WorldWideScience

Sample records for residential photovoltaic worth

  1. Remote residential photovoltaic systems in British Columbia: A study

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, R B

    1989-01-01

    A survey of existing residential photovoltaic power systems in remote areas in British Columbia was conducted to collect data on system performance. The 80 respondents had systems with arrays ranging from 5 to 875 watts, costing from $200 to $14,000. An overwhelming majority of users expressed overall satisfaction with the contribution of photovoltaic technology to their life style. Specific advantages of photovoltaic systems over alternative energy sources included cost-effectiveness, low maintenance, lack of noise and pollution, and ease of operation. Problems with the systems included low winter power, unsatisfactory load matching, and improper operation of associated battery storage systems. It was noted that load profile estimation and system sizing calculations are difficult because control over user behavior with respect to the power system is nearly non-existent when compared to industrial installations. Low-level ampere-hour monitoring of 10 representative sites was carried out and results are presented, giving the power contributions of the photovoltaic system along with any backup system that may be present. Remote residential photovoltaic systems should continue to gain acceptance and more widespread use, especially as module costs drop and more efficient loads (especially appliances such as refrigerators) become practical. 10 figs., 2 tabs.

  2. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    Holdermann, Claudius; Kissel, Johannes; Beigel, Jürgen

    2014-01-01

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV ⁎ Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV ⁎ Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  3. The value of residential photovoltaic systems: A comprehensive assessment

    Science.gov (United States)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  4. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  5. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  6. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada

    International Nuclear Information System (INIS)

    Parker, Paul

    2008-01-01

    Canada is a leading electricity consumer, yet lags behind other industrial countries (14th out of 20 reporting IEA countries) in the installation of solar photovoltaic systems. The factors (environmental benefits, health benefits, network benefits, need for new production capacity, etc.) promoting solar or other renewable sources of electricity in other countries are also present in Canada, but effective policy mechanisms to stimulate Canada's photovoltaic industry are only starting to appear. Discussions of policy options focused initially on renewable portfolio standards and then on feed-in tariffs. This paper reviews the Japanese and Australian experience with capital incentives to stimulate the residential market for photovoltaics. It demonstrates the ability of a market-sensitive program to stimulate industrial growth, achieve unit cost reductions and shift the market to include a large grid-tied share. Residential respondents to surveys report high costs as their primary barrier to installing photovoltaic systems and state a strong preference for capital incentives to reduce their investment costs. The Canadian government needs a market stimulation policy if it is to join those countries where a decentralized photovoltaic generation system strengthens the electricity supply system. A balanced solar energy market stimulation program is proposed that combines a feed-in tariff with a declining capital incentive. (author)

  7. Operation and maintenance cost data for residential photovoltaic modules/panels

    Science.gov (United States)

    Oster, J. R., Jr.; Zaremski, D. R., Jr.; Albert, E. M.; Hawkins, S. L.

    1980-01-01

    Costs associated with the operation and maintenance of residential photovoltaic modules and arrays are studied. Six basic topics related to operation and maintenance to photovoltaic arrays are investigated: maintenance; cleaning; panel replacement; gasket repair/replacement; wiring repair/replacement; and termination repair/replacement. The effects of the mounting types (rack mount, stand off mount, direct mount and integral mount) and the installation/replacement type (sequential, partial interruption and independent) are identified and described. Methods of reducing maintenance costs are suggested.

  8. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  9. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  10. Research report for fiscal 1996 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1996 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Tests and researches have been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of designs of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1996. The current fiscal year has performed collection of data of the demonstration operation, checked the consistency in photovoltaic power generation characteristics, and housing and distribution line load characteristics, and the results were mounted on the database. The demonstration operation data were used to analyze and evaluate the facility utilization rate in the photovoltaic power generation, photovoltaic power generation dependence of the house load, load rate, and peak load reduction rate. As a result, it was found that not much of the peak load reduction effect by the photovoltaic power generation was recognized because the house load is related mainly on lighting load. However, as seen from the distribution line load, the peak load reduction was recognized when the house load and the commercial and industrial load are mixed, whereas it was revealed that the reduction effect is worth evaluation. (NEDO)

  11. The value of price transparency in residential solar photovoltaic markets

    Energy Technology Data Exchange (ETDEWEB)

    O’Shaughnessy, Eric; Margolis, Robert

    2018-06-01

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results show that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.

  12. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  13. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  14. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  15. Financing Non-Residential Photovoltaic Projects: Options and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years

  16. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building

    NARCIS (Netherlands)

    Robledo, C.B.; Oldenbroek, V.D.W.M.; Abbruzzese, F.; van Wijk, A.J.M.

    2018-01-01

    This paper presents the results of a demonstration project, including building-integrated photovoltaic (BIPV) solar panels, a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation, aiming to achieve a net zero-energy residential building

  17. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  18. Tracking the Sun VIII. The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Grue, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-01

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar report series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.

  19. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  20. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  1. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  2. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    Mitscher, Martin; Rüther, Ricardo

    2012-01-01

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  3. Tracking the Sun IX: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Darghouth, Naïm [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cates, Sarah [Exeter Associates, Columbia, MD (United States); DiSanti, Nicholas [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States)

    2016-08-16

    Now in its ninth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and non-residential systems installed through year-end 2015, with preliminary trends for the first half of 2016. An accompanying LBNL report, Utility-Scale Solar, addresses trends in the utility-scale sector. This year’s report incorporates a number of important changes and enhancements from prior editions. Among those changes, LBNL has made available a public data file containing all non-confidential project-level data underlying the analysis in this report. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. Refer to the text box to the right for several key notes about these data. In total, data were collected and cleaned for more than 820,000 individual PV systems, representing 85% of U.S. residential and non-residential PV systems installed cumulatively through 2015 and 82% of systems installed in 2015. The analysis in this report is based on a subset of this sample, consisting of roughly 450,000 systems with available installed price data.

  4. Electric power of residential photovoltaic power system; Jutakuyo taiyoko hatsuden system no hatsudenryo

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Kawamura, H.; Yamanaka, S.; Kawamura, H.; Ono, H.; Hayashi, K.; Naganawa, H. [Meijo University, Nagoya (Japan); Asai, H.

    1996-10-27

    Measurement was done on the annual power generation of a residential photovoltaic power system that was most suitable for the present situation in utilizing solar energy; and an examination was made on the basis of the data of a module in which an optimal operation load control was separately installed in order to operate the system more effectively. As a result, it was found that the introduction of a 3kW class system was currently most desirable as a residential photovoltaic power system, and that the problem of the optimal operation load control was crucial for the more efficient power generation. The resistance value of the optimal operation load was stable between 6 and 8 ohm in the daytime in fine weather. However, it was observed that, where no sufficient insolation was expected, the optimal operation load was ten times as much as in fine weather, being easily influenced by the environmental elements. In addition, it was revealed that, if the operation load was fixed at a specific value (6 ohm) in a clear day, the power generation was only about 85% compared with the case of controlling the optimal operation load. This figure was obtained under comparatively favorable conditions, however. 8 refs., 7 figs.

  5. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  6. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G. [Department of Civil Engineering, University of Granada (Spain)

    2010-09-15

    Fossil fuel energy resources are becoming increasingly scarce. Given the negative environmental impacts (e.g. greenhouse gas emissions) that accompany their use, it is hardly surprising that the development of renewable energies has become a major priority in the world today. Andalusia, with a mean solar radiation of 4.75 kWh/m{sup 2} per day and a surface area of 87,597 km{sup 2}, is the region in Europe with the highest solar energy potential. This research study determined the solar energy potential in Andalusia for grid-connected photovoltaic systems installed on residential rooftops. A methodology was developed for this purpose, which first involved a description of building characteristics, followed by the calculation of the useful roof surface area where photovoltaic arrays could be installed. In the next phase of the study, the mean solar irradiation characteristics were defined as well as the technical parameters of the photovoltaic systems. All of these factors allowed us to estimate the amount of electricity that could be potentially generated per year by solar panels. (author)

  7. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  8. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  9. Optimal Sizing of Decentralized Photovoltaic Generation and Energy Storage Units for Malaysia Residential Household Using Iterative Method

    Directory of Open Access Journals (Sweden)

    Rahman Hasimah Abdul

    2016-01-01

    Full Text Available World’s fuel sources are decreasing, and global warming phenomena cause the necessity of urgent search for alternative energy sources. Photovoltaic generating system has a high potential, since it is clean, environmental friendly and secure energy sources. This paper presents an optimal sizing of decentralized photovoltaic system and electrical energy storage for a residential household using iterative method. The cost of energy, payback period, degree of autonomy and degree of own-consumption are defined as optimization parameters. A case study is conducted by employing Kuala Lumpur meteorological data, typical load profile from rural area in Malaysia, decentralized photovoltaic generation unit and electrical storage and it is analyzed in hourly basis. An iterative method is used with photovoltaic array variable from 0.1kW to 4.0kW and storage system variable from 50Ah to 400Ah was performed to determine the optimal design for the proposed system.

  10. Opinion leadership and willingness to pay for residential photovoltaic systems

    International Nuclear Information System (INIS)

    Yamamoto, Yoshihiro

    2015-01-01

    According to diffusion theory, opinion leaders play an important role in the diffusion of new technologies through interpersonal communication with potential adopters. This study investigates the role and utility of opinion leadership in photovoltaic (PV) system diffusion. Specifically, the study proposes, examines, and considers the implications of the hypothesis that there is a positive relationship between willingness to pay (WTP) for a PV system and opinion leadership on PV-system adoption. The investigation employed an internet-based questionnaire to assess the use of interpersonal communication in decision-making on adoption, to identify opinion leaders on adoption, and to characterize their WTP. The response pool consisted of 488 individuals who lived in a detached house, owned a residential PV system, and were responsible for making the decision to adopt the system. The results support the hypothesis. Considering that subsidization preferentially incentivizes households with greater WTP to adopt PV systems, this suggests that subsidization is more effective than purchases of PV power under feed-in tariffs in promoting the diffusion of residential PV systems through interpersonal communication. -- Highlights: •Interpersonal communication about the adoption of PV systems is analyzed. •A questionnaire survey is conducted. •Opinion leaders on PV-system adoption are identified. •A relationship is confirmed between willingness to pay and opinion leadership. •Subsidization is more essential than feed-in tariffs from this point of view

  11. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  12. Tracking the Sun 10: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DiSanti, Nicholas [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States)

    2017-09-21

    Berkeley Lab’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected, residential and non-residential systems solar photovoltaic (PV) systems in the United States. The present report, the tenth edition in the series, focuses on systems installed through year-end 2016, with preliminary data for the first half of 2017. The report provides an overview of both long-term and more-recent trends, highlighting key drivers for installed price declines over different time horizons. The report also extensively characterizes the widespread variability in system pricing, comparing installed prices across states, market segments, installers, and various system and technology characteristics. The trends described in this report derive from project-level data collected by state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data for this report were compiled and cleaned for more than 1.1 million individual PV systems, though the analysis in the report is based on a subset of that sample, consisting of roughly 630,000 systems with available installed price data. The full underlying dataset of project-level data (excluding any confidential information) is available in a public data file, for use by other researchers and analysts.

  13. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  14. Value of Residential Investment in Photovoltaics and Batteries in Networks: A Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Damian Shaw-Williams

    2018-04-01

    Full Text Available Australia has one of the highest rates of residential photovoltaics penetration in the world. The willingness of households to privately invest in energy infrastructure, and the maturing of battery technology, provides significant scope for more efficient energy networks. The purpose of this paper is to evaluate the scope for promoting distributed generation and storage from within existing network spending. In this paper, a techno-economic analysis is conducted to evaluate the economic impacts on networks of private investment in energy infrastructure. A highly granular probabilistic model of households within a test area was developed and an economic evaluation of both household and network sectors performed. Results of this paper show that PV only installations carry the greatest private return and, at current battery prices, the economics of combined PV and battery systems is marginal. However, when network benefits arising from reducing residential evening peaks, improved reliability, and losses avoided are considered, this can more than compensate for private economic losses. The main conclusion of this paper is that there is significant scope for network benefits in retrofitting existing housing stock through the incentivization of a policy of a more rapid adoption of distributed generation and residential battery storage.

  15. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  16. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  17. Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Christoforidis, Georgios C.

    2017-01-01

    To address sustainability challenges, photovoltaics (PV) are regarded as a promising renewable energy technology. Decreasing PV module costs and increasing residential electricity prices have made self-consumption of PV-generated electricity financially more attractive than exporting to the grid....... Organic photovoltaics (OPV) are an emerging thin-film PV technology that shows promise of greatly improving the environmental and economic performances of PV technologies. Previous studies have estimated the current and future costs of OPV technologies, but the attractiveness of investing in OPV systems...

  18. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  19. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  20. A kick to the photovoltaic industry

    International Nuclear Information System (INIS)

    Deye, M.; Remoue, A.

    2010-01-01

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  1. Urban BIPV in the new residential construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban building-integrated photovoltaics (BIPV) in the new residential construction industry. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The report states that different types of building require different approaches to BIPV due to their associated varying dimensions and geometry. Several solutions are proposed to encourage the adoption and diffusion of BIPV by the new home residential building industry. These are divided into PV industry-based approaches and policy-based solutions. The former include end-customer focused policies, the identification of early adopters, the creation of product solutions that meet the needs of the building industry and standards and that the construction industry must be engaged in the design and planning stage of residential developments. Policy questions discussed include the provision of incentives, a planned approach to the demonstration of BIPV and the development of BIPV-specific policy.

  2. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  3. Research report for fiscal 1997 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1997 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Tests and researches have been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of designs of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1997. The current fiscal year has performed the continued collection of data of the demonstration operation, and analysis and evaluation on the photovoltaic power generation characteristics and the house load characteristics. According to the data analysis result for fiscals 1995 through 1997, it was shown that, although the photovoltaic power generation system for residential use does not contribute much to load leveling in a house, it contributes to load leveling in the distribution line on the whole or a case as large as a grid. In addition, according to the survey on users who have installed the photovoltaic power generation system, it was indicated that the consciousness of electric power and energy conservation has heightened. The capacity of a photovoltaic power generation system for residential use is 3 kW for a standard type of home, which can take care of more than 60% of the house load. It was concluded that, if a storage battery of small capacity is accommodated, the system is effective for reduction of momentary peak load, enhancement of the power quality, and supply of power at a disaster. (NEDO)

  4. The transformation of southern California's residential photovoltaics market through third-party ownership

    International Nuclear Information System (INIS)

    Drury, Easan; Miller, Mackay; Macal, Charles M.; Graziano, Diane J.; Heimiller, Donna; Ozik, Jonathan; Perry IV, Thomas D.

    2012-01-01

    Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption. - Highlights: ► Third-party PV products increased residential PV demand in southern CA. ► Third-party PV products entice new demographic groups to adopt PV. ► Regional demographics are good predictors of PV demand. ► Regional voting trends on carbon policy are poor predictors of PV demand.

  5. Photovoltaic - Self consumption is gaining ground

    International Nuclear Information System (INIS)

    Le Jannic, Nolwenn

    2017-01-01

    Since July 2016, France has a legislation authorizing the self-consumption of electric power generated by photovoltaic systems. If certain points of the text need to be more precisely stated, the actors of the solar power sector consider this new legislation as a major progress, allowing to elaborate economic models for this autonomous power production. Several examples are given that illustrate recent competitive projects and achievements: photovoltaic power plants for supermarkets, high schools, residential and office buildings, etc. It appears that two thirds of demands concern self-consumption projects with sale of the surplus to the residential sector

  6. Economic analysis of photovoltaic systems for the residential market under China's new regulation

    International Nuclear Information System (INIS)

    Rodrigues, Sandy; Chen, Xiaoju; Morgado-Dias, F.

    2017-01-01

    China has recently changed its regulation for producing energy from photovoltaic solar panels in order to encourage the use of the solar resource. This new regulation started with offering subsidies at a national level and this was later followed by local subsidies in addition to the national one. Being a large country, China has regions with good solar exposure and others with poor exposure. Each region has a different electricity price and the energy is purchased based on the Grid Coal Power electricity price that also varies throughout the country. In this work we analyze the economic profitability of different regions considering the solar radiation levels, savings in self-consumption, cash flows from injecting power into the grid and local prices for installations to show that the best return is obtained in the places with better solar radiation or where the electricity price is higher. The regional Feed-In tariffs help to compensate for lower radiation levels but do not make these regions very attractive from an investment perspective. - Highlights: • Summarizes national and local feed in tariffs for China for the residential market. • Provides average local prices for 1 kW, 3 kW and 5 kW photovoltaic installations. • Selects city with best IRR, NPV and DPBP based on prices, subsidies and radiation. • Performs sensitivity analysis to check which parameter has more effect on results.

  7. Design of Residential Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2017-01-01

    Renewable energy has become very important both worldwide and on the European market, mainly due to the decrease in the photovoltaic (PV) system cost (up to 75%) during the last decade. PV installations worldwide have reached 227 GW at the end of 2015 with a predicted extra 50 GW of new...

  8. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scale systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.

  9. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  10. Photovoltaic electricity generation: Value for residential and commercial sectors

    Science.gov (United States)

    Bhattacharjee, Ujjwal

    The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that

  11. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    International Nuclear Information System (INIS)

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, Paul

    2017-01-01

    Highlights: •Commercially available PV-battery system is installed in mid-sized UK home. •PV generation and household electricity demand recorded for one year. •More than fifty long-term ageing experiments on commercial batteries undertaken. •Comprehensive battery degradation model based on long-term ageing data validated. •PV-Battery system is shown not be economically viable. -- Abstract: Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, it remains unclear when and under which conditions battery storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent when battery degradation is considered within the decision framework. In this work, a commercially available coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic energy generation and household electricity demand is recorded for more than one year. A comprehensive battery degradation model based on long-term ageing data collected from more than fifty long-term degradation experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all established modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year of cycling. The battery ageing model is used to

  12. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  13. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  14. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  15. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    Science.gov (United States)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  16. Observatory of photovoltaic solar energy in France - 20. edition

    International Nuclear Information System (INIS)

    2016-12-01

    After an overview of important events in the World regarding the development of photovoltaic solar energy in 2016, and predictions regarding new connected installations in 2016, this document present graphs and figures which illustrate the evolution of the photovoltaic fleet in the World, the comparison of production costs of new electric power generation capacities, the evolution of the French photovoltaic power production since 2009, the evolution of the distribution of the French fleet in terms of installation power (from large projects to residential), of connections to the grid, of number of connections and purchase tariffs for the different types of installations (residential, medium roofs, large roofs, very large roofs, very large ground-based or roof-based projects) and for queuing projects, in terms of evolution of purchase tariffs since 2011, and of evolution of impact on the CSPE financing system

  17. Photovoltaic venture analysis. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    This appendix contains a brief summary of a detailed description of alternative future energy scenarios which provide an overall backdrop for the photovoltaic venture analysis. Also included is a summary of a photovoltaic market/demand workshop, a summary of a photovoltaic supply workshop which used cross-impact analysis, and a report on photovoltaic array and system prices in 1982 and 1986. The results of a sectorial demand analysis for photovoltaic power systems used in the residential sector (single family homes), the service, commercial, and institutional sector (schools), and in the central power sector are presented. An analysis of photovoltaics in the electric utility market is given, and a report on the industrialization of photovoltaic systems is included. A DOE information memorandum regarding ''A Strategy for a Multi-Year Procurement Initiative on Photovoltaics (ACTS No. ET-002)'' is also included. (WHK)

  18. Residential customer-sited photovoltaics markets 1999

    International Nuclear Information System (INIS)

    Herig, C.; Thomas, H.; Perez, R.; Wenger, H.

    1999-01-01

    Nearly three years ago, the authors published the paper, Niche Markets for Grid Connected Photovoltaics. The paper identified target market niches for Customer-Sited Photovoltaics (CSPV), on a state-by-state basis for the US. The paper demonstrated cost-effective, grid-connected, domestic markets existed and identified those showing the most near-term promise. Many financial and policy attributes effecting the economics of CSPV have changed since the previous paper was published. Incorporating these policy changes into the analysis expands the CSPV market from a niche status to an era of significance. The number of states with break-even turnkey costs (BTC) above four dollars per watt expanded from five to fifteen. The top five state market values are now above a break-even cost of seven dollars per watt, a value at which the domestic CSPV market moves beyond a break-even status to consumer savings or industry profit, depending on system price. Emissions mitigation values were also included in the paper, but did not significantly effect the break-even market value results. The paper presents the details of the data, analysis, and results

  19. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - R and D of evaluation technology of the photovoltaic power system. Separate volume. R and D of the system evaluation technology (Data book on the photovoltaic power system); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu - System hyoka gijutsu no kenkyu kaihatsu (Bessatsu : Taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of establishing the optimum design and optimum operation technology of various kinds of photovoltaic power system, data were collected to make a data book on various kinds of photovoltaic power system of which the future commercialization is expected. Included in this data book were the monthly report on operation data on demonstrative test facilities at the Hamamatsu site of JQA (Japan Quality Assurance Organization), daily graph of insolation/temperature, monthly graph of wind direction/wind velocity. Further, as the data on the residential use photovoltaic power system, data on the following were summed up: information on the site of installation of the residential use photovoltaic power system (photo information, the state of installation such as sites installed more in FY 2000, drawings of module arrangement and measuring point layout, etc.), daily report on operation (graph of daily trends, daily report by site, hourly report by site, daily report on all sites, hourly report on all sites), operation data and performance indices, list of troubles arising in the residential use photovoltaic power system, other system information about residential use measuring data, power generation characteristics and {alpha}{sub pmax} of residential use solar cell modules, etc. (NEDO)

  20. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology - Separate volume: Collection of data of photovoltaic power generation systems); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu - Bessatsu: taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the establishment of technologies for optimum designs and optimum operation for various types of photovoltaic power systems, data are compiled in this volume, collected from the field test facilities and residential photovoltaic power systems. Operating data and meteorological data from the field test facilities (interconnection system, independent system, and water pump system) are arranged as easy-to-use supplementary data to help studies in relation to the 'energy flow in the test field facility systems' which is in the fiscal 1999 achievement report. As for data collected from residential photovoltaic power systems, they are arranged as easy-to-use supplementary data to help studies in relation to the 'Data and evaluation of residential photovoltaic power systems' which again belongs in the fiscal 1999 achievement report. (NEDO)

  1. A kick to the photovoltaic industry; Coup de pied dans la filiere photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Deye, M.; Remoue, A

    2010-01-15

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  2. System reliability worth assessment at a midwest utility-survey results for residential customers

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, A.A.; Mielnik, T.C. [Electric System Planning, MidAmerican Energy Company, Davenport, Iowa (United States); Lawton, L.E.; Sullivan, M.J.; Katz, A. [Population Research Systems, San Francisco, CA (United States)

    2005-12-01

    This paper presents the overall results of a residential customer survey conducted in service areas of MidAmerican Energy Company, a Midwest utility. A similar survey was conducted concurrently in the industrial, commercial and institutional sectors and the survey results are presented in a companion paper. The results of this study are compared with the results of other studies performed in the high cost areas of the US east and west coasts. This is the first ever study of this nature performed for the residential customers in the US Midwest region. Methodological differences in the study design compared to coastal surveys are discussed. Customer survey costing techniques can be categorized into three main groups: contingent valuation techniques, direct costing techniques and indirect costing techniques. Most customer surveys conducted by different organizations in the last two decades used a combination of all three techniques. The selection of a technique is mainly dependent on the type of customer being surveyed. In this MidAmerican study, contingent valuation techniques and an indirect costing technique have been used, as most consequences of power outages to residential users are related to inconvenience or disruption of housekeeping and leisure activities that are intangible in nature. The major contribution of this paper is that particulars of Midwest residential customers compared to residential customers of coastal utilities are noted and customer responses on power quality issues that are important to customers are summarized. (author)

  3. Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units

    Directory of Open Access Journals (Sweden)

    Ghulam Hafeez

    2018-03-01

    Full Text Available With the rapid advancement in technology, electrical energy consumption is increasing rapidly. Especially, in the residential sector, more than 80% of electrical energy is being consumed because of consumer negligence. This brings the challenging task of maintaining the balance between the demand and supply of electric power. In this paper, we focus on the problem of load balancing via load scheduling under utility and rooftop photovoltaic (PV units to reduce electricity cost and peak to average ratio (PAR in demand-side management. For this purpose, we adopted genetic algorithm (GA, binary particle swarm optimization (BPSO, wind-driven optimization (WDO, and our proposed genetic WDO (GWDO algorithm, which is a hybrid of GA and WDO, to schedule the household load. For energy cost estimation, combined real-time pricing (RTP and inclined block rate (IBR were used. The proposed algorithm shifts load from peak consumption hours to off-peak hours based on combined pricing scheme and generation from rooftop PV units. Simulation results validate our proposed GWDO algorithm in terms of electricity cost and PAR reduction while considering all three scenarios which we have considered in this work: (1 load scheduling without renewable energy sources (RESs and energy storage system (ESS, (2 load scheduling with RESs, and (3 load scheduling with RESs and ESS. Furthermore, our proposed scheme reduced electricity cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in scenario 3, respectively, as compared to unscheduled electricity consumption.

