd.

  2. Agricultural pesticide residues

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    The utilization of tracer techniques in the study of agricultural pesticide residues is reviewed under the following headings: lysimeter experiments, micro-ecosystems, translocation in soil, degradation of pesticides in soil, biological availability of soil-applied substances, bound residues in the soil, use of macro- and microautography, double and triple labelling, use of tracer labelling in animal experiments. (U.K.)

  3. LET-effects in DNA

    International Nuclear Information System (INIS)

    Kraft, G.; Taucher-Scholz, G.; Heilmann, J.

    1994-11-01

    In this contribution, an introductory view on the physical properties of ions is given and the cellular response to high LET radiation is summarized. Then the measurements of strand break induction of DNA in solution and in intracellular DNA are reported and compared to cell survival. The possibility of changes in the quality of the lesions is discussed and finally the present status of model calculations in comparison to the experiments is given. (orig./HSI)

  4. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  5. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  6. Cellular communication through light.

    Science.gov (United States)

    Fels, Daniel

    2009-01-01

    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  7. Protein-DNA complexation: contact profiles in DNA grooves

    Directory of Open Access Journals (Sweden)

    M. Yu. Zhitnikova

    2017-12-01

    Full Text Available Background: Investigation of the specific protein-DNA complexation mechanisms allows to establish general principles of molecular recognition, which must be taken into account while developing artificial nanostructures based on DNA, and to improve the prediction efficiency of the protein binding sites on DNA. One of the main characteristics of the protein-DNA complexes are the number and type of contacts in the binding sites of DNA and proteins. Conformational changes in the DNA double helix can cause changes in these characteristics. Objectives: The purpose of our study is to establish the features of the interactions between nucleotides and amino acid residues in the binding sites of protein-DNA complexes and their dependence on the conformation of deoxyribose and the angle γ of the polynucleotide chain. Materials and methods: At research of protein-DNA recognition process we have analyzed the contacts between amino acids and nucleotides of the 128 protein-DNA complexes from the structural databases. Conformational parameters of DNA backbone were calculated using the 3DNA/CompDNA program. The number of contacts was determined using a geometric criterion. Two protein and DNA atoms were considered to be in contact if the distance between their centers is less than 4.5 Å. Amino acid residues were arranged according to hydrophobicity scale as hydrophobic or nonpolar and polar. Results: The analysis of contacts between polar and hydrophobic residues and nucleotides with different conformations of the sugar-phosphate backbone showed that nucleotides form more contacts with polar amino acids in both grooves than with hydrophobic ones regardless of nucleotide conformation. But the profile of such contacts differs in minor and major grooves and depends on the conformation of both deoxyribose and γ angle. The contact profiles are characterized by the sequence-specificity or the different propensity of nucleotides to form contacts with the residues in

  8. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  9. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  10. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  11. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool

    Science.gov (United States)

    Meylan, S.; Vimont, U.; Incerti, S.; Clairand, I.; Villagrasa, C.

    2016-07-01

    Several DNA representations are used to study radio-induced complex DNA damages depending on the approach and the required level of granularity. Among all approaches, the mechanistic one requires the most resolved DNA models that can go down to atomistic DNA descriptions. The complexity of such DNA models make them hard to modify and adapt in order to take into account different biological conditions. The DnaFabric project was started to provide a tool to generate, visualise and modify such complex DNA models. In the current version of DnaFabric, the models can be exported to the Geant4 code to be used as targets in the Monte Carlo simulation. In this work, the project was used to generate two DNA fibre models corresponding to two DNA compaction levels representing the hetero and the euchromatin. The fibres were imported in a Geant4 application where computations were performed to estimate the influence of the DNA compaction on the amount of calculated DNA damage. The relative difference of the DNA damage computed in the two fibres for the same number of projectiles was found to be constant and equal to 1.3 for the considered primary particles (protons from 300 keV to 50 MeV). However, if only the tracks hitting the DNA target are taken into account, then the relative difference is more important for low energies and decreases to reach zero around 10 MeV. The computations were performed with models that contain up to 18,000 DNA nucleotide pairs. Nevertheless, DnaFabric will be extended to manipulate multi-scale models that go from the molecular to the cellular levels.

  12. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  13. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  14. Purification process monitoring in monoclonal antibody preparation: contamination with viruses, DNA and peptide growth factors.

    Science.gov (United States)

    ter Avest, A R; van Zoelen, E J; Spijkers, I E; Osterhaus, A D; van Steenis, G; van Kreyl, C F

    1992-09-01

    Administration in vivo of monoclonal antibodies to humans is challenged by considerations regarding their safety. Contamination with viruses, potentially oncogenic nucleic acids and biologically active components like growth factors and hormones forms a serious point of concern in this respect. We have investigated the potential risk of viral contamination by measuring the reduction of 12 different viruses (after spiking) in the standard downstream purification process of ascitic fluid. Depending on the type of virus added and the purification step employed, the reduction of infectious virus particles varies considerably. The overall reduction ranges from about 10(3), observed for a member of the family of Papovaviridae, to more than 10(12) for members of the families of Herpesviridae and Orthomyxoviridae. Using hybridization analysis with a mouse (genomic) DNA probe, we show that the amount of residual DNA in ascitic fluids may also vary considerably, ranging from 75 ng/ml to 1 microgram/ml. In crude preparations produced in cell culture, much lower DNA concentrations are found (0.3 ng/ml). When standard downstream purification procedures are applied to ascitic fluid, a significant reduction of residual DNA levels is observed in the purified monoclonal antibody preparations and in intermediate fractions. The overall reduction factors vary from about 10(3) to 10(4), which is also confirmed by spiking experiments with either purified DNA or crude chromatin-like DNA. Using in-vitro cellular assays, we further show that peptide growth factors like PDGF and TGF beta are present in considerable amounts in ascitic fluids. The observed biological activities, however, are completely eliminated during the purification steps applied.

  15. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  16. Emerging roles of extracellular vesicles in cellular senescence and aging.

    Science.gov (United States)

    Takasugi, Masaki

    2018-02-01

    Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Mechanisms of DNA uptake by cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Three categories of cellular uptake of DNA can be distinguished. First, in the highly transformable bacteria, such as Diplococcus pneumoniae, Haemophilus influenzae and Bacillus subtilis, elaborate mechanisms of DNA transport have evolved, presumably for the purpose of genetic exchange. These mechanisms can introduce substantial amounts of DNA into the cell. Second, methods have been devised for the forced introduction of DNA by manipulation of bacterial cells under nonphysiological conditions. By such means small but significant amounts of DNA have been introduced into various bacteria, including Escherichia coli. Third, mammalian cells are able to take up biologically active DNA. This has been most clearly demonstrated with viral DNA, although the mechanism of uptake is not well understood. The intention, here, is to survey current understanding of the various mechanisms of DNA uptake. A review of experience with the bacterial systems may throw some light on the mammalian system and lead to suggestions for enhancing DNA uptake by mammalian cells.

