WorldWideScience

Sample records for residential insulation part

  1. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Plastic insulating foam for residential and... BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  2. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  3. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  4. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  5. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    International Nuclear Information System (INIS)

    Siddique, S.; Arif, S.; Khan, A.; Alam, A.T.

    2016-01-01

    Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk at the rate Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1 percent is 1 inch for external walls and roof respectively. (author)

  6. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. [Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO (United States)

    2008-08-15

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  7. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    International Nuclear Information System (INIS)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C.

    2008-01-01

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  8. Thermal insulation of buildings is worth the effort

    International Nuclear Information System (INIS)

    Novotny, A.

    1999-01-01

    Thermal insulation of buildings became a vital measure of keeping control of utility bills, elimination of hygienic and visual defects, of water penetration into the structural components and thus prevention, and of thermal stress reduction of the load-carrying structures. Thermal insulation became a substantial part of the residential housing renewal. The current housing status implies that no more time can be wasted in implementing this programme, and its immediate application should be much more extensive than the past attempts. The Reduced Power Consumption Programme proposed in 1990 for the general operation of buildings was addressed in 1991/1995. It was meant to stipulate conditions and demonstrate a reduced power demand for residential heating by 30 %, or subsequent reduction of the power demand to the level of 9.3, 7.3 to 3.1 MWh/standard flat annually (130, 102 and 84 kWh/m 2 year respectively. The assessment of the existing residential housing prove its high power intensity. The real power consumption is in the range of 160-195 kWh/m 2 year. The benefit of the thermal insulation programme is primarily in a reduced need for the state subsidies for the residential heating by at least 1703 slovak crowns per flat. The utility bills savings from insulating two flats are sufficient to heat a third flat. Further benefits can be seen in lower demand on primary power sources and in creating new jobs as well as in positive environmental effects

  9. Combined heat and power and thermally insulating measures in residential housing stock; Kraft-Waerme-Kopplung und Daemmmassnahmen im Wohngebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Buller, Michael [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-02-15

    The author of the contribution under consideration reports on the economic, ecologic and primary energetic potential of micro-combined heat and power (micro-CHP) in the residential housing stock under consideration of possible correlations between CHP and thermally insulating measures.

  10. COMBINED EFFECT OF THE AIRBORNE AND IMPACT NOISE PRODUCED ONTO THE SOUND INSULATION OF INSERTED FLOORS OF RESIDENTIAL BUILDINGS: THEORETICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Saltykov Ivan Petrovich

    2012-10-01

    Full Text Available The indoor environment of residential buildings is a complex system. It consists of diverse though related elements. An optimal correlation of parameters of the indoor space converts into the appropriate equilibrium and harmonious human living free from any stimulating or irritating factors that interfere with any working and/or relaxation processes. The author has selected the following three principal factors of the indoor environment. They include heat, daylight and sound. The research has revealed a strong linkn between these factors. Noise pollution of residential houses is taken into account through the introduction of the airborne insulation index and the impact sound index underneath the inserted floor. The findings of theoretical researches and experiments have proven a strong functional relationship between airborne and impact sound values.

  11. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Podorson, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  12. Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model

    International Nuclear Information System (INIS)

    Shimoda, Yoshiyuki; Yamaguchi, Yukio; Okamura, Tomo; Taniguchi, Ayako; Yamaguchi, Yohei

    2010-01-01

    A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants' activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the 'stock transition model.' In this paper, energy consumption and CO 2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business - as-usual (BAU) case, CO 2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.

  13. Experiences with sound insulating open windows in traffic noise exposed housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2015-01-01

    windows are open, not least to reduce sleep disturbance. Unfortunately, such window solutions are complicated and expensive and practical experience limited. Nevertheless, they have been included in some Danish projects. To support further development and use, experience from seven field cases......Sound insulating windows are widely used in traffic noise exposed residential areas to reduce indoor noise levels to acceptable levels. However, such windows are typically only designed to provide sound insulation in closed position, and many people prefer open windows parts of time for ventilation...... purposes, including during night, or simply because it’s a good feeling to have windows open to be in contact with the surroundings. High noise exposure can lead to adverse effects on comfort and health, and thus, there is a need for sound insulating open windows to reduce noise exposure in homes, when...

  14. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  15. Customer baseline load models for residential sector in a smart-grid environment

    Directory of Open Access Journals (Sweden)

    R. Sharifi

    2016-11-01

    In this paper, a new method is presented for the calculation of CBL for customers in residential sector in the context of a smart grid, considering the impact of weather changes. The results clearly show the high impact of changes in weather conditions on the calculation of CBL, and also show the extent of effect of buildings’ improved insulation on this parameter. It is also indicated that implementing DR programs can increase the willingness of customers in residential sector to improve the insulations of their buildings.

  16. Highly Insulating Windows Volume Purchase Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  17. Labeling and advertising of home insulation. Final staff report to the Federal Trade Commission and proposed trade regulation rule (16 CFR Part 460)

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    Insulation can save significant amounts of fuel and money, and has therefore captured public attention as a desirable energy conservation measure. Because insulation is a very difficult product for uninformed consumers to evaluate, there was broad support for a rule requiring the disclosure of information facilitating choices among insulation products. With the information that the Recommended Rule will require, consumers will be able to compare the thermal properties of varous types of insulation and make the best purchases for their needs. In order to provide consumers, as quickly as possible, with information aiding their purchase of this major conservation measure, and to protect consumers from the abuses that rising demand has brought, the Commission undertook this rulemaking proceeding on an expedited schedule. The Rule was proposed on November 18, 1977. The tests mandated by the Rule will provide reproducible and accurate R-values, permitting comparisons of thermal performance. As a result of the testing and required disclosures of R-values and related information, consumers should be able to make sound choices for their needs, without being uninformed or misinformed about the relative values of different types of insulation. The Recommended Rule covers the testing, advertising, and labeling of thermal insulation products. It includes organic, fibrous, cellular, and reflective insulations sold for use in homes, apartments, and other residential dwellings. Insulation sold directly to consumers for do-it-yourself installation is covered, as well as insulation installed by professionals.

  18. Thermal highly porous insulation materials made of mineral raw materials

    Science.gov (United States)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  19. Thermal Insulation for Naturally Ventilated Residential Houses in Malaysia

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Jensen, Kasper Lynge; Nielsen, Tryggvi

    Temperature logging for three Malaysian residential houses is used to validate the Malaysian weather data year (hourly values) and to validate the simulation software Bsim for use in Malaysia. The fit between simulated and measured data is satisfactory, as only a maximum difference of 0.5°C...

  20. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  1. Integrated Strip Foundation Systems for Small Residential Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    A prefabricated lightweight element was designed for a strip foundation that was used on site as the bases of two small residential buildings, in this case single-family houses; one was built with a double-brick exterior wall separated by mineral fiber insulation and the other was built with a wood...

  2. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  3. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads

  4. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... for space heating without insulation over the lifespan of a building. When the energy sources for insulation production are similar to the energy mix that supplies heat, this logic is valid to very high level of insulation. However, in Denmark, as well as many other countries this assumption is becoming...... increasingly incorrect. Given the generally long service life of buildings, the significance of future energy mixes, which are expected/intended to have a smaller environmental impact, can be great. In this paper, a reference house is used to assess the life cycle environmental impacts of mineral wool...

  5. 12 CFR 541.23 - Residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Residential real estate. 541.23 Section 541.23... AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.23 Residential real estate. The terms residential real estate... home used in part for business); (c) Other real estate used for primarily residential purposes other...

  6. 24 CFR 40.2 - Definition of “residential structure”.

    Science.gov (United States)

    2010-04-01

    ... OWNED RESIDENTIAL STRUCTURES § 40.2 Definition of “residential structure”. (a) As used in this part, the term residential structure means a residential structure (other than a privately owned residential structure and a residential structure on a military reservation): (1) Constructed or altered by or on behalf...