  4. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  5. Photovoltaic energy: an efficient development tool for Sub-Saharan economies

    International Nuclear Information System (INIS)

    Megherbi, Karim

    2013-01-01

    In this report, the author aims at highlighting the main success factors for a photovoltaic program in sub-Saharan Africa, and the benefits of this technology for African electricity operators. He first presents the electricity sector of Sub-Saharan Africa, its current situation, its scenarios of evolution, and the limitations of scenarios based on conventional energies. In a second part, he discusses the role photovoltaic solar energy could have within the energy mix of Sub-Saharan countries. He discusses how to calculate the cost of photovoltaic electricity production, and the value of photovoltaic electricity, discusses the main influencing parameters, and tries to identify when it becomes worth to choose photovoltaic electricity. He describes the implementation of an adapted legal and economic framework, the 'feed-in-tariff'. An appendix contains a proposition for Western Africa and analyses the case of Benin

  6. Reliabilty worth: Development of a relationship with outage magnitude, duration and frequency

    International Nuclear Information System (INIS)

    Turner, F.P.P.; Katrichak, A.M.; Dwyer, A.; Edwards, D.; Ibrahim, A.

    1994-01-01

    British Columbia Hydro's Worth Project Team was founded to determine values for reliability for reference in evaluation of investment and operating decisions. Work to date has produced key preliminary values for specific outages and concepts for the shape of the relationship between value and these determinates of reliability worth, frequency, magnitude and duration. These values and concepts are described. The values are developed through an iterative, trial and refinement approach. The approach incorporates direct input from customers, common sense and judgement, and micro- and macro-economic concepts. Reliability worth values for reduced or prevented outages are presented for residential, commercial, small industrial and mixed sectors and various outage durations. Reliability worth values were obtained through customer surveys. Limitations of the reliability worth value are numerous and are listed. Study of cost vs magnitude of interruption using microeconomic models has shown that costly system improvements to reduce the possibility of widespread outages may not be justified. The case of exceptionally large area outages (blackouts) is examined. The cost vs frequency relationship was examined in terms of the economic concept of utility or satisfaction. Different loss/frequency characteristics are demonstrated for different customer classes. Customer value for reduced outage duration is expressed in a curve with flatter slope than that for eliminated outages. 2 refs., 6 figs

  7. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    OpenAIRE

    Darghouth, Naim Richard

    2013-01-01

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation co...

  8. Output Performance and Payback Analysis of a Residential Photovoltaic System in Colorado: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.

    2012-06-01

    Cost of installation and ownership of a 9.66-kilowatt (kW) residential photovoltaic system is described, and the performance of this system over the past 3 years is shown. The system is located in Colorado at 40 degrees latitude and consists of arrays on two structures. Two arrays are installed on a detached garage, and these are each composed of 18 Kyocera 130-W modules strung in series facing south at an angle of 40 degrees above horizontal. Each 18-panel array feeds into a Xantrex/Schneider Electric 2.8-kW inverter. The other two arrays are installed on the house and face south at an angle of 30 degrees. One of these arrays has twelve 205-W Kyocera panels in series, and the other is made up of twelve 210-Kyocera panels. Each of these arrays feeds into Xantrex/Schneider Electric 3.3-kW inverters. Although there are various shading issues from trees and utility poles and lines, the overall output resembles that which is expected from PVWatts, a solar estimate program. The array cost, which was offset by rebates from the utility company and federal tax credits, was $1.17 per watt. Considering measured system performance, the estimated payback time of the system is 9 years.

  9. Development of Perovskite-Based Photovoltaic Cells for Extraterrestrial Energy Generation

    Data.gov (United States)

    National Aeronautics and Space Administration — Photovoltaics (PV) is a rapidly developing field that has found a vast range of applications, from handheld devices to providing auxiliary power for residential...

  10. Recent developments in photovoltaics

    International Nuclear Information System (INIS)

    Green, M.A.

    2004-01-01

    The photovoltaic market is booming with over 30% per annum compounded growth over the last five years. The government-subsidised urban-residential use of photovoltaics, particularly in Germany and Japan, is driving this sustained growth. Most of the solar cells being supplied to this market are 'first generation' devices based on crystalline or multi-crystalline silicon wafers. 'Second generation' thin-film solar cells based on amorphous silicon/hydrogen alloys or polycrystalline compound semiconductors are starting to appear on the market in increasing volume. Australian contributions in this area are the thin-film polycrystalline silicon-on-glass technology developed by Pacific Solar and the dye sensitised nanocrystalline titanium cells developed by Sustainable Technologies International. In these thin-film approaches, the major material cost component is usually the glass sheet onto which the film is deposited. After reviewing the present state of development of both cell and application technologies, the likely future development of photovoltaics is outlined. (author)

  11. Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation

    OpenAIRE

    Riza, Dimas Firmanda Al; Gilani, Syed Ihtshamul-Haq

    2016-01-01

    This paper presents sizing and evaluation of a standalone photovoltaic system for residential load. Peak Sun Hour method is used to determine photovoltaic panel and battery capacity, then the sizing results is tested and evaluated using hourly time-step transient simulation model by using TRNSYS 16.0. The results shows for typical Malaysian terraced house that have about 6 kWh daily electricity load, the photovoltaic system requirement consist of 1.9 kWp photovoltaic panel and 2200 Ah battery...

  12. Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Muhamad, N.A.; Arief, Y.Z.; Tan, C.W.; Yatim, A.H.M.

    2016-01-01

    Blessed with abundant solar radiation, Malaysia has a huge potential for grid-connected PV (photovoltaic) installations, particularly for its fast-growing residential sector. Nevertheless, Malaysia's PV installation capacity is relatively small compared with the global PV capacity. Significantly, the pricing mechanisms for grid-connected PV projects need to be appropriately assessed to build up the public's confidence to invest in PV projects. In this paper, we analyze the effects of component costs, FiTs (feed-in tariffs), and carbon taxes on grid-connected PV systems in Malaysian residential sector using the HOMER (Hybrid Optimization of Multiple Energy Resources) software. Results demonstrate that the implementation of grid-connected PV systems is highly feasible with PV array costs of $ 1120/kW or lower. For higher PV array costs up to $ 2320/kW, introducing an FiT rate three times higher ($ 0.30/kWh) than the grid tariff for a 100 kW grid sale capacity will, NPC-wise, prioritize grid-connected PV systems over the utility grid. By implementing the FiT ($ 0.50/kWh) and the carbon tax ($ 36/metric ton) schemes simultaneously, grid-connected PV systems will remain as the optimal systems even for costly PV arrays (up to $ 4000/kW). The findings are of paramount importance as far as PV pricing variability is concerned. - Highlights: • Grid-connected PV for Malaysian residential sector has been analyzed using HOMER. • Component costs, feed-in tariffs, and carbon taxes affect optimal system types. • Grid-connected PV projects are feasible for low PV array costs ($ 1120/kW or lower). • For higher PV array and inverter costs, feed-in tariffs should be implemented. • Combining feed-in tariffs with carbon taxes are effective for further lowering NPCs.

  13. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  14. Photovoltaic is redolent of grid parity

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    This article indicates and comments the current trends of decrease of photovoltaic costs and increase of electricity prices. As a result, grid parity is starting to be reached in some countries (Mexico city, California, Australia, Italy, Germany, Israel, Chile) and nearly in southern France only, as the prices of residential electricity are rather low and therefore don't give any chance to network parity for solar photovoltaic. Curves of evolutions of photovoltaic costs and retail electricity prices are given for different towns (Berlin, London, Rome, Madrid, Marseilles, San Francisco, Sydney, and Copiapo in Chile). These evolutions are a positive factor for the development of self-consumption. The article thus evokes the PV-NET project which gathers several European regions or countries to test and assess different economic solutions of self-consumption

  15. Public attitudes towards photovoltaic developments: Case study from Greece

    International Nuclear Information System (INIS)

    Tsantopoulos, Georgios; Arabatzis, Garyfallos; Tampakis, Stilianos

    2014-01-01

    The present decade is considered to be vitally important both as regards addressing energy requirements and for environmental protection purposes. The decisions taken, both on an individual and a collective level, will have a decisive impact on the environment, and primarily on climate change, due to the increased energy demands and the need to reduce carbon use in energy generation. The present study was designed and carried out while an extensive debate was ongoing in Greece regarding changes to the legislative framework that would specifically disallow new applications for the installation of photovoltaic systems; its aim is to depict the attitude of Greek citizens, through the completion of 1068 questionnaires. The research results show that over half the respondents are informed about the use of photovoltaic systems for electricity generation. Furthermore, almost half are willing to invest in such systems, either at home or on a plot of land. The factors contributing to the installation of photovoltaic systems are mainly “environmental”, “financial” and “social”. Finally, the citizens who are most willing to invest in residential photovoltaic systems are mainly university or technical school graduates; they would rather take such a decision after being motivated by institutional bodies and would do so for reasons of recognition. - Highlights: • The circumstances for RES are favorable both in the EU and in Greece. • The growth of renewable energy sources, particularly photovoltaic systems, is provenly following an upward trend. • The photovoltaic electricity production is an environmentally-friendly, sustainable and socially acceptable answer to the future energy requirements of society. • The Greek citizens state that they are adequately informed and sufficiently willing to invest in photovoltaic systems either residentially or in a plot of land

  16. Photovoltaic system criteria documents. Volume 1: Guidelines for evaluating the management and operations planning of photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).

  17. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2016 (Q1 2016). Our methodology includes bottom-up accounting for all system and project-development costs incurred when installing residential, commercial, and utility-scale systems, and it models the capital costs for such systems.

  18. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ran; Chung, Donald; Lowder, Travis; Feldman, David; Ardani, Kristen; Margolis, Robert

    2016-07-19

    NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2016 (Q1 2016). Our methodology includes bottom-up accounting for all system and project-development costs incurred when installing residential, commercial, and utility-scale systems, and it models the capital costs for such systems.

  19. The role of photovoltaics in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Blakers, A.; Green, M.; Leo, T.; Outhred, H.; Robins, B.

    1991-01-01

    This report examines the opportunities that will arise for the Australian photovoltaic industry if external costs of energy conversion are internalized. Such external costs include local pollution, resource depletion and the emission of greenhouse gases. Generation of electricity from photovoltaic (PV) modules is now a widely accepted environmentally friendly energy conversion technology. At present, high capital costs restricts its use to the provision of small amounts of power in remote areas, where it successfully competes against small diesel generators. However, as costs continue to decline, photovoltaic systems will compete successfully with progressively larger diesel-electric systems in Australia, in a market worth more than a billion dollars. Direct competition with electricity generated by conventional means for state grids is possible after the turn of the century. The present Australian photovoltaic industry is export oriented. The market for PV systems in poor rural areas in Asia is potentially very large. The cost of supplying small quantities of electricity to millions of rural households is high, making photovoltaics a competitive option. It is concluded that the Australian photovoltaic industry is in a good position to participate in the growth in this market sector. 48 refs., 28 tabs., 18 figs., ills

  20. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  1. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    Science.gov (United States)

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  2. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1995. With the demonstration operation in the current fiscal year, through-the-year data have been accumulated for the first time since the start of the demonstration operation, and were mounted on the load leveling database. As a result of analyzing the demonstration operation data, the following points were revealed: regarding the housing load, the lighting load is the main factor both in summer and winter; the effect of reducing the peak load by photovoltaic power generation is recognized at about 60% as maximum, but the substantial effect has large variation, hence stochastic; and the reverse current becomes the main factor during daytime, not necessarily leading to improvement of the housing load characteristics in the aspect of load rate. According to the surveys on the energy demand trends up to the year 2030, the power supply configuration, and introduction cost, it was revealed that the photovoltaic power generation can be sufficiently expected as a power supply to handle the peak load. (NEDO)

  3. Control Method Based on Demand Response Needs of Isolated Bus Regulation with Series-Resonant Converters for Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Shu-Huai Zhang

    2017-05-01

    Full Text Available Considering the effects of isolation and high efficiency, a series-resonant DC-DC converter (L-L-C type, with two inductors and a capacitor has been introduced into a residential photovoltaic (PV generation and storage system in this work, and a voltage gain curve upwarp drifting problem was found. In this paper, the reason of upwarp drifting in the voltage gain curve is given, and a new changing topological control method to solve the voltage regulation problem under light load conditions is proposed. Firstly, the ideal and actual first harmonic approximation (FHA models are given, and this drifting problem is ascribed to the multiple peaks of higher-order resonance between resonant tank and parasitic capacitors. Then the paper presents the pulse-frequency-modulation (PFM driver signals control method to translate the full-bridge LLC into a half-bridge LLC converter, and with this method the voltage gain could easily be reduced by half. Based on this method, the whole voltage and resonant current sharing control methods in on-line and off-line mode are proposed. The parameters design and optimization methods are also discussed in detail. Finally, a residential PV system platform based on the proposed parallel 7-kW full-bridge LLC converter is built to verify the proposed control method and theoretical analysis.

  4. Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

    2009-12-01

    Grid parity--or break-even cost--for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that local incentives rather than ?technical? parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

  5. Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Hamamre, Z.; Sharaf, F.; Abdelkader, M.R.

    2010-01-01

    This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

  6. Monitoring of integrated photovoltaic facade for Sandwell Metropolitan Borough Council

    Energy Technology Data Exchange (ETDEWEB)

    Cross, B. [Energy Equipment Testing Service Limited (United Kingdom)

    2002-07-01

    This report summarises the results of a project monitoring the output of a photovoltaic system installed in a residential tower block which was undergoing refurbishment using best practice energy efficiency methods. The incorporation of the information obtained in the borough's schools programme is discussed. Details are given of the technical problems experienced in relation to the string cables and the inverters, and also contractual issues. The direct and indirect benefits of the photovoltaic system are highlighted.

  7. Photovoltaic energy: global market perspectives; Energia fotovoltaica: perspectivas de mercado mundial

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Jose G.S.; Fabrizy, Marie P. [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia

    1996-12-31

    The global market of the solar photovoltaic energy has been mainly concentrated in the residential sector. However, there is a strong tendency to apply solar photovoltaic panels linked to the utilities power systems. Besides, that is the only case in which an increase in the cells production scale would be justified because it would reduce the production and new technologies research costs 3 figs., 1 tab.; e-mail: gui at iee.usp.br

  8. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted for the acquisition of a system evaluation technique for predicting the performance of standard photovoltaic power systems and evaluation technologies applicable to residential photovoltaic power systems different from each other in terms of tilt and direction, district, solar cell type, etc. In fiscal 1999, using data collected from the Hamamatsu field test facilities and residential photovoltaic power systems installed across Japan, various design parameters, such as the irregularity compensation coefficient, temperature compensation coefficient, and the incidence compensation coefficient were determined, and, using the parameters as the secondary estimation values, design parameters were updated. In the development of simulation technologies, basic studies were made about the shadow compensation coefficient, spectral response fluctuation compensation coefficient, and the composition of polyhedral arrays. Moreover, studies were made about the estimation of large area insolation, based on the horizontal surface insolation data collected at 21 sites of residential photovoltaic power systems in the Kanto district. (NEDO)

  9. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure, with the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system. This paper summarizes the achievements in fiscal 1995. In the outdoor exposure test on solar cell modules, multi-crystalline silicon solar cell modules were selected as the test specimens, and thermo-couples were embedded in the modules to measure the temperatures. Also for the purpose of comparison, storage test specimens were stored in a constant temperature and humidity chamber. The exposure tests were carried out in three locations of the city of Choshi in Chiba Prefecture, the Miyako Island test site in Okinawa Prefecture, and the Miyako Island seashore. In the measurement and evaluation, appearance observation and measurements of output characteristics and insulation resistance were executed in summer and winter. No noticeable changes were observed in the measurements after lapse of four months and six months. In the outdoor exposure tests of metal test pieces, aluminum alloys were tested for corrosion caused by contact with different kinds of metals. Although the test period was short in the current fiscal year, difference in corrosion degrees in the aluminum alloys was found already in three months. (NEDO)

  10. Research report for fiscal 1996 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1996 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure, with the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system. This paper summarizes the achievements in fiscal 1996. In the outdoor exposure tests on solar cell modules, results of the tests were derived for up to 18 months after the start of the exposure at Choshi City, Miyako Island and the Miyako Island seashore. In the appearance observation, some white rust has appeared in the contact section of the aluminum frames of the solar cell modules and fixing screws, which have been exposed at Miyako Island and the Miyako Island seashore, but no changes that may give influence on the performance of the solar cells have been observed. The results showed performance similar to or slightly inferior to that before the exposure as a whole. The insulation resistances were all found good. According to the result of the outdoor exposure test of metal test pieces, noticeable difference in the corrosion degrees was recognized in the contact corrosion section of the aluminum alloys exposed in three areas having different meteorological and environmental factors. Electroplated zinc was found to have severer pitting corrosion in the contact sections than treatment-free zinc. (NEDO)

  11. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  12. The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities

    International Nuclear Information System (INIS)

    Dong, Changgui; Wiser, Ryan

    2013-01-01

    With “soft” costs accounting for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop those systems. The study uses a unique dataset from the U.S. Department of Energy's Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3000 PV installations across 44 California cities in 2011. Results suggest that cities with the most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4–12% of median PV prices in California) compared with cities with the most onerous permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems. - Highlights: • The study uses a unique dataset from the U.S. DOE's Rooftop Solar Challenge Program. • We quantify the price and development-time effects of city-level permitting processes. • Most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W

  13. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    This Article: Dellosa, J. (2016 Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU. Int. Journal of Renewable Energy Development, 5(3, 179-185. http://dx.doi.org/10.14710/ijred.5.3.179-185

  14. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology (putting of related data into order); 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka (Kanren data no seibi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper describes the actual state survey data related to grid connection systems for the small photovoltaic power generation system for residential use. The survey has been performed mainly on the system for individuals' use inside and outside Japan with regard to the small grid connection systems of 1-10 kW scale. The number of survey has reached 216 cases for 46 prefectures in Japan (1,004.02 kW in total), and 47 cases for 13 other countries (205.60 kW in total), or 263 cases in grand total (1,209.63 kW). These 263 cases were tabulated with items of owners (or the facility names and installation locations) as seen by territories (prefectures or countries), facility operators (or executing organizations), connection modes, and power generation scales. These data will serve for discussions on the load leveling effect and the optimized system forms. (NEDO)

  15. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology (putting of related data into order); 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka (Kanren data no seibi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper describes the actual state survey data related to grid connection systems for the small photovoltaic power generation system for residential use. The survey has been performed mainly on the system for individuals' use inside and outside Japan with regard to the small grid connection systems of 1-10 kW scale. The number of survey has reached 216 cases for 46 prefectures in Japan (1,004.02 kW in total), and 47 cases for 13 other countries (205.60 kW in total), or 263 cases in grand total (1,209.63 kW). These 263 cases were tabulated with items of owners (or the facility names and installation locations) as seen by territories (prefectures or countries), facility operators (or executing organizations), connection modes, and power generation scales. These data will serve for discussions on the load leveling effect and the optimized system forms. (NEDO)

  16. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  17. Photovoltaics in the shade : One bypass diode per solar cell revisited

    NARCIS (Netherlands)

    Pannebakker, Boudewijn B.; de Waal, Arjen C.; van Sark, Wilfried G.J.H.M.

    2017-01-01

    Deployment of residential photovoltaic solar energy systems is strongly increasing, which gives rise to problems such as partial shading and pollution, omnipresent in the built environment. Conventional modules are sensitive to the current mismatches introduced by shadows because of their series

  18. Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model

    International Nuclear Information System (INIS)

    Shimoda, Yoshiyuki; Yamaguchi, Yukio; Okamura, Tomo; Taniguchi, Ayako; Yamaguchi, Yohei

    2010-01-01

    A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants' activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the 'stock transition model.' In this paper, energy consumption and CO 2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business - as-usual (BAU) case, CO 2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.

  19. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Jeff; Murphy, Sean

    2018-04-04

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which use private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV

  20. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - R and D of evaluation technology of the photovoltaic power system. R and D of the system evaluation technology; 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu - System hyoka gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on the evaluation method for the performance prediction system of the standard photovoltaic power system, the R and D were conducted of the system generation output prediction technology which is general-purpose, simplified and applicable to various kinds of photovoltaic power system for residential use, and the FY 2000 results were summed up. In this fiscal year, the photovoltaic power system for residential use was increasingly installed at 15 places, and 100 sites in total were made database and analyzed. As to the development of simulation technology, technology of calculation was established such as the simulation of multi-plane array composition and correction of multi-plane array incidence. Further, technical information on system trouble and knowledge/information/proposal for reducing power generation loss were arranged by design parameter. Using the data on solar radiation/power loss at sites of residential use photovoltaic power systems installed in the Kanto area, value analysis of the capacity of wide area facilities of the photovoltaic power system was made by the statistical method. This study was compiled into the revised edition of design manual. (NEDO)

  1. Research report for fiscal 1997 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1997 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    With the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system, weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure. This paper summarizes the achievements in fiscal 1997. In the outdoor exposure tests on multi-crystalline silicon solar cell modules at Choshi City, Miyako Island and the Miyako Island seashore, the output characteristics after the exposure tests showed a result that the insolation intensity and the change in the short circuit current are approximately proportional, and the temperature in the module and the change in the open voltage are inversely proportional. The module characteristics retention rate showed no change in the 29-month exposure at all of the three exposure locations. The insulation resistance in the exposure test specimens have been good at 2,000 M{omega} or more in all the locations until 18 months have elapsed. However, the test specimens in Miyako Island and the Miyako Island seashore showed 99 M{omega} after 23 months, and 129 to 1,774 M{omega} after 29 months. According to the outdoor exposure tests of metal test pieces, noticeable difference was found in corrosion due to difference in the environment by each exposure location, whose order of the corrosion degree was the Miyako Island seashore > Miyako Island > Choshi City. (NEDO)

  2. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  3. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  4. From low cost to high tech: possible margins of technical progress in photovoltaic

    International Nuclear Information System (INIS)

    Guillemoles, J.F.

    2009-01-01

    Photovoltaic is developing in response to 3 requirements: conservation of the environment, security in energy, and economic growth. Given this, the terawatt (TW) scale should be used to measure the magnitude of energy needs. Can solar, in particular photovoltaic, power meet these needs? This has nothing to do with the availability of solar energy - in a single hour, the sun sends to the earth as much energy as the electricity consumed by all of humanity during an entire year. Instead, it raises questions about the industrial deployment and, eventually, the availability of raw materials and land. The sustainable development of photovoltaic power implies wisely using resources (raw materials, energy and capital) and improving the efficiency not only of the process for transforming resources into photovoltaic units but also of the photovoltaic units themselves for converting light into electricity. It is worth noting that the predictable change of scale in the photovoltaic industry will have implications for this industry's deployment on a large scale. This deployment depends on: the availability of technology, know-how, capital and raw materials; the cost of investments; the speed of implementation; and the rhythm of production of cells. (author)

  5. Photovoltaic test and demonstration project. [residential energy program

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  6. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  7. Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California

    International Nuclear Information System (INIS)

    Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert

    2015-01-01

    Over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. This study relies on a sample of 1113 contracts for residential PV systems installed in 2010–2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) no-money-down contracts are more costly than prepaid contracts, assuming a customer’s discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. In addition, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time. (letter)

  8. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  9. Data report for the Southwest Residential Experiment Station, January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, M.; Hai, O. Y.; Hocking, G.; Whitaker, C.

    1982-02-23

    Physical performance data obtained from the photovoltaic energy systems under test at the Southwest Residential Experiment Station in Las Cruces, New Mexico are tabulated and graphed for the month of January, 1982. Data drawn from the Residential Data System (RDS) appears in several formats. A one-page summary is provided as well as a more detailed hour-by-hour tabulation for an average day of the month. Energy histograms are provided, based on RDS data and recording kilowatt hour meters. The histograms also present horizontal and plane-of-array insolation data as well as comments that explain data and/or energy production anomalies. (LEW)

  10. Engineering a Grid-Tied Residential Photovoltaic System: A Student Activity

    Science.gov (United States)

    Litowitz, Len S.