  18. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  19. Designer DNA Architectures: Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2016-04-01

    Full Text Available DNA has been used as a material for the construction of nanoscale objects. These nanostructures are programmable and allow the conjugation of biomolecular guests to improve their functionality. DNA nanostructures display a wide variety of characteristics, such as cellular permeabil‐ ity, biocompatibility and stability, and responsiveness to external stimuli, making them excellent candidates for applications in nanomedicine.

  20. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  1. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  2. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  3. Cellular-scale hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Abkarian, Manouk [Laboratoire des Colloides, Verres et Nanomateriaux, Universite de Montpellier, Montpellier Cedex 5 (France); Faivre, Magalie [CEA-LETI, Division of Technology for Biology and Health, 17, Avenue des Martyrs, 38054 Grenoble (France); Horton, Renita; Stone, Howard A [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Smistrup, Kristian [MIC, Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Best-Popescu, Catherine A [Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2008-09-01

    Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of individual cells in confined geometries, the development and use of a 'differential manometer' for evaluating the mechanical response of individual cells or other objects flowing in confined geometries, and the cross-streamline drift of cells that pass through a constriction. In particular, we show how fluid mechanical effects on suspended cells can be studied systematically in small devices, and how these features can be exploited to develop methods for characterizing physicochemical responses and possibly for the diagnosis of cellular-scale changes to environmental factors.

  4. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, M; Met, Ö; Svane, I M

    2012-01-01

    -associated antigens introduced to dendritic cells (DCs) generated in vitro. This may in part result from suboptimal maturation of DCs leading to insufficient production of IL-12, a key driver of cellular immunity. Therefore, tremendous efforts have been put into the design of maturation cocktails that are able...... of tolerogenic molecules and activation-induced dendritic cell death should be avoided. Thus, compounds such as IFN-γ may initially induce immunity but later on tolerance. Maturation with PGE(2) obviously promotes migration via expression of CCR7 but on the down side PGE(2) limits the production of IL-12...... to transiently affect in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  5. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    Science.gov (United States)

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-08-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.

  6. Enhancing the cellular uptake of Py–Im polyamides through next-generation aryl turns

    OpenAIRE

    Meier, Jordan L.; Montgomery, David C.; Dervan, Peter B.

    2012-01-01

    Pyrrole–imidazole (Py–Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein–DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biologica...

  7. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  8. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  9. DNA repair phenotype and dietary antioxidant supplementation

    DEFF Research Database (Denmark)

    Guarnieri, Serena; Loft, Steffen; Riso, Patrizia

    2008-01-01

    Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well-nourished......Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well......-nourished subjects who ingested 600 g fruits and vegetables, or tablets containing the equivalent amount of vitamins and minerals, for 24 d; (2) poorly nourished male smokers who ingested 500 mg vitamin C/d as slow- or plain-release formulations together with 182 mg vitamin E/d for 4 weeks. The mean baseline levels...

  10. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  11. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  12. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  13. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  14. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence.

    Science.gov (United States)

    Wang, Julie C; Bennett, Martin

    2012-07-06

    Atherosclerosis is classed as a disease of aging, such that increasing age is an independent risk factor for the development of atherosclerosis. Atherosclerosis is also associated with premature biological aging, as atherosclerotic plaques show evidence of cellular senescence characterized by reduced cell proliferation, irreversible growth arrest and apoptosis, elevated DNA damage, epigenetic modifications, and telomere shortening and dysfunction. Not only is cellular senescence associated with atherosclerosis, there is growing evidence that cellular senescence promotes atherosclerosis. This review examines the pathology of normal vascular aging, the evidence for cellular senescence in atherosclerosis, the mechanisms underlying cellular senescence including reactive oxygen species, replication exhaustion and DNA damage, the functional consequences of vascular cell senescence, and the possibility that preventing accelerated cellular senescence is a therapeutic target in atherosclerosis.

  15. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier.

    Directory of Open Access Journals (Sweden)

    Pei-Chun Chen

    Full Text Available Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss or (ds double stranded molecules. The affinities of the protein for ss- vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of ∼3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more

  16. New assays for monitoring residual HIV burden in effectively treated individuals

    Science.gov (United States)

    Strain, Matthew C.; Richman, Douglas D.

    2013-01-01

    Purpose of review Measurements of HIV burden have relied upon quantification of viral nucleic acids by real-time PCR (qPCR). To develop and test strategies for eradication, new methods are needed to better characterize residual cellular reservoirs in patients on suppressive antiretroviral therapy (ART). This review summarizes recent advances that may lead to clinically useful tests with improved sensitivity, reproducibility and throughput. Recent Findings HIV DNA remains the most sensitive measure of residual infection, but its low levels are difficult to differentiate from assay noise by qPCR. Digital PCR has begun to improve the precision of existing real-time assays, but there remains a need to distinguish replication-competent proviruses. Rapid technological progress in single-cell analysis is beginning to offer new approaches, notably CyTOF and microengraving, which could provide vastly more information about the composition of the latent reservoir. Summary To investigate and assess therapies directed towards eradication, improved assays that simultaneously offer high sensitivity, precision and information content will be needed. PMID:23314907

  17. 8-Oxoguanine DNA glycosylase 1 (OGG1) from the copepod Tigriopus japonicus: molecular characterization and its expression in response to UV-B and heavy metals.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-03-01

    8-Oxoguanine DNA glycosylase 1 (EC 3.2.2.23) is encoded by OGG1 gene and plays a key role in removing 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA lesion by reactive oxygen species (ROS). To identify and characterize OGG1 gene (TJ-OGG1) in the copepod Tigriopus japonicus, the full-length cDNA sequence, genomic structure, and promoter region was analyzed. In addition, to investigate transcriptional change of TJ-OGG1 mRNA under oxidative stress conditions, T. japonicus were exposed to environmental oxidative inducers, H(2)O(2), UV-B, and heavy metals (Cd, Cu, and Zn), respectively. The full-length cDNA of TJ-OGG1 gene was 1708 bp in length, encoding 343 amino acid residues. The deduced amino acid sequences of TJ-OGG1 showed a 56% similarity with human. Two conserved motifs (HhH and PVD loop) and two conserved residues (lysine and aspartic acid) in active sites were also observed. TJ-OGG1 genome structure contained six exons and five introns and putative transcription factor binding sites such as Nrf-2, p53, ERE-half sites, and XRE were detected on the promoter region. TJ-OGG1 mRNA level was increased at approximately three-fold (Pheavy metals induce oxidative stress and generate oxidatively damaged DNA. Consequently, the enhanced TJ-OGG1 gene expression would be associated with active involvement of TJ-OGG1 gene in DNA repair process as a cellular protection mechanism. This is the first report on the cloning and characterization of OGG1 gene in aquatic animals. This study is helpful for a better understanding of the molecular mechanisms of cellular protection against various environmental oxidative stress inducers such as UV-B and heavy metals in aquatic invertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases.