  7. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  8. Optimization of thermal insulation to achieve energy savings in low energy house (refurbishment)

    International Nuclear Information System (INIS)

    Bojić, Milorad; Miletić, Marko; Bojić, Ljubiša

    2014-01-01

    Highlights: • For buildings that require heating, a thickness of their thermal insulation is optimized. • The objective was to improve energy efficiency of the building. • The optimization is performed by using EnergyPlus and Hooke–Jeeves method. • The embodied energy of thermal insulation and the entire life cycle of the house are taken into account. - Abstract: Due to the current environmental situation, saving energy and reducing CO 2 emission have become the leading drive in modern research. For buildings that require heating, one of the solutions is to optimize a thickness of their thermal insulation and thus improve energy efficiency and reduce energy needs. In this paper, for a small residential house in Serbia, an optimization in the thickness of its thermal insulation layer is investigated by using EnergyPlus software and Hooke–Jeeves direct search method. The embodied energy of thermal insulation is taken into account. The optimization is done for the entire life cycle of thermal insulation. The results show the optimal thickness of thermal insulation that yields the minimum primary energy consumption

  9. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG has worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save

  10.  Thermal Insulation System Made of Wood and Paper for Use in Residential Construction

    Science.gov (United States)

    Zoltán Pásztory; Tibor Horváth; Samuel V. Glass; Samuel L. Zelinka

    2015-01-01

    This article introduces an insulation system that takes advantage of the low thermal conductivity of still air and is made of wood and paper. The insulation, called the Mirrorpanel, is constructed as a panel of closely spaced layers of coated paper and held together in a frame of wood or fiberboard. Panels have been fabricated and tested at the laboratory scale, whole...

  11. Canadian energy standards : residential energy code requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K. [SAR Engineering Ltd., Burnaby, BC (Canada)

    2006-09-15

    A survey of residential energy code requirements was discussed. New housing is approximately 13 per cent more efficient than housing built 15 years ago, and more stringent energy efficiency requirements in building codes have contributed to decreased energy use and greenhouse gas (GHG) emissions. However, a survey of residential energy codes across Canada has determined that explicit demands for energy efficiency are currently only present in British Columbia (BC), Manitoba, Ontario and Quebec. The survey evaluated more than 4300 single-detached homes built between 2000 and 2005 using data from the EnerGuide for Houses (EGH) database. House area, volume, airtightness and construction characteristics were reviewed to create archetypes for 8 geographic areas. The survey indicated that in Quebec and the Maritimes, 90 per cent of houses comply with ventilation system requirements of the National Building Code, while compliance in the rest of Canada is much lower. Heat recovery ventilation use is predominant in the Atlantic provinces. Direct-vent or condensing furnaces constitute the majority of installed systems in provinces where natural gas is the primary space heating fuel. Details of Insulation levels for walls, double-glazed windows, and building code insulation standards were also reviewed. It was concluded that if R-2000 levels of energy efficiency were applied, total average energy consumption would be reduced by 36 per cent in Canada. 2 tabs.

  12. Nonceramic insulators for the transmission power lines. Part I: Experiences of a promising technology; Aisladores no ceramicos para las lineas de transmision. Parte I: Experiencias de una tecnologia prometedora

    Energy Technology Data Exchange (ETDEWEB)

    Fierro Chavez, Jose Luis [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    The nonceramic insulators have special characteristics that make them attractive to solve problems detected in glass or porcelain insulators, mainly in zones of high contamination and vandalism. In this first part a panorama is presented of the operative experience with nonceramic insulators for transmission power lines in different parts of the world until the beginning of the Nineties decade. The tendency in its use has increased remarkably in new transmission projects, mainly in the United States, but the operative experience shows that the selection of such insulators requires a careful analysis and of a pursuit of its behavior in the field that allows the establishments of its technical - economic advantages or disadvantages of its long term application. [Spanish] Los aisladores no ceramicos poseen caracteristicas especiales que los hacen atractivos para resolver problemas detectados en los aisladores de vidrio o porcelana, principalmente en zonas de alta contaminacion y vandalismo. En esta primera parte se presenta un panorama de la experiencia operativa con aisladores no ceramicos para las lineas de transmision en diferentes partes del mundo hasta principios de la decada de los noventa. La tendencia en su uso ha incrementado notablemente en nuevos proyectos de transmision, principalmente en los Estados Unidos, pero la experiencia operativa muestra que la seleccion de dichos aisladores requiere de un analisis cuidadoso y de un seguimiento de su comportamiento en campo que permita establecer las ventajas o desventajas tecnico - economicas de su aplicacion a largo plazo.

  13. Part-sales as an investment strategy : Analysis of part-selling of residential units in the Netherlands

    NARCIS (Netherlands)

    Hordijk, A.C.; Janssen, J.E.; Teuben, B.

    2006-01-01

    The ROZ/IPD Property index was established in 1994 to publicize an independent index on directly held real estate in the Netherlands. The real estate universe is split into the sectors: retail, offices, industrial, residential and mixed use/other. The residential sector consists of almost 50 % of

  14. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  15. Dynamic modeling of potentially conflicting energy reduction strategies for residential structures in semi-arid climates.

    Science.gov (United States)

    Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John

    2012-04-30

    Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.

  16. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    Science.gov (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  17. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  18. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  19. Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study

    Science.gov (United States)

    Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson

    2014-01-01

    Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...

  20. 5th Duisburg thermal insulation days. Fuenfte Duisburger Waermedaemm-Tage

    Energy Technology Data Exchange (ETDEWEB)

    Agst, J. (ed.)

    1989-01-01

    This volume contains 18 specialist lectures mainly about the problems of thermal insulation in industrial furnaces and facility engineering. Among the subjects are: formed parts, monolithic lining materials and fillers of vermiculite; pyro-block-modular systems for furnaces (of the company DYKO-Morgan Fasertechnik); microporous insulating materials (KAOWOOL); properties of lightweight refractory bricks; thermal insulation in induction furnaces; vacuum moulded parts in electric furnace engineering; high temperature insulating materials with ceramic fibres; microtherm insulating materials. (MM).

  1. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  2. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  3. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  4. Development Of Economic Techniques For Residential Thermography

    Science.gov (United States)

    Allen, Lee R.; Allen, Sharon

    1983-03-01

    Infrared thermography has proven to be a valuable tool in the detection of heat loss in both commercial and residential buildings. The field of residential thermography has needed a simple method with which to report the deficiencies found during an infrared scan. Two major obstacles hindering the cost effectiveness of residential thermography have been 1) the ability to quickly transport some high resolution imaging system equipment from job site to job site without having to totally dismount the instruments at each area, and 2) the lack of a standard form with which to report the findings of the survey to the customer. Since the industry has yet to provide us with either, we believed it necessary to develop our own. Through trial and error, we have come up with a system that makes interior residential thermography a profitable venture at a price the homeowner can afford. Insulation voids, or defects can be instantly spotted with the use of a thermal imaging system under the proper conditions. A special hand-held device was developed that enables the thermographer to carry the equipment from house to house without the need to dismantle and set up at each stop. All the necessary components are attached for a total weight of about 40 pounds. The findings are then conveyed to a form we have developed. The form is simple enough that the client without special training in thermography can understand. The client is then able to locate the problems and take corrective measures or give it to a con-tractor to do the work.

  5. Suggestions on Strengthening Greening Construction of Ecological Residential Areas

    OpenAIRE

    Li, Peng

    2013-01-01

    Greening construction is an important part of the construction of ecological residential areas, but there exist some misunderstandings in greening construction of ecological residential districts at present. Based on the description of functions of green space in ecological residential areas, the summarization of principles of greening design, and the discussion of questions in greening construction of ecological residential districts, some suggestions as well as specific measures for strengt...

  6. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  7. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  8. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  9. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  10. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  11. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  12. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  13. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  14. Procedures for Calculating Residential Dehumidification Loads

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  15. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  16. Regionalised tertiary psychiatric residential facilities.

    Science.gov (United States)

    Lesage, Alain; Groden, David; Goldner, Elliot M; Gelinas, Daniel; Arnold, Leslie M

    2008-01-01

    Psychiatric hospitals remain the main venue for long-term mental health care and, despite widespread closures and downsizing, no country that built asylums in the last century has done away with them entirely--with the recent exception of Italy. Differentiated community-based residential alternatives have been developed over the past decades, with staffing levels that range from full-time professional, to daytime only, to part-time/on-call. This paper reviews the characteristics of community-based psychiatric residential care facilities as an alternative to long-term care in psychiatric hospitals. It describes five factors decision makers should consider: 1. number of residential places needed; 2. staffing levels; 3. physical setting; 4. programming; and 5. governance and financing. In Italy, facilities with full-time professional staff have been developed since the mid-1990s to accommodate the last cohorts of patients discharged from psychiatric hospitals. In the United Kingdom, experiments with hostel wards since the 1980s have shown that home-like, small-scale facilities with intensive treatment and rehabilitation programming can be effective for the most difficult-to-place patients. More recently in Australia, Community Care Units (CCUs) have been applying this concept. In the Canadian province of British Columbia (BC), Tertiary Psychiatric Residential Facilities (TPRFs) have been developed as part of an effort to regionalise health and social services and downsize and ultimately close its only psychiatric hospital. This type of service must be further developed in addition to the need for forensic, acute-care and intermediate-level beds, as well as for community-based care such as assertive community treatment and intensive case management. All these types of services, together with long-term community-based residential care, constitute the elements of a balanced mental health care system. As part of a region's balanced mental health care plan, these Tertiary