    2012-01-01

    Photovoltaics is a term that refers to thin cells that have the ability to directly convert sunlight into electricity. This process occurs without the use of any moving parts, and the sunlight is free for the taking if it can be captured for useful purposes like heating water or air or producing electricity. As the cost of installing a…

  11. Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso

    responsible for yield-reduction of residential photovoltaic systems. Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC......The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated...... to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes. In Chapter 2 an overview...

  12. Sandia photovoltaic systems definition and application experiment projects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  13. Photovoltaic conference on research and innovation

    International Nuclear Information System (INIS)

    Moisan, Francois; Huennekes, Christoph; Malbranche, Philippe; Neuhaus, Holger; Lincot, Daniel; Dimroth, Frank; Signamarcheix, Thomas; Baudrit, Mathieu; Wasselin, Jocelyne; Franz, Oliver; Lippert, Michael; Bena, Michel

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on photovoltaic research and innovation. In the framework of this French-German exchange of experience, about 80 participants exchanged views on PV research priorities and on the possible cooperation paths capable to meet the challenges of an increasing worldwide competition. Beside the analysis of national and European support programmes, the presentations addressed also the technological advances in the domain of energy efficiency and fabrication of PV systems, but also the energy storage solutions and the problems of integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Photovoltaic R and D financing in France (Francois Moisan); 2 - Research consortia: research promotion in Germany (Christoph Huennekes); 3 - EeRA Joint research Programme Photovoltaic Solar energy: cooperation support to PV research at the European level (Philippe Malbranche); 4 - The Research Project 'SONNe' - A shining example within the German Funding Scheme 'Innovation Alliance' (Holger Neuhaus); 5 - The 'Ile de France Photovoltaic Institute': a huge cooperation between academic and industrial partners for the improvement of photovoltaic energy efficiency and competitiveness (Daniel Lincot); 6 - SOLARBOND the basis for a successful French-German collaboration (Frank Dimroth); 7 - Smart Country model project: Successful integration of distributed generation in rural areas - Smart integration of PV power generation thanks to the combination with a modified biogas storage system (Oliver Franz); 8 - Sol-ion Conversion, storage and management of residential PV energy (Michael Lippert); 9 - Improving Tools to massively integrate Renewables in the European electric System (Michel Bena)

  14. Conceptual design and systems analysis of photovoltaic power systems. Volume III(1). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. Subsystem technology presented here includes: insolation, concentration, silicon solar cell modules, CdS solar cell module, array structure, battery energy storage, power conditioning, residential power system architectural designs, intermediate power system structural design, and central power system facilities and site survey.

  15. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  16. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  17. Economic viability of a residential building integrated photovoltaic generator in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziuku, Sosten; Meyer, Edson L. [Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700 (South Africa)

    2012-07-01

    A photovoltaic (PV) generator was integrated onto the north facing roof of an energy efficient house in South Africa. The building integrated photovoltaic generator (BIPV) supplies power to the household loads and the grid and is also the roof facade. This paper presents an economic evaluation of the viability of the BIPV system using methods of investment analysis. The capital cost and life cycle cost of energy were found to be ZAR 52 631-58/kWp and ZAR 1-94/kWh respectively. The payback period was 8 years and adjusted internal rate of return 9.3%. Parametric sensitivity analysis revealed that a 50% decrease in module price results in a 29% reduction in life cycle cost of energy and more than 50% reduction in payback period.

  18. Distribution Grid Integration of Photovoltaic Systems in Germany – Implications on Grid Planning and Grid Operation

    International Nuclear Information System (INIS)

    Stetz, Thomas

    2017-01-01

    Photovoltaic is the most dispersed renewable energy source in Germany, typically interconnected to low and medium voltage systems. In recent years, cost-intensive grid reinforcements had to be undertaken all across Germany’s distribution grids in order to increase their hosting capacity for these photovoltaic installations. This paper presents an overview on research results which show that photovoltaic itself can provide ancillary services to reduce its cost of interconnection. Especially the provision of reactive power turned out to be a technically effective and economically efficient method to increase a grid’s hosting capacity for photovoltaic capacity. Different reactive power control methods were investigated, revealing significant differences with regards to their grid operation implications. Business cases for residential-scale photovoltaic applications have shifted from feed-in-tariff based active power feed-in to self-consumption. However, increasing the photovoltaic self-consumption by additional battery-storage systems is still not economically reliable in Germany. (author)

  19. The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy

    Directory of Open Access Journals (Sweden)

    Federica Cucchiella

    2017-09-01

    Full Text Available A solar photovoltaic system produces electricity by converting energy from the sun. By the end of 2016, the global installed solar photovoltaic capacity reached 305 GW. Its growth is impressive in the last years; in fact, it was only equal to 41 GW in 2010. However, Europe has installed only 6.9 GW in 2016 (−1.7 GW in comparison to previous year and this annual power installed is equal to 9% of global one in according to data released by Solar Power Europe. The profitability of PV systems in mature markets depends on the harmonization between demanded energy and produced one residential energy storage when combined with photovoltaic panels is able to increase the share of self-consumption. This work proposes a mathematical model, in which a Discounted Cash Flow analysis is conducted to evaluate the financial feasibility of photovoltaic-integrated lead acid battery systems in Italy. The indicator used is Net Present Value. Furthermore, a break-even point analysis, in terms of an increase of self-consumption, is conducted. The residential sector is investigated and energy storage system investment is incentivized by fiscal deduction and regional subsidies. The analysis provides several case studies, determined by combinations of the following variables: photovoltaic plant size, battery capacity, the increase of the share of self-consumption, and the useful lifetime of energy storage system. The same case studies are proposed also in four alternative scenarios, where is the modified the structure of subsidies. Results confirm that the profitability can be reached in presence of subsidies.

  20. Distributed photovoltaic systems - Addressing the utility interface issues

    Science.gov (United States)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  1. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  2. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  3. A Decentralized Storage Strategy for Residential Feeders with Photovoltaics

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guangya; Træholt, Chresten

    2014-01-01

    . The power sizing of the ESSs is performed with linear programming (LP) method, based on voltage sensitivity analysis. A Belgian residential LV feeder with private PV systems is used as a case study to demonstrate the effectiveness of the proposed strategy. Quantification of the required energy levels...... domestic energy storage systems (ESS). The traditional way of operating a domestic ESS to increase the local consumption rate does not take into account the need of voltage support in a feeder; the proposed storage concept improves the traditional one, by mitigating voltage rise due to PV in the feeder...

  4. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  5. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed [GE Global Research Center, Niskayuna, NY (United States)

    2015-10-27

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiring and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.

  6. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...... and low distortion and academia proposing new ideas soon become state-of-the-art. This paper aims at reviewing part of these topics (MPPT, current and voltage control) leaving to a future paper to complete the scenario. Implementation issues on Digital Signal Processor (DSP), the mandatory choice...

  7. Photovoltaics Innovation Roadmap Request for Information Summary

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-28

    On June 28, 2017, the U.S. Department of Energy’s Solar Energy Technologies Office (SETO) released the Photovoltaics (PV) Innovation Roadmap Request for Information (RFI) for public response and comment. The RFI sought feedback from PV stakeholders, including research and commercial communities, about the most important research and development (R&D) pathways to improve PV cell and module technology to reach the SETO’s SunShot 2030 cost targets of $0.03/W for utility PV installations, $0.04/W for commercial scale installations, and $0.05/W for residential PV installations.

  8. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  9. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  10. Canadian PV [photovoltaic] commercial activity report for 1989

    International Nuclear Information System (INIS)

    1992-01-01

    The Canadian Photovoltaic Industries Association (CPIA) conducted a survey among 65 Canadian firms involved in the photovoltaic industry and technology to determine the degree of commercial activity. Overall revenue for these firms in 1989 increased nearly 15% to ca $15 million. Actual reported sales of photovoltaic (PV) modules totalled 400 kW for use in Canada and abroad, of which communications applications accounted for ca 40% of these sales. Export sales were significant, with 59% of reported sales sold as packages being exported. Sales of systems within Canada were fairly evenly distributed between Quebec, Ontario, the Prairies, and British Columbia. The private sector share of reported sales was 42% or greater in terms of both dollar or peak wattage. Residential-use and water-pumping segments of the market reported increased activity. Internationally, annual PV module sales in 1989 were reported to be 42 MW peak, a 20% increase from 1988. The USA has the world market share with 36%, followed by Japan at 30%. Survey respondents made suggestions for more equitable tax treatment for PV products, and saw environmental issues as having a major impact on marketing strategies. 27 refs., 11 tabs

  11. Supporting Photovoltaics in Market-Rate Residential NewConstruction: A Summary of Programmatic Experience to Date and LessonsLearned

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-02-10

    As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their tax-deductible home mortgage and, with rebates and other financial incentives, potentially achieve an immediate net-positive cash flow from the investment. New homes are amenable to building-integrated photovoltaics (BIPV), which are less susceptible to aesthetic concerns than traditional, rack-mounted systems. The performance of PV systems can be optimized on new homes by taking roof orientation and shading into account when designing the home. Perhaps most importantly, subdivisions with PV systems installed on a large number of homes offer potential cost savings from volume purchases of modules and inverters and from scale economies in system design and installation. Finally, the ability of builders to install PV as a standard feature on multiple homes in new subdivisions offers an opportunity to circumvent the high transaction costs and information-related market barriers typically confronted when each individual homeowner must make a decision about installing PV. Builders may benefit in several ways from incorporating PV into new homes. Builders may gain greater market differentiation, enhanced media exposure, and less community or political opposition to development projects. Additionally, if homebuyers place a high value on PV, builders may be able to earn additional profits, just as they would on granite countertops or other high-value home features. Although the impact of PV on the original sale price of new homes has not yet been rigorously examined, some limited empirical evidence does suggest that PV and energy efficient features may have a positive effect on resale value. Along with its unique advantages, residential new construction also faces unique barriers to PV adoption. Most fundamentally, perhaps, is the general aversion to technology risk within the building industry

  12. Residential versus Communal Combination of Photovoltaic and Battery in Smart Energy Systems

    DEFF Research Database (Denmark)

    Marczinkowski, Hannah Mareike; Østergaard, Poul Alberg

    2018-01-01

    and involving the consumers. The importance of minimizing flows to and from the grid as a result from fluctuating energy sources is addressed in both approaches. While residential batteries improve the individual household electricity supply, a communal battery would further regulate other inputs and demands....

  13. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  14. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  15. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  16. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  17. Significant others and contingencies of self-worth: activation and consequences of relationship-specific contingencies of self-worth.

    Science.gov (United States)

    Horberg, E J; Chen, Serena

    2010-01-01

    Three studies tested the activation and consequences of contingencies of self-worth associated with specific significant others, that is, relationship-specific contingencies of self-worth. The results showed that activating the mental representation of a significant other with whom one strongly desires closeness led participants to stake their self-esteem in domains in which the significant other wanted them to excel. This was shown in terms of self-reported contingencies of self-worth (Study 1), in terms of self-worth after receiving feedback on a successful or unsatisfactory performance in a relationship-specific contingency domain (Study 2), and in terms of feelings of reduced self-worth after thinking about a failure in a relationship-specific contingency domain (Study 3). Across studies, a variety of contingency domains were examined. Furthermore, Study 3 showed that failing in an activated relationship-specific contingency domain had negative implications for current feelings of closeness and acceptance in the significant-other relationship. Overall, the findings suggest that people's contingencies of self-worth depend on the social situation and that performance in relationship-specific contingency domains can influence people's perceptions of their relationships.

  18. Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Barbose, Galen; Peterman, Carla

    2009-02-11

    As installations of grid-connected solar photovoltaic (PV) systems have grown, so too has the desire to track the installed cost of these systems over time, by system characteristics, by system location, and by component. This report helps to fill this need by summarizing trends in the installed cost of grid-connected PV systems in the United States from 1998 through 2007. The report is based on an analysis of installed cost data from nearly 37,000 residential and non-residential PV systems, totaling 363 MW of capacity, and representing 76percent of all grid-connected PV capacity installed in the U.S. through 2007.

  19. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    Science.gov (United States)

    Rai, Varun; Sigrin, Benjamin

    2013-03-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

  20. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    International Nuclear Information System (INIS)

    Rai, Varun; Sigrin, Benjamin

    2013-01-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation. (letter)

  1. Comparable Worth Theory and Policy.

    Science.gov (United States)

    Wittig, Michele Andrisin; Lowe, Rosemary Hays

    1989-01-01

    Provides different perspectives on comparable worth issues. Covers the following topics: (1) competing explanations for the wage gap; (2) indirect approaches to wage equity; (3) the need for a direct approach to wage equity; (4) job evaluation; (5) application of comparable worth principles to compensation systems; and (6) strategies for adopting…

  2. Model institutional infrastructures for recycling of photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  3. Development of a solar tracker for photovoltaic applications; Desenvolvimento de um rastreador solar para aplicacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel Rizzo; Lacerda Filho, Adilio Flauzino de; Resende, Ricardo C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. Engenharia Agricola], E-mail: daniel.carvalho@ufv.br; Possi, Maurilio A [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia da Computacao; Ferreira, Ana Paula S [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia

    2012-11-01

    In this work are presented the design, construction and relevant results related to the production of electricity using a photovoltaic panel attached to the solar tracking mechanism. The objective was to develop a tracking device with high accuracy, reliable, low cost, high efficiency and easy operation, aiming at the possibility of residential, agricultural and industrial use of solar photovoltaic technologies with high efficiency of conversion. Was evaluated the performance of the tracker, comparing it to a fixed system and based on results analyzed, was observed a significant increase in energy production of photovoltaic panel attached to the tracking system, in relation to the fixed system the slope of the local latitude. Its performance was satisfactory, electromechanical structure requires no maintenance during the trial even when exposed to various weather conditions. The system showed great potential for application, usability and effectivity. (author)

  4. Integration of photovoltaic solar panels in residential buildings and its contribution in a power feeder of a mixed urban region; Integracao de paineis solares fotovoltaicos em edificacoes residenciais e sua contribuicao em um alimentador de energia de zona urbana mista

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isis Portolan dos

    2009-02-15

    Energy generation is one of the main pollution sources in the world. Photovoltaic solar energy is a way to guarantee the electric energy generation using a clean and renewable source, the sun. With the photovoltaic modules integration in buildings, it is possible to generate energy in urban areas, using areas already constructed and also minimizing the energy loss with transmission and distribution. Direct connection of a photovoltaic system to the electric grid avoids the necessity of a storage system, and allows the generated energy to be used by any consumer connected to the grid. This thesis proposes the creation and propagation of predefined kits including photovoltaic modules and other equipment, in order to complete installation and connection of photovoltaic generator, resulting in solar roofs in urban houses. The kits could be installed on roofs of existent residences or in new ones, making the installation easier and minimizing the necessity and the costs of a specific project for each case. With the definition of standard components, like the modules, inverters, and others equipment, there would be an industrial production scale, minimizing costs. In addition, the kits also make the training of the installers easier. The simulation of this concept in a residential area in Florianopolis, demonstrates that there is enough area in the roofs to locate one kit in all residences, and that this generation is able to contribute to the energy demand of the area. So all energy generated by the kits will be immediately consumed inside the area, relieving the concessionaire load. His argue that kits can be an interesting way of bringing this energy generation technology to mainstream. (author)

  5. Attachment styles and contingencies of self-worth.

    Science.gov (United States)

    Park, Lora E; Crocker, Jennifer; Mickelson, Kristin D

    2004-10-01

    Previous research on attachment theory has focused on mean differences in level of self-esteem among people with different attachment styles. The present study examines the associations between attachment styles and different bases of self-esteem, or contingencies of self-worth, among a sample of 795 college students. Results showed that attachment security was related to basing self-worth on family support. Both the preoccupied attachment style and fearful attachment style were related to basing self-worth on physical attractiveness. The dismissing attachment style was related to basing self-worth less on others' approval, family support, and God's love.

  6. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology - Photovoltaic system data book, separate volume); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu bessatsu (taiyoko hatsuden system data shu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the research and development of photovoltaic power generation system evaluation technology, great progress has been achieved in performance improvement and cost reduction as far as constituent devices such as power modules and inverters are concerned. In the designing of systems, however, quantitative elucidation of loss and power reduction factors remains insufficient. Under the circumstances, several types of photovoltaic power generation systems expected to be put to practical application in the future are taken up, test facilities are constructed which simulate them, and data are collected. The thus-collected data are utilized for research and development of evaluation techniques necessary for the improvement of photovoltaic system efficiency, such as design parameter quantification, databasing and utilization thereof, and simulation technologies, for the establishment of technologies for optimum designs and optimum operations. The data book accommodates data, arranged in an easy-to-use fashion, collected about verification test facility (interconnected systems, independent systems, and water pump systems) operation, weather conditions, and residential photovoltaic power generation systems. (NEDO)

  7. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  8. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  9. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    Science.gov (United States)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  10. The Analysis of Differences in Residential Property Price Indices

    Directory of Open Access Journals (Sweden)

    Kokot Sebastian

    2014-10-01

    Full Text Available Residential property price indices can serve as a useful tool in the practice of real property market analysts, investment advisers, property developers, certified property appraisers, estate agents and managers. They can also be applied in property price valorization in specific legal positions. The Polish Act on Real Estate Management puts an obligation on the President of the Central Statistical Office to announce real property price indices, but the CSO fails to fulfill this obligation. The author’s rationale for this article is to contribute to works on rules of how to build property price indices. Presented within are the results of research on determining the price indices of such types of residential property as: a part of a building constituting a separate property and strata titles in housing cooperatives. The flats were divided into categories by floor area and by their location in 16 voivodeship capitals. The major purpose of the study is to prove that the prices of flats of different floor area change at different rates. Consequently, it seems worth considering whether a more detailed segmentation of the real estate market would be worthwhile for the sake of more accurate real property price indicators.

  11. Evaluation of Factors that Influence Residential Solar Panel Installations

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M. [ORNL; Omitaomu, Olufemi A. [ORNL; Kotikot, Susan M. [ORNL; Held, Elizabeth L. [ORNL; Bhaduri, Budhendra L. [ORNL

    2018-03-01

    Though rooftop photovoltaic (PV) systems are the fastest growing source of distributed generation, detailed information about where they are located and who their owners are is often known only to installers and utility companies. This lack of detailed information is a barrier to policy and financial assessment of solar energy generation and use. To bridge the described data gap, Oak Ridge National Laboratory (ORNL) was sponsored by the Department of Energy (DOE) Office of Energy Policy and Systems Analysis (EPSA) to create an automated approach for detecting and characterizing buildings with installed solar panels using high-resolution overhead imagery. Additionally, ORNL was tasked with using machine learning techniques to classify parcels on which solar panels were automatically detected in the Washington, DC, and Boston areas as commercial or residential, and then providing a list of recommended variables and modeling techniques that could be combined with these results to identify attributes that motivate the installation of residential solar panels. This technical report describes the methodology, results, and recommendations in greater detail, including lessons learned and future work.

  12. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  13. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-19

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  14. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-06-01

    Full Text Available Solar energy has an increasing role in the global energy mix. The need for flexible storage photovoltaic systems and energy storage in electricity networks is becoming increasingly important as more generating capacity uses solar and wind energy. This paper is a study on the economic questions related to flexible storage photovoltaic systems of household size in 2018. The aim is to clarify whether it is possible in the European Union to achieve a payback of the costs of flexible storage photovoltaic system investments for residential customers considering the technology-specific storage aspects prevalent in 2018. We studied seven different flexible storage photovoltaic investments with different battery technologies in Germany, France, Italy, and Spain because, in Europe, these countries have a prominent role with regard to the spread of photovoltaic technology. These investment alternatives are studied with the help of economic indicators for the different cases of the selected countries. At the end of our paper we come to the conclusion that an investment of a flexible storage photovoltaic (PV system with Olivine-type-LiFePO4, Lithium-Ion, Vented lead-acid battery (OPzS, Sealed lead-acid battery (OPzV, and Aqueous Hybrid Ion (AHI batteries can have a positive net present value due to the high electricity prices in Germany and in Spain. The most cost-effective technology was the Olivine-type-LiFePO4 and the Lithium-Ion at the time of the study. We suggest the provision of governmental support and uniform European modifications to the regulatory framework, especially concerning grid fees and tariffs, which would be necessary in the beginning to help to introduce these flexible storage PV systems to the market.

  15. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  16. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2011-01-01

    This paper examines solar energy development in Malaysia, particularly in relation to the installation of solar Photovoltaic (PV) in residential houses. It analyzes the past activities related to solar energy in Malaysia, in terms of research and developments (R and Ds), the implementations used as well as the national policies for the past 20 years which have pushed the installation of PV in the country. The Feed-In Tariff (FiT) scheme is discussed, showing comparative cost-benefit analysis between the PV installation in houses in the United Kingdom (UK) and Malaysia, and with other investment schemes available in Malaysia. To investigate the awareness of renewable energy policies and incentives, a preliminary survey of the public opinion in Malaysia has been carried out, and an evaluation of public willingness to invest in the FiT scheme by installing the PV on their houses is presented. The cost-benefit analysis shows that the proposed FiT programme is capable of generating good return on investment as compared to the one in the UK, but the return is lower than other investment tools. The survey suggests that most Malaysians are unaware of the government’s incentives and policies towards renewable energies, and are not willing to invest in the FiT scheme. - Highlights: ► Past activities related to solar energy is evaluated and FIT scheme is discussed. ► Financial analysis is presented; public perspective is evaluated. ► The FIT scheme generates higher return for PV installation in Malaysia than in the UK. ► The scheme, however, produces lower return than most investment schemes. ► Malaysians’ awareness levels are low and are not willing to invest in the FIT scheme.

  17. Local heterogeneity effects on small-sample worths

    International Nuclear Information System (INIS)

    Schaefer, R.W.

    1986-01-01

    One of the parameters usually measured in a fast reactor critical assembly is the reactivity associated with inserting a small sample of a material into the core (sample worth). Local heterogeneities introduced by the worth measurement techniques can have a significant effect on the sample worth. Unfortunately, the capability is lacking to model some of the heterogeneity effects associated with the experimental technique traditionally used at ANL (the radial tube technique). It has been suggested that these effects could account for a large portion of what remains of the longstanding central worth discrepancy. The purpose of this paper is to describe a large body of experimental data - most of which has never been reported - that shows the effect of radial tube-related local heterogeneities

  18. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  19. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

  20. Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

    2012-11-01

    This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

  1. The feasibility of using photovoltaic panels to illuminate the entryway to an apartment building

    Directory of Open Access Journals (Sweden)

    Sumarokova Liudmila

    2017-01-01

    Full Text Available The article considers the possibility of using an LED lighting system with a power source from solar modules in the climatic conditions of Siberia. The technical possibility of implementing an autonomous house lighting system is shown for example in the lighting of a residential five-story building located in Tomsk. The choice and justification of the neces-sary electrical equipment for solar panels was made. Calculations have been made for the energy consumption of the existing lighting system and a system with LED light sources from photovoltaic panels. The payback period of the project is determined. On the example of an autonomous sys-tem of interior lighting of an apartment building, conclusions were made about the feasibility and efficiency of using photovoltaic panels in the cli-matic conditions of Tomsk region.

  2. Estimation of irradiated control rod worth

    International Nuclear Information System (INIS)

    Varvayanni, M.; Catsaros, N.; Antonopoulos-Domis, M.

    2009-01-01

    When depleted control rods are planned to be used in new core configurations, their worth has to be accurately predicted in order to deduce key design and safety parameters such as the available shutdown margin. In this work a methodology is suggested for the derivation of the distributed absorbing capacity of a depleted rod, useful in the case that the level of detail that is known about the irradiation history of the control rod does not allow an accurate calculation of the absorber's burnup. The suggested methodology is based on measurements of the rod's worth carried out in the former core configuration and on corresponding calculations based on the original (before first irradiation) absorber concentration. The methodology is formulated for the general case of the multi-group theory; it is successfully tested for the one-group approximation, for a depleted control rod of the Greek Research Reactor, containing five neutron absorbers. The computations reproduce satisfactorily the irradiated rod worth measurements, practically eliminating the discrepancy of the total rod worth, compared to the computations based on the nominal absorber densities.

  3. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  4. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  5. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  6. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  7. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  8. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Cao, Sunliang; Hasan, Ala; Sirén, Kai

    2015-01-01

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  9. State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nobler, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

  10. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  11. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  12. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    OpenAIRE

    Xinan Zhang; Yifeng Li; Maria Skyllas-Kazacos; Jie Bao

    2016-01-01

    The penetration of solar photovoltaic (PV) systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS). With concern for the high investment cost, the choice of a cost-effective BESS with prop...