    Science.gov (United States)

    Zhang, Likui

    2017-11-20

    The bacteriophage T4 DNA polymerase (pol) and the closely related RB69 DNA pol have been developed into model enzymes to study family B DNA pols. While all family B DNA pols have similar structures and share conserved protein motifs, the molecular mechanism underlying natural drug resistance of nonherpes family B DNA pols and drug sensitivity of herpes DNA pols remains unknown. In the present study, we constructed T4 phages containing G466S, Y460F, G466S/Y460F, P469S, and V475W mutations in DNA pol. These amino acid substitutions replace the residues in drug-resistant T4 DNA pol with residues found in drug-sensitive herpes family DNA pols. We investigated whether the T4 phages expressing the engineered mutant DNA pols were sensitive to the antiviral drug phosphonoacetic acid (PAA) and characterized the in vivo replication fidelity of the phage DNA pols. We found that G466S substitution marginally increased PAA sensitivity, whereas Y460F substitution conferred resistance. The phage expressing a double mutant G466S/Y460F DNA pol was more PAA-sensitive. V475W T4 DNA pol was highly sensitive to PAA, as was the case with V478W RB69 DNA pol. However, DNA replication was severely compromised, which resulted in the selection of phages expressing more robust DNA pols that have strong ability to replicate DNA and contain additional amino acid substitutions that suppress PAA sensitivity. Reduced replication fidelity was observed in all mutant phages expressing PAA-sensitive DNA pols. These observations indicate that PAA sensitivity and fidelity are balanced in DNA pols that can replicate DNA in different environments.

  19. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF.

    Directory of Open Access Journals (Sweden)

    Hayate Merad

    Full Text Available BACKGROUND: Integrase (IN of the type 1 human immunodeficiency virus (HIV-1 catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186 in the crystal structure of the catalytic core (CC of the IN-Phe185Lys variant that consists of the alpha(4 and alpha(5 helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. PRINCIPAL FINDINGS: We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4 and alpha(5 helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat ends of virus DNA with a K(d (dissociation constant in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix, it is the N terminal helix (alpha(4 which has the role of DNA recognition helix, while the C terminal helix (alpha(5 would rather contribute to the motif stabilization by interactions with the alpha(4 helix. CONCLUSION: The motif, termed HTHi (i, for inverted emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.

  20. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  1. Mitochondrial DNA.

    Science.gov (United States)

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  2. The ATP Sites of AAA+ Clamp Loaders Work Together as a Switch to Assemble Clamps on DNA*

    Science.gov (United States)

    Marzahn, Melissa R.; Hayner, Jaclyn N.; Finkelstein, Jeff; O'Donnell, Mike; Bloom, Linda B.

    2014-01-01

    Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading. PMID:24436332

  3. The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA.

    Science.gov (United States)

    Marzahn, Melissa R; Hayner, Jaclyn N; Finkelstein, Jeff; O'Donnell, Mike; Bloom, Linda B

    2014-02-28

    Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading.

  4. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  5. Empirical multiscale networks of cellular regulation.

    Science.gov (United States)

    de Bivort, Benjamin; Huang, Sui; Bar-Yam, Yaneer

    2007-10-01

    Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS) murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1) Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2) Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules) reveal principles of assembly of high-level behaviors from smaller components. (3) Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4) Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure) that activate and repress other divisions in specific ways consistent with cell cycle control.

  6. DNA damage and decrease of cellular oxidase activity in piglet ...

    African Journals Online (AJOL)

    The study was designated to explore the toxic effects of gossypol on piglet sertoli cells. Sertoli cells were isolated from piglet testes using a two-step enzyme digestion and followed by differential plating. Piglet sertoli cells were cultured and classified into five groups, that is, group A, the control without gossypol, group B with ...

  7. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  8. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  9. Effect of temperature on DNA double helix: An insight from ...

    Indian Academy of Sciences (India)

    The three-dimensional structure of DNA contains various sequence-dependent structural information, which control many cellular processes in life, such as replication, transcription, DNA repair, etc. For the above functions, DNA double helices need to unwind or melt locally, which is different from terminal melting, as often ...

  10. Mapping allostery through computational glycine scanning and correlation analysis of residue-residue contacts.

    Science.gov (United States)

    Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2015-02-24

    Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel "frustrated-fit" binding mechanism of RXR for allosteric control was revealed.

  11. Dna Sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  12. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line

  13. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  14. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  15. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  16. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  17. AMPK-sensitive cellular transport.

    Science.gov (United States)

    Dërmaku-Sopjani, Miribane; Abazi, Sokol; Faggio, Caterina; Kolgeci, Jehona; Sopjani, Mentor

    2014-03-01

    The energy sensing AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance through stimulating catabolic ATP-generating and suppressing anabolic ATP-consuming pathways thereby helping cells survive during energy depletion. The kinase has previously been reported to be either directly or indirectly involved in the regulation of several carriers, channels and pumps of high significance in cellular physiology. Thus AMPK provides a necessary link between cellular energy metabolism and cellular transport activity. Better understanding of the AMPK role in cellular transport offers a potential for improved therapies in various human diseases and disorders. In this review, we discuss recent advances in understanding the role and function of AMPK in transport regulation under physiological and pathological states.

  18. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  19. Adenovirus DNA Replication

    Science.gov (United States)

    Hoeben, Rob C.; Uil, Taco G.

    2013-01-01

    Adenoviruses have attracted much attention as probes to study biological processes such as DNA replication, transcription, splicing, and cellular transformation. More recently these viruses have been used as gene-transfer vectors and oncolytic agents. On the other hand, adenoviruses are notorious pathogens in people with compromised immune functions. This article will briefly summarize the basic replication strategy of adenoviruses and the key proteins involved and will deal with the new developments since 2006. In addition, we will cover the development of antivirals that interfere with human adenovirus (HAdV) replication and the impact of HAdV on human disease. PMID:23388625

  20. Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins.

    Science.gov (United States)

    Fujii, Y; Shimokawa, H; Sekiguchi, M; Nakabeppu, Y

    1999-12-31

    Human MTH1 and Escherichia coli MutT proteins hydrolyze 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) to monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine into nascent DNA. Although only 30 amino acid residues (23%) are identical between MTH1 and MutT, there is a highly conserved region consisting of 23 residues (MTH1, Gly(36)-Gly(58)) with 14 identical residues. A chimeric protein MTH1-Ec, in which the 23-residue sequence of MTH1 was replaced with that of MutT, retains its capability to hydrolyze 8-oxo-dGTP, thereby indicating that the 23-residue sequences of MTH1 and MutT are functionally and structurally equivalent and constitute functional modules. By saturation mutagenesis of the module in MTH1, 14 of the 23 residues proved to be essential to exert 8-oxo-dGTPase activity. For the other 9 residues (40, 42, 44, 46, 47, 49, 50, 54, and 58), positive mutants were obtained, and Arg(50) can be replaced with hydrophobic residues (Val, Leu, or Ile), with a greater stability and higher specific activity of the enzyme. Indispensabilities of Val(39), Ile(45), and Leu(53) indicate that an amphipathic property of alpha-helix I consisting of 14 residues of the module (Thr(44)-Gly(58)) is essential to maintain the stable catalytic surface for 8-oxo-dGTPase.