  17. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  18. The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico

    Directory of Open Access Journals (Sweden)

    Jorge Lucero-Álvarez

    2016-06-01

    Full Text Available Environmental conditions, such as air temperature and solar radiation, have a complex relationship with the energy requirements for heating and cooling of residential buildings. In this work, a comparative analysis of the insulation methods most commonly applied to low income single-family houses in Mexico is presented, in order to find the most energy-efficient combinations of methods for the various climates in this country. A common kind of building, small houses built with hollow cinder block walls and concrete slab roofs, was analyzed considering three insulation scenarios: walls only, roof only and both. We used dynamic simulation to evaluate energy consumption under the climate conditions found in several Mexican cities. From the energy consumption data and the cost of electricity in Mexico, we calculated net annual energy costs, including both annual energy savings and the annualized cost of the initial investment in better insulation. Results of this analysis show that insulating both roof and walls is most effective in cities with cold winters; insulating just the roof is best for temperate climates; and insulating walls (combined with high-albedo roofs is most effective for cities with year-long warm weather.

  19. Thermal transport across metal–insulator interface via electron–phonon interaction

    International Nuclear Information System (INIS)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen; Lü, Jing-Tao

    2013-01-01

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green’s function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling. (paper)

  20. THE EFFICACY OF THE CABLES OF 6–110 KW WITH XLPE INSULATION. Part 2

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The assessment of the suitability of cables of 6–110 kW with XLPE insulation in comparison with cables of the same voltage but possessing paper-oil insulation has been fulfilled on the basis of the method of multi-objective optimization that makes it possible to account not only the quantitative characteristics (of reduced costs, but also qualitative ones. As an indicator of the reliability of the cable line the maximum mean time to failure (the value inversely proportional to the parameter of succession of failures, which is an order more for cable lines with XLPE insulation than for cable lines with paper insulation, is adopted. A comprehensive assessment of the convenience of installation of cable lines revealed that the installation of cable with XLPE insulation features a 1.2–1.6 times easier installation as compared to three-wire (voltage 10 kW and 1.4 times easier installation as compared to single-core oil-filled cables (voltage of 110 kW. The efficacy of the cables 6–110 kW with XLPE insulation is proved on the basis on the method of multi-objective optimization, that took into account as the costs for the construction and operation of cable lines and the reliability of its operation, ease of its installation and other quality indicators. If the goals taken into account are considered as equally important, the polyethylene-insulated cables for a voltage of 10–110 kW is more efficient as compared to three-wire (voltage 10 kW and solid (110 kW cables with paper insulation. Herewith, the cost of the cable with XLPE insulation may exceed the cost of cable with paper insulation up to two times. If the most important aim is to provide the minimum reduced costs for the construction and operation of the cable line, the use of cables with XLPE insulation for voltage of 10 kW is most advisable in individual cases.

  1. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  2. An evaluation of highly insulated cold zinc roofs in a moderate humid region - Part II: Corrosion behavior of zinc sheeting

    NARCIS (Netherlands)

    Zheng, R.; Janssens, A.; Carmeliet, J.; Bogaerts, W.; Hens, H.

    2004-01-01

    In a previous paper [Zheng et al., Hygrothermal Performance, Part I; Const Building Mater, Vol. 18, Issue 1, pp. 49-59], the hygrothermal performances of four well-insulated cold zinc roofs were evaluated. This paper investigates the corrosion behavior of the zinc sheeting used in the roofs. The

  3. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  4. Residential Transitions among Adults with Intellectual Disability across 20 Years

    Science.gov (United States)

    Woodman, Ashley C.; Mailick, Marsha R.; Anderson, Kristy A.; Esbensen, Anna J.

    2014-01-01

    The present study addresses critical gaps in the literature by examining residential transitions among 303 adults with intellectual disability over 10 years (Part 1) and 75 adults with Down syndrome over 20 years (Part 2). All adults lived at home at the start of the study, but many moved to a variety of settings. Several characteristics of the adults with intellectual disability differed across settings, most notably adaptive behavior and the number of residential transitions, while characteristics such as age, type of disability, and behavior problems were less predictive of residential placements. The number of moves over the course of the study varied widely, with critical links to earlier family dynamics, social relationships, and health and adaptive behavior. PMID:25354121

  5. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Lloyd, Peter D. [ORNL

    2018-02-01

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  6. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Goldberg, L. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Jacobson, R. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  7. Nonceramic insulators for the transmission power lines. Part II: Application that it requires of a careful selection; Aisladores no ceramicos para las areas de transmision. Parte II: Aplicacion que requiere de una seleccion cuidadosa

    Energy Technology Data Exchange (ETDEWEB)

    Fierro Chavez, Jose Luis [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this second part is mentioned the possible mechanisms of degradation that can appear in nonceramic insulators in order to identify them during the inspections that are made in the field throughout their useful life. Some techniques of evaluation of accelerated aging, as well as important aspects that must be considered for the selection of the insulation in the case of a particular application, are presented. [Spanish] En esta segunda parte se mencionan los posibles mecanismos de degradacion que pueden presentarse en los aisladores no ceramicos a fin de identificarlos durante las inspecciones que se realicen en campo a lo largo de su vida util. Se exponen algunas tecnicas de evaluacion de envejecimiento acelerado, asi como aspectos importantes que deben considerarse para la seleccion del aislamiento en el caso de una aplicacion particular.

  8. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  9. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  10. The Impact of Roof Pitch and Ceiling Insulation on Cooling Load of Naturally-Ventilated Attics

    Directory of Open Access Journals (Sweden)

    Linxia Gu

    2012-07-01

    Full Text Available A 2D unsteady computational fluid dynamics (CFD model is employed to simulate buoyancy-driven turbulent ventilation in attics with different pitch values and ceiling insulation levels under summer conditions. The impacts of roof pitch and ceiling insulation on the cooling load of gable-roof residential buildings are investigated based on the simulation of turbulent air flow and natural convection heat transfer in attic spaces with roof pitches from 3/12 to 18/12 combined with ceiling insulation levels from R-1.2 to R-40. The modeling results show that the air flows in the attics are steady and exhibit a general streamline pattern that is qualitatively insensitive to the investigated variations of roof pitch and ceiling insulation. Furthermore, it is predicted that the ceiling insulation plays a control role on the attic cooling load and that an increase of roof pitch from 3/12 to 8/12 results in a decrease in the cooling load by around 9% in the investigated cases. The results suggest that the increase of roof pitch alone, without changing other design parameters, has limited impact on attics cooling load and airflow pattern. The research results also suggest both the predicted ventilating mass flow rate and attic cooling load can be satisfactorily correlated by simple relationships in terms of appropriately defined Rayleigh and Nusselt numbers.

  11. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  12. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  13. Methodology to characterize a residential building stock using a bottom-up approach: a case study applied to Belgium

    Directory of Open Access Journals (Sweden)

    Samuel Gendebien

    2014-06-01

    Full Text Available In the last ten years, the development and implementation of measures to mitigate climate change have become of major importance. In Europe, the residential sector accounts for 27% of the final energy consumption [1], and therefore contributes significantly to CO2 emissions. Roadmaps towards energy-efficient buildings have been proposed [2]. In such a context, the detailed characterization of residential building stocks in terms of age, type of construction, insulation level, energy vector, and of evolution prospects appears to be a useful contribution to the assessment of the impact of implementation of energy policies. In this work, a methodology to develop a tree-structure characterizing a residential building stock is presented in the frame of a bottom-up approach that aims to model and simulate domestic energy use. The methodology is applied to the Belgian case for the current situation and up to 2030 horizon. The potential applications of the developed tool are outlined.

  14. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  15. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  16. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......In order to achieve nearly net zero energy use, both new and energy refurbished existing buildings will in the future need to be still more efficient and optimized. Since such buildings can be expected to be already well insulated, airtight, and have heat recovery systems installed, one of the next......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...