  13. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In relation with several types of standard photovoltaic power generation systems expected to be put to practical use, design parameters are quantified, databases are utilized, and simulation technologies are developed, while collecting data from test facilities constructed to simulate them, for the development of evaluation techniques indispensable for the efficient improvement of photovoltaic power generation systems. In fiscal 1998, data were collected from verification test facilities and residential photovoltaic systems sited across Japan. The collected data were subjected to analysis and simulation, by which correction factors were calculated for smudge, spectral response, incident radiation, and temperature. Furthermore, load matching factors and storage battery contribution rates were calculated by simulation for the stand-alone photovoltaic systems sited in five Japanese cities, each comprising an array, storage battery, charge/discharge controller, DC-DC converter, and a load. Reference is also made to a survey of trends of technology development. (NEDO)

  14. Simulation error propagation for a dynamic rod worth measurement technique

    International Nuclear Information System (INIS)

    Kastanya, D.F.; Turinsky, P.J.

    1996-01-01

    KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth

  15. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  16. From low cost to high tech: possible margins of technical progress in photovoltaic;Du low cost a la high-tech: des marges de progres techniques possibles pour le photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Guillemoles, J.F. [CNRS, directeur adjoint a la Recherche de l' Institut de R and D de l' Energie Photovoltaique (IRDEP), Unite Mixte de Recherche CNRS-EDF-Paristech, 78 - Chatou (France)

    2009-11-15

    Photovoltaic is developing in response to 3 requirements: conservation of the environment, security in energy, and economic growth. Given this, the terawatt (TW) scale should be used to measure the magnitude of energy needs. Can solar, in particular photovoltaic, power meet these needs? This has nothing to do with the availability of solar energy - in a single hour, the sun sends to the earth as much energy as the electricity consumed by all of humanity during an entire year. Instead, it raises questions about the industrial deployment and, eventually, the availability of raw materials and land. The sustainable development of photovoltaic power implies wisely using resources (raw materials, energy and capital) and improving the efficiency not only of the process for transforming resources into photovoltaic units but also of the photovoltaic units themselves for converting light into electricity. It is worth noting that the predictable change of scale in the photovoltaic industry will have implications for this industry's deployment on a large scale. This deployment depends on: the availability of technology, know-how, capital and raw materials; the cost of investments; the speed of implementation; and the rhythm of production of cells. (author)

  17. What the Common Economic Arguments against Comparable Worth Are Worth.

    Science.gov (United States)

    Bergmann, Barbara R.

    1989-01-01

    Reviews economists' views about how the economy works, from which conclusions opposing comparable worth are drawn. Discusses factors that have been omitted from economists' views--social and psychological factors that affect behavior in the workplace, permit and encourage discrimination, and have an effect on the distribution of jobs and wages.…

  18. Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, B.; Mancilla-David, F.; Muljadi, E.

    2012-07-01

    The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

  19. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  20. An analysis of hybrid power generation systems for a residential load

    Directory of Open Access Journals (Sweden)

    Ceran Bartosz

    2017-01-01

    Full Text Available This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the system construction. The presented results confirm the effectiveness of the proposed approach, which could be assumed as a very useful tool in the design and analysis of a hybrid power generation system.

  1. Optimal Sizing and Allocation of Residential Photovoltaic Panels in a Distribution Network for Ancillary Services Application

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Pourmousavi, Ali; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    requirements, such as voltage and current limits. This paper proposes an optimization method for determining the number of photovoltaic (PV) panels together with their arrangement in the grid in order to maximize ancillary service, without violating grid operation limits. The proposed optimization method...

  2. Optimal Resources Planning of Residential Complex Energy System in a Day-ahead Market Based on Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    P. Αhmadi

    2017-10-01

    Full Text Available This paper deals with optimal resources planning in a residential complex energy system, including FC (fuel cell, PV (Photovoltaic panels and the battery. A day-ahead energy management system (EMS based on invasive weed optimization (IWO algorithm is defined for managing different resources to determine an optimal operation schedule for the energy resources at each time interval to minimize the operation cost of a smart residential complex energy system. Moreover, in this paper the impacts of the sell to grid and purchase from grid are also considered. All practical constraints of the each energy resources and utility policies are taken into account. Moreover, sensitivity analysis are conducted on electricity prices and sell to grid factor (SGF, in order to improve understanding the impact of key parameters on residential CHP systems economy. It is shown that proposed system can meet all electrical and thermal demands with economic point of view. Also enhancement of electricity price leads to substantial growth in utilization of proposed CHP system.

  3. Efficient scale for photovoltaic systems and Florida's solar rebate program

    International Nuclear Information System (INIS)

    Burkart, Christopher S.; Arguea, Nestor M.

    2012-01-01

    This paper presents a critical view of Florida's photovoltaic (PV) subsidy system and proposes an econometric model of PV system installation and generation costs. Using information on currently installed systems, average installation cost relations for residential and commercial systems are estimated and cost-efficient scales of installation panel wattage are identified. Productive efficiency in annual generating capacity is also examined under flexible panel efficiency assumptions. We identify potential gains in efficiency and suggest changes in subsidy system constraints, providing important guidance for the implementation of future incentive programs. Specifically, we find that the subsidy system discouraged residential applicants from installing at the cost-efficient scale but over-incentivized commercial applicants, resulting in inefficiently sized installations. - Highlights: ► Describe a PV solar incentive system in the U.S. state of Florida. ► Combine geocoded installation site data with a detailed irradiance map. ► Estimate installation and production costs across a large sample. ► Identify inefficiencies in the incentive system. ► Suggest changes to policy that would improve economic efficiency.

  4. 19 CFR 212.11 - Net worth exhibit.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Net worth exhibit. 212.11 Section 212.11 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT Information Required From Applicants § 212.11 Net worth exhibit...

  5. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  6. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  7. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  8. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  9. Characteristics of self-worth protection in achievement behaviour.

    Science.gov (United States)

    Thompson, T

    1993-11-01

    Two experiments are reported comprising an investigation of individual difference variables associated with self-worth protection. This is a phenomenon whereby students in achievement situations adopt one of a number of strategies, including withdrawing effort, in order to avoid damage to self-esteem which results from attributing failure to inability. Experiment 1 confirmed the adequacy of an operational definition which identified self-worth students on the basis of two criteria. These were deteriorated performance following failure, together with subsequent enhanced performance following a face-saving excuse allowing students to explain failure without implicating low ability. The results of Experiment 2 established that the behaviour of self-worth protective students in achievement situations may be understood in terms of their low academic self-esteem coupled with uncertainty about their level of global self-esteem. Investigation of the manner in which self-worth students explain success and failure outcomes failed to demonstrate a tendency to internalise failure but revealed a propensity on the part of these students to reject due credit for their successes. The implications of these findings in terms of the prevention and modification of self-worth protective reactions in achievement situations are discussed.

  10. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  11. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  12. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  13. Public acceptance of residential solar photovoltaic technology in Malaysia

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2017-11-01

    Full Text Available Purpose – Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach – To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings – The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications – This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications – On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value – This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.

  14. Collegiate misuse of prescription stimulants: examining differences in self-worth.

    Science.gov (United States)

    Giordano, Amanda L; Prosek, Elizabeth A; Reader, Emily A; Bevly, Cynthia M; Turner, Kori D; LeBlanc, Yvette N; Vera, Ryan A; Molina, Citlali E; Garber, Sage Ann

    2015-02-01

    Prescription stimulant medication is commonly used to treat attention-deficit hyperactivity disorder (ADHD). However, stimulant medication misuse is a prevalent problem among the college population. There is limited research on psychological factors associated with collegiate nonmedical stimulant misuse. To examine the association between college students' self-worth and stimulant medication misuse. A quantitative study implemented during the 2013-2014 academic year in which we utilized a convenience sample of undergraduate students at a public university. College students (N = 3,038) completed an electronic survey packet including a stimulant use index and the Contingencies of Self-Worth Scale. We conducted descriptive discriminant analysis (DDA) to measure the associations between four groups: Nonusers, Appropriate Users, Nonprescribed Misusuers, and Prescribed Users. Significant differences in contingencies of self-worth existed between the four groups of students. Specifically, external contingencies of self-worth, such as appearance and approval, were associated with stimulant medication misuse, whereas, internal contingencies of self-worth, such as God's love and virtue, were associated with nonuse and appropriate prescribed use. Conclusions/Importance: The findings of the current study suggested contingencies of self-worth partially explain prescription stimulant misuse among the collegiate population. Addressing self-worth may be helpful in the treatment of stimulant misuse with college students.

  15. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  16. Reliability worth assessment of radial systems with distributed generation

    OpenAIRE

    Bellart Llavall, Francesc Xavier

    2010-01-01

    With recent advances in technology, utilities generation (DG) on the distribution systems. Reliability worth is very important in power system planning and operation. Having a DG ensures reli increase the reliability worth. This research project presents the study of a radial distribution system and the impact of placing DG in order to increase the reliability worth. where a DG have to be placed. The reliability improvement is measured by different reliability indices tha...

  17. Profitability of photovoltaic projects under the Plan Piloto de Generacion Distribuida para Autoconsumo

    International Nuclear Information System (INIS)

    Oviedo Mora, Bayron

    2013-01-01

    The concept of solar energy is introduced, with its characteristics and scope as a source of electric generation. The functioning of the photovoltaic projects is covered, its main components, characteristics that define, types of systems and basic concepts that should be known when designing a photovoltaic system. An Plan Piloto de Generacion Distribuida para Autoconsumo (PPDGA) of the Instituto Costarricense de Electricidad is described, this plan is until the moment the only option for power generate a distributed manner in Costa Rica. An energetic study and good profitability analysis, the parameters to be taken into account and the way of calculating and interpret the indicators most used in engineering projects such as the Internal Rate of Return (IRR) and Net Present Value (NPV) were investigated to determine how should be developed. The social and environmental advantages are mentioned for the installation of a project of this type, while it is true they are difficult advantages to monetize in the developing of a profitability study, also must be valued at the time for the decision to implement the project. Two cases were chosen as examples, one for small industry level and the other at the residential level. The necessary estimates were performed to determine the optimal power to be installed in order to obtain maximum profitability, photovoltaic systems were quoted at different companies, to know the real price of equipment in today's market and credit characteristics for this type projects were consulted. Also, an estimate of the increase in electric rates in Costa Rica was made, among other necessary parameters to calculate what will happen in the projects. Finally, projects behavior was simulated, indicators of economic viability studies were calculated and sensitivity and risk studies of the two proposed projects using the RETScreen software were made. As of financial analysis and sensitivity it was determined that for both examples the proposed

  18. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holt, Edward [Ed Holt & Associates, Inc., Harpswell, ME (United States)

    2015-06-01

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part by an initial wave of financial innovation that led to the rise of third-party ownership.

  19. Income Trends of Residential PV Adopters: An analysis of household-level income estimates [PowerPoint presentation

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen L.; Darghouth, Naim R.; Hoen, Ben; Wiser, Ryan H.

    2018-04-09

    The residential photovoltaic (PV) market has expanded rapidly over the past decade, but questions exist about how equitably that growth has occurred across income groups. Prior studies have investigated this question but are often limited by narrow geographic study regions, now-dated analysis timeframes, or coarse estimates of PV-adopter incomes. At the same time, a spate of new programs and initiatives, as well as innovations in business models and product design, have emerged in recent years with the aim of making solar more accessible and affordable to broader segments of the population. Yet, many of those efforts are proceeding without robust underlying information about the income characteristics of recent residential PV adopters. This work aims to establish basic factual information about income trends among U.S. residential solar adopters, with some emphasis on low- and moderate-income (LMI) households. The analysis is unique in its relatively extensive coverage of the U.S. solar market, relying on Berkeley Lab’s Tracking the Sun dataset, which contains project-level data for the vast majority of all residential PV systems in the country (a subset of which are ultimately included in the analysis sample). This analysis is also unique in its use of household-level income estimates that provide a more-precise characterization of PV-adopter incomes than in most prior studies.

  20. Photovoltaic pilot plant of Vulcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Menga, P.; Previ, A.

    1988-12-31

    The rated peak power of the Vulcano plant is about 80 kW. The main feature of the plant lies in its dual operating mode: either stand-alone or grid-connected. The plant, commissioned half-way through 1984, has always worked uninterruptedly and satisfactorily and, for this reason, it is expected to keep on operating in the coming years. Beginning from 1987, it has been considered worth carrying out research on a number of specific points not so far dealt with in sufficient detail in literature, as follows: experimental research on the deterioration, over a period of time, of the characteristics of the modules of the plant; theoretical and experimental research on the plant`s electrochemical storage system. The research on the second of the above subjects has a number of aims: to improve methods of checking the state of charge of batteries in newly-designed photovoltaic plants; to improve the ways in which the Vulcano battery storage system is operated; and to monitor and make a careful diagnosis of the condition of the plant`s battery.

  1. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    International Nuclear Information System (INIS)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo

    2007-01-01

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  2. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  3. Preliminary investigation into the use of solar PV systems for residential application in Bandar Sri Iskandar, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dimas, F.A.; Gillani, S.I.; Ans, M.S. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    In the near future, Malaysia is expected to be a net importer of oil, and the nation will have to face issues related to the security of supply and economic consequences. It is also anticipated that the energy demand for the country will increase with the increase in population and GDP. Realizing the situation, it is important that further emphasis is given into the diversification of energy resources. One method is the exploitation of renewable energy to minimize the effects of global warming. Photovoltaic technology is widely used around the world in locations with scarce power generation options. It is used for various applications and Building Integrated Photovoltaic (BIPV) system is one of them. However, photovoltaic is still expensive compared to conventional methods of generating electricity. So a careful design of the system is required to ensure economic viability. This study describes a preliminary investigation of a solar PV system for residential applications in Bandar Sri Iskandar. Sizing procedures based on the peak sun hour concept is described for a Malaysian typical terraced house. Current and voltage measurements of the solar panel were carried out to predict the output under actual conditions at the site.

  4. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  5. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  6. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  7. 42 CFR 422.382 - Minimum net worth amount.

    Science.gov (United States)

    2010-10-01

    ... that CMS considers appropriate to reduce, control or eliminate start-up administrative costs. (b) After... section. (c) Calculation of the minimum net worth amount—(1) Cash requirement. (i) At the time of application, the organization must maintain at least $750,000 of the minimum net worth amount in cash or cash...

  8. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  9. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    OpenAIRE

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, P. A. (Paul A.)

    2017-01-01

    Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, ...

  10. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  11. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  12. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  13. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  14. Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois

    Directory of Open Access Journals (Sweden)

    Jin H. Jo

    2016-04-01

    Full Text Available Due to increasing price volatility in fossil-fuel-produced energy, the demand for clean, renewable, and abundant energy is more prevalent than in past years. Solar photovoltaic (PV systems have been well documented for their ability to produce electrical energy while at the same time offering support to mitigate the negative externalities associated with fossil fuel combustion. Prices for PV systems have decreased over the past few years, however residential and commercial owners may still opt out of purchasing a system due to the overall price required for a PV system installation. Therefore, determining optimal financing options for residential and small-scale purchasers is a necessity. We report on payment methods currently used for distributed community solar projects throughout the US and suggest appropriate options for purchasers in Normal, Illinois given their economic status. We also examine the jobs and total economic impact of a PV system implementation in the case study area.

  15. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  16. Economical data on the value chain of the photovoltaic sector, and quantitative study of the economic impact of innovation. Assessment of the innovation impacts. Synthesis

    International Nuclear Information System (INIS)

    Blanc, Nicolas; Baggioni, Vincent; Durand, Yvonnick; Gaspard, Albane; Guillerminet, Marie-Laure; Marchal, David; Morlot, Rodolphe; Parrouffe, Jean-Michel; Varet, Anne; Ravel, Frederic; Equer, Bernard

    2012-10-01

    This synthesis reports a comprehensive study (October 2012) for ADEME, the French office for energy management and sustainable development, which presents an assessment of the potential impact of innovations in the field of photovoltaic components and systems. After a review of the photovoltaic industry and market in France and in the world, the production cost structure of a photovoltaic system is presented (module, assembly, installation). The impacts of innovations are then considered at the various stages of the chain value, from the material level (silicon, CdTe) to the installation level (ground based systems, roof installed, residential, etc.). Innovation impacts on the system production costs, on the electric power generation cost and on each market and sector (materials, wafers, cells, modules, systems, installation), are assessed. The potential impacts on job creations are also estimated. Assessment methodologies are systematically detailed

  17. Self-worth, perceived competence, and behaviour problems in children with cerebral palsy.

    Science.gov (United States)

    Schuengel, Carlo; Voorman, Jeanine; Stolk, Joop; Dallmeijer, Annet; Vermeer, Adri; Becher, Jules

    2006-10-30

    To examine the relevance of physical disabilities for self-worth and perceived competence in children with cerebral palsy (CP), and to examine associations between behaviour problems and self-worth and perceived competence. The Harter scales for self-worth and perceived competence and a new scale for perceived motor competence were used in a sample of 80 children with CP. Their motor functioning was assessed with the Gross Motor Functioning Measure (GMFM) and behaviour problems with the Child Behaviour Check List administered to parents. Self-worth and perceived competence for children with CP were comparable to the Dutch norm sample, except for perceived athletic competence. Within the CP sample, the GMFM showed a domain-specific effect on perceived motor competence. In the multivariate analysis, internalizing problems were associated negatively with all perceived competence scales and self-worth, whereas aggression was positively associated with perceived motor competence, physical appearance, and self-worth. Children with CP appear resilient against challenges posed to their self-worth caused by their disabilities. The relevance of the physical disability appears to be domain-specific. For internalizing problems and aggression, different theoretical models are needed to account for their associations with self-worth and perceived competence.

  18. The Consolidated Net Worth of Private Colleges. Recommendation of a Model.

    Science.gov (United States)

    Jenny, Hans H.

    One of several essential tools for assessing how the financial health of educational institutions is evolving is the Consolidated Net Worth Statement. This essay explores various aspects of conventional "funds" balance sheets and compares them with the Consolidated Net Worth. Emphasis is placed on how the Consolidated Net Worth Statement…

  19. Market Assessment of Residential Grid-Tied PV Systems in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-29

    This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

  20. Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program

    International Nuclear Information System (INIS)

    Macintosh, Andrew; Wilkinson, Deb

    2011-01-01

    The Australian Government ran a renewable energy program in the 2000s that provided rebates to householders who acquired solar Photovoltaic (PV) energy systems. Originally called the Photovoltaic Rebate Program (PVRP), it was rebranded the Solar Homes and Communities Plan (SHCP) in November 2007. This paper evaluates both the PVRP and SHCP using measures of cost-effectiveness and fairness. It finds that the program was a major driver of a more than six-fold increase in PV generation capacity in the 2000s, albeit off a low base. In 2010, solar PV's share of the Australian electricity market was still only 0.1%. The program was also environmentally ineffective and costly, reducing emissions by 0.09 MtCO 2 -e/yr over the life of the rebated PV systems at an average cost of between AU$238 and AU$282/tCO 2 -e. In addition, the data suggest there were equity issues associated with the program, with 66% of all successful applicants residing in postal areas that were rated as medium-high or high on a Socio-economic Status (SES) scale. - Research highlights: → We evaluated a solar photovoltaic (PV) rebate program. → The program was ineffective, reducing emissions by 0.09 MtCO 2 -e/yr. → The average abatement cost was ∼AU$250/tCO 2 -e. → The program had a relatively minor impact as an industry assistance measure. → The distribution of rebates was skewed toward higher SES areas.

  1. Analysis of control rod worth in experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Arii, Y.; Aoyama, T.; Okimoto, Y.; Yoshida, A.; Mizoo, N.

    1988-01-01

    In JOYO, the measurement of control rod worths have been carried out in the beginning of the each cycle, using both period method and neutron source multiplication method. In this paper, the calculational method of control rod worths in the design stage and the comparison with the design values and measured ones are shown. The reasons that the control rod worths change slightly in each cycle, are also investigated. (author). 13 figs, 12 tabs

  2. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  3. 29 CFR 4062.4 - Determinations of net worth and collective net worth.

    Science.gov (United States)

    2010-07-01

    ... financial condition, and business history. (6) The economic outlook for the person's industry and the market... do not produce income for the business being valued or are not used in the business. (c) Factors for... to sell, or offer to purchase or sell the business of the person made on or about the net worth...

  4. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  5. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  6. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  7. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  8. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  9. Self-worth, perceived competence, and behaviour problems in children with cerebral palsy

    NARCIS (Netherlands)

    Schuengel, C.; Voorman, J.; Stolk, J.; Dallmeijer, A.J.; Vermeer, A; Becher, J.

    2006-01-01

    Purpose. To examine the relevance of physical disabilities for self-worth and perceived competence in children with cerebral palsy (CP), and to examine associations between behaviour problems and self-worth and perceived competence. Methods. The Harter scales for self-worth and perceived competence

  10. Reducing contingent self-worth: a defensive response to self-threats.

    Science.gov (United States)

    Buckingham, Justin; Lam, Tiffany A; Andrade, Fernanda C; Boring, Brandon L; Emery, Danielle

    2018-04-10

    Previous research shows that people with high self-esteem cope with threats to the self by reducing the extent to which their self-worth is contingent on the threatened domain (Buckingham, Weber, & Sypher, 2012). The present studies tested the hypothesis that this is a defensive process. In support of this hypothesis, Study 1 (N = 160), showed that self-affirmation attenuates the tendency for people with high self-esteem to reduce their contingencies of self-worth following self-threat. Furthermore, Study 2 (N = 286), showed that this tendency was more prevalent among people with defensive self-esteem than among those with secure self-esteem. The present studies imply that reducing contingent self-worth after self-threat is a defensive process. We discuss implications for theories of contingent self-worth.

  11. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  12. Quantifying data worth toward reducing predictive uncertainty

    Science.gov (United States)

    Dausman, A.M.; Doherty, J.; Langevin, C.D.; Sukop, M.C.

    2010-01-01

    The present study demonstrates a methodology for optimization of environmental data acquisition. Based on the premise that the worth of data increases in proportion to its ability to reduce the uncertainty of key model predictions, the methodology can be used to compare the worth of different data types, gathered at different locations within study areas of arbitrary complexity. The method is applied to a hypothetical nonlinear, variable density numerical model of salt and heat transport. The relative utilities of temperature and concentration measurements at different locations within the model domain are assessed in terms of their ability to reduce the uncertainty associated with predictions of movement of the salt water interface in response to a decrease in fresh water recharge. In order to test the sensitivity of the method to nonlinear model behavior, analyses were repeated for multiple realizations of system properties. Rankings of observation worth were similar for all realizations, indicating robust performance of the methodology when employed in conjunction with a highly nonlinear model. The analysis showed that while concentration and temperature measurements can both aid in the prediction of interface movement, concentration measurements, especially when taken in proximity to the interface at locations where the interface is expected to move, are of greater worth than temperature measurements. Nevertheless, it was also demonstrated that pairs of temperature measurements, taken in strategic locations with respect to the interface, can also lead to more precise predictions of interface movement. Journal compilation ?? 2010 National Ground Water Association.

  13. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  14. Achieving equal pay for comparable worth through arbitration.

    Science.gov (United States)

    Wisniewski, S C

    1982-01-01

    Traditional "women's jobs" often pay relatively low wages because of the effects of institutionalized stereotypes concerning women and their role in the work place. One way of dealing with sex discrimination that results in job segregation is to narrow the existing wage differential between "men's jobs" and "women's jobs." Where the jobs are dissimilar on their face, this narrowing of pay differences involves implementing the concept of "equal pay for jobs of comparable worth." Some time in the future, far-reaching, perhaps even industrywide, reductions in male-female pay differentials may be achieved by pursuing legal remedies based on equal pay for comparable worth. However, as the author demonstrates, immediate, albeit more limited, relief for sex-based pay inequities found in specific work places can be obtained by implementing equal pay for jobs of comparable worth through the collective bargaining and arbitration processes.

  15. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  16. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  17. Division I men and women athletes do not differ on perceptions of worth.

    Science.gov (United States)

    Lockhart, Barbara D; Black, Nate; Vincent, William J

    2012-04-01

    Historically, especially prior to the increased interest in women's athletics with the passage of Title IX in 1972, there have been negative perceptions of women as athletes. If these social perceptions still hold in part today, as is indirectly suggested by unequal press coverage and less basic support for women athletes, one might predict that collegiate female athletes would rate themselves lower on self-esteem and worth than collegiate male athletes. 176 Division I male (n = 90) and female (n = 86) athletes rated their perceptions of self on the Worth Index which measures basic human worth, personal security, performance, and physical self; these are divided into intrinsic (unconditional worth) measures and behavior or performance (conditional worth) measures. There were no significant sex differences in the ratings of any aspect of perceived worth, in contrast to prior results among non-athletes. In spite of less support given to women athletes, perhaps the long-term high-intensity competition that is required to reach Division I status tends to eliminate sex differences in self-worth.