  1. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  2. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  3. It takes two to tango: Ubiquitin and SUMO in the DNA damage response

    Science.gov (United States)

    Bologna, Serena; Ferrari, Stefano

    2013-01-01

    The complexity of living cells is primarily determined by the genetic information encoded in DNA and gets fully disclosed upon translation. A major determinant of complexity is the reversible post-translational modification (PTM) of proteins, which generates variants displaying distinct biological properties such as subcellular localization, enzymatic activity and the ability to assemble in complexes. Decades of work on phosphorylation have unambiguously proven this concept. In recent years, the covalent attachment of Ubiquitin or Small Ubiquitin-like Modifiers (SUMO) to amino acid residues of target proteins has been recognized as another crucial PTM, re-directing protein fate and protein-protein interactions. This review focuses on the role of ubiquitylation and sumoylation in the control of DNA damage response proteins. To lay the ground, we begin with a description of ubiquitylation and sumoylation, providing established examples of DNA damage response elements that are controlled through these PTMs. We then examine in detail the role of PTMs in the cellular response to DNA double-strand breaks illustrating hierarchy, cross-talk, synergism or antagonism between phosphorylation, ubiquitylation and sumoylation. We conclude offering a perspective on Ubiquitin and SUMO pathways as targets in cancer therapy. PMID:23781231

  4. Roles of Apoptosis and Cellular Senescence in Cancer and Aging.

    Science.gov (United States)

    Cerella, Claudia; Grandjenette, Cindy; Dicato, Mario; Diederich, Marc

    2016-01-01

    Cancer and aging are two similar processes representing the final outcome of timedependent accumulation of various irreversible dysfunctions, mainly caused by stress-induced DNA and cellular damages. Apoptosis and senescence are two types of cellular response to damages that are altered in both cancer and aging, albeit through different mechanisms. Carcinogenesis is associated with a progressive reduction in the ability of the cells to trigger apoptosis and senescence. In contrast, in aging tissues, there is an increased accumulation of senescent cells, and the nature of apoptosis deregulation varies depending on the tissue. Thus, the prevailing model suggests that apoptosis and cellular senescence function as two essential tumor-suppressor mechanisms, ensuring the health of the individual during early and reproductive stages of life, but become detrimental and promote aging later in life. The recent discovery that various anticancer agents, including canonical inducers of apoptosis, act also as inducers of cellular senescence indicates that pro-senescence strategies may have applications in cancer prevention therapy. Therefore, dissection of the mechanisms mediating the delicate balance between apoptosis and cellular senescence will be beneficial in the therapeutic exploitation of both processes in the development of future anticancer and anti-aging strategies, including minimizing the side effects of such strategies. Here, we provide an overview of the roles of apoptosis and cellular senescence in cancer and aging.

  5. DNA repair systems in rhabdomyosarcoma.

    Science.gov (United States)

    Tsioli, Panagiota G; Patsouris, Efstratios S; Giaginis, Constantinos; Theocharis, Stamatios E

    2013-08-01

    Rhabdomyosarcoma (RMS) represents the most common soft tissue sarcoma in children and adolescent population. There are two major histological subtypes, embryonal (ERMS) and alveolar (ARMS), differing in cytogenetic and morphological features. RMS pathogenesis remains controversial and several cellular mechanisms and pathways have been implicated. Application of intense chemo- and radio-therapy improves survival rates for RMS patients, but significant efficacy has not been proved as DNA damage induced-resistance frequently occurs. The present review is aimed at summarizing the current evidence on DNA repair systems, implications in RMS development, focusing on gene expression alterations and point mutations of genes encoding for DNA repair enzymes. Understanding of DNA repair systems involvement in RMS pathogenesis could diversify RMS patients and provide novel individualized therapeutic targets.

  6. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  7. Small molecules, inhibitors of DNA-PK, targeting DNA repair and beyond

    Directory of Open Access Journals (Sweden)

    David eDavidson

    2013-01-01

    Full Text Available Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining (NHEJ a major mechanism for the repair of double strand breaks (DSB in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK. The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA

  8. The emerging role of nuclear architecture in DNA repair and genome maintenance

    OpenAIRE

    Misteli, Tom; Soutoglou, Evi

    2009-01-01

    DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly o...

  9. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    Science.gov (United States)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  10. Residual stresses in material processing

    Science.gov (United States)

    Kozaczek, K. J.; Watkins, T. R.; Hubbard, C. R.; Wang, Xun-Li; Spooner, S.

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then addresses the direct, nondestructive methods of residual stress measurement by X ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  11. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  12. Cellular Commitment in the Developing Cerebellum

    Directory of Open Access Journals (Sweden)

    Hassan eMarzban

    2015-01-01

    Full Text Available The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we then discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.

  13. Cellular Basis for Learning Impairment in Fragile X Syndrome

    Science.gov (United States)

    2014-08-01

    including migration and hibernation. Oxygen levels also vary widely, with animals adapted to sea level, high-altitude, underground and aquatic habitats...transcription factor regulates the cell cycle, energy metabolism, DNA damage repair and apoptosis (Zhang et al., 2010), and is responsive to cellular stress...in mammals and birds . In Handbook of Physiology. The Cardiovascular System III. Peripheral Circulation and Organ Blood Flow (ed. J. T. Shepherd and F

  14. Cellular response after irradiation: Cell cycle control and apoptosis

    International Nuclear Information System (INIS)

    Siles, E.; Valenzuela, M.T.; Nunez, M.I.; Guerrero, R.; Villalobos, M.; Ruiz de Almodovar, J.M.

    1997-01-01

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  15. Identifying Functional Cysteine Residues in the Mitochondria.

    Science.gov (United States)

    Bak, Daniel W; Pizzagalli, Mattia D; Weerapana, Eranthie

    2017-04-21

    The mitochondria are dynamic organelles that regulate oxidative metabolism and mediate cellular redox homeostasis. Proteins within the mitochondria are exposed to large fluxes in the surrounding redox environment. In particular, cysteine residues within mitochondrial proteins sense and respond to these redox changes through oxidative modifications of the cysteine thiol group. These oxidative modifications result in a loss in cysteine reactivity, which can be monitored using cysteine-reactive chemical probes and quantitative mass spectrometry (MS). Analysis of cell lysates treated with cysteine-reactive probes enable the identification of hundreds of cysteine residues, however, the mitochondrial proteome is poorly represented (proteins and suppression of mitochondrial peptide MS signals by highly abundant cytosolic peptides. Here, we apply a mitochondrial isolation and purification protocol to substantially increase coverage of the mitochondrial cysteine proteome. Over 1500 cysteine residues from ∼450 mitochondrial proteins were identified, thereby enabling interrogation of an unprecedented number of mitochondrial cysteines. Specifically, these mitochondrial cysteines were ranked by reactivity to identify hyper-reactive cysteines with potential catalytic and regulatory functional roles. Furthermore, analyses of mitochondria exposed to nitrosative stress revealed previously uncharacterized sites of protein S-nitrosation on mitochondrial proteins. Together, the mitochondrial cysteine enrichment strategy presented herein enables detailed characterization of protein modifications that occur within the mitochondria during (patho)physiological fluxes in the redox environment.