  17. Bullying in Adolescent Residential Care: The Influence of the Physical and Social Residential Care Environment

    Science.gov (United States)

    Sekol, Ivana

    2016-01-01

    Background: To date, no study examined possible contributions of environmental factors to bullying and victimization in adolescent residential care facilities. Objective: By testing one part of the Multifactor Model of Bullying in Secure Setting (MMBSS; Ireland in "Int J Adolesc Med Health" 24(1):63-68, 2012), this research examined the…

  18. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  19. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  20. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  1. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  2. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  3. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  4. A Reflection on Low Energy Renovation of Residential Complexes in Southern Europe

    Directory of Open Access Journals (Sweden)

    Helena Corvacho

    2016-09-01

    Full Text Available The transformation of European existing building stock towards very low energy buildings requires a new approach. In this context, it seems reasonable to think that buildings should no longer be renovated individually but as part of a global energy system. Focusing on larger urban units may present some scale advantages and may constitute an opportunity to change the urban environment in a smart energy way. Specificities of Southern European countries are addressed. Due either to the climate or the life style, there are large differences in energy consumption per dwelling among southern and northern European countries. How much heating energy will be saved by over-insulating building envelopes if people do not feel the need to heat their houses in the first place? In addition, real energy use in buildings frequently shows major differences with respect to the predicted consumption. The definition of realistic solutions demands the availability of realistic predictions. A case of a residential complex in Portugal is used to illustrate the main questions and to conclude that moving from a building to a group of buildings scale may be an interesting challenge for policy makers to look closer in the near future.

  5. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  6. Marginal costs of intensified energy-efficiency measures in residential buildings; Grenzkosten bei forcierten Energie-Effizienzmassnahmen in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.; Jochem, E. [Eidgenoessische Technische Hochschule (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Kristen, K. [Eidgenoessische Technische Hochschule (ETH), Architektur und Baurealisation, Zuerich (Switzerland)

    2002-07-01

    This detailed report for the Swiss Federal Office of Energy (SFOE) examines the large potential for increasing the energy efficiency of residential buildings in Switzerland. The aims of the research project are described including investigation of costs and marginal costs for thermal insulation and efficiency measures, the updating of technical parameters for cost - efficiency characteristics on an empirical basis, a transparent presentation of cost/benefit ratios for different concepts. Another aim is to obtain a more detailed overview of costs and benefits that could be of use for planners, building owners and technology companies. The methodology used for the collection of data for the study is described. The report also takes a look at the indirect advantages of improving the thermal insulation of buildings and examines the initial economic and technical situation. A detailed review of the costs and benefits is given for the various elements of a building such as walls, floors and windows and a reference development scenario for the period 2000 -2030 is presented. Marginal cost curves for various categories of buildings are presented for thermal insulation and ventilation measures.

  7. Energy policy instruments and technical change in the residential building sector

    International Nuclear Information System (INIS)

    Beerepoot, W.M.C.

    2007-01-01

    The passing by the European Parliament of the Energy Performance of Buildings Directive (EPBD) in 2003 obliges all European member states to implement energy regulations for buildings based on the concept of energy performance by the year 2009 ultimately. Given the importance of the development of innovations in energy technology, and a transition to a sustainable energy supply system, it is necessary that policy instruments for energy conservation in the building sector stimulate the development and diffusion of innovations. This thesis contributes to knowledge about the content of energy performance policy and concludes that the effect of Dutch energy performance policy in encouraging innovation is limited. Energy efficiency improvements, by energy performance policy, seem to have come from the overall optimisation of all the energy related features of residential buildings. Insulation levels improved, although not spectacular. Efficiencies of heating technology improved, although this seems partly to be a result of the ongoing development that started in the 1980s. The efficiency of fans used for ventilation improved, as did the efficiency of all sorts of auxiliary devices needed in heating technology, as well as the efficiency of heat recovery in balanced ventilation systems. Although energy performance policy seems to have contributed to the optimisation of all energy related features of residential buildings, it did not cause a breakthrough of innovative technology such as solar thermal systems or heat pumps. The study of the innovation system of the Dutch construction industry identifies how the project-based nature of the construction industry is an obstacle to 'learning-rich' collaboration between the various stakeholders. The study contributes to the discussion about the impact of government policy for energy conservation in the building sector, in the context of climate change policy.

  8. RESIDENTIAL MORTGAGE IN MODERN RUSSIA

    Directory of Open Access Journals (Sweden)

    Dementiev N. P.

    2015-03-01

    Full Text Available The article presents a comparative analysis of residential mortgages in Russia and the United States. The primary ways of mortgage refinancing are outlined. Predominance of the elements of two-level refinancing system of residential mortgage in Russia and the United States is shown. The activity of the Agency for Housing Mortgage Lending (AHML, the basic tool of the Russian government’s mortgage policy, is described in detail. In its objectives and functions the AHML is similar to the American mortgage agencies Ginnie Mae, Fannie Mae and Freddie Mac. Similarities were identified in the Russian and US residential mortgages in the pre-crisis period (high rates of mortgage growth, favourable economic conjuncture, low interest rates, large increase in house prices, speculative housing demand. During the mortgage crisis, the policies of the Russian and US governments and monetary authorities had also much in common (monetary policy easing, cheap central banks loans, extended facilities of mortgage refinancing on the part of state agencies, mortgage rescue scheme, social mortgage programs. But the scope of mortgage in Russia is enormously narrow as compared to the US mortgage. The most important reason for that - low incomes of the Russian population.

  9. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  10. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  11. Willingness to pay for energy-saving measures in residential buildings

    International Nuclear Information System (INIS)

    Banfi, Silvia; Farsi, Mehdi; Jakob, Martin; Filippini, Massimo

    2008-01-01

    This paper uses a choice experiment to evaluate the consumers' willingness to pay for energy-saving measures in Switzerland's residential buildings. These measures include air renewal (ventilation) systems and insulation of windows and facades. Two groups of respondents consisting respectively of 163 apartment tenants and 142 house owners were asked to choose between their housing status quo and each one of the several hypothetical situations with different attributes and prices. The estimation method is based on a fixed-effects logit model. The results suggest that the benefits of the energy-saving attributes are significantly valued by the consumers. These benefits include both individual energy savings and environmental benefits as well as comfort benefits namely, thermal comfort, air quality and noise protection. (author)

  12. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  13. Determination of sustainable values for the parameters of the construction of residential buildings

    Science.gov (United States)

    Grigoreva, Larisa; Grigoryev, Vladimir

    2018-03-01

    For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.

  14. Exploring variance in residential electricity consumption: Household features and building properties

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Odlare, Monica; Wallin, Fredrik; Wester, Lars

    2012-01-01

    Highlights: ► Statistical analysis of variance are of considerable value in identifying key indicators for policy update. ► Variance in residential electricity use is partly explained by household features. ► Variance in residential electricity use is partly explained by building properties. ► Household behavior has a profound impact on individual electricity use. -- Abstract: Improved means of controlling electricity consumption plays an important part in boosting energy efficiency in the Swedish power market. Developing policy instruments to that end requires more in-depth statistics on electricity use in the residential sector, among other things. The aim of the study has accordingly been to assess the extent of variance in annual electricity consumption in single-family homes as well as to estimate the impact of household features and building properties in this respect using independent samples t-tests and one-way as well as univariate independent samples analyses of variance. Statistically significant variances associated with geographic area, heating system, number of family members, family composition, year of construction, electric water heater and electric underfloor heating have been established. The overall result of the analyses is nevertheless that variance in residential electricity consumption cannot be fully explained by independent variables related to household and building characteristics alone. As for the methodological approach, the results further suggest that methods for statistical analysis of variance are of considerable value in indentifying key indicators for policy update and development.

  15. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  16. A Literature Review of Sealed and Insulated Attics—Thermal, Moisture and Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    In this literature review and analysis, we focus on the thermal, moisture and energy performance of sealed and insulated attics in California climates. Thermal. Sealed and insulated attics are expected to maintain attic air temperatures that are similar to those in the house within +/- 10°F. Thermal stress on the assembly, namely high shingle and sheathing temperatures, are of minimal concern. In the past, many sealed and insulated attics were constructed with insufficient insulation levels (~R-20) and with too much air leakage to outside, leading to poor thermal performance. To ensure high performance, sealed and insulated attics in new California homes should be insulated at levels at least equivalent to the flat ceiling requirements in the code, and attic envelopes and ducts should be airtight. We expect that duct systems in well-constructed sealed and insulated attics should have less than 2% HVAC system leakage to outside. Moisture. Moisture risk in sealed and insulated California attics will increase with colder climate regions and more humid outside air in marine zones. Risk is considered low in the hot-dry, highly populated regions of the state, where most new home construction occurs. Indoor humidity levels should be controlled by following code requirements for continuous whole-house ventilation and local exhaust. Pending development of further guidance, we recommend that the air impermeable insulation requirements of the International Residential Code (2012) be used, as they vary with IECC climate region and roof finish. Energy. Sealed and insulated attics provide energy benefits only if HVAC equipment is located in the attic volume, and the benefits depend strongly on the insulation and airtightness of the attic and ducts. Existing homes with leaky, uninsulated ducts in the attic should have major savings. When compared with modern, airtight duct systems in a vented attic, sealed and insulated attics in California may still provide substantial benefit

  17. Constructions complying with tightened Danish sound insulation requirements for new housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Hoffmeyer, Dan

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements...... were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements for dwellings are not found as figures in the Building Regulations. Instead, it is stated......), Denmark. [2] "Lydisolering mellem boliger – Nybyggeri" (Sound insulation between dwellings – Newbuild)". Publication expected in April 2011. The guideline is a part of a series of seven new SBi acoustic guidelines. Project leader Birgit Rasmussen. The series shall replace the existing guidelines 1984...