  18. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  19. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  20. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  1. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  2. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    Science.gov (United States)

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  3. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at investigation on irradiation conditions of natural solar radiation to establish the performance evaluation methods; establishment of standard evaluation methods under natural solar radiation; and investigation on practical problems involved in the photovoltaic power generation systems. The research items are (1) photovoltaic power generation systems, and (2) standard evaluation methods for photovoltaic power generation systems installed on the ground. The item (1) includes the effect analysis in which existing Japanese residential buildings are selected to estimate possibility of installation of photovoltaic power generation systems and possible quantity of power generated; conceptual designs in which several systems conceivable at present are proposed and outlined, and a 30kW photovoltaic power generation system is taken up to investigate, e.g., solar cell arrays for the system, orthogonal conversion devices, associated facilities, conceptual designs of storage batteries, problems involved therein, and future research themes; and operation of the cell, which takes up operational examples of solar cell power sources, and operational problems viewed from the power transmission side. The item (2) proposes the standard evaluation methods (primary drafts) for the solar cell arrays and panels as those for photovoltaic power generation systems installed on the ground. (NEDO)

  4. Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations

    International Nuclear Information System (INIS)

    Ma, Xiandong; Wang, Yifei; Qin, Jianrong

    2013-01-01

    Highlights: ► Proposes a generic microgrid model comprising hybrid distributed generation units. ► Examines DG performance due to both environmental condition changes and electrical faults. ► Addresses island and grid connected modes of operation for DG units. ► We demonstrate the feasibility of the proposed residential microgrid system. - Abstract: Development and deployment of low-carbon energy technologies has been a national strategy of both the UK and China for a number of years, including the use of renewable generation technologies and the improvement of energy efficiency of operations and activities. The paper addresses several issues of generic importance to a residential microgrid system such as network modelling, advanced control and integration of intelligent monitoring techniques. The system, comprising representative distributed generation technologies of photovoltaics, wind turbines and combined heat and power, has been simulated by PSCAD/EMTDC under different operational scenarios. Studies include the effect of environmental condition changes, control systems and power electronics on wind turbines and PV cells, and the mixture of wind/solar/CHP energy generation under dominance of each technology. The performance and dynamics of the system are examined against symmetrical and asymmetrical electrical faults to seek an optimal isolation and restoration of the distributed generation unit from the connected grid system. Modelling these system interactions has demonstrated the feasibility of the proposed residential microgrid system

  5. Construction and initial validation of the self-worth protection scale.

    Science.gov (United States)

    Thompson, Ted; Dinnel, Dale L

    2003-03-01

    The self-worth theory of achievement motivation holds that in certain circumstances students stand to gain by deliberately withdrawing effort. When failure occurs despite effort, students are likely to conclude that failure resulted from lack of ability. Thus, withdrawing effort offers a defence against conclusions of low ability, thereby protecting self-worth. We undertook to assess the psychometric properties of the Self-Worth Protection Scale (SWPS). Data were obtained from 243 participants (Study 1) and 411 participants (Study 2) enrolled in undergraduate psychology courses at a university in the United States. We administered a number of scales, including the SWPS and scales assessing a fear of negative evaluation, academic self-esteem, uncertain global self-evaluations, self-handicapping, and causal uncertainty. Exploratory factor analysis indicated a three-factor solution (ability doubts, the importance of ability as a criterion of self-worth, and an avoidance orientation) utilising 33 of the original 44 items. A confirmatory factor analysis indicated that this three-factor solution was a poor fit of the data. After modifying the model, a confirmatory factor analysis indicated that a three-factor solution with 26 of the original items and a higher order factor of self-worth protection was an adequate fit of the data. Reliability measures were acceptable for the three subscales and total score. The total score of the SWPS was positively correlated with theoretically related constructs, demonstrating construct validity. The SWPS appears to be a psychometrically sound scale to assist in identifying individuals who manifest self-worth protection in achievement situations.

  6. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty

    International Nuclear Information System (INIS)

    Alafita, T.; Pearce, J.M.

    2014-01-01

    Limited access to low-cost financing is an impediment to high-velocity technological diffusion and high grid penetration of solar photovoltaic (PV) technology. Securitization of solar assets provides a potential solution to this problem. This paper assesses the viability of solar asset-backed securities (ABS) as a lower cost financing mechanism and identifies policies that could facilitate implementation of securitization. First, traditional solar financing is examined to provide a baseline for cost comparisons. Next, the securitization process is modeled. The model enables identification of several junctures at which risk and uncertainty influence costs. Next, parameter values are assigned and used to generate cost estimates. Results show that, under reasonable assumptions, securitization of solar power purchase agreements (PPA) can significantly reduce project financing costs, suggesting that securitization is a viable mechanism for improving the financing of PV projects. The clear impediment to the successful launch of a solar ABS is measuring and understanding the riskiness of underlying assets. This study identifies three classes of policy intervention that lower the cost of ABS by reducing risk or by improving the measurement of risk: (i) standardization of contracts and the contracting process, (ii) improved access to contract and equipment performance data, and (iii) geographic diversification. - Highlights: • Limited access to low-cost financing is hampering penetration of solar PV. • Solar asset-backed securities (ABS) provide a low cost financing mechanism. • Results for securitization of solar leases and power purchase agreements (PPA). • Securitization can significantly reduce project financing costs. • Identifies policy intervention that lower cost of ABS by reducing risk

  7. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  8. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  9. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NJ (United States)

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  10. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  11. Simulation of Distributed Generation with Photovoltaic Microgrids—Case Study in Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo Azevedo Xavier

    2015-05-01

    Full Text Available Elevated prices and lack of proper legislation and government incentives have been the main barriers in the development of the photovoltaic market in Brazil. In an attempt to overcome those barriers, a microgrid model was proposed and simulated. In the proposed microgrids, residential consumers are connected to each other to maximize the investment return by trading the surplus of generated energy among them. Different topologies and scenarios were studied from electrical energy and economic standpoints. Stochastic data of solar radiation were simulated for the city of Viçosa, Minas Gerais, Brazil, for the period of one year, considering the statistical behavior of a series over 20 years. The system output power and energy balance were calculated considering a model for photovoltaic generators and the radiation simulated data. By determining the generated energy and electrical needs of the microgrid members, the cash flow and economic feasibility were calculated. Sensitivity analyses were performed by varying economic parameters to determine situations where investment becomes feasible. This paper shows that microgrid contributes to improve the economics and the initial investments. The number of participants in a microgrid, the electricity and the equipment costs are important parameters to speed up the economic and technical feasibility process.

  12. Contingent self-worth moderates the relationship between school stressors and psychological stress responses.

    Science.gov (United States)

    Ishizu, Kenichiro

    2017-04-01

    This study examined the moderating role of contingent self-worth on the relationships between school stressors and psychological stress responses among Japanese adolescents. A total of 371 Japanese junior high school students (184 boys and 187 girls, M age  = 12.79 years, SD = 0.71) completed the Japanese version of the Self-Worth Contingency Questionnaire and a mental health checklist at two points separated by a two-month interval. Hierarchical multiple regression analyses were then used to determine whether contingent self-worth moderated the relationship between school stressors and psychological stress responses. The results indicated that, when psychological stress responses were controlled for at Time 1, contingent self-worth did not predict the psychological stress responses at Time 2. However, a two-way interaction between contingent self-worth and stressors was found to significantly influence psychological stress responses, thus indicating that stressors had a stronger impact on psychological stress responses among those with high contingent self-worth compared to those with low contingent self-worth. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  13. Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households

    International Nuclear Information System (INIS)

    Oliveira e Silva de, Guilherme; Hendrick, Patrick

    2016-01-01

    Highlights: • Grid parity is reached for PV installations up to nearly 40% self-sufficiency. • Reaching beyond 40% self-sufficiency requires storage and support policies. • Peak consumption remains constant but load variability rises with self-sufficiency. • Changes in power plants portfolio and wholesale electricity prices are expected. • Limiting feed-in power is a promising solution for reducing load variability. - Abstract: With distributed generation of electricity growing in importance (especially with photovoltaics) and buildings being one of the main consumers of energy in modern societies, distributed storage of energy in buildings is expected to become increasingly present. This paper analyses the use of residential lead–acid energy storage coupled with photovoltaics and its possible interaction with the grid for different limits of feed-in power without any support policies. In the literature, these subjects are often treated independently and for very specific, non-optimised cases, thus motivating further research. Results show that reaching self-sufficiency values up to 40% is possible, close to grid parity values, and only with photovoltaics. Beyond 40%, energy storage must be used, strongly raising the cost of the electricity consumed and therefore the need for support policies for widespread adoption. Also, peak power consumption from the grid remains constant and load variability rises, suggesting that an increase in self-sufficiency would be accompanied by lower utilisation factors of power plants and, consequently, higher wholesale electricity prices during no sunshine hours. Limiting feed-in power attenuates the increased load variability and only slightly affects the economic viability of such installations. These results present a novel optimisation tool for developers and should be considered in future studies of distributed photovoltaics and energy storage as well as in energy policy.

  14. Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

    2013-08-01

    The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

  15. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  16. Study on dynamic rod worth measurement method and its test verification

    International Nuclear Information System (INIS)

    Wu Lei; Liu Tongxian; Zhao Wenbo; Li Songling; Yu Yingrui

    2015-01-01

    An advanced rod worth measurement technique, the dynamic rod worth measurement method (DRWM) has been developed. Static Spatial Factors (SSF) and Dynamic Spatial Factor (DSF) were introduced to improve the inverse kinetics method. The three dimensional steady and transient simulations for the measurement process was carried out to calculate the modification factors. The rod worth measurement, test was performed on a research reactor to verify DRWM. The results showed that the DRWM method provided the improved accuracy and could be a replacement of the traditional methods. (authors)

  17. Photovoltaics: The present presages the future

    International Nuclear Information System (INIS)

    Thornton, J.; Brown, L.

    1992-01-01

    This article is a technical assessment on photovoltaics and what effect new technology has on the ability of photovoltaics to compete in the utility market. The topics of the article include the solar resource, photovoltaic cells and systems, thick and thin film cells, the spherical cell, photovoltaic modules and systems, photovoltaic economics and utility applications, and technology transfer programs in the area of photovoltaic manufacturing

  18. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  19. Solar Community Organizations and active peer effects in the adoption of residential PV

    International Nuclear Information System (INIS)

    Noll, Daniel; Dawes, Colleen; Rai, Varun

    2014-01-01

    Solar Community Organizations (SCOs) are formal or informal organizations and citizen groups that help to reduce the barriers to the adoption of residential solar photovoltaic (PV) by (1) providing access to credible and transparent information about the localized benefits of residential PV and (2) actively campaigning to encourage adoption within their operational boundaries. We study the peer effect, or social interaction, process catalyzed by SCOs to understand the impact of these organizations on the residential PV market. Using a standardized search methodology across spatial scales (state; city; neighborhoods), we identify and characterize the operations of 228 SCOs formed in the U.S. between 1970 and 2012. We also present case studies of four successful SCOs and find that a common thread of why these SCOs are successful involves effectively leveraging trusted community networks combined with putting together a complete information and financial-tools package for use by interested communities. Finally, our findings suggest that empirical studies that attempt statistical identification and estimation of peer effects should pay close attention to the role of SCOs, as the social interactions engendered by SCOs may be correlated both with the level of social learning and the socio-demographic characteristics of the communities of interest. - Highlights: • New dataset on Solar Community Organizations (SCOs) in the U.S. during 1970–2012. • Shock events catalyze formation of SCOs. • SCOs-driven peer effects found to positively impact PV adoption. • Leveraging trust networks is crucial for the success of SCOs. • In addition to information provision, financing options also key for SCOs' success

  20. Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Afshin Aslian

    2016-01-01

    Full Text Available Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC, all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.

  1. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  2. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  3. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  4. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  5. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  6. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  7. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  8. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  9. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology, and Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth [Yale Univ., New Haven, CT (United States); Deng, Hao [Yale Univ., New Haven, CT (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nemet, Gregory [Univ. of Wisconsin, Madison, WI (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States); Dong, C. G. [Univ. of Texas, Austin, TX (United States)

    2014-12-15

    Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  10. Photovoltaic Product Directory and Buyers Guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  11. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  12. Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential

    International Nuclear Information System (INIS)

    Burns, John Edward; Kang, Jin-Su

    2012-01-01

    Numerous studies and market reports suggest that the solar photovoltaic markets rely heavily, if not entirely, upon governmental support policies at present. Unlike in other countries where these policies are enacted at a national level, the 50 states in the US pursue different policies in an attempt to foster the growth of renewable energy, and specifically solar photovoltaics. This paper provides an economic and financial analysis of the US federal and state level policies in states with solar-targeted policies that have markets. After putting a value on SRECs, this study further compares solar carve-outs with other incentives including the federal tax credit, net metering, and state personal tax credits. Our findings show that SREC markets can certainly be strong, with New Jersey, Delaware, and Massachusetts having the most potential. Despite their strong potential as effective renewable policies, the lack of a guaranteed minimum and the uncertainty attached are major drawbacks of SREC markets. However, the leveraging of this high value offers hope that the policies will indeed stimulate residential solar photovoltaic markets. - Highlights: ► We measure solar support incentives in eight US states with set-asides that include SREC policies. ► Compare each financial incentive using DCF, NPV, IRR, and Present Value/Watt-capacity. ► Most US SREC markets have strong potential to stimulate solar photovoltaics. ► SREC success requires price floors to alleviate uncertainty issues. ► Private financial entities can leverage SRECs to provide necessary price floors.

  13. Reliability Worth Analysis of Distribution Systems Using Cascade Correlation Neural Networks

    DEFF Research Database (Denmark)

    Heidari, Alireza; Agelidis, Vassilios; Pou, Josep

    2018-01-01

    Reliability worth analysis is of great importance in the area of distribution network planning and operation. The reliability worth's precision can be affected greatly by the customer interruption cost model used. The choice of the cost models can change system and load point reliability indices....... In this study, a cascade correlation neural network is adopted to further develop two cost models comprising a probabilistic distribution model and an average or aggregate model. A contingency-based analytical technique is adopted to conduct the reliability worth analysis. Furthermore, the possible effects...

  14. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  15. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  16. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  17. Photovoltaic Shading Testbed for Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  18. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  19. Photovoltaic performance models: an evaluation with actual field data

    Science.gov (United States)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  20. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    Science.gov (United States)

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  1. Photovoltaic technology diffusion. Contact and interact

    International Nuclear Information System (INIS)

    Kruijsen, J.

    1999-09-01

    How can the diffusion of photovoltaic technologies be advanced? Photovoltaics convert light into electrical energy. They are environmentally friendly, reliable and have minimal maintenance requirements. Up to now, their introduction into the electricity market has been dominated by a technology push perspective. However, this has not yet resulted in a large-scale implementation. This thesis describes a network approach to advance photovoltaic diffusion and presents four guiding principles intended for the parties concerned: those who supply the photovoltaic technologies (e.g., developers of photovoltaic cells); those who integrate photovoltaic technologies into (new) product systems (e.g., engineering firms); the users of photovoltaic systems (e.g., housing corporations); and those who stimulate the use of photovoltaics (e.g., policymakers, subsidisers, branch organisations, financial institutes, and NGOs). refs

  2. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  3. The Economics of Comparable Worth.

    Science.gov (United States)

    Killingsworth, Mark R.

    This document concludes that the basic difficulty with comparable worth is that it is an ill-conceived solution to a serious problem and that alternative policies, such as equal employment opportunity legislation or application of antitrust laws, provide means of addressing employment discrimination that are both more effective and less likely to…

  4. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  5. A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2016-01-01

    Highlights: • Net Present Value varies from 437 to 624 € per kW installed. • Discounted Payback Time ranges from 4 years to 6 years. • Reduction of emissions of 21 tCO 2 eq for each kW installed during the 20 years. • Break-even point of increase of self-consumption varies from 6% to 13%. • The opportunity to keep a 50% of fiscal deduction for 5 years. - Abstract: The installation of photovoltaic power plants in 2015 compared to 2014 registered a growth of 25.6%, reaching a cumulative power equal to 229 GW. In developed solar markets, as many European countries, the sector is pushed by the alignment between the electric power demanded and the one offered. Consequently, self-consumption makes consumers active players of the energy transition. Italy is evaluated as a case study in this paper, in fact is the first country in the world where solar energy contributes largely to the national energetic demand. This paper aims to evaluate photovoltaic systems in residential sector without subsidies. Economic and environmental results are proposed and the indicators used are Net Present Value, Discounted Payback Time and Reduction in the Emissions of Carbon Dioxide. Three sizes (3 kW, 6 kW and 20 kW) are evaluated. In addition, a sensitivity analysis of critical variables (investment cost, annual electricity purchase price, annual electricity sales price, opportunity cost, tax deduction unitary, period of fiscal deduction, average annual insolation and percentage of energy self-consumption) demonstrates the robustness of the economic results. Also for environmental evaluation, alternative scenarios are proposed varying the value of emissions released by source energy analysed (photovoltaic, coal, oil and gas). Economic and environmental results suggest that small-scale photovoltaic systems can support the transition towards a sustainable energy mix.

  6. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  7. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  8. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  9. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  10. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  11. Self-worth, perceived competence, and behaviour problems in children with cerebral palsy

    OpenAIRE

    Schuengel, C.; Voorman, J.; Stolk, J.; Dallmeijer, A.J.; Vermeer, A; Becher, J.

    2006-01-01

    Purpose. To examine the relevance of physical disabilities for self-worth and perceived competence in children with cerebral palsy (CP), and to examine associations between behaviour problems and self-worth and perceived competence. Methods. The Harter scales for self-worth and perceived competence and a new scale for perceived motor competence were used in a sample of 80 children with CP. Their motor functioning was assessed with the Gross Motor Functioning Measure (GMFM) and behaviour probl...

  12. A Market Assessment of Residential Grid-Tied PV Systems in Colorado: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-13

    This is the Executive Summary of a report that presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries--$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeowners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions--primarily its state government and its utility companies, and also its homebuilders--if they are ready to move forward on GPV technology.

  13. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    Directory of Open Access Journals (Sweden)

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  14. Re-thinking residential mobility

    Science.gov (United States)

    van Ham, Maarten; Findlay, Allan M.

    2015-01-01

    While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges. PMID:27330243

  15. Photovoltaic product directory and buyers guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  16. A longitudinal assessment of the links between physical activity and physical self-worth in adolescent females.

    Science.gov (United States)

    Raudsepp, Lennart; Neissaar, Inga; Kull, Merike

    2013-01-01

    A longitudinal framework was used to examine the hypotheses of (1) whether physical activity predicts changes in physical self-worth or (2) whether physical self-worth predicts changes in physical activity in adolescent girls. Participants (n=272) completed measures of physical self-worth and participation in physical activities at three different points spanning a two-year interval. A cross-lagged panel model using structural equation modelling analyses indicated that physical self-worth predicted subsequent physical activity and physical activity in turn predicted subsequent physical self-worth across time. Findings demonstrated a reciprocal relationship between physical self-worth and physical activity during early adolescence. This study supports the use of the reciprocal effects model (REM) in gaining an understanding of the cross-lagged relationships between physical self-worth and participation in physical activities amongst adolescent girls.

  17. Information Processing and Creative Thinking Abilities of Residential and Non-Residential School Children

    Directory of Open Access Journals (Sweden)

    Atasi Mohanty

    2015-10-01

    Full Text Available This study attempts to assess and compare the residential and non-residential schoolchildren in information-processing skills and creative thinking abilities. A sample of 80 children from Classes 5 and 7 were selected from two types of schools, residential/ashram (02 and non-residential/formal schools (02 in Bolpur subdivision of West Bengal in India where the medium of instruction is Bengali language/mother-tongue. All the children were individually administered the PASS (Planning, Attention, Simultaneous, Successive, Stroop, Matching Familiar Figure Test (MFFT-20, and creative thinking tasks. The residential school children were found to perform better both in information processing and creative thinking tasks. The developmental trend could not be clearly observed due to small sample size, but with increasing age, children were using better processing strategies. Due to ashram environment, creative pedagogy, and various co-curricular activities, the residential school children were found to be more creative than their formal school counterparts. Moreover, some significant positive correlations were found among information processing skills and creative thinking dimensions.

  18. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  19. Solar access of residential rooftops in four California cities

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

    2010-05-14

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

  20. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  1. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  2. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  3. How PV system ownership can impact the market value of residential homes

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jamie L. [Energy Sense Finance, LLC, Punta Gorda, FL (United States)

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  4. DESIGN EXPERIMENT WITH SOLAR ENERGY IN THE ELABORATION OF 25-STOREY RESIDENTIAL COMPLEX FOR THE CRIMEA DISTRICT OF THE SEVASTOPOL CITY

    Directory of Open Access Journals (Sweden)

    Kovaleva Alesya Sergeevna

    2016-09-01

    Full Text Available The scientific project examines the issues of energy efficiency, renewable energy sources, as well as ecology. In today's world the ecological issues are more current than ever. Some of them are ozone holes, disappearance of many species of animals and plants, exhaustible fuel reserves. Ecology is a huge problem of our civilization, which may be solved by paying more attention to energy efficiency in the process of urban development. In the implementation of energy efficiency experiments it is necessary to involve the efforts of scientists, politicians, non-governmental organizations, but first and foremost — of inventors, architects and designers. Energy efficiency in civil construction is presented in the article as an area allowing us to find design solutions basing on renewable energy sources, in particular photocell energy. Project experiment data on a residential high-rise complex in the city of Sevastopol is considered. The author presents design calculations and the comparison of the variants of design decisions on the use of photovoltaic cells producing energy to illuminate the underground car park of a residential high-rise complex. In the future, the use of photovoltaic cells as cladding structures may change the energy characteristics of buildings in case of transition to production scale implementation of the technology. This makes it possible to consider the prospects of urban development growth and improvement of the economy of the construction of expensive facilities. However, subsequent design experiments should be based mostly on other types of facilities and should take into account the impact of wind and aerodynamic performance of buildings in case of application of photovoltaic cells on roofs and facades. The results of the design experiment allow initially investigating the regularities of urban conditions and the amount of energy produced by building surfaces. Thus, the provided concept and the design experiment can be

  5. Residential care : Dutch and Italian residents of residential care facilities compared

    NARCIS (Netherlands)

    de Heer-Wunderink, Charlotte; Caro-Nienhuis, Annemarie D.; Sytema, Sjoerd; Wiersma, Durk

    2008-01-01

    Aims - Characteristics of patients living in residential care facilities and the availability of mental hospital- and residential beds in Italy and The Netherlands were compared to assess whether differences in the process of deinstitutionalisation have influenced the composition of their

  6. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  7. Overvoltage Mitigation Using Coordinated Control of Demand Response and Grid-tied Photovoltaics

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Overvoltages in low voltage distribution grids with high solar photovoltaic (PV) integration are usually alleviated by implementing various active/reactive power control techniques. As those methods create revenue loss or inverter cost increase to PV owners, a coordinated control of load demand...... and the PVs, considering electric vehicles (EVs) as potential demand response resource, is proposed in this study to alleviate the overvoltages. A two-stage control is designed to comprehend the proposed coordinated control such that a centralized stage periodically determines optimum operating set......-points for PVs/EVs and a decentralized stage adaptively control the PVs/EVs in real-time. To demonstrate effectiveness of the proposed approach, simulations are performed in a typical 0.4 kV/400 kVA Danish distribution network containing 45 detached residential consumers. The presented method demonstrates better...

  8. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  9. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  10. Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices

    International Nuclear Information System (INIS)

    Yamaguchi, Yohei; Akai, Kenju; Shen, Junyi; Fujimura, Naoki; Shimoda, Yoshiyuki; Saijo, Tatsuyoshi

    2013-01-01

    Highlights: ► Consumers’ preference on PV and solar water heater were investigated. ► Diffusion of the technologies in Japan was modeled by using Bass diffusion model. ► Policy measures to diffuse the technologies were evaluated by using the framework. ► Subsidy is more cost effective than FIT to diffuse PV. ► Public perception is the bottleneck of diffusion of solar water heater. -- Abstract: This paper proposes an integrated analytical framework consisting of the following three steps: (1) investigation of consumers’ preferences, (2) prediction of technology diffusion by taking into account consumers’ preferences, and (3) estimation of CO 2 emission reduction caused by the diffusion of the examined technology. By using this framework, this paper evaluates the policy measures implemented for disseminating photovoltaics and solar water heaters in terms of the contribution to reducing CO 2 emissions from the residential sector. We investigated consumer preferences for these technologies as well as the effects of attributes such as installation cost, energy price, energy efficiency, and perception on consumers’ choices. Considering these effects, we developed a model that estimates the diffusion of these technologies into the residential sector of Japan through 2025 and the resulting CO 2 emission reduction. We found that the policy measures for the diffusion of photovoltaics that reduce initial cost (e.g., subsidy programs) are more cost effective for reducing CO 2 emission than those reducing users’ operating expenditure (e.g., feed-in tariff programs). For solar water heater to be able to reduce the CO 2 emissions considerably, the public perception must be improved.