  16. Kaposi's sarcoma-associated herpesvirus-encoded LANA recruits topoisomerase IIβ for latent DNA replication of the terminal repeats.

    Science.gov (United States)

    Purushothaman, Pravinkumar; McDowell, Maria E; McGuinness, James; Salas, Ruth; Rumjahn, Sharif M; Verma, Subhash C

    2012-09-01

    The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) plays a major role in maintaining latency and is critical for the perpetual segregation of viral episomes to the progeny nuclei of newly divided cells. LANA binds to KSHV terminal repeat (TR) DNA and tethers the viral episomes to host chromosomes through the association of chromatin-bound cellular proteins. TR elements serve as potential origin sites of KSHV replication and have been shown to play important roles in latent DNA replication and transcription of adjacent genes. Affinity chromatography and proteomics analysis using KSHV TR DNA and the LANA binding site as the affinity column identified topoisomerase IIβ (TopoIIβ) as a LANA-interacting protein. Here, we show that TopoIIβ forms complexes with LANA that colocalize as punctuate bodies in the nucleus of KSHV-infected cells. The specific TopoIIβ binding region of LANA has been identified to its N terminus and the first 32 amino acid residues containing the nucleosome-binding region crucial for binding. Moreover, this region could also act as a dominant negative to disrupt association of TopoIIβ with LANA. TopoIIβ plays an important role in LANA-dependent latent DNA replication, as addition of ellipticine, a selective inhibitor of TopoII, negatively regulated replication mediated by the TR. DNA break labeling and chromatin immunoprecipitation assay using biotin-16-dUTP and terminal deoxynucleotide transferase showed that TopoIIβ mediates a transient DNA break on viral DNA. These studies confirm that LANA recruits TopoIIβ at the origins of latent replication to unwind the DNA for replication.

  17. SRC Residual fuel oils

    Science.gov (United States)

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  18. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... by providing platforms that offer biocompatible surfaces for the cell culturing in lab-on-chip devices integrated with optimized nanosensors with high specificities and sensitivities towards cellular analytes. In this project, novel materials were investigated with a focus on providing suitable surface...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...

  19. Systems biology of cellular rhythms.

    Science.gov (United States)

    Goldbeter, A; Gérard, C; Gonze, D; Leloup, J-C; Dupont, G

    2012-08-31

    Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.

  20. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  1. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  2. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  3. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  4. Pesticide residues in brain tissues of dairy cattle in Lembang

    Directory of Open Access Journals (Sweden)

    Indraningsih

    2006-03-01

    Full Text Available The use of pesticides to control plant diseases may cause residual formation in crops, its byproduct and environmental. Furthermore, the use of agriculture byproduct as animal feed may cause poisoning or residual formation in animal products. The purpose of this study is to investigate of pesticide residues in brain tissues of dairy cattle in relation to animal feed as a contamination source. Samples consisted of animal feeds (19 samples of fodder and 6 samples of feed, 31 samples of sera and 25 samples of brain tissues of dairy cattle collected from Lembang, West Java. Feeds and fodders were collected from dairy farms located in Lembang. Sera were directly collected from 31 heads of Frisien Holstein (FH cattle from the same location, while brain tissues of FH cattle were collected from a local animal slaughtering house. Pesticide residues were analysed using gas chromatography (GC. Both residues of organochlorines and organophosphates were detected from brain tissues with average residue concentration OP was 22.7 ppb and OC was 5.1 ppb and a total residue was 27.8 ppb. The pesticide residues in brain tissues are new information that should be taken into consideration since the Indonesian consumed this tissues as an oval. Although pesticides residue concentration was low, pathological changes were noted microscopically from the brain tissues including extracellular vacuolisation, focal necrosis, haemorrhages, dilatation of basement membrane without cellular infiltration. Both pesticide residues were also detected in sera, where OP (9.0 ppb was higher than OC (4.9 ppb. These pesticides were also detected in animal feeds consisting fodders and feeds. Residues of OP (12.0 ppb were higher than OC (1.8 ppb in feeds, but residues of OP (16.8 ppb were lower than OC (18.7 ppb in fodders. Although, pesticide residues in sera and brain tissues were below the maximum residue limits (MRL of fat, the presence of pesticides in brain tissues should be taken

  5. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-30

    This report gave a record of the composition of several samples of residues from carbonization of various hydrogenation residue from processing some type of coal or tar in the Bergius process. These included Silesian bituminous coal processed at 600 atm. with iron catalyst, in one case to produce gasoline and middle oil and in another case to produce heavy oil excess, Scholven coal processed at 250 atm. with tin oxalate and chlorine catalyst, Bruex tar processed in a 10-liter oven using iron catalyst, and a pitch mixture from Welheim processed in a 10-liter over using iron catalyst. The values gathered were compared with a few corresponding values estimated for Boehlen tar and Gelsenberg coal based on several assumptions outlined in the report. The data recorded included percentage of ash in the dry residue and percentage of carbon, hydrogen, oxygen, nitrogen, chlorine, total sulfur, and volatile sulfur. The percentage of ash varied from 21.43% in the case of Bruex tar to 53.15% in the case of one of the Silesian coals. Percentage of carbon varied from 44.0% in the case of Scholven coal to 78.03% in the case of Bruex tar. Percentage of total sulfur varied from 2.28% for Bruex tar to a recorded 5.65% for one of the Silesian coals and an estimated 6% for Boehlen tar. 1 table.

  6. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells.

    Science.gov (United States)

    1997-08-01

    polymerase. Biochemical and Biophysical Research Communications 21:6, 1965. 3.Farber, E. and Rubin, H. Cellular adaptation in the origin and development of...for DNA polymerase ca and in vitro SV40 DNA Cell culture. Suspension cultures of MDA MB-468 replication activities. human breast cells were adapted ...A vatit"Y Of DNA synthesis and the typt of DNA replica~tion Products " celular prca including DNA rsplicatlon. DNA repsair. R~NA formed in experiments

  7. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  8. Chromatin modifications and the DNA damage response to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

  9. Modeling cellular effects of coal pollutants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms

  10. Multiparameter cytometric analysis of complex cellular response.

    Science.gov (United States)

    Šimečková, Šárka; Fedr, Radek; Remšík, Ján; Kahounová, Zuzana; Slabáková, Eva; Souček, Karel