  18. Determination of sustainable values for the parameters of the construction of residential buildings

    Directory of Open Access Journals (Sweden)

    Grigoreva Larisa

    2018-01-01

    Full Text Available For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.

  19. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  20. Fully developed magnetohydrodynamic flows in rectangular ducts with insulating walls

    International Nuclear Information System (INIS)

    Molokov, S.; Kernforschungszentrum Karlsruhe GmbH; Shishko, A.

    1993-10-01

    In the first part the effect of magnetic field inclination on the flow structure and the pressure drop is considered. The duct walls are insulating. An asymptotic solution to the problem at high Hartmann numbers is obtained. The results show that for a square duct the increase of the pressure gradient due to the field inclination is negligible (less than 10% for any angle). For blanket relevant values of inclination of up to 10 the deviation of the velocity profile from the slug profile is insignificant. The second part studies the flow in a duct with insulating walls parallel to the magnetic field, while the Hartmann walls are covered by an insulating coating. A new type of the boundary condition is derived, which takes into account finite coating resistance. The effect of the latter on the flow characteristics is studied. An exact solution to the problem is obtained and several approximate formulas for the pressure drop at high Hartmann numbers are presented. (orig./HP) [de

  1. Optimization scheduling in intelligent Energy Management System for the DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    Smart DC residential distribution system(RDS) consisted by DC living homes will be a significant integral part in the future green transmission with demand flexibility. Meanwhile, the distributed generations will play an important role in the active demand response (DR). Energy Management System...... (EMS) with aid of the wireless communication and the smart meter is imperative in achieving ADR for DC residential community. This paper presents a framework of centralized management system integration and the key process of ADR in DC residential distribution system. The propose framework and methods...

  2. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  3. Financing Non-Residential Photovoltaic Projects: Options and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years

  4. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  5. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  6. Optimization of Refining Craft for Vegetable Insulating Oil

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  7. Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Butcher [Brookhaven National Laboratory (BNL), Upton, NY (United States). Sustainable Energy Technologies Dept.

    2017-08-31

    Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. One common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency

  8. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  9. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  10. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  11. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  12. Improving the Quality of Services in Residential Treatment Facilities: A Strength-Based Consultative Review Process

    Science.gov (United States)

    Pavkov, Thomas W.; Lourie, Ira S.; Hug, Richard W.; Negash, Sesen

    2010-01-01

    This descriptive case study reports on the positive impact of a consultative review methodology used to conduct quality assurance reviews as part of the Residential Treatment Center Evaluation Project. The study details improvement in the quality of services provided to youth in unmonitored residential treatment facilities. Improvements were…

  13. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  14. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  15. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  16. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  17. Research methods of the parameters of residential buildings construction

    Directory of Open Access Journals (Sweden)

    Grigor’ev Vladimir Aleksandrovich

    Full Text Available The analysis of construction theory and practice shows that rational organizational and technological parameters of the construction of residential buildings should be based on the manifestation in time and space of the most important stages construction with their harmonization. Basing on the experience of normalizing the construction duration, it is advisable to express the complex of residential buildings’ construction processes by their basic stages - preparatory period, underground part, aboveground part, external engineering networks and land improvement. The main indicators of the development and implementation of optimization solutions are: the total duration of the construction, the duration of the preparation period, the duration of the construction of the underground part, the duration of the construction of the aboveground part, the duration of external engineering networks laying, the duration of land improvement. The indicators of the total duration of the construction of residential buildings, the construction the underground and aboveground parts are determined on the basis of the operation of one assembly crane on an object of up to four sections. In case of more sections two (three cranes are considered and the total construction duration is set depending on these conditions. The duration of the construction of multisectional buildings is determined basing on the simultaneous construction of the stages or their combination with a certain time shift. However, this approach requires a significant amount of optimization solutions due to its multivariance. Therefore, in order to reduce the volume of calculations in some cases, for example, when planning the development of districts and neighborhoods, statistical methods can be used for determining the duration of the construction basing on the compilation of optimization solutions. The total duration of the construction and the duration of the main stages are multiple

  18. Re-thinking residential mobility

    Science.gov (United States)

    van Ham, Maarten; Findlay, Allan M.

    2015-01-01

    While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges. PMID:27330243

  19. Information Processing and Creative Thinking Abilities of Residential and Non-Residential School Children

    Directory of Open Access Journals (Sweden)

    Atasi Mohanty

    2015-10-01

    Full Text Available This study attempts to assess and compare the residential and non-residential schoolchildren in information-processing skills and creative thinking abilities. A sample of 80 children from Classes 5 and 7 were selected from two types of schools, residential/ashram (02 and non-residential/formal schools (02 in Bolpur subdivision of West Bengal in India where the medium of instruction is Bengali language/mother-tongue. All the children were individually administered the PASS (Planning, Attention, Simultaneous, Successive, Stroop, Matching Familiar Figure Test (MFFT-20, and creative thinking tasks. The residential school children were found to perform better both in information processing and creative thinking tasks. The developmental trend could not be clearly observed due to small sample size, but with increasing age, children were using better processing strategies. Due to ashram environment, creative pedagogy, and various co-curricular activities, the residential school children were found to be more creative than their formal school counterparts. Moreover, some significant positive correlations were found among information processing skills and creative thinking dimensions.

  20. Concrete elements with better insulation and less thermal bridge effect; Betonelementer med bedre isolering og mindre kuldebroer

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H

    2000-09-01

    In this project new concrete sandwich panel solutions with better thermal properties have been developed, usable for highly-insulated buildings, responding to the needs that occur when the demands to the permissible energy consumption for heating is further increased. This is expected to happen in 2005. The improved thermal properties have been obtained without increasing the costs more than of the extra insulation. Removing concrete ribs at window reveals and at horizontal joints enables a thermal improvement as well as reduced costs due to simpler manufacturing of the panel. A natural grouping of concrete sandwich panels into two categories formed the basis of the work. One is panels with covering concrete reveals as typically used in residential housing and office buildings. The other is about panels with load bearing ribs serving as columns, typically used in industrial and commercial building. Of course there are panels that are a combination of the two categories, but this fact has not been crucial for the analyses. (au)

  1. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  2. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  3. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  4. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  5. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  6. Residential care : Dutch and Italian residents of residential care facilities compared

    NARCIS (Netherlands)

    de Heer-Wunderink, Charlotte; Caro-Nienhuis, Annemarie D.; Sytema, Sjoerd; Wiersma, Durk

    2008-01-01

    Aims - Characteristics of patients living in residential care facilities and the availability of mental hospital- and residential beds in Italy and The Netherlands were compared to assess whether differences in the process of deinstitutionalisation have influenced the composition of their

  7. Understanding Residential Polarization in a Globalizing City

    Directory of Open Access Journals (Sweden)

    Ibrahim Rotimi Aliu

    2013-12-01

    Full Text Available This study examines the spatial polarization that characterizes the dwellings in the African leading megacity of Lagos. Data were collected through an extensive housing survey carried out on 1,485 household residences in 56 wards within 12 administrative units in Lagos megacity. The spatial dimension of residential density in the city generates three unique residential patterns which are low residential density (LRD, medium residential density (MRD, and high residential density (HRD areas. Descriptive and multivariate inferential statistics were used to render explanations for the spatial variations in the residential quality variables in the study area. Findings indicated that a clear difference exists in the residential quality within the three residential density areas of Lagos. High correlations exist among the residential quality indicators and housing type. The principal component analysis shows that residential polarizations that occur in the LRD, MRD, and HRD are based on the location, dwelling facility, interior and exterior quality, neighborhood integrity, social bond, barrier to entry, and security. The practical implications of residential polarizations along the residential density areas are explicitly expressed.