  11. Understanding Residential Polarization in a Globalizing City

    Directory of Open Access Journals (Sweden)

    Ibrahim Rotimi Aliu

    2013-12-01

    Full Text Available This study examines the spatial polarization that characterizes the dwellings in the African leading megacity of Lagos. Data were collected through an extensive housing survey carried out on 1,485 household residences in 56 wards within 12 administrative units in Lagos megacity. The spatial dimension of residential density in the city generates three unique residential patterns which are low residential density (LRD, medium residential density (MRD, and high residential density (HRD areas. Descriptive and multivariate inferential statistics were used to render explanations for the spatial variations in the residential quality variables in the study area. Findings indicated that a clear difference exists in the residential quality within the three residential density areas of Lagos. High correlations exist among the residential quality indicators and housing type. The principal component analysis shows that residential polarizations that occur in the LRD, MRD, and HRD are based on the location, dwelling facility, interior and exterior quality, neighborhood integrity, social bond, barrier to entry, and security. The practical implications of residential polarizations along the residential density areas are explicitly expressed.

  12. EV Charging Facilities and Their Application in LV Feeders with Photovoltaics

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guangya; Træholt, Chresten

    2013-01-01

    Low-voltage (LV) grid feeders with high penetration of photovoltaics (PVs) are often affected by voltage magnitude problems. To solve such issues, previous research has shown that reactive power methods, active power curtailment and grid reinforcement can be used for voltage support, yet showing...... several limits. We introduce the use of electric vehicle (EV) public charging stations with energy storage system (ESS) as a solution for voltage regulation in LV feeders with PV. A novel method is proposed to determine the ESS charging load required for voltage regulation and compare the results...... for the different locations in the feeder. With time-series simulations, we quantify the energy size required for a station ESS. A Belgian LV residential grid, modeled using real PV generation and load profiles, is used as case study. The method and simulation results show the effectiveness of using public EV...

  13. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  14. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  15. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  16. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  17. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  18. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  19. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  20. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  1. Study on evaluating the reactivity worth of the control rods of the PWR 900 MWe

    International Nuclear Information System (INIS)

    Phan Quoc Vuong; Tran Vinh Thanh; Tran Viet Phu

    2015-01-01

    Control rods of a nuclear reactor are divided into two groups: shut down and power control. Reactivity worth of the control rods depends nonlinearly on the rods' compositions and positions where the rods are inserted into the core. Therefore, calculation of control rod worth is of high important. In this study, we calculated the reactivity worth of the power control rod bank of the Mitsubishi PWR 900 MWe. The results are integral and differential worth calibration of the control rods. (author)

  2. Correlates of self-worth and body size dissatisfaction among obese Latino youth.

    Science.gov (United States)

    Mirza, Nazrat M; Mackey, Eleanor Race; Armstrong, Bridget; Jaramillo, Ana; Palmer, Matilde M

    2011-03-01

    The current study examined self-worth and body size dissatisfaction, and their association with maternal acculturation among obese Latino youth enrolled in a community-based obesity intervention program. Upon entry to the program, a sample of 113 participants reported global self-worth comparable to general population norms, but lower athletic competence and perception of physical appearance. Interestingly, body size dissatisfaction was more prevalent among younger respondents. Youth body size dissatisfaction was associated with less acculturated mothers and higher maternal dissatisfaction with their child's body size. By contrast, although global self-worth was significantly related to body dissatisfaction, it was not influenced by mothers' acculturation or dissatisfaction with their own or their child's body size. Obesity intervention programs targeted to Latino youth need to address self-worth concerns among the youth as well as addressing maternal dissatisfaction with their children's body size. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Self-reported "worth it" rating of aesthetic surgery in social media.

    Science.gov (United States)

    Domanski, Mark C; Cavale, Naveen

    2012-12-01

    A wide variety of surveys have been used to validate the satisfaction of patients who underwent aesthetic surgery. However, such studies are often limited by patient number and number of surgeons. Social media now allows patients, on a large scale, to discuss and rate their satisfaction with procedures. The views of aesthetic procedures patients expressed in social media provide unique insight into patient satisfaction. The "worth it" percentage, average cost, and number of respondents were recorded on October 16, 2011, for all topics evaluated on the aesthetic procedure social media site www.realself.com . Procedures were divided into categories: surgical, liposuction, nonsurgical, and dental. For each group, procedures with the most respondents were chosen and ordered by "worth it" score. A literature search was performed for the most commonly rated surgical procedures and the satisfaction rates were compared. A total of 16,949 evaluations of 159 aesthetic surgery topics were recorded. A correlation between cost of the procedure and percentage of respondents indicating that the procedure was "worth it" was not found. The highest-rated surgical procedure was abdominoplasty, with 93 % of the 1,589 self-selected respondents expressing that abdominoplasty was "worth it." The average self-reported cost was $8,400. The highest-rated nonsurgical product was Latisse, with 85 % of 231 respondents reporting it was "worth it" for an average cost of $200. The satisfaction scores in the literature for commonly rated surgical procedures ranged from 62 to 97.6 %. No statistically significant correlations between literature satisfaction scores and realself.com "worth it" scores were found. Abdominoplasty had the highest "worth it" rating among aesthetic surgical procedures. Aesthetic surgeons should be wary that satisfaction scores reported in the literature might not correlate with commonly achieved results. Social media has opened a new door into how procedures are

  4. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  5. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  6. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    Science.gov (United States)

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  7. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  8. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    spain and Germany set the pace for the world photovoltaic market in 2008, which grew to more than twice its 2007 size. The European Union continued to drive photocell installation with an additional 4 592.3 MWp in 2008, or 151.6% growth over 2007. However, European growth prospects for the photovoltaic market in 2009 are being dampened by the global financial crisis and the scheduled slow-down of the Spanish market. (author)

  9. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, Barbara C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buhrmann, Jan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  10. Family ties and residential locations

    NARCIS (Netherlands)

    Mulder, C.H.; Cooke, T.J.

    2009-01-01

    In this paper, and in the Special Issue it introduces, the focus is on the role of family ties in residential location choice and, conversely, the role of residential locations in maintaining family ties. Not only do events in the nuclear family trigger residential relocations, but nearby family

  11. What factors mediate the relationship between global self-worth and weight and shape concerns?

    Science.gov (United States)

    Murphy, Edel; Dooley, Barbara; Menton, Aoife; Dolphin, Louise

    2016-04-01

    The primary aim of this study was to investigate whether the relationship between global self-worth and weight concerns and global self-worth and shape concerns was mediated by pertinent body image factors, while controlling for gender and estimated BMI. Participants were 775 adolescents (56% male) aged 12-18years (M=14.6; SD=1.50). Mediation analysis revealed a direct and a mediated effect between global self-worth and two body image models: 1) weight concerns and 2) shape concerns. The strongest mediators in both models were physical appearance, restrained eating, and depression. Partial mediation was observed for both models, indicating that body image factors which span cognitive, affective, and behavioral constructs, explain the association between global self-worth and weight and shape concerns. Implications for future research, weight and shape concern prevention and global self-worth enhancement programs are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  13. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  14. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  15. NEDO Forum 2000. Solar technology development session (photovoltaic power generation system and our living); Taiyoko gijutsu kaihatsu session. Taiyoko hatsuden system to watashi tachi no kurashi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at the present session: (1) energy and environmental problems, and expectation to the photovoltaic power generation system, (2) our living and photovoltaic power generation, and (3) energy policies of Kobe Municipality based on lessons from the earthquake disaster. Item (1) describes: if the total electric power obtained in 20 years from the photovoltaic power generation system of 3 kW output for residential houses is converted into amount of petroleum consumed by thermal power plants, it corresponds to about 850 twenty-liter polyethylene tanks; to build a photovoltaic power generation system, energy corresponding to about 100 polyethylene tanks is used; therefore, subtraction results in saving of about 750 tanks; ordinary houses discharge about 3,500 kg of CO2 annually; and the photovoltaic power generation system serves to reduce about 1,000 kg of CO2 emission annually. Item (2) describes: in markets in 2010, more than 80% of the power generation system is served for housing; profitable price of power generation value is about 55/kW; more than 50% of the value is occupied by the value for other than power generation; and more than 80% of the system for housing will be of roof-material type in 2005. Item (3) introduces the energy diversification taken by Kobe Municipality after the earthquake disaster, and the energy policies, including the 'life spot' policy. (NEDO)

  16. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  17. US EPA's photovoltaic demand-side management project. Report for September 1992-July 1993

    International Nuclear Information System (INIS)

    Kern, E.C.; Spiegel, R.J.

    1993-01-01

    The paper discusses an investigation of how photovoltaics (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. Eleven electric utilities are partners in this first nationwide demonstration of PV DSM. The approach is to install and monitor standardized PV systems in diverse geographic areas with varying solar energy resource and electric power demand, production, and cost conditions. The systems are being monitored for a year to record direct and diffuse irradiance, ambient air temperature, PV power generation, and building loads. Utilities are providing the electric system operations data needed to determine the pollution mitigation and peak demand reduction that can result from the PV electrical power generation

  18. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly

  19. An analysis of residential PV system price differences between the United States and Germany

    International Nuclear Information System (INIS)

    Seel, Joachim; Barbose, Galen L.; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany (median of $5.29/W vs. $2.59/W) in 2012. This price discrepancy stems primarily from differences in non-hardware or “soft” costs between the two countries, which can only in part be explained by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect granular data on PV soft costs in Germany, and the results are compared to those of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in Germany, especially for customer acquisition, installation labor, and profit/overhead costs, but also for expenses related to permitting, interconnection, and inspection procedures. Additional costs occur in the United States due to state and local sales taxes, smaller average system sizes, and longer project-development times. To reduce the identified additional costs of residential PV systems, the United States could introduce policies that enable a robust and lasting market while minimizing market fragmentation. Regularly declining incentives offering a transparent and certain value proposition—combined with simple interconnection, permitting, and inspection requirements—might help accelerate PV cost reductions in the United States. - Highlights: • Residential PV system prices are twice as high in the USA than in Germany in 2012. • Different cumulative national PV market sizes explain only 35% of price gap. • Installer surveys show that price differences stem from non-module and soft costs. • Largest cost differences stem from customer acquisition and installation labor. • Incentives in the US are less effective in driving and following cost reductions

  20. Tracking the Sun V: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2011

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    As the deployment of grid-connected solar photovoltaic (PV) systems has increased, so too has the desire to track the installed price of these systems over time and by location, customer type, and system characteristics. This report helps to fill this need by summarizing trends in the installed price of grid-connected PV systems in the United States from 1998 through 2011, with preliminary data for 2012. The analysis is based on project-level data for more than 150,000 individual residential, commercial, and utility-scale PV systems, totaling more than 3,000 megawatts (MW) and representing 76% of all grid-connected PV capacity installed in the United States through 2011. The report describes installed price trends for residential and commercial PV systems, and another set of trends for utility-scale PV. In all cases, installed prices are identified in terms of real 2011 dollars per installed watt (DC-STC), prior to receipt of any direct financial incentives or tax credits.

  1. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  2. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  3. Poor Performance in Mathematics: Is There a Basis for a Self-Worth Explanation for Women?

    Science.gov (United States)

    Thompson, Ted; Dinnel, Dale L.

    2007-01-01

    The self-worth theory of achievement motivation holds that in situations in which poor performance is likely to reveal low ability, certain students (known as self-worth protective students) intentionally withdraw effort in order to avoid the negative implications of poor performance in terms of damage to self-worth. In this study, evidence of…

  4. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  5. Monitoring a photovoltaic system during the partial solar eclipse of August 2017

    Science.gov (United States)

    Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill

    2018-05-01

    The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.

  6. Hosting Capacity of Solar Photovoltaics in Distribution Grids under Different Pricing Schemes

    DEFF Research Database (Denmark)

    Carollo, Riccardo; Chaudhary, Sanjay Kumar; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Most of the solar photovoltaic (SPV) installations are connected to distribution networks. The majority of these systems are represented by single-phase rooftop SPVs connected to residential low voltage (LV) grids. The large SPV shares lead to grid integration issues such as voltage rise....... The results show that with the present TOU tariffs the EV integration in LV networks does not ease the grid bottlenecks for large PV penetration. Under the Net metering and DLMP the EV integration in LV grids tend to increase the PV hosting capacity......., overloading of the network components, voltage phase unbalance etc. A rapid expansion of Electric Vehicles (EVs) technology is estimated, whose connection is also expected to take place in the LV networks. EVs might represent a possible solution to the SPV integration issues as they can be used as fast...

  7. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  8. Public Willingness to Pay for Increasing Photovoltaic Power Generation: The Case of Korea

    Directory of Open Access Journals (Sweden)

    Min-Kyu Lee

    2018-04-01

    Full Text Available Renewable energy receives particular attention in Korea because of concerns about climate change and scarce traditional energy resources. The government plans to enhance photovoltaic (PV power’s share of total power generation from 0.5% in 2014 to 10.1% in 2029. The present study tries to look into the public willingness to pay (WTP for increasing PV power generation, applying the contingent valuation approach. A survey of 1000 interviewees was carried out in Korea. The observations of the WTP responses were gathered using a dichotomous choice question and analyzed employing the mixture model. The mean household WTP estimate is obtained as KRW 2183 (USD 1.9 per month, which possesses statistical significance. The total yearly WTP expanded to the population is worth KRW 476.9 billion (USD 423.1 million. These values can provide a useful basis for policy-making and decision-making about the economic feasibility of increasing PV power generation.

  9. Development of a reactivity worth correction scheme for the one-dimensional transient analysis

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time

  10. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  11. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  12. Enhancing Student Self-Worth in the Primary School Learning Environment: Teachers' Views and Students' Views

    Science.gov (United States)

    Cushman, Penni; Cowan, Jackie

    2010-01-01

    This paper reports the findings from a study of teachers and students' views regarding self-worth in the primary school learning environment. The revised New Zealand curriculum recognises the importance of self-worth in students' motivation and ability to learn. While the need to enhance self-worth in the classroom has been well established in the…

  13. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  14. The influence of social identity on self-worth, commitment, and effort in school-based youth sport.

    Science.gov (United States)

    Martin, Luc J; Balderson, Danny; Hawkins, Michael; Wilson, Kathleen; Bruner, Mark W

    2018-02-01

    ​​​The current study examined the influence of social identity for individual perceptions of self-worth, commitment, and effort in school-based youth athletes. Using a prospective research design, 303 athletes (M age  = 14.89, SD = 1.77; 133 female) from 27 sport teams completed questionnaires at 2 time points (T1 - demographics, social identity; T2 - self-worth, commitment, effort) during an athletic season. Multilevel analyses indicated that at the individual level, the social identity dimension of in-group ties (IGT) predicted commitment (b = 0.12, P = .006) and perceived effort (b = 0.14, P = .008), whereas in-group affect (IGA) predicted commitment (b = 0.25, P = .001) and self-worth (b = 2.62, P = .006). At the team level, means for IGT predicted commitment (b = 0.31, P < .001) and self-worth (b = 4.76, P = .024). Overall, social identity accounted for variance at both levels, ranging from 4% (self-worth) to 15% (commitment). Identifying with a group to a greater extent was found to predict athlete perceptions of self-worth, commitment, and effort. More specifically, at the individual level, IGT predicted commitment and effort, and IGA predicted commitment and self-worth. At the team level, IGT predicted commitment and self-worth.

  15. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  16. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, Kristen; O' Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  17. Calculation of RABBIT and Simulator Worth in the HFIR Hydraulic Tube and Comparison with Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Slater, CO

    2005-09-08

    To aid in the determinations of reactivity worths for target materials in a proposed High Flux Isotope Reactor (HFIR) target configuration containing two additional hydraulic tubes, the worths of cadmium rabbits within the current hydraulic tube were calculated using a reference model of the HFIR and the MCNP5 computer code. The worths were compared to measured worths for both static and ejection experiments. After accounting for uncertainties in the calculations and the measurements, excellent agreement between the two was obtained. Computational and measurement limitations indicate that accurate estimation of worth is only possible when the worth exceeds 10 cents. Results indicate that MCNP5 and the reactor model can be used to predict reactivity worths of various samples when the expected perturbations are greater than 10 cents. The level of agreement between calculation and experiment indicates that the accuracy of such predictions would be dependent solely on the quality of the nuclear data for the materials to be irradiated. Transients that are approximated by ''piecewise static'' computational models should likewise have an accuracy that is dependent solely on the quality of the nuclear data.

  18. Residential environmental evaluation of local cities considering regional characteristic and personal residential preference-a case study of Saga City,Japan

    Institute of Scientific and Technical Information of China (English)

    GE Jian; HOKAO Kazunori

    2004-01-01

    Questionnaire surveys and subjective evaluations on residential environment were performed in order to grasp the main factors of residential environment of small local cities. The suitable evaluation index system was established, and the regional residential environment characteristics and personal residential preference types were analyzed, so that their influence on residential environment evaluation could be grasped. The results can be applied to the residential environment planning, construction and monitoring of local cities.

  19. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  20. Site-Based Budgeting in Fort Worth, Texas.

    Science.gov (United States)

    Peternick, Lauri; Sherman, Joel

    1998-01-01

    Examines the Fort Worth Independent School District's decentralized decision-making system through three lenses: a review of site-based decision-making procedures at several schools; an examination of who participates; and stakeholders' perceptions. Some schools operated democratically, significantly including teachers, parents, and community…

  1. To seek work and worth

    International Nuclear Information System (INIS)

    Im, Yong Gyu

    2010-07-01

    It describes the documentary which shows US writers effect and process to seek worth though the work related nuclear power for half a century such as international nuclear school start of use of nuclear energy industry, establishment of nuclear society, by becoming a member of a standing committee and introduction of KINS, KANS and NSSC. It also describes his personal history about family and work and a brief summary of his career.

  2. Case Study: A Picture Worth a Thousand Words? Making a Case for Video Case Studies

    Science.gov (United States)

    Pai, Aditi

    2014-01-01

    A picture, they say, is worth a thousand words. If a mere picture is worth a thousand words, how much more are "moving pictures" or videos worth? The author poses this not merely as a rhetorical question, but because she wishes to make a case for using videos in the traditional case study method. She recommends four main approaches of…

  3. Self-Efficacy, Self-Worth and Stress

    Science.gov (United States)

    Flynn, Deborah M.; Chow, Peter

    2017-01-01

    One of the most stressful periods of life has been reported to be the time spent in the post secondary education system (Hales, 2009). As a result, researchers are interested in determining the various correlates associated with the successful coping during this time. It has been well established that self-esteem and self-worth are both factors…

  4. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  5. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  6. Physical Activity and Global Self-worth in a Longitudinal Study of Children.

    Science.gov (United States)

    Reddon, Hudson; Meyre, David; Cairney, John

    2017-08-01

    Physical activity is associated with an array of physical and mental health benefits among children and adolescents. The development of self-worth/self-esteem has been proposed as a mechanism to explain the mental health benefits derived from physical activity. Despite several studies that have analyzed the association between physical activity and self-worth, the results have been inconsistent. It is also uncertain how related physical health measures, such as sedentary behavior, body composition, and fitness, influence the relationship between physical activity and self-worth over time. In the present study, we 1) analyzed if the association between physical activity and self-worth remained constant over time and whether this relationship varied by sex and 2) investigated if changes in body composition and fitness level mediated the relationship between physical activity and self-worth. Data from the Physical Health Activity Study Team were used for this analysis. The Physical Health Activity Study Team is a prospective cohort study that included 2278 children at baseline (ages 9-10 yr) and included eight follow-up contacts for a 4-yr study period. Linear mixed-effects models were used to estimate global self-worth (GSW) over follow-up. Increased physical activity was associated with greater GSW across all waves of data collection, and this relationship did not vary significantly over time or between sexes. Aerobic fitness was positively associated with GSW, whereas body mass index (BMI) was inversely related to GSW. Both aerobic fitness and BMI appeared to mediate the association between physical activity and GSW. Sedentary behavior was not significantly associated with GSW. Physical activity is associated with greater GSW, and this relationship appears to be mediated by BMI and aerobic fitness. These findings reinforce the importance of physical behaviors and physical characteristics in shaping GSW in children.

  7. Case Study - Monitoring the Photovoltaic Panels

    OpenAIRE

    PACURAR Ana Talida; TOADER Dumitru; PACURAR Cristian

    2014-01-01

    The photovoltaic cell represents one of the most dynamic and attractive way to converts renewable energy sources in electricity production. That means to convert solar energy into electricity. In this paper is presented a analogy between two types of photovoltaic panels installed, with educational role for students. Also the objective of this paper is to estimate the performance of photovoltaic panels and to provide the best solution for industry. These two types of photovoltaic panels wer...

  8. Analysis of sodium-void-worths in ZPPR-3 modified phase 3 core

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Arai, K.; Otake, I. [Osaka Univ. (JP)

    1980-09-15

    The sodium-void-worths in the ZPPR-3 modified phase 3 core, in which singularities such as control-rods and sodium-followers were voided, have been analyzed using a unified diffusion coefficient. The unified diffusion coefficient is obtained by applying the Benoist formula to a super-cell consisting of different drawers, and is applicable not only to fuel drawers but also to control-rod drawers or sodium-followers. Using the coefficient the interference effect of neutron streaming between different drawers can be taken into account. The applicability of the unified diffusion coefficient to sodium-void-worth calculations has been checked in a slab model and a RZ model. The sodium-void-worths in the ZPPR-3 modified phase 3 core have been analyzed by carrying out 16-group three-dimensional diffusion calculations using the unified diffusion coefficient and the results have been compared with experimental data. The comparison indicates that the unified diffusion coefficient is useful in calculating the sodium-void-worth in a region including sodium-voided singularities.

  9. Development in fiscal 1999 of technology commercializing photovoltaic power generation system. Research and development of power generation application system and peripheral technologies (Survey and research on evaluation of photovoltaic power generation); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (taiyoko hatsuden hyoka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective of evaluating the contribution to the global environment of utilization of photovoltaic power generation, discussions were given on evaluation of photovoltaic system life cycle, evaluation of contribution to environment, and total evaluation. This paper summarizes the achievements in fiscal 1999. In evaluating the PV system life cycle, the roof-integrated modules using the thin film CdTe cells were selected as the evaluation object to estimate the energy payback time (EPT) and the CO2 emission unit consumption rate. In case of annual production of 10 MW, the EPT is 1.8 years and the CO2 emission unit consumption rate is 13 (g-C/kWh), which were found largely reducible by expanding the annual production size. For the environmental contribution evaluation which focuses on CO2 emission suppression effect as the discussion object, discussions are being given on the introduction scenario needed for the analysis. In the total evaluation, the direct employment effect assumed in Japan was discussed on production, distribution sales, installation, maintenance control and dismantling of photovoltaic generation system for residential use. The discussion showed the effect of about 7 persons per year per MW in production size of 100 MW. (NEDO)

  10. Ten Ideas Worth Stealing from New Zealand.

    Science.gov (United States)

    Jarchow, Elaine

    1992-01-01

    New Zealand educators have some ideas worth stealing, including morning tea-time, the lie-flat manifold duplicate book for recording classroom observation comments, school uniforms, collegial planning and grading of college assignments, good meeting etiquette, a whole-child orientation, portable primary architecture, group employment interviews…

  11. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  12. Technoeconomics analysis of a photovoltaic system to provide electricity for a household in Malaysia

    International Nuclear Information System (INIS)

    Alamsyah, T.M.I.; Kamaruzzaman Sopian; Shahrir, A

    2006-01-01

    Malaysia is very fortunate because located in the tropical region where the used of solar energy is one of the most promising renewable energy sources in the country. This paper is a study on a photovoltaic (Pv) system to provide the electricity for a single residential household. The effect of solar intensity and surface temperature variation on the amount of power provided by PV panels in selected location in Malaysia is determined in this study. The Life cycle cost analysis is conducted to compare electricity price with other energy sources in this country. It is found that providing electricity for a household by using PV system seems to be beneficial and competitive for long term investment, especially if the price of the system is decrease and the efficiency is increase

  13. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  14. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  15. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  16. Parent-adolescent attachment and procrastination: The mediating role of self-worth.