    2018-02-01

    Complex analysis of cellular responses after experimental treatment is important for screening, mechanistic understanding of treatment effects, and the identification of sensitive and resistant cell phenotypes. Modern multicolor flow cytometry has demonstrated its power for such analyses. Here, we introduce a multiparametric protocol for complex analysis of cytokinetics by the simultaneous detection of seven fluorescence parameters. This analysis includes the detection of two surface markers for immunophenotyping, analysis of proliferation based on the cell cycle and the measurement of incorporated nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU) in newly synthesized DNA, analysis of DNA damage using an anti-phospho-histone H2A.X (Ser139) antibody, and determination of cell death using a fixable viability probe and intracellular detection of caspase-3 activation. To demonstrate the applicability of this protocol for the analysis of heterogeneous and complex cell responses, we used different treatments and model cell lines. We demonstrated that this protocol has the potential to provide complex and simultaneous analysis of cytokinetics and analyze the heterogeneity of the response at the single-cell level. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  11. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  12. DNA Vaccines

    Indian Academy of Sciences (India)

    DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ARTICLE. DNA Vaccines. P N Rangarajan. History of Vaccine Development. The year 1996 marked the 200th anniversary of the first vaccine developed against smallpox by Edward Jenner. In the now- famous 1796 experiment, Jenner scratched ...

  13. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  14. DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF.

    Science.gov (United States)

    Singh, Dhirendra P; Kubo, E; Takamura, Y; Shinohara, T; Kumar, A; Chylack, Leo T; Fatma, N

    2006-01-20

    Lens epithelium derived growth factor (LEDGF), a nuclear protein, plays a role in regulating the transcription of stress-associated genes such as heat shock proteins by binding to consensus core DNA sequences nAGGn or nGAAn or their repeats, and in doing so helps to provide cyto-protection. However, additional information is required to identify the specific structural features of LEDGF involved in gene transcription. Here we have investigated the functional domains activating and repressing DNA-binding modules, by using a DNA binding assay and trans-activation experiments performed by analyzing proteins prepared from deletion constructs. The results disclosed the DNA-binding domain of N-terminal LEDGF mapped between amino acid residues 5 and 62, a 58 amino acid residue stretch PWWP domain which binds to stress response elements (STRE; A/TGGGGA/T). C-terminal LEDGF contains activation domains, an extensive loop-region (aa 418-530) with two helix-turn-helix (HTH)-like domains, and binds to a heat shock element (HSE; nGAAn). A trans-activation assay using Hsp27 promoter revealed that both HTH domains contribute in a cooperative manner to the trans-activation potential of LEDGF. Interestingly, removal of N-terminal LEDGF (aa 1-187) significantly enhances the gene activation potential of C-terminal LEDGF (aa 199-530); thus the N-terminal domain (aa 5-62), exhibits auto-transcriptional repression activity. It appears that this domain is involved in stabilizing the LEDGF-DNA binding complex. Collectively, our results demonstrate that LEDGF contains three DNA-binding domains, which regulate gene expression depending on cellular microenvironment and thus modify the physiology of cells to maintain cellular homeostasis.

  15. Overview of molecular, cellular, and genetic neurotoxicology.

    Science.gov (United States)

    Wallace, David R

    2005-05-01

    /toxin combinations is they can be detected and measured shortly following exposure and before overt neuroanatomic damage or lesions. Intervention at this point, shortly following exposure, may prevent or at least attenuate further damage to the individual. The use of peripheral biomarkers to assess toxin damage in the CNS has numerous advantages: time-course analysis may be performed, ethical concerns with the use of human subjects can partially be avoided, procedures to acquire samples are less invasive, and in general, peripheral studies are easier to perform. Genetic neurotoxicology comprises two focuses--toxin-induced alterations in genetic expression and genetic alterations that affect toxin metabolism, distribution, and clearance. These differences can be beneficial or toxic. Polymorphisms have been shown to result in altered metabolism of certain toxins (paraoxonase and paraoxon). Conversely, it is possible that some polymorphisms may be beneficial and help prevent the formation of a toxic by-product of an exogenous agent (resistance to ozone-induced lung inflammation). It has also become clear that interactions of potential toxins are not straightforward as interactions with DNA, causing mutations. There are numerous agents that cause epigenetic responses (cellular alterations that are not mutagenic or cytotoxic). This finding suggests that many agents that may originally have been thought of as nontoxic should be re-examined for potential "indirect" toxicity. With the advancement of the human genome project and the development of a human genome map, the effects of potential toxins on single or multiple genes can be identified. Although collectively, the field of neurotoxicology has recently come a long way, it still has a long way to go reach its full potential. As technology and methodology advances continue and cooperation with other disciplines such as neuroscience, biochemistry, neurophysiology, and molecular biology is improved, the mechanisms of toxin action will be

  16. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  17. Effects of latent fingerprint development reagents on subsequent forensic DNA typing: a review.

    Science.gov (United States)

    Kumar, Parveen; Gupta, Ritika; Singh, Rajinder; Jasuja, Om Prakash

    2015-05-01

    Successful development of latent fingerprints can be helpful in solving the case but in case where fingerprints are smudged, distorted or overlapped, the question arises whether it is still possible to identify the person apart from dermatoglyphic features. Sweat residue present in the latent prints is supposed to have quite good quantity of cellular material which if analyzed properly can be used to generate forensic DNA profile of the individual and may answer the queries related to the effect of reagents used to develop the prints, as they may have a significant effect on the process of examination of this evidentiary material. In the present work an effort has been made to summarize the published review of literature on this aspect of personal identification. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Fluoroquinolone-Gyrase-DNA Complexes

    Science.gov (United States)

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  19. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  20. Cellular uptake of Aib-containing amphipathic helix peptide.

    Science.gov (United States)

    Wada, Shun-ichi; Tsuda, Hirokazu; Okada, Terumi; Urata, Hidehito

    2011-10-01

    Cell-penetrating peptides (CPPs) are useful tools for the delivery of hydrophilic bioactive molecules, such as peptides, proteins, and oligonucleotides, across the cell membrane. To realize the delivery of therapeutic macromolecules by CPPs, the CPPs are required to show resistance to protease and no cytotoxicity. In order to produce potent non-toxic and protease-resistant CPPs with high cellular uptake, we designed an amphipathic helix peptide using α-aminoisobutyric acid (Aib, U) and named it MAP(Aib). In the MAP(Aib) molecule, five Aib residues are aligned on the hydrophobic face of the helix and five lysine (K) residues are aligned on the hydrophilic face. MAP(Aib) showed potent resistance to trypsin and pronase compared with MAP, an amphipathic helix peptide formed by usual amino acids. Fluorescein-labeled MAP(Aib) efficiently traversed the A549 cell membrane, diffusing into the cytoplasm and slightly into the nucleus without exerting any cytotoxicity. In contrast, MAP was poorly taken up by the cell. These results indicate that the incorporation of Aib residues into CPPs markedly improves cellular uptake and MAP(Aib) may be a useful tool for the delivery of hydrophilic macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sharing Residual Liability

    DEFF Research Database (Denmark)

    Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco

    2016-01-01

    Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... the virtues and limits of loss-sharing rules in generating optimal (second-best) incentives and allocations of risk. We find that loss sharing may be optimal in the presence of countervailing policy objectives, homogeneous risk avoiders, and subadditive risk, which potentially offers a valuable tool...