  8. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  9. Residential preferences towards urban and suburban areas and their relationship with demographic characteristics

    Directory of Open Access Journals (Sweden)

    Petrić Jasna

    2013-01-01

    Full Text Available Urban sprawl is, among all, also the result of voluntary or induced resettlement of population from the inner city to urban periphery, or by in-migration to peripheral parts of cities where the origin of migrants is in other settlements. The focus of this paper is on the influence that residential preferences have on suburbanization, with the emphasis on analysis of the residential choice and certain population groups' tendencies to prioritise living in suburbs or the inner-city living. Theoretical considerations which are set in this paper initiate with residential preference components and the hypothesis of change in dominant motives for residential choice throughout family and individual's lifecycle. Then, the demographic data have been analysed according to the latest Census results in the two pilot-areas of urban and suburban type in Belgrade. Additional research on residential preferences are founded on preparation of specific questionnaire which would enable application of more powerful statistical techniques, especially a wider use of measuring scales for the variables deriving from the questionnaire, and formulation of a model for prediction of different population groups' residential preferences in urban and suburban settings.

  10. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  11. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  12. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  13. Emissions from residential combustion considering end-uses and spatial constraints: Part I, methods and spatial distribution

    Science.gov (United States)

    Winijkul, Ekbordin; Fierce, Laura; Bond, Tami C.

    2016-01-01

    This study describes a framework to attribute national-level atmospheric emissions in the year 2010 from the residential sector, one of the largest energy-related sources of aerosol emissions. We place special emphasis on end-uses, dividing usage into cooking, heating, lighting, and others. This study covers regions where solid biomass fuel provides more than 50% of total residential energy: Latin America, Africa, and Asia (5.2 billion people in 2010). Using nightlight data and population density, we classify five land types: urban, electrified rural with forest access, electrified rural without forest access, non-electrified rural with forest access, and non-electrified rural without forest access. We then apportion national-level residential fuel consumption among all land-types and end-uses, and assign end-use technologies to each combination. The resulting calculation gives spatially-distributed emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Within this study region, about 13% of the energy is consumed in urban areas, and 45% in non-urban land near forests. About half the energy is consumed in land without access to electricity. Cooking accounts for 54% of the consumption, heating for 9%, and lighting only 2%, with unidentified uses making up the remainder. Because biofuel use is assumed to occur preferentially where wood is accessible and electricity is not, our method shifts emissions to land types without electrification, compared with previous methods. The framework developed here is an important first step in acknowledging the role of household needs and local constraints in choosing energy provision. Although data and relationships described here need further development, this structure offers a more physically-based understanding of residential energy choices and, ultimately, opportunities for emission reduction.

  14. Metformin ameliorates insulitis in STZ-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Guo-Jun Jiang

    2017-04-01

    Full Text Available Background & Aims Metformin is currently the most widely used first-line hypoglycemic agent for diabetes mellitus. Besides glucose-lowering action, there is increasingly interest in the potential anti-inflammatory action of this drug. In the present study, we investigated the actions of metformin on experimental insulitis using STZ-induced diabetic mice. Methods Mice with acute diabetes induced by STZ were administered metformin by gavage. Changes of blood glucose and body weight, and the daily amount of food and water intake were measured. Pancreatic tissues were collected for histologic analyses. Pathological assessment and immunohistochemistry analysis were used to determine the effect of metformin on insulitis. Inflammatory cytokines in the pancreas and insulin levels were measured through ELISA analysis. Results Metformin significantly reduced blood glucose levels and improved aberrant water intake behavior in experimental diabetic mice. No significant differences were observed in terms of body weight and food intake behavior in metformin-treated animals. In the STZ-induced model of diabetes, we found the appearance of pronounced insulitis. However, metformin administration reduced the severity of insulitis assessed by blind pathological scoring. In addition, metformin treatment improved insulin levels in experimental diabetic mice. ELISA assay revealed decreased levels of inflammatory response marker IL-1β and TNF-α in the pancreatic tissues following metformin treatment. Conclusion Metformin attenuated insulitis in the STZ-induced mice model of diabetes. This islet-protective effect might be partly correlated with the anti-inflammatory action of metformin.

  15. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  16. Correlations in hydrothermal properties of building insulation

    International Nuclear Information System (INIS)

    Antonyová, A

    2013-01-01

    The contribution comprises analysis that is based on scientific work as a part of participation on the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled 'Detection and Management of Risk Processes in Building Insulation' and numbered SRDA SK-AT-0008-10. Statistical approach with correlations among humidity, time and temperature values in the space between the wall and building insulation uses the set of data obtained during the measurement series as testing using a new technology with equipment that does not influence the environment properties in the space. Therefore such real mapping can bring a real picture of possible condensation as a risk process in the building envelope.

  17. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  18. Family ties and residential locations

    NARCIS (Netherlands)

    Mulder, C.H.; Cooke, T.J.

    2009-01-01

    In this paper, and in the Special Issue it introduces, the focus is on the role of family ties in residential location choice and, conversely, the role of residential locations in maintaining family ties. Not only do events in the nuclear family trigger residential relocations, but nearby family

  19. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  20. Labeling and advertising of home insulation. Final staff report to the Federal Trade Commission and proposed trade regulation rule (16 CFR Part 460)

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    Because insulation is a very difficult product for uniformed consumers to evaluate, there has been broad support for a rule requiring disclosure of information facilitating choices among insulation products. With information that the Recommended Rule will require, consumers will be able to compare the thermal properties of various types of insulation and make the best purchases. The FTC undertook this rulemaking effort and proposed a Rule on November 18, 1977. Hearings were conducted. Approximately 50 witnesses representing insulation manufacturers, contractors, trade associations, consumer and environmental groups, and state and Federal government agencies attended. As the record shows, without the Rule, some insulation industry members have failed to base R-value claims on tests or have extrapolated values from too-thin samples. Neither labels nor ads disclose R values; most do not explain R value; and the industry is not telling consumers about factors that often reduce insulation R values. Consumers are seldom told about performance characteristics of individual types of insulation. They are not advised that insulation is not always a good investment, or that their money might be more wisely spent on other conservation measures. The Rule addresses all of these problems. All aspects of the insulation industry and some consumer characteristics are summarized. (MCW)

  1. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  2. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  3. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  4. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  5. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  6. Development of a Leave-in-Place Slab Edge Insulating Form System

    Energy Technology Data Exchange (ETDEWEB)

    Marc Hoeschele; Eric Lee

    2009-08-31

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom

  7. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  8. Acoustic parameters of sound insulating materials investigation in small reverberation rooms on rubber plates

    Directory of Open Access Journals (Sweden)

    О.О. Козлітін

    2005-01-01

    Full Text Available  The new method of sound insulating materials acoustic characteristics investigation in small reverberation rooms was elaborated. The research of sound insulating materials on rubber plates was done. The analysis of obtained results of acoustic parameters of materials being a part of the composite real structures of airplane was carried out.

  9. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  10. Bulk and boundary invariants for complex topological insulators from K-theory to physics

    CERN Document Server

    Prodan, Emil

    2016-01-01

    This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to use analysis tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connect...

  11. An investigation on rapeseed oil as potential insulating liquid

    Science.gov (United States)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  12. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  13. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Science.gov (United States)

    2010-07-01

    ... Insulation Resins by Hydroxylamine Hydrochloride B Appendix B to Subpart NNN of Part 63 Protection of...—Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride 1. Scope This method was... hydrochloric acid that is liberated when hydroxylamine hydrochloride reacts with formaldehyde to form...

  14. Standard Test Methods for Wet Insulation Integrity Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 These test methods provide procedures to determine the insulation resistance of a photovoltaic (PV) module, i.e. the electrical resistance between the module's internal electrical components and its exposed, electrically conductive, non-current carrying parts and surfaces. 1.2 The insulation integrity procedures are a combination of wet insulation resistance and wet dielectric voltage withstand test procedures. 1.3 These procedures are similar to and reference the insulation integrity test procedures described in Test Methods E 1462, with the difference being that the photovoltaic module under test is immersed in a wetting solution during the procedures. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 The values stated in SI units are to be regarded as the standard. 1.6 There is no similar or equivalent ISO standard. 1.7 This standard does not purport to address all of the safety conce...

  15. Well-being, the Decision making process in residential care facilities and accommodation in Denmark

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann; Harder, Henrik

    process. 3. Alternatives to "the living environments”. In general a discussion about “the living environments” as the only and right solution for organising the residential care facilities and accommodation in Denmark is recommended. Maybe there should be a possibility given to create more private...... for assisted living residential care facilities and accommodation for senior citizens selected from different parts of Denmark. The case study will provide important knowledge on municipal activities in the area of residential care facilities, as well as discuss the different actors’ roles in the decision......-based knowledge is needed: There is a need for research-based knowledge manuals among the actors involved in the planning and project design process which describe systematically the importance of working with the different aspects on well-being in residential care facilities and accommodation in Denmark. 2. More...