    Science.gov (United States)

    Chen, Bin-Bin

    2017-01-01

    Within the theoretical framework of attachment theory, the author examined associations between adolescents' procrastination and their attachment relationships with both mothers and fathers, and explored the potential mediation role of self-worth in these associations. Participants were 384 Chinese adolescents (49.6% boys, average age 15.13 years) from public schools in Shanghai, China. They completed self-report measures of 3 dimensions of parental attachment (i.e., trust, communication, and alienation), general self-worth, and procrastination. The results indicated that both paternal and maternal trust and paternal communication were negatively associated with higher levels of procrastination whereas both paternal and maternal alienation were positively associated with procrastination. In addition, self-worth mediated the associations among 3 dimensions of parental attachment and procrastination. The findings highlighted the importance of parental attachment-based intervention strategies to reduce procrastination among adolescents.

  17. An empirical evaluation of two theoretically-based hypotheses on the directional association between self-worth and hope.

    Science.gov (United States)

    McDavid, Lindley; McDonough, Meghan H; Smith, Alan L

    2015-06-01

    Fostering self-worth and hope are important goals of positive youth development (PYD) efforts, yet intervention design is complicated by contrasting theoretical hypotheses regarding the directional association between these constructs. Therefore, within a longitudinal design we tested: (1) that self-worth predicts changes in hope (self theory; Harter, 1999), and (2) that hope predicts changes in self-worth (hope theory; Snyder, 2002) over time. Youth (N = 321; Mage = 10.33 years) in a physical activity-based PYD program completed surveys 37-45 days prior to and on the second day and third-to-last day of the program. A latent variable panel model that included autoregressive and cross-lagged paths indicated that self-worth was a significant predictor of change in hope, but hope did not predict change in self-worth. Therefore, the directional association between self-worth and hope is better explained by self-theory and PYD programs should aim to enhance perceptions of self-worth to build perceptions of hope. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  19. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  20. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  1. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  2. Energy conservation house by photovoltaic system. 2; Taiyoko hatsuden wo donyushita sho energy jutaku. 2

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1996-10-27

    Photovoltaic power generation system was once placed in excessive expectation what with a growing tendency toward environmental issues and what with vulnerability in supply and demand of energy. However, its utilization was negative because of the low energy conversion efficiency and the high cost. Then, gradually the wind shifted round to the improvement in solar cell efficiency, reduced cost, implementation of subsidizing policy by MITI, purchase of excess power by electric power companies and the amendment of the Electricity Enterprises Act, encouraging the use of the system again. In addition, with a lesson from the Great Hanshin Earthquake, the merit of the system was appreciated as a life-support power source, motivating house-builders. Earlier, the authors had reported designs of energy-saving homes, system structures of photovoltaic power generation, etc. This paper presents the power generation record of a year old system and an example of the comfortable sealed residential room environment, etc., created with the use of the power thus obtained. The annual power generation was 4,088kWh, 30% of which was used in the house and 70% of which was sold as an excess power, resulting in the purchase of power for 6,642kWh. 5 refs., 4 figs, 2 tabs.

  3. 12 CFR 541.23 - Residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Residential real estate. 541.23 Section 541.23... AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.23 Residential real estate. The terms residential real estate... home used in part for business); (c) Other real estate used for primarily residential purposes other...

  4. Measurement and analysis of CEFR safety and shim rod worth

    International Nuclear Information System (INIS)

    Chen Yiyu; Yang Yong; Gang Zhi; Xu Li; Yang Xiaoyan; Zhou Keyuan; Hu Dingsheng

    2013-01-01

    The reactivity worth of safety rods and shim rods in critical phase and operating phase was calculated respectively using Monte Carlo program in this paper. In addition, the reactivity worth of safety rods and shim rods was measured by the rod drop-off method and period method. The experimental results are in good agreement with the calculated values with less than 5% error. It illustrates the high calculation precision of Monte Carlo program, which provides a practical reference for subsequent application of Monte Carlo program in future demonstration fast reactors. (authors)

  5. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  6. International photovoltaic program. Volume 2: Appendices

    Science.gov (United States)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  7. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  8. Exercise effects on depressive symptoms and self-worth in overweight children: a randomized controlled trial.

    Science.gov (United States)

    Petty, Karen H; Davis, Catherine L; Tkacz, Joseph; Young-Hyman, Deborah; Waller, Jennifer L

    2009-10-01

    To test the dose-response effects of an exercise program on depressive symptoms and self-worth in children. Overweight, sedentary children (N = 207, 7-11 years, 58% male, 59% Black) were randomly assigned to low or high dose (20 or 40 min/day) aerobic exercise programs (13 +/- 1.6 weeks), or control group. Children completed the Reynolds Child Depression Scale and Self-Perception Profile for Children at baseline and posttest. A dose-response benefit of exercise was detected for depressive symptoms. A race x group interaction showed only White children's global self-worth (GSW) improved. There was some evidence that increased self-worth mediated the effect on depressive symptoms. This study shows dose-response benefits of exercise on depressive symptoms and self-worth in children. However, Blacks did not show increased GSW in response to the intervention. Results provide some support for mediation of the effect of exercise on depressive symptoms via self-worth.

  9. Exercise Effects on Depressive Symptoms and Self-Worth in Overweight Children: A Randomized Controlled Trial*

    Science.gov (United States)

    Petty, Karen H.; Tkacz, Joseph; Young-Hyman, Deborah; Waller, Jennifer L.

    2009-01-01

    Objective To test the dose–response effects of an exercise program on depressive symptoms and self-worth in children. Method Overweight, sedentary children (N = 207, 7–11 years, 58% male, 59% Black) were randomly assigned to low or high dose (20 or 40 min/day) aerobic exercise programs (13 ± 1.6 weeks), or control group. Children completed the Reynolds Child Depression Scale and Self-Perception Profile for Children at baseline and posttest. Results A dose–response benefit of exercise was detected for depressive symptoms. A race × group interaction showed only White children's global self-worth (GSW) improved. There was some evidence that increased self-worth mediated the effect on depressive symptoms. Conclusions This study shows dose–response benefits of exercise on depressive symptoms and self-worth in children. However, Blacks did not show increased GSW in response to the intervention. Results provide some support for mediation of the effect of exercise on depressive symptoms via self-worth. PMID:19223278

  10. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  11. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  12. The players of the photovoltaic sector in France

    International Nuclear Information System (INIS)

    Houot, G.

    2012-01-01

    This document reviews 338 players in the French photovoltaic industry. Each player can be the owner of a photovoltaic power plant, or its operator, or the manufacturer of photovoltaic systems, or the manufacturer of components involved in photovoltaic systems, or the equipment wholesaler, or the designer of photovoltaic projects, or the photovoltaic system installer. For each player some pieces of information are gathered: a brief history of the enterprise, the enterprise activity, its staff, its turnover, its main achievements and its prospects. (A.C.)

  13. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  14. Print-Assisted Photovoltaic Assembly (PAPA)

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an innovative method for the fabrication of thin-film photovoltaic panels. Print-Assisted Photovoltaic Assembly, or PAPA,...

  15. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  16. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  17. How Does Students’ Sense of Self-Worth Influence Their Goal Orientation in Mathematics Achievement?

    Directory of Open Access Journals (Sweden)

    Gulseren Sekreter

    2017-12-01

    Full Text Available In learning mathematics, students are naturally motivated to protect their self-worth by maintaining a belief that they are competent in this area. However, there is an important question which educators have to answer: “Why do students often confuse ability with worth?” The most important reason is that in our society students are widely considered to be worthy according to their ability to achieve in the given tasks in mathematics. Irrespective the contributions of the Multiple Intelligence Theory of intelligence in education, unfortunately mathematics is still regarded as predicting students’ overall ability to learn. Educators should realize that the need in order to protect self-worth arises primarily from fear of failure. Therefore, if this fear of failure is strong, some students will not try and gradually they will produce failure- avoiding strategies to avoid certain tasks in order not to look bad or receive negative assessments from others to protect his/her self-worth. It is important to make sure that the performance goals do not promote failure-avoidance (performance-avoidance-oriented behavior, such as avoiding unfavorable judgments of capabilities and looking incompetent when the student encounters greater challenges. The main purpose of this qualitative study, therefore, is to explore students’ achievement goal motivation, their self-worth and how these motivational factors impact their learning goals in mathematics. This study hypothesizes that self- worth protection in math has also been considered from a performance-avoidance goal viewpoint.This study emphasizes that educators, who consider true self-worth as the student’s inherent value, should avoid comparing their students’ ability, capability relative to others as well as students’ academic performance and outcomes with others in class context.

  18. Changes in academic adjustment and relational self-worth across the transition to middle school.

    Science.gov (United States)

    Ryan, Allison M; Shim, Sungok Serena; Makara, Kara A

    2013-09-01

    Moving from elementary to middle school is a time of great transition for many early adolescents. The present study examined students' academic adjustment and relational self-worth at 6-month intervals for four time points spanning the transition from elementary school to middle school (N = 738 at time 1; 53 % girls; 54 % African American, 46 % European American). Grade point average (G.P.A.), intrinsic value for schoolwork, self-worth around teachers, and self-worth around friends were examined at every time point. The overall developmental trajectory indicated that G.P.A. and intrinsic value for schoolwork declined. The overall decline in G.P.A. was due to changes at the transition and across the first year in middle school. Intrinsic value declined across all time points. Self-worth around teachers was stable. The developmental trends were the same regardless of gender or ethnicity except for self-worth around friends, which was stable for European American students and increased for African American students due to an ascent at the transition into middle school. Implications for the education of early adolescents in middle schools are discussed.

  19. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  20. First results of photovoltaic water pimp in the south region of Libya

    International Nuclear Information System (INIS)

    Ibrahim, I. M. Saleh; Abolgasim, A.

    2006-01-01

    The use of PV for water pumping in Libya is a new of PV applications, the PV pump are efficient and cost effective for those area where the water are not so deep. PV pumps are suitable for water pumping in rural areas for horticulture, live stoke, and agriculture, many crops require regular watering to achieve good yields and high quality, and so the live stoke, while dates threes do not need regular irrigation, PV pumps can be used to supply these applications with water. Photovoltaic water pumps (PVP) are always an alternative worth considering when the object is to pump irrigation water to crops or live stoke at locations with no access to grid power. PV-based irrigation systems were able to demonstrate both their technical reliability and their economic competitiveness. In this paper we will introduce the PV water pump installed in the Sahara Research Center located in the south of Libya, which is used for irrigation, give the productivity through two years of work, and discuss the suitability of this type of applications in Libya.(Author)

  1. Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

  2. Validity of the Worth 4 Dot Test in Patients with Red-Green Color Vision Defect.

    Science.gov (United States)

    Bak, Eunoo; Yang, Hee Kyung; Hwang, Jeong-Min

    2017-05-01

    The Worth four dot test uses red and green glasses for binocular dissociation, and although it has been believed that patients with red-green color vision defects cannot accurately perform the Worth four dot test, this has not been validated. Therefore, the purpose of this study was to demonstrate the validity of the Worth four dot test in patients with congenital red-green color vision defects who have normal or abnormal binocular vision. A retrospective review of medical records was performed on 30 consecutive congenital red-green color vision defect patients who underwent the Worth four dot test. The type of color vision anomaly was determined by the Hardy Rand and Rittler (HRR) pseudoisochromatic plate test, Ishihara color test, anomaloscope, and/or the 100 hue test. All patients underwent a complete ophthalmologic examination. Binocular sensory status was evaluated with the Worth four dot test and Randot stereotest. The results were interpreted according to the presence of strabismus or amblyopia. Among the 30 patients, 24 had normal visual acuity without strabismus nor amblyopia and 6 patients had strabismus and/or amblyopia. The 24 patients without strabismus nor amblyopia all showed binocular fusional responses by seeing four dots of the Worth four dot test. Meanwhile, the six patients with strabismus or amblyopia showed various results of fusion, suppression, and diplopia. Congenital red-green color vision defect patients of different types and variable degree of binocularity could successfully perform the Worth four dot test. They showed reliable results that were in accordance with their estimated binocular sensory status.

  3. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  4. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  5. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  6. Photovoltaic barometer; Barometre photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-04-15

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  7. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  8. 24 CFR 40.2 - Definition of “residential structure”.

    Science.gov (United States)

    2010-04-01

    ... OWNED RESIDENTIAL STRUCTURES § 40.2 Definition of “residential structure”. (a) As used in this part, the term residential structure means a residential structure (other than a privately owned residential structure and a residential structure on a military reservation): (1) Constructed or altered by or on behalf...

  9. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  10. 75 FR 39621 - Proposed Information Collection (Income-Net Worth and Employment Statement) Activity: Comment...

    Science.gov (United States)

    2010-07-09

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0002] Proposed Information Collection (Income-Net Worth and Employment Statement) Activity: Comment Request AGENCY: Veterans Benefits Administration... techniques or the use of other forms of information technology. Title: Income-Net Worth and Employment...

  11. 77 FR 20888 - Proposed Information Collection (Income, Net Worth, and Employment Statement) Activity: Comment...

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0002] Proposed Information Collection (Income, Net Worth, and Employment Statement) Activity: Comment Request AGENCY: Veterans Benefits... techniques or the use of other forms of information technology. Title: Income, Net Worth, and Employment...

  12. Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations

    International Nuclear Information System (INIS)

    Pacheco, Miguel; Lamberts, Roberto

    2013-01-01

    This paper addresses the viability of converting single-family residential buildings in Brazil into zero energy buildings (ZEBs). The European Union and the United States aim ZEBs implementation to address ‘peak oil’ and environmental concerns. However, literature shows no agreement on a consensual definition of ZEB. Seeking a Brazilian ZEB definition, this paper addresses PassivHaus and thermal comfort standards for hot climates, source metrics for ZEB, Brazil′s energy mix, residential energy end uses and Brazilian legal framework for residential photovoltaic (PV) generation. Internal Rate of Return for PV systems in two Brazilian cities is calculated under various scenarios. It shows grid parity was reached from April 2012 to November 2012 assuming residential electric tariffs of that period and the financial conditions given by the Brazilian government for the construction of new dams in the Amazon and the lowest rates offered by Brazilian banks to private individuals. Governmental decision to lower electric residential tariffs in November 2012 reduced the scope of grid parity. Later revocation of a tax exemption in April 2013 ended grid parity in Brazil. It concludes, conversely to developed countries, it is the volatile Brazilian energy policy, instead of economical barriers, the main obstacle for ZEB viability in Brazil. - Highlights: • Critique on super insolated buildings as a good solution for hot climates. • PV parity already reached in some parts of Brazil. • Proposal for a zero energy building definition for Brazil. • Critique of the source metric for energy balance in zero energy buildings. • Average roof area in Brazil enough for PV array to meet average energy consumption

  13. A MARKETING STRATEGY ON PHOTOVOLTAIC MARKET

    Directory of Open Access Journals (Sweden)

    Coita Dorin Cristian

    2008-05-01

    Full Text Available Photovoltaic is an increasingly important energy technology. Deriving energy from the sun offers numerous environmental benefits. It is an extremely clean energy source, and few other power-generating technologies have as little environmental impact as photovoltaic. In this article we explored some dimensions of photovoltaic market and suggested a marketing strategy for solar panels manufacturers

  14. Novel Materials for Photovoltaic Technologies: Preprint

    International Nuclear Information System (INIS)

    Alivisatos, P.; Carter, S.; Ginley, D.; Nozik, A.; Meyer, G.; Rosenthal, S.

    1999-01-01

    While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices

  15. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  16. Incentive Pass-through for Residential Solar Systems in California

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C. G. [Univ. of Texas, Austin, TX (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2014-10-01

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, among the largest and longest-running incentives have been those established in California. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed through from installers to consumers? This report helps address this question by carefully examining the residential PV market in California (excluding a certain class of third-party-owned PV systems) and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, though with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar (considering not only direct state subsidies, but also utility electric bill savings and federal tax incentives).

  17. Organizational Challenges in the Adoption of Building Applied Photovoltaics in the Swedish Tenant-Owner Housing Sector

    Directory of Open Access Journals (Sweden)

    Henry Muyingo

    2015-03-01

    Full Text Available Sweden has committed itself to comply with EU-directive 2009/28/EC on energy from renewable sources and 2012/27/EU on improvement in the efficiency of energy. Measures in the existing housing stock, such as installing photovoltaics (PV, provide a means of contributing to the goals above. The purpose of this paper is to study how the organization of property management and the decision-making structure in tenant-owner cooperatives (TOCs in Sweden facilitates or hampers the adoption of large-scale residential building applied photovoltaics (BAPV in this housing sector. Data collected through seven semi-structured interviews of executive board members in seven housing cooperatives were descriptively analyzed and the results indicate that the decision to adopt BAPV in TOCs does not follow the common frameworks of adoption of innovations. The choice by TOCs to adopt BAPV depends more on the wish to lower operating costs than on efforts to promote a sustainable environment and various principal-agency problems during the decision-making process, as well as during the implementation phase create challenges to the adoption of BAPV. There is a need to strengthen the quality and management of knowledge, as well as procurement proficiency in the TOCs in order to harness the potential for BAPV in the sector.

  18. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  19. Education without Moral Worth? Kantian Moral Theory and the Obligation to Educate Others

    Science.gov (United States)

    Martin, Christopher

    2011-01-01

    This article examines the possibility of a Kantian justification of the intrinsic moral worth of education. The author critiques a recent attempt to secure such justification via Kant's notion of the Kingdom of Ends. He gives four reasons why such an account would deny any intrinsic moral worth to education. He concludes with a tentative…

  20. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  1. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  2. Photovoltaic policy is questioned

    International Nuclear Information System (INIS)

    Piro, P.; Cessac, M.

    2011-01-01

    The French government has decided a freeze and a reassessment of the measures taken to support the photovoltaic sector. Only the installations with a power output over 3 kWc are concerned so the market of solar roofs for homes is spared. The main reasons for this reversal is the quick and chaotic development of photovoltaic projects, a lot of projects are only motivated by the lure of high purchase prices of the electricity produced imposed by the law on EDF. Another reason is that 90% of the solar panels installed in France come from China, the photovoltaic sector retorts that 75% of the price of a complete installation pays for services produced in France. (A.C.)

  3. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  4. 12 CFR 541.16 - Improved residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Improved residential real estate. 541.16... REGULATIONS AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.16 Improved residential real estate. The term improved residential real estate means residential real estate containing offsite or other improvements...

  5. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  6. Photovoltaic Technology and Applications | Othieno | Discovery and ...

    African Journals Online (AJOL)

    Photovoltaic home systems appear to be the most viable alternative source of electricity. The photovoltaic technology is therefore reviewed and recommendations made on their application for rural electrification in the developing nations. Keywords: solar energy, photovoltaic materials, electrification, rural power, cost, ...

  7. Photorefraction in crystals with nonstationary photovoltaic current

    International Nuclear Information System (INIS)

    Volk, T.R.; Astaf'ev, S.B.; Razumovskij, N.V.

    1995-01-01

    Effect of photovoltaic current nonstationary components, conditioned by nonstationary character of photovoltaic centers, on photorefractive properties of LiNbO 3 crystals is considered. Analytic expressions describing nonstationary photovoltaic current effect on kinetics of recording and optical erasure of photorefraction are obtained. A possibility of nonstationary photovoltaic current occurrence in crystals with multilevel charge transfer circuit is considered. Recording light pulse duration effect on photorefraction in LiNbO 3 is discussed. 25 refs., 8 figs

  8. Data on Occurrence of Selected Trace Metals, Organochlorines, and Semivolatile Organic Compounds in Edible Fish Tissues From Lake Worth, Fort Worth, Texas 1999

    National Research Council Canada - National Science Library

    Moring, J. B

    2002-01-01

    .... Air Force and in collaboration with the Texas Department of Health, collected samples of edible fish tissues from Lake Worth for analysis of selected trace metals, organochlorines, and semivolatile...

  9. Evaluation of utility residential energy conservation programs: A Pacific Northwest example

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E; Bronfman, B; Goeltz, R; Keating, K; Lerman, D; Timble, J

    1984-03-01

    This paper describes a detailed quantitative evaluation of the Residential Weatherization Pilot Program, operated by the Bonneville Power Administration from 1980 through 1982. The program provided free energy audits to more than 6000 electrically-heated homes and gave zero-interest loans to weatherize almost 4000 of these audited homes. The total cost of the program was almost $8 million. Using actual electricity consumption records for program participants and nonparticipants, we calculated the energy-saving effect of the pilot program in several ways and always reached the same conclusion. Households that received an audit and weatherization loan reduced their annual electricity consumption by about 3500 kWh relative to what they would have done without the program; this 3500 kWh is the saving that can be directly attributed to the program. Using a simple net present worth approach, the authors computed program benefits and costs for participating households, the BPA power system, and the Pacific Northwest region as a whole. Under a wide range of assumptions concerning discount rate, years until the weatherization loan is repaid, program energy saving, and BPA's marginal cost of power, the program is economically attractive from all three perspectives.

  10. An investigation of the associations between contingent self-worth and aspirations among Iranian university students.

    Science.gov (United States)

    Sabzehara, Milad; Ferguson, Yuna Lee; Sarafraz, Mehdi Reza; Mohammadi, Mostafa

    2014-01-01

    This study investigated the novel associations between intrinsic and extrinsic aspirations and internal and external domains of contingent self-worth among a sample of 502 Iranian university students. We found a meaningful pattern showing that intrinsic aspirations were positively associated with internal domains, whereas extrinsic aspirations were positively associated with external domains. Our survey data also suggested that the factor structure of the Aspiration Index, as well as the factor structure of the Contingencies of Self-Worth Scale in our Iranian sample were consistent with factor structures of foreign samples. Finally, the types of aspirations and domains of contingencies of self-worth meaningfully predicted variables related to well-being, confirming previous research. We discuss the nature of the associations between the aspirations and the domains of contingent self-worth.

  11. Pragmatic sociology and competing orders of worth in organizations

    DEFF Research Database (Denmark)

    Jagd, Søren

    2011-01-01

    primarily has been related to three main themes in organizational research: non-profit and co-operative organizations, inter-organizational co-operation, and organizational change. Third, I discuss how the pragmatic, process-oriented aspect of the research program, focusing on the intertwining of values......Different notions of multiple rationalities have recently been applied to describe the phenomena of co-existence of competing rationalities in organizations. These include institutional pluralism, institutional logics, competing rationalities and pluralistic contexts. The French pragmatic...... studies of organizations. First, I summarize the basic ideas of the framework, stressing the aspects of special relevance for studies of organizations. Second, I review the empirical studies focusing on the coexistence of competing orders of worth in organizations showing that the order of worth framework...

  12. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  13. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  14. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  15. Architecturally sensitive retrofitting of PV to a residential block in Greece to reduce its carbon footprint

    Science.gov (United States)

    Panopoulou, Ismini

    Photovoltaic power is a unique energy source, with wide distribution potential, which can be integrated within the fabric of individual buildings, transforming the power generation in a less large-scale and regionally located issue. As a result, photovoltaic power is a free, clean and silent electrical supply that can be introduced into cities and residential areas. Over the past years, grid-connected, distributed photovoltaic power systems have become an explosively growing sector worldwide. This trend is expected to be continued in the future and solar systems may become a common building element of building construction. In Greece, where the main focus of the project is concentrated, the extended sunshine and the incentives of the new Renewable Energy Sources law of 2006, give a different perspective in photovoltaic investments. In the case study of Vera Water Residence complex in Athens, the viability of an architecturally sensitive retrofitting of PV was examined, from both financial and environmental aspects. The project was concentrated in one of the complex's buildings which was modelled in TAS simulator in order for the annual heating and cooling loads to be estimated. A closer to the reality estimation of electricity demand was made through the annual electricity bills of the building. The proposed building integrated photovoltaic system was designed in terms of following and respecting the aesthetics of the existing architecture of the complex while being as efficient as possible. The annual energy output and C02 emissions reductions were then calculated through RETScreen software analysis according to the location of the project and the characteristics of the PV system. Finally, an economic analysis has been included to the study, considering the installation cost, the annual savings and the embodied energy of the system, in order for the payback period of the investment to be determined. Finally, a small sensitivity analysis concerning the effect of

  16. Overview of new-generation photovoltaic technologies

    International Nuclear Information System (INIS)

    Della Sala, D.; Moro, A.; Fidanza, A.; Di Francia, G.; Giorgi, R.