  2. Choreography of the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Barlow, Jacqueline H; Burgess, Rebecca C

    2004-01-01

    recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting......DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication...... stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous...

  3. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  4. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    Science.gov (United States)

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms.

  5. Relative degradation of nuclear and mitochondrial DNA: an experimental approach.

    Science.gov (United States)

    Foran, David R

    2006-07-01

    Single copy nuclear loci often cannot be amplified from degraded remains, necessitating the analysis of mitochondrial DNA (mtDNA). The success in analyzing mtDNA is generally thought to result from its higher copy number in the cell; however, other factors, such as cellular location or molecular features, may be equally or more important in the superior preservation of mtDNA. To explore and compare mtDNA and nuclear DNA degradation, mouse tissues (muscle, liver, and brain) were allowed to degrade at different temperatures, and the relative degradation of a mitochondrial gene, a single copy nuclear gene, and a multi-copy nuclear gene was assayed using real-time polymerase chain reaction. The tissues were also homogenized, allowing the three loci to degrade in the same cellular environment. Gene copy number and cellular location both influence DNA recovery. In some instances, multi-copy loci could be recovered when the single copy locus could not; however, the pattern of relative DNA degradation changed between whole and homogenized tissues. The overall results indicate that DNA degradation is influenced by multiple factors-including cellular location, chromatin structure, and transcriptional activity-factors that could be used to exploit loci for more robust forensic analysis from degraded biological material.

  6. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  7. Single molecule Studies of DNA Mismatch Repair

    Science.gov (United States)

    Erie, Dorothy A.; Weninger, Keith R.

    2015-01-01

    DNA mismatch repair involves is a widely conserved set of proteins that is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair. PMID:24746644

  8. Aging, Cellular Senescence, and Cancer

    Science.gov (United States)

    Campisi, Judith

    2014-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyper-plastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  9. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  10. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  11. Genome instabilities arising from ribonucleotides in DNA.

    Science.gov (United States)

    Klein, Hannah L

    2017-08-01

    Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cellular structures with interconnected microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  13. Global properties of cellular automata

    International Nuclear Information System (INIS)

    Jen, E.

    1986-01-01

    Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence

  14. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    DEFF Research Database (Denmark)

    Croteau, Deborah L; de Souza-Pinto, Nadja C; Harboe, Charlotte

    2010-01-01

    were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from......Aging is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice......-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage....

  15. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  16. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  17. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (S...

  18. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine (...

  19. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  20. Auxin and Cellular Elongation1

    Science.gov (United States)

    Velasquez, Silvia Melina; Barbez, Elke

    2016-01-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  1. CELLULAR COMPARTMENTALIZATION AND HEAVY METAL ...

    African Journals Online (AJOL)

    CELLULAR COMPARTMENTALIZATION AND HEAVY METAL LOAD IN THE MOSS. Barbula lambarenensis AROUND A MEGA CEMENT FACTORY IN SOUTHWEST NIGERIA. *. Ogunkunle, C. O. and Fatoba, P. O.. Department of Plant Biology, University of Ilorin .... the free transport of Zn across the cell wall as it.

  2. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...

  3. Analysis of cellular manufacturing systems

    NARCIS (Netherlands)

    Heragu, Sunderesh; Zijm, Willem H.M.; Meng, Gang; Heragu, S.S.; van Ommeren, Jan C.W.; van Houtum, Geert-Jan

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handling

  4. Cellular Automata and the Humanities.

    Science.gov (United States)

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  5. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  6. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  7. Complex cellular logic computation using ribocomputing devices.

    Science.gov (United States)

    Green, Alexander A; Kim, Jongmin; Ma, Duo; Silver, Pamela A; Collins, James J; Yin, Peng

    2017-08-03

    Synthetic biology aims to develop engineering-driven approaches to the programming of cellular functions that could yield transformative technologies. Synthetic gene circuits that combine DNA, protein, and RNA components have demonstrated a range of functions such as bistability, oscillation, feedback, and logic capabilities. However, it remains challenging to scale up these circuits owing to the limited number of designable, orthogonal, high-performance parts, the empirical and often tedious composition rules, and the requirements for substantial resources for encoding and operation. Here, we report a strategy for constructing RNA-only nanodevices to evaluate complex logic in living cells. Our 'ribocomputing' systems are composed of de-novo-designed parts and operate through predictable and designable base-pairing rules, allowing the effective in silico design of computing devices with prescribed configurations and functions in complex cellular environments. These devices operate at the post-transcriptional level and use an extended RNA transcript to co-localize all circuit sensing, computation, signal transduction, and output elements in the same self-assembled molecular complex, which reduces diffusion-mediated signal losses, lowers metabolic cost, and improves circuit reliability. We demonstrate that ribocomputing devices in Escherichia coli can evaluate two-input logic with a dynamic range up to 900-fold and scale them to four-input AND, six-input OR, and a complex 12-input expression (A1 AND A2 AND NOT A1*) OR (B1 AND B2 AND NOT B2*) OR (C1 AND C2) OR (D1 AND D2) OR (E1 AND E2). Successful operation of ribocomputing devices based on programmable RNA interactions suggests that systems employing the same design principles could be implemented in other host organisms or in extracellular settings.

  8. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    ing oxidized. 3.3 Porous cellular SiC ceramics. Outward movement and reaction of residual Si-phase of biomorphic Si–SiC ceramic specimens occurred when they were positioned in the axial direction in intimate contact with powdered carbon during heating. The den- sity and porosity of the Si-depleted material were found.

  9. Marine Tar Residues: a Review

    OpenAIRE

    Warnock, April M.; Hagen, Scott C.; Passeri, Davina L.

    2015-01-01

    Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in ...

  10. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies.

    Science.gov (United States)

    Mann, Anita; Thakur, Garima; Shukla, Vasundhara; Singh, Anand Kamal; Khanduri, Richa; Naik, Rangeetha; Jiang, Yang; Kalra, Namita; Dwarakanath, B S; Langel, Ulo; Ganguli, Munia

    2011-10-03

    Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. L-lysine and L-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used L-lysine and L-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.