  16. Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers

    Science.gov (United States)

    García, Belén; García, Diego; Robles, Guillermo

    2015-01-01

    Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393

  17. Development of a moisture-in-solid-insulation sensor for power transformers.

    Science.gov (United States)

    García, Belén; García, Diego; Robles, Guillermo

    2015-02-04

    Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.

  18. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  19. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  20. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  1. Residential environmental evaluation of local cities considering regional characteristic and personal residential preference-a case study of Saga City,Japan

    Institute of Scientific and Technical Information of China (English)

    GE Jian; HOKAO Kazunori

    2004-01-01

    Questionnaire surveys and subjective evaluations on residential environment were performed in order to grasp the main factors of residential environment of small local cities. The suitable evaluation index system was established, and the regional residential environment characteristics and personal residential preference types were analyzed, so that their influence on residential environment evaluation could be grasped. The results can be applied to the residential environment planning, construction and monitoring of local cities.

  2. Prioritizing investment in residential energy efficiency and renewable energy-A case study for the U.S. Midwest

    International Nuclear Information System (INIS)

    Brecha, R.J.; Mitchell, A.; Hallinan, K.; Kissock, K.

    2011-01-01

    Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home construction characteristics, estimates are made for the efficacy of (i) changes to behavioral patterns that do not involve building shell modifications; (ii) straightforward air-infiltration mitigation measures, and (iii) insulation measures. We derive estimates of net lifetime savings resulting from these measures, in terms of energy, carbon emissions and dollars. This study points out explicitly the importance of local and regional patterns in decision-making about what fraction of necessary regional or national emissions reduction might be accomplished through energy-efficiency measures and how much might need to concentrate more heavily on renewable or other carbon-free sources of energy. - Highlights: → Macro-scale estimates of building energy efficiency measures are not adequate for implementing policy decisions. → Measures taken to implement building energy efficiency upgrades will likely encounter practical limits given the existing building stock. → Energy efficiency measures combined with increases in renewable energy use will be necessary for climate change mitigation. → Regional and local variations in building energy use must be taken into account in energy and climate policy.

  3. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  4. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  5. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  6. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  7. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  8. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  9. TFIIIC bound DNA elements in nuclear organization and insulation.

    Science.gov (United States)

    Kirkland, Jacob G; Raab, Jesse R; Kamakaka, Rohinton T

    2013-01-01

    tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer - blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  11. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  12. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  13. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  14. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  15. Stressed state of a cement electrical insulation of a pulsed magnet

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Sugak, E.B.; Fedorenko, L.I.

    1985-01-01

    The stresses arising in cement electrical insulation of a pulsed magnet intended for separation and scanning of beam of secondary particles with 5-10 MeV energy are investigated during its switching. The magnet represents a single-turn construction. During its switching repulsion forces arise in copper buses which affect the core consisting of a set of iron plates. In its turn two cores trying to separate transmit impact load onto cement electrical insulation, the mechanical strength of which determines the construction durability on the whole. For selection of calculation technique the method of photoelasticity is used on models of transparent polymeric materials. Epoxy resin served as material for insulation model, duraluminium for the rest of magnet parts. It is concluded that the calculation technique for the magnet under investigation is a hingeless circular arc

  16. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  17. The analysis of fire losses and characteristics of residential fires based on investigation data in Selangor, 2012-2014

    Directory of Open Access Journals (Sweden)

    Tan Yi Rong

    2016-01-01

    Full Text Available This is a research in progress where authors seek to investigate the factors of residential fires. As part of the research, this paper aims to analyse the fire problems faced by the community of Malaysia. Data regarding residential fires between 2012 and 2014 was collected from fire investigation reports prepared by the Selangor Fire and Rescue Department. Descriptive analysis is conducted to summarize the data collected and describe the common phenomenon of residential fires. The distributions of the fire characteristics suggested that residential fires are commonly occurred during daytime, confined within the room of fire origin, caused by electrical failure and cooking negligence, started from kitchen, and occurred in multi-units housing. Further analysis will be conducted in order to investigate the relationships between the characteristics and residential fires.

  18. Possibilities of free cooling in prefabricated residential buildings; Moeglichkeiten der freien Kuehlung fuer Wohngebaeude in Fertigbauweise

    Energy Technology Data Exchange (ETDEWEB)

    Truemper, H.; Hain, K.; Wirth, S. [Dortmund Univ. (Germany). Lehrstuhl Technische Gebaeudeausruestung

    1999-07-01

    Due to their efficient heat insulation, modern low-energy houses can develop disagreeably high room temperatures in the summer. Use of room cooling devices for cooling residential buildings in central Europe is not feasible for ecological as well as economic reasons. This paper presents the buried heat exchanger and the cellar wall exchanger as alternatives to the cooling of incoming air in ventilated low-energy residential buildings. Both are in principle cold storages with coiled pipes taking in air from outside. The buried heat exchanger is charged with cold during the heating period (seasonal storage), whereas the cellar wall exchanger accumulates and gives off cold daily. (orig.) [German] In modernen Niedrigenergiehaeusern koennen sich aufgrund einer verbesserten Waermedaemmung waehrend des Sommers Raumtemperaturen einstellen, die nicht als behaglich empfunden werden. Raumkuehlgeraete scheiden aus oekologischen und oekonomischen Gruenden fuer eine Kuehlung von Wohngebaeuden in Mitteleuropa aus. Als Alternativen zur Kuehlung der Zuluft bei Niedrigenergiehaeusern mit Wohnungslueftung werden der Erdwaermeaustauscher und der Kellerwandaustauscher vorgestellt. Hierbei handelt es sich um Kaeltespeicher, in welchen Rohrschlangen verlegt sind, ueber welche die Aussenluft angesaugt wird. Der Erdwaermeaustauscher wird als Kaeltespeicher waehrend der Heizperiode aufgeladen (saisonaler Speicher), wohingegen der Kellerwandaustauscher taeglich be- und entladen wird. (orig.)

  19. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  20. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  1. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...

  2. Group-Based Preference Assessment for Children and Adolescents in a Residential Setting: Examining Developmental, Clinical, Gender, and Ethnic Differences

    Science.gov (United States)

    Volz, Jennifer L. Resetar; Cook, Clayton R.

    2009-01-01

    This study examines developmental, clinical, gender, and ethnic group differences in preference in residentially placed children and adolescents. In addition, this study considers whether residentially placed youth prefer stimuli currently being used as rewards as part of a campuswide token economy system and whether youth would identify preferred…

  3. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  4. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  5. Thermic insulation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaon, G. (Ambassade de France a New York (USA)); Atlas, O. (Illinois Institute of Technology, Chicago, (USA))

    1984-01-30

    At present, thermic insulation accounts for 13% of the savings which have been made and this percentage should increase substantially in the future. The ideal insulation material must have low thermic conductivity, but also be light, have a low dilatation coefficient, good mechanical resistance and be fireproof and non-toxic. Rock wool and above all glass wool have the major portion in the insulation market with about 75% of the total. The prospects for an increase in sales are average: 6 to 7% per year until 1990 with a stabilization or a decrease after this date. Production is concentrated in the hands of about ten producers. The insulation with a cellulose base -with the addition of a combustion inhibitor, usually borax- represent about 15% of the market. Manufacturers are numerous and the production units are small. Any serious evaluation of the future of this product is difficult to make. However, it should be noted that combustion inhibition is one of the main factors of success of this product and constitutes a relatively active field of research. Perlite and vermiculite have a marginal part of the market which is concentrated in the hands of a few dozen producers. Their future seems promising and their production should double between now and the end of the century. There is also the field of plastics which has to be considered and notably polystyrene, polyurethanes and polyisocyanates. These can be injected and moulded in situ. To the extent that toxicity studies can definitively conclude that they are not harmful (urea-formol resins have just been prohibited), their future is brillant and their growth rate could reach about 200% per year. The big chemical and pharmaceutical companies are interested in these products and their portion of the market can rapidly go beyond their present 6 to 8%.

  6. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  7. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  8. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems; TOPICAL

    International Nuclear Information System (INIS)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-01-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data

  9. Complex evaluation of properties for some thermal insulating materials of NPP

    International Nuclear Information System (INIS)

    Yurchenko, V.G.; Nazarova, G.A.; Yakunichev, V.N.; Potulov, V.V.; Kazakova, K.A.