    2008-01-01

    The number of photovoltaic installation is rising in Italy, but they are all based on imported technologies. This article describes some new types of photovoltaic cells that benefit from powerful synergies with other sectors. ENEA can help speed their development by exploiting its long experience with photovoltaic and the growing body of know-how on the new frontiers of electronics and new materials [it

  17. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  18. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  19. Trends of Photovoltaic Research, Development and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Yoon, K. H.; Yu, K. J. [Korea Institute of Energy Research (Korea)

    2000-07-01

    The Korean National Photovoltaic Project was initiated on October 1989 to develop technologies for the generation of economically competitive electric power by photovoltaic systems. It consists of four stages through the year 2006 with technical goals and cost targets related with solar cells, balance of systems and system application. The objectives of the project are to utilize photovoltaic technology, to transfer developed technology to industries and end users by research activities and to diffuse photovoltaic systems by demonstration projects. This paper reviews long-term plan and status of technology R and D, and markets of photovoltaic. Some activities designed to promote collaboration with foreign countries are also introduced. (author). 14 refs., 3 figs., 3 tabs.

  20. The relation between residential property and its surroundings and day- and night-time residential burglary

    NARCIS (Netherlands)

    Montoya, Lorena; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  1. The Relation Between Residential Property and its Surroundings and Day- and Night-Time Residential Burglary

    NARCIS (Netherlands)

    Montoya, L.; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  2. Does self-threat promote social connection? The role of self-esteem and contingencies of self-worth.

    Science.gov (United States)

    Park, Lora E; Maner, Jon K

    2009-01-01

    Six studies examined the social motivations of people with high self-esteem (HSE) and low self-esteem (LSE) following a threat to a domain of contingent self-worth. Whether people desired social contact following self-threat depended on an interaction between an individual's trait self-esteem and contingencies of self-worth. HSE participants who strongly based self-worth on appearance sought to connect with close others following a threat to their physical attractiveness. LSE participants who staked self-worth on appearance wanted to avoid social contact and, instead, preferred a less interpersonally risky way of coping with self-threat (wanting to enhance their physical attractiveness). Implications for theories of self-esteem, motivation, and interpersonal processes are discussed.

  3. Home Photovoltaic System Design in Pangkalpinang City

    Science.gov (United States)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  4. International photovoltaic products and manufacturers directory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  5. A Short Is Worth a Thousand Films!

    Science.gov (United States)

    Massi, Maria Palmira; Blázquez, Bettiana Andrea

    2012-01-01

    The importance of visual input in the contemporary ELT classroom is such that it is commonplace to use audiovisual elements provided by pictures, films, clips and the like. The power of images is unquestionable, and as the old saying goes, an image is worth a thousand words. Following this line of reasoning, the objective of this article is to…

  6. Ancillary services and optimal household energy management with photovoltaic production

    International Nuclear Information System (INIS)

    Clastres, C.; Ha Pham, T.T.; Wurtz, F.; Bacha, S.

    2010-01-01

    This article presents a project designed to increase the monetary value of photovoltaic (PV) solar production for residential applications. To contribute to developing new functionalities for this type of PV system and an efficient control system for optimising its operation, this article explains how the proposed system could contract to provide ancillary services, particularly the supply of active power services. This provision of service by a PV-based system for domestic applications, not currently available, has prompted a market design proposal related to the distribution system. The mathematical model for calculating the system's optimal operation (sources, load and exchanges of power with the grid) results in a linear mix integer optimisation problem in which the objective is to maximise the profits achieved by taking part in the electricity market. Our approach is illustrated in a case study. PV producers could gain by taking part in the markets for balancing power or ancillary services despite the negative impact on profit of several types of uncertainty, notably the intermittent nature of the PV source.

  7. Determination of the control rod worth for research reactors

    International Nuclear Information System (INIS)

    Aldama, D.L.; Gual, M.R.

    2000-01-01

    Nowadays there is a big interest in developing neutronic analysis methods for research reactor and particularly for the determination of the control rods worth under different operation conditions and core configurations. The reactivity associated with the control rods is of interest in the shutdown margin and in calculations of possible abnormal conditions related to reactivity accidents. For theses studies several computer codes have been developed. The present work is aimed at the validation of the calculation methods of the Nuclear Technology Center of Cuba. For this purpose, in order to evaluate the safety of this type of installations, the reactivity worth of the control rods of the cylindrical configuration of the Brazilian critical assembly IPEN/MB-01 is determined. These calculations, however, are a relatively complex task that requires the use of three-dimensional models. Because of this, the validation of the calculation methods used for this purpose is of great importance. In fact, it is one of the requirements called upon by the quality assurance programs for the development, maintenance and utilization of the calculation codes used in safety analysis. For the calculation of control rod worth the lattice code WIMS-D/4 [8] and the diffusion code SNAP-3D [9] were used. This work presents the obtained results and gives a comparison with the experimental values

  8. Photovoltaic energy in Germany: experience feedback

    International Nuclear Information System (INIS)

    Persem, Melanie

    2011-01-01

    This document presents some key information and figures about the development of photovoltaic energy in Germany: resource potential, 2000-2010 development, share in the energy mix, market, legal framework and incentives, market evolution and electricity feed-in tariffs, 2006-2011 evolution of photovoltaic power plant costs, households' contribution, R and D investments, industry development and employment, the German national energy plan after Fukushima, the expectations of the German photovoltaic industry

  9. Photovoltaics manufacturer's overview of interactions with customers of photovoltaic products

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1982-11-01

    Communications between the customer and manufacturer of photovoltaic products often require time-consuming interaction before each has the necessary information. Customers appear not to know what information is needed by the supplier to size photovoltaic systems properly nor are they adequately able to estimate their own system needs. Customers can make unrealistic measurement demands and do not provide feedback to the supplier on system performance in the field.

  10. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  11. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schwarzburger, Heiko

    2017-01-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [de

  12. Microinverters for employment in connection with photovoltaic modules

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  13. Differences between Residential and Non-Residential Fathers on Sexual Socialisation of African American Youth

    Science.gov (United States)

    Sneed, Carl D.; Willis, Leigh A.

    2016-01-01

    This study investigated differences between residential and non-residential fathers on topics discussed during father-child sex communication and factors associated with child sexual socialisation. Young people (N = 159, 53% female) provided self-reports using computer surveys on the role of their fathers on father-child sex communication, general…

  14. Energy saving house utilizing photovoltaic system. 3; Taiyoko hatsuden wo donyushita sho energy jutaku. 3

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1997-11-25

    Various measurements are conducted in an energy-efficient house equipped with a photovoltaic power generation system and actually lived in by people, and matching between the household load and photovoltaic power generation, and the consumption of power, are examined. As the result investigation of power consumption in the house, it is found that 13.31kWh is consumed in the daytime in winter, and 14.15kWh in summer. Thirty-two 153W modules are used, and they produce 12.74kWh in four hours on a fine summer day, which amount nearly satisfies the demand of the household. As for the records during a year beginning in May, 1996, it is found that an annual amount of 4326kWh was generated, with 68% being surplus and 32% consumed for the household. Details of the household consumption were that 49.2% was consumed for house heating and cooling and 34.1% for cooking, the two in total occupying more than 80% of the whole household consumption. Energy-saving behavior is evaluated by comparing the energy-efficient house with some ordinary residential houses in Kumamoto City, and it is found that there is a yearly difference of 104,310 yen in electricity bill or 47% in energy saving effect. 5 refs., 4 figs., 4 tabs.

  15. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  16. Thermal insulation of buildings is worth the effort

    International Nuclear Information System (INIS)

    Novotny, A.

    1999-01-01

    Thermal insulation of buildings became a vital measure of keeping control of utility bills, elimination of hygienic and visual defects, of water penetration into the structural components and thus prevention, and of thermal stress reduction of the load-carrying structures. Thermal insulation became a substantial part of the residential housing renewal. The current housing status implies that no more time can be wasted in implementing this programme, and its immediate application should be much more extensive than the past attempts. The Reduced Power Consumption Programme proposed in 1990 for the general operation of buildings was addressed in 1991/1995. It was meant to stipulate conditions and demonstrate a reduced power demand for residential heating by 30 %, or subsequent reduction of the power demand to the level of 9.3, 7.3 to 3.1 MWh/standard flat annually (130, 102 and 84 kWh/m 2 year respectively. The assessment of the existing residential housing prove its high power intensity. The real power consumption is in the range of 160-195 kWh/m 2 year. The benefit of the thermal insulation programme is primarily in a reduced need for the state subsidies for the residential heating by at least 1703 slovak crowns per flat. The utility bills savings from insulating two flats are sufficient to heat a third flat. Further benefits can be seen in lower demand on primary power sources and in creating new jobs as well as in positive environmental effects

  17. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  18. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  19. Self-perceptions, self-worth and sport participation in adolescents.

    Science.gov (United States)

    Balaguer, Isabel; Atienza, Francisco L; Duda, Joan L

    2012-07-01

    The purpose of this study was to study the associations between specific self-perceptions and global self-worth with different frequency levels of sport participation among Spanish boys and girls adolescents. Students (457 boys and 460 girls) completed the Self Perception Profile for Children (Harter, 1985) and items assessing sport engagement from The Health Behavior in School Children Questionnaire (Wold, 1995). Results showed that some specific dimensions of self-perception were related to different frequency of sport participation whereas overall judgments of self-worth did not. Specifically, for boys and girls, higher levels of sport participation were positively associated to Athletic Competence, and for boys were also associated with Physical Appearance and Social Acceptance. The potential implications of domain specific socialisation processes on the configuration of self-perceptions are highlighted.

  20. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  1. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  2. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  3. 76 FR 60364 - Net Worth and Equity Ratio

    Science.gov (United States)

    2011-09-29

    ... to ``follow the new Financial Accounting Standards Board (FASB) rule while still allowing the capital... accepted accounting principles and as further defined in Sec. 702.2(f) of this chapter. * * * * * [[Page... also proposed technical changes to the term ``net worth'' to ensure consistency and accurate accounting...

  4. 76 FR 16345 - Net Worth and Equity Ratio

    Science.gov (United States)

    2011-03-23

    ... acquisition must be measured under generally accepted accounting principles as referenced in the Act. 12 U.S.C... equity or member interest in the acquirer. Generally accepted accounting principles require this excess... generally accepted accounting principles. For low income-designated credit unions, net worth also includes...

  5. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  6. Photovoltaic building sheathing element with anti-slide features

    Science.gov (United States)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  7. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  8. Mental Health and Self-Worth in Socially Transitioned Transgender Youth.

    Science.gov (United States)

    Durwood, Lily; McLaughlin, Katie A; Olson, Kristina R

    2017-02-01

    Social transitions are increasingly common for transgender children. A social transition involves a child presenting to other people as a member of the "opposite" gender in all contexts (e.g., wearing clothes and using pronouns of that gender). Little is known about the well-being of socially transitioned transgender children. This study examined self-reported depression, anxiety, and self-worth in socially transitioned transgender children compared with 2 control groups: age- and gender-matched controls and siblings of transgender children. As part of a longitudinal study (TransYouth Project), children (9-14 years old) and their parents completed measurements of depression and anxiety (n = 63 transgender children, n = 63 controls, n = 38 siblings). Children (6-14 years old; n = 116 transgender children, n = 122 controls, n = 72 siblings) also reported on their self-worth. Mental health and self-worth were compared across groups. Transgender children reported depression and self-worth that did not differ from their matched-control or sibling peers (p = .311), and they reported marginally higher anxiety (p = .076). Compared with national averages, transgender children showed typical rates of depression (p = .290) and marginally higher rates of anxiety (p = .096). Parents similarly reported that their transgender children experienced more anxiety than children in the control groups (p = .002) and rated their transgender children as having equivalent levels of depression (p = .728). These findings are in striking contrast to previous work with gender-nonconforming children who had not socially transitioned, which found very high rates of depression and anxiety. These findings lessen concerns from previous work that parents of socially transitioned children could be systematically underreporting mental health problems. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  10. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  11. Photovoltaic Self-Consumption; Autoconsumo fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Abella, M.; Chenlo Romero, F.

    2013-02-01

    This paper analyzes the photovoltaic (PV) self consumption, or the option of using photovoltaic systems connected to the electric grid for the purpose of consuming the PV generated energy in the own installation (homes, small industries, office buildings, etc.) in order to reduce the external demand and the electric bill. At this time there is a legal vacuum regarding the installation of these generation systems for self-consumption, and the PV business sector and society are calling for the establishment of a legal and economic framework. Assuming that what can be saved with a photovoltaic system for domestic self-consumption is the cost of the kWh consumed currently 15c/kWh that there are no additional charges and that the cost of the turnkey photovoltaic system currently ranges from 1.8/Wp to 2.5/Wp, the resulting amortization period would be between 8 and 11 years for the condition of annual net metering. (Author) 31 refs.

  12. Self-worth therapy for depressive symptoms in older nursing home residents.

    Science.gov (United States)

    Tsai, Yun-Fang; Wong, Thomas K S; Tsai, Hsiu-Hsin; Ku, Yan-Chiou

    2008-12-01

    The aim of this study is to report the effects of self-worth therapy on depressive symptoms of older nursing home residents. Depression in older people has become a serious healthcare issue worldwide. Pharmacological and non-pharmacological therapies have been shown to have inconsistent effects, and drug treatment can have important side-effects. A quasi-experimental design was used. Older people were sampled by convenience from residents of a nursing home in northern Taiwan between 2005 and 2006. To be included in the study participants had to: (i) have no severe cognitive deficits; (ii) test positive for depressive status and (iii) take the same anti-depressant medication in the previous 3 months and throughout the study. Participants in the experimental group (n = 31) received 30 minutes of one-to-one self-worth therapy on 1 day a week for 4 weeks. Control group participants (n = 32) received no therapy, but were individually visited by the same research assistant, who chatted with them for 30 minutes on 1 day/week for 4 weeks. Depressive status, cognitive status and functional status were measured at baseline, immediately after the intervention and 2 months later. Data were analysed by mean, standard deviations, t-test, chi-squared test and univariate anova. Self-worth therapy immediately decreased depressive symptoms relative to baseline, but not relative to control treatment. However, 2 months later, depressive symptoms were statistically significantly reduced relative to control. Self-worth therapy is an easily-administered, effective, non-pharmacological treatment with potential for decreasing depressive symptoms in older nursing home residents.

  13. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  14. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  15. Beyond Rational Autonomy: Levinas and the Incomparable Worth of the Student as Singular Other

    Science.gov (United States)

    Joldersma, Clarence W.

    2008-01-01

    This article explores the question: Why are students of worth? Educationally, an answer often involves a Kantian response: They are of worth because they are always ends and never means. This response is usually connected to a notion of autonomy interpreted as individual, rational self-determination. The article argues for a different answer. The…

  16. The photovoltaic ambitious of EDF

    International Nuclear Information System (INIS)

    Houot, G.

    2008-01-01

    Added to the wind energy, EDF develops the photovoltaic by its subsidiaries EDF Energies Nouvelles, for the big power plants and EDF Energies Nouvelles Reparties centralized on the market of small installations for roofs. The author analyzes the society management and project concerning the photovoltaic development. (A.L.B.)

  17. Evaluation of accuracy of Monte Carlo code MVP with VHTRC experiments. Multiplication factor at criticality, burnable poison worth and void worth

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Yamashita, Kiyonobu; Fiujimoto, Nozomu; Nakano, Masaaki , Yamane, Tsuyoshi; Akino, Fujiyoshi.

    1997-11-01

    Experimental data of VHTRC (Very High Temperature Reactor Critical Assembly) were analyzed using Monte Carlo code MVP (general purpose Monte Carlo code of neutron and photon transport calculations based on the continuous energy method). The calculation accuracy of the code was evaluated by the analysis for nuclear characteristics of a HTGR (high temperature gas-cooled reactor). The MVP code can analyze with a detailed three-dimensional core model with a few approximations. The HTGRs have following characteristics from view point of nuclear design : they have burnable poisons, many void holes, namely, the control insertion holes and so on. Taking account of these characteristics, multiplication factor at criticality, burnable poison worth, and void worth were evaluated. The maximum calculation errors were 0.8%Δk, 7%, and 25% respectively, From these results, it can be concluded that the MVP code is able to be applied to the nuclear characteristics analysis of the HTGR like the High Temperature Engineering Test Reactor (HTTR). (author)

  18. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  19. Distributed generation to reduce carbon dioxide emissions : a case study for residential sector in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, P.S. [Caledonian College of Engineering, Muscat (Oman); Mallela, V.S. [G. Narayanamma Inst. of Technology and Sciences Shaikpet, Hyderabad (India); Allan, M.; Zhou, C. [Glasgow Caledonian Univ., Glasgow, Scotland (United Kingdom)

    2010-07-01

    This paper presented a case study undertaken in Oman involving the use of a proposed hybrid diesel-photovoltaic distributed power system to reduce carbon dioxide (CO{sub 2}) emissions. A model of the hybrid power system comprising a photovoltaic module, a diesel generator, and essential auxiliary devices was presented. Solar energy was selected for the Distributed Generation Technology (DGT) because Oman has an abundance of direct solar radiation. A typical house located in a remote area was considered to determine the potential greenhouse gas reduction and the economic feasibility when it is powered by the proposed hybrid system, the diesel system alone, and the main interconnected grid. The Hybrid Optimization Model for Electricity Renewables (HOMER) software was used for energy simulation, economic analysis, and the calculation of greenhouse gas (GHG) emissions. The results of the simulation indicated that the proposed hybrid system would reduce CO{sub 2} emissions by 38 percent relative to the stand-alone diesel system and by 2.67 percent compared to the main grid. The hybrid system has lower operating costs and a lower per-unit energy cost than the diesel system, but the per-unit energy cost estimated for the main interconnected system is better. The latter system is less favourable for GHG emissions. Extending the hybrid system to the entire residential sector has the potential to substantially reduce GHG emissions. The proposed hybrid system is also a cost effective choice for remote locations. 18 refs., 8 tabs., 7 figs.

  20. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  1. Development and Validation of the Sexual Contingent Self-Worth Scale.

    Science.gov (United States)

    Glowacka, Maria; Rosen, Natalie O; Vannier, Sarah; MacLellan, Margaret C

    2017-01-01

    Sexual contingent self-worth (CSW) refers to self-worth that is dependent on maintaining a sexual relationship, and has not been studied previously. This novel construct may have implications for sexual, relationship, and psychological well-being, because it could affect the cognitions, affect, and behaviors of individuals in sexual relationships. The purpose of this study was to develop the Sexual Contingent Self-Worth Scale and examine its reliability and validity in community samples. Two separate online studies (N = 329 and N = 282) included men and women who were in committed, sexually active relationships. The Sexual CSW Scale was adapted from a validated measure of relationship CSW. In Study 1, participants completed the Sexual CSW Scale, whereas in Study 2, participants also responded to standardized measures of related constructs. In addition, participants completed the Sexual CSW Scale again two weeks later in Study 2. Factor analysis yielded two subscales: (a) sexual CSW dependent on positive sexual events in the relationship and (b) sexual CSW dependent on negative sexual events. Results indicated good construct validity, incremental validity, internal consistency, and test-retest reliability for the Sexual CSW Scale. This research contributes to the fields of both CSW and sexuality by introducing a novel domain of CSW.

  2. No Occasion for Pleasure: The Self-Worth Contingency of a Setback and Coping With Humor

    Directory of Open Access Journals (Sweden)

    Fay Caroline Mary Geisler

    2014-08-01

    Full Text Available Whether or not one uses humor to cope with a setback may depend on the idiosyncratic relation of the setback to feeling of self-worth. All people pursue the higher order goal of self-validation, but people differ in what domains of life their self-worth is contingent upon and to what extent. In this article based on an incongruity theory of humor we argue that the use of humor in coping with a highly self-worth-contingent setback may be impeded by two cognitive-motivational processes: goal-driven activation and goal shielding. From the outlined theory we derived the hypothesis that the more a domain is contingent upon self-worth, the less likely a person will be to use humor to deal with a setback in that domain. We tested this hypothesis in two studies employing two forms of self-report, i.e., ratings of reaction likelihood to setbacks described at an abstract domain level (Study 1, and ranking of reaction likelihood to concrete setbacks from different domains (Study 2. The hypothesis was affirmed in different domains of self-worth contingency controlling for the influence of habitual coping with humor, coping by disengagement, and global self-esteem.

  3. Perfectionism and Contingent Self-Worth in Relation to Disordered Eating and Anxiety.

    Science.gov (United States)

    Bardone-Cone, Anna M; Lin, Stacy L; Butler, Rachel M

    2017-05-01

    Perfectionism has been proposed as a transdiagnostic risk factor linked to eating disorders and anxiety. In the current study, we examine domains of contingent self-worth as potential moderators of the relationships between maladaptive perfectionism and disordered eating and anxiety using two waves of data collection. Undergraduate females (N = 237) completed online surveys of the study's core constructs at two points separated by about 14 months. At a bivariate level, maladaptive perfectionism was positively associated with disordered eating and anxiety. Maladaptive perfectionism and both appearance and relationship contingent self-worth interacted to predict increases in disordered eating. Neither of the interactive models predicted change in anxiety. Findings highlight maladaptive perfectionism as a transdiagnostic construct related to both disordered eating and anxiety. Interactive findings suggest that targeting maladaptive perfectionism and contingent self-worth (appearance, relationship) in prevention and treatment efforts could mitigate risk for the development or increase of disordered eating. Copyright © 2016. Published by Elsevier Ltd.

  4. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  5. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  6. Photovoltaics - why this 'religious war'?

    International Nuclear Information System (INIS)

    Nowak, S.

    2005-01-01

    This article examines the possible reasons behind controversies concerning photovoltaics in Switzerland. The author, who considers that no other energy technology awakes such varying opinions, presents ten points that should be considered in this connection. These include aspects concerning research and development, trade and industry as well as markets and applications. The 'enormous' potential of photovoltaics and questions concerning availability and environmental issues are discussed. Costs, developments and the question of economic viability are looked at. The situation in Switzerland is compared with international conditions. Finally, political issues are reviewed and the key role to be played by photovoltaics in the future is stressed

  7. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  8. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  9. Residential energy demand in Brazil

    International Nuclear Information System (INIS)

    Arouca, M.; Gomes, F.M.; Rosa, L.P.

    1981-01-01

    The energy demand in Brazilian residential sector is studied, discussing the methodology for analyzing this demand from some ideas suggested, for developing an adequate method to brazilian characteristics. The residential energy consumption of several fuels in Brazil is also presented, including a comparative evaluation with the United States and France. (author)

  10. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  11. Contingencies of self-worth and social-networking-site behavior.

    Science.gov (United States)

    Stefanone, Michael A; Lackaff, Derek; Rosen, Devan

    2011-01-01

    Social-networking sites like Facebook enable people to share a range of personal information with expansive groups of "friends." With the growing popularity of media sharing online, many questions remain regarding antecedent conditions for this behavior. Contingencies of self-worth afford a more nuanced approach to variable traits that affect self-esteem, and may help explain online behavior. A total of 311 participants completed an online survey measuring such contingencies and typical behaviors on Facebook. First, exploratory factor analyses revealed an underlying structure to the seven dimensions of self-worth. Public-based contingencies explained online photo sharing (β = 0.158, p relationship with time online (β = -0.186, p relationship with the intensity of online photo sharing (β = 0.242), although no relationship was evident for time spent managing profiles.

  12. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  13. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Production and Characterization of Novel Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Marvin [North Carolina Central Univ., Durham, NC (United States)

    2016-06-07

    This project has three major objectives: exploring the potential nanostructured materials in photovoltaic applications; providing photovoltaic research experiences to NCCU students, who are largely members of underrepresented minority groups; and enhancing the photovoltaic research infrastructure at NCCU to increase faculty and student competitiveness. Significant progress was achieved in each of these areas during the project period, as summarized in this report.

  15. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  16. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  17. The 2009 photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009. Italy is the third European Union country to pass the symbolic 1000 MWp installed mark, following Germany and Spain. France ranks 6 with 185 MWp installed in 2009. The decrease in the price of silicon reached 80% in 2009. The industry is facing a coming-of-age crisis with prices falling and over-production. Most of the major cell manufacturers are located in Asia. The European industry is still well represented with Q-Cells, the German leading cell manufacturer in addition with hefty industry players. (A.C.)

  18. Residential Care

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... longer an option Costs Choosing a care setting Types of residential care A good long-term care ...

  19. Application of a spatial modal kinetic model for determination of control rod worths

    International Nuclear Information System (INIS)

    Gomez, A.; Waldman, R.M.

    1993-01-01

    A high-precision rod drop method based on a modal kinetic model, with low dependence on detector location, is proposed to measure the reactivity worth of control rods. This value is obtained from data adjustment for the delayed evolution. It is necessary to maintain the experimental data fluctuation in a small value so that the error of the control rod worth should not be large. A model was developed in order to relate the fluctuation with some parameters which may be modified in the measuring process. The method was applied in the RA-6 reactor to measure control rod worth. For practical purpose it was found that the method can be applied to 15 dollars and it does not depend on relative detector and control rod locations, as the method based on the Point Reactor Model does. (author). 2 refs

  20. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.