  11. Convergent adaptation of cellular machineries in the evolution of large body masses and long life spans.

    Science.gov (United States)

    Croco, Eleonora; Marchionni, Silvia; Storci, Gianluca; Bonafè, Massimiliano; Franceschi, Claudio; Stamato, Thomas D; Sell, Christian; Lorenzini, Antonello

    2017-08-01

    In evolutionary terms, life on the planet has taken the form of independently living cells for the majority of time. In comparison, the mammalian radiation is a relatively recent event. The common mammalian ancestor was probably small and short-lived. The "recent" acquisition of an extended longevity and large body mass of some species of mammals present on the earth today suggests the possibility that similar cellular mechanisms have been influenced by the forces of natural selection to create a convergent evolution of longevity. Many cellular mechanisms are potentially relevant for extending longevity; in this assay, we review the literature focusing primarily on two cellular features: (1) the capacity for extensive cellular proliferation of differentiated cells, while maintaining genome stability; and (2) the capacity to detect DNA damage. We have observed that longevity and body mass are both positively linked to these cellular mechanisms and then used statistical tools to evaluate their relative importance. Our analysis suggest that the capacity for extensive cellular proliferation while maintaining sufficient genome stability, correlates to species body mass while the capacity to correctly identify the presence of DNA damage seems more an attribute of long-lived species. Finally, our data are in support of the idea that a slower development, allowing for better DNA damage detection and handling, should associate with longer life span.

  12. New factors in mammalian DNA repair-the chromatin connection.

    Science.gov (United States)

    Raschellà, G; Melino, G; Malewicz, M

    2017-08-17

    In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.

  13. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Semiflexible biopolymers play a vital role in shaping cellular structure and rigidity. In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus. DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power.

  14. A lncRNA to repair DNA

    DEFF Research Database (Denmark)

    Lukas, Jiri; Altmeyer, Matthias

    2015-01-01

    Long non-coding RNAs (lncRNAs) have emerged as regulators of various biological processes, but to which extent lncRNAs play a role in genome integrity maintenance is not well understood. In this issue of EMBO Reports, Sharma et al [1] identify the DNA damage-induced lncRNA DDSR1 as an integral...... player of the DNA damage response (DDR). DDSR1 has both an early role by modulating repair pathway choices, and a later function when it regulates gene expression. Sharma et al [1] thus uncover a dual role for a hitherto uncharacterized lncRNA during the cellular response to DNA damage....

  15. The second hit of DNA methylation.

    Science.gov (United States)

    Di Ruscio, Annalisa; Welner, Robert S; Tenen, Daniel G; Amabile, Giovanni

    2016-05-01

    Gene expression programs are tightly regulated by heritable "epigenetic" information, which is stored as chemical modifications of histones and DNA. With the recent development of sequencing-based epigenome mapping technologies and cancer cellular reprogramming, the tools are now in hand to analyze the epigenetic contribution to human cancer.

  16. Vascular Aging from DNA Damage to Protection

    NARCIS (Netherlands)

    M. Durik (Matej)

    2012-01-01

    textabstractAging is highly associated with development of cardiovascular disease; however, the underlying mechanisms of these processes are not well understood. Recent advancements in aging research underscore the importance of DNA damage and subsequent cellular senescence in the aging process. In

  17. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function

    Directory of Open Access Journals (Sweden)

    Bernadett Kalmar

    2017-09-01

    Full Text Available Heat shock proteins (Hsps are ubiquitously expressed chaperone proteins that enable cells to cope with environmental stresses that cause misfolding and denaturation of proteins. With aging this protein quality control machinery becomes less effective, reducing the ability of cells to cope with damaging environmental stresses and disease-causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS, such mutations are known to result in protein misfolding, which in turn results in the formation of intracellular aggregates cellular dysfunction and eventual neuronal death. The exact cellular pathology of ALS and other neurodegenerative diseases has been elusive and thus, hindering the development of effective therapies. However, a common scheme has emerged across these “protein misfolding” disorders, in that the mechanism of disease involves one or more aspects of proteostasis; from DNA transcription, RNA translation, to protein folding, transport and degradation via proteosomal and autophagic pathways. Interestingly, members of the Hsp family are involved in each of these steps facilitating normal protein folding, regulating the rate of protein synthesis and degradation. In this short review we summarize the evidence that suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key role. Overwhelming evidence now indicates that enabling protein homeostasis to cope with disease-causing mutations might be a successful therapeutic strategy in ALS, as well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has shown promising results in cellular and animal models of ALS, as well as other protein misfolding diseases such as Inclusion Body Myositis (IBM. Initial clinical investigations of Arimoclomol have shown promising results. Therefore, it is possible that the long series of

  18. Cellular and molecular biology group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Model DNA polymers have been employed to measure physico-chemical effects of X-irradiation and the influence of known base sequences on the transcription by RNA polymerases. These experiments allow quantitative estimates of the fidelity of transcription in the presence of physical and chemical agents. Cells in culture provide the basic system for studying radiation effects on DNA synthesis, organization of DNA in the nucleus, effects of pollutants on genetic information transfer and gene expression, nucleic acid structure, proliferation capacity, histone phosphorylation, and chromatin structure and function. Mathematical models of the immune response have been formulated, and the biochemical properties of the cell surface have been characterized. The use of flow systems to provide rapid karyotype analysis has been established for relatively simple karyotypes, and a series of cell-cycle-dependent, temperature-sensitive mutant mammalian cell lines have been derived and appear useful for cycle progression and mutagenesis studies

  19. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  20. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  1. DNA nanotechnology

    OpenAIRE

    Nadrian C Seeman

    2003-01-01

    Since Watson and Crick’s determination of its structure nearly 50 years ago, DNA has come to fill our lives in many areas, from genetic counseling to forensics, from genomics to gene therapy. These, and other ways in which DNA affects human activities, are related to its function as genetic material, not just our genetic material, but the genetic material of all living organisms. Here, we will ignore DNA’s biological role; rather, we will discuss how the properties that make it so successful ...

  2. Spontaneous unscheduled DNA synthesis in human lymphocytes

    International Nuclear Information System (INIS)

    Forell, B.; Myers, L.S. Jr.; Norman, A.

    1979-01-01

    The rate of spontaneous unscheduled DNA synthesis in human lymphocytes was estimated from measurements of tritiated thymidine incorporation into double-stranded DNA (ds-DNA) during incubation of cells in vitro. The contribution of scheduled DNA synthesis to the observed incorporation was reduced by inhibiting replication with hydroxyurea and by separating freshly replicated single-stranded DNA (ss-DNA) from repaired ds-DNA by column chromatography. The residual contribution of scheduled DNA synthesis was estimated by observing effects on thymidine incorporation of: (a) increasing the rate of production of apurinic sites, and alternatively, (b) increasing the number of cells in S-phase. Corrections based on estimates of endogenous pool size were also made. The rate of spontaneous unscheduled DNA synthesis is estimated to be 490 +- 120 thymidine molecules incorporated per cell per hour. These results compare favorably with estimates made from rates of depurination and depyrimidination of DNA, measured in molecular systems if we assume thymidine is incorporated by a short patch mechanism which incorporates an average of four bases per lesion

  3. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    Science.gov (United States)

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  5. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  6. DNA Methylation Alterations in Breast Cancer

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2000-01-01

    .... We performed NotI-MseI MS-AFLP using clinical specimens of normal and tumor breast DNA. We used both combinations of four NotI and four MseI primers with an additional selective residue at the 3' end (4x4 format...

  7. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  8. Universal map for cellular automata

    International Nuclear Information System (INIS)

    García-Morales, V.

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of L