    1991-01-01

    The effects of the main operational factors (temperature, ionizing radiation, increased humidity) on some most widely applied fibrous materials are investigated. The samples were irradiated by 60 Co gamma photons at the PKhM-gamma-20 device in air at temperature of 40±1 deg C in order to analyze the radiation resistance of thermal insulating materials. The analysis and generalization of the results of laboratory tests give an opportunity to make the following conclusions. The thermal insulation articles and constructions made of superfine basalt fiber may be used in the zones of rigorous regime. The superfine glass fibers (GF) are recommended to be used for equipment and pipeline shielding in the zones of rigorous control only as a part of multilayer insulation as the second or next layers and only in places where leaks are impossible

  10. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  11. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  12. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2013-01-01

    Full Text Available Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with the economic feasibility of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing the attention on European and national regulations on energy efficiency and considering the recent public incentives and supporting measures. The main thermoclimatic parameters—that is, heating degree days (HDDs, building thermal insulation and thermal needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted cumulative cash flow, payback period (PP, net present value (NPV, Internal rate of return (IRR, discounted payback period (DPP, and profit index (PI.

  13. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  14. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  15. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  16. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  17. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  18. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  19. Numerical study of a heated cavity insulated by a horizontal laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Besbes, S.; Mhiri, H.; El Golli, S. [Ecole Nationale d' Ingenieurs de Monastir (Tunisia). Lab. de Mecanique des Fluides et Thermique; Le Palec, G.; Bournot, P. [Institut de Mecanique de Marseille (France)

    2001-08-01

    In this work, we present a numerical study of the thermal insulation of a heated two dimensional cavity limited on its superior part by a horizontal plane air jet. The lower horizontal wall is isothermal, while the two vertical walls are adiabatics. A finite difference method based on the stream function-vorticity formulation is developed to solve the dimensionless Navier-Stokes and energy equations resulting from some assumptions. The results allowed us to point out two flow configurations: if natural convection prevails, the hot jet issuing from the nozzle diffuses upwards, and consequently, the cavity cannot be insulated correctly. However, the use of an aspiration zone can then improve the insulation. When forced convection predominates, the hydrodynamic barrier is conserved, and the enclosure is also thermally well confined. (author)

  20. 12 CFR 541.16 - Improved residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Improved residential real estate. 541.16... REGULATIONS AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.16 Improved residential real estate. The term improved residential real estate means residential real estate containing offsite or other improvements...

  1. The relation between residential property and its surroundings and day- and night-time residential burglary

    NARCIS (Netherlands)

    Montoya, Lorena; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  2. The Relation Between Residential Property and its Surroundings and Day- and Night-Time Residential Burglary

    NARCIS (Netherlands)

    Montoya, L.; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  3. Warm homes: Drivers of the demand for heating in the residential sector in New Zealand

    International Nuclear Information System (INIS)

    Howden-Chapman, Philippa; Viggers, Helen; Chapman, Ralph; O'Dea, Des; Free, Sarah; O'Sullivan, Kimberley

    2009-01-01

    New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or 'take-back'-the extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

  4. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  5. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  6. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  7. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  8. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  9. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  10. INSUL, Calculation of Thermal Insulation of Various Materials Immersed in He

    International Nuclear Information System (INIS)

    Kinkead, A.N.; Pitchford, B.E.

    1977-01-01

    1 - Nature of the physical problem solved: Performance of thermal insulation immersed in helium. 2 - Method of solution: Mineral fibre, metal fibre and metallic multi-layer foils are studied. An approximate analysis for performance evaluation of multi-layer insulation in vertical gas spaces including the regime between fully suppressed natural convection and that for which an accepted power relationship applies is included

  11. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  12. Energy and global warming impacts of CFC alternative technologies for foam building insulations

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0 2 emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use

  13. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  14. Climate protection with rapid payback. Energy and CO2 savings potential of industrial insulation in EU27

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, M.; Blinde, P.; Overgaag, M.; Deng, Y. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-06-15

    This study aims to answer the following four questions: (1) What is the energy savings and CO2 emissions mitigation potential resulting from insulating currently uninsulated parts and from better maintenance of insulation systems?; (2) What are the energy savings and CO2 mitigation potential from improving current insulation to cost-effective levels? Cost-effective insulation in this study is defined as the insulation that minimises the sum of the costs of heat loss and the costs of insulation; (3) What is the energy savings and CO2 mitigation potential from improving current insulation beyond cost-effective levels to even more energy-efficient levels? Energy-efficient insulation in this study is defined as the insulation at which the sum of the costs of heat loss and the annualised insulation investments are equal to the costs of typical current insulation while offering an additional energy savings and CO2 mitigation potential; and (4) How can these potentials best be realised? This study investigates savings potentials from improved insulation in EU industry and the power sector under realistic market conditions. Nuclear power plants and power production by renewable sources were left outside the scope of this study as well as insulations of cold applications. Case studies of insulation projects have been used to compare energy loss and investments related to different levels of insulation. The analysis was performed for three temperature levels: <100C; 100-300C and >300C. Results at the level of the case studies were extrapolated to European level using data on current energy use. Other assumptions have been made where needed on the basis of literature and expert input. All potentials are based on a 9% discount rate, an average insulation lifetime of 15 years and a 2-3% per year increase of the price of energy net of inflation.

  15. The residential tertiary sector - Technical Guidebook nr. 2

    International Nuclear Information System (INIS)

    Bardinal, Marc; Bejanin Emmanuel; Berly Frederic; Blaser Jocelyne; Mesmain Jean-Eric; Yalamas Pierrick; Ouradou Frederic; Riey Benedicte; Chene-Pezot, Anne

    2011-06-01

    After having recalled objectives defined within the Building Plan of the Grenelle de l'Environnement, this guide aims at providing local communities with a relatively precise view of the energy consumption of buildings (residential and office buildings) on their territory in order to define actions to be undertaken, with keys to integrate these actions into a regional energy planning, and with tools for the follow-up of equipment, techniques, and tax or regulatory arrangements aimed at a better energy efficiency in order to be able to assess the impact of undertaken actions and to steer their implementation. Thus, the different parts of this guide describe how to perform an energy assessment in the residential-tertiary sector (indication of reference data, assessment of additional data), how to plan a regional energy renovation (definition of objectives, identification of associated needs, assessment of externalities), and how to perform a follow-up of energy efficiency (existing monitoring organisations and bodies, networking of actors and sharing of good practices, information sites)

  16. ASRM case insulation design and development

    Science.gov (United States)

    Bell, Matthew S.; Tam, William F. S.

    1992-10-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  17. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    Science.gov (United States)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  18. Differences between Residential and Non-Residential Fathers on Sexual Socialisation of African American Youth

    Science.gov (United States)

    Sneed, Carl D.; Willis, Leigh A.

    2016-01-01

    This study investigated differences between residential and non-residential fathers on topics discussed during father-child sex communication and factors associated with child sexual socialisation. Young people (N = 159, 53% female) provided self-reports using computer surveys on the role of their fathers on father-child sex communication, general…

  19. Workers' compensation experience of North Carolina residential construction workers, 1986-1994.

    Science.gov (United States)

    Dement, J M; Lipscomb, H

    1999-02-01

    A total of 31,113 workers' compensation claims among 7,400 North Carolina Homebuilders Association (NCHA) members and their subcontractors for the period 1986-1994 were analyzed to calculate workers' compensation claim incidence density rates. For the 7 years studied, the average rate (cases/200,000 work hours) for all claims was 16.40 and the rate for medical or lost time cases was 10.78. Highest rates for cases involving medical costs or paid lost time by mechanism of injury were observed for being struck by an object (3.1), lifting/movement (1.97), falls from a different level (1.13), striking against an object (0.87), and falls on the same level (0.46). Rates by mechanism of injury were highest for muscle strains (2.34), wounds/punctures (2.33), bruises/contusions (1.24), fractures/dislocations (0.98), and injuries to the eyes (0.81). Among medical cost or lost work time cases, body parts with highest injury rates were back/shoulders (1.99), fingers (1.31), leg/knee (1.00), hand/wrist (1.00), foot/ankle (0.86), and eyes (0.82). Injury rates were found to vary substantially among the residential construction trades. For more serious injuries involving medical costs greater than $2,000 or any lost work time, rates were highest for welders and cutters (28.1), insulators (24.3), roofers (19.4), and carpenters (15.3). The same general trends by trade were observed for cases involving paid lost time except that roofers were highest, with a rate of 9.1, followed by insulators (8.5), welders and cutters (5.8), and carpenters (5.8). Rates of falls from a different level resulting in medical costs or lost work time were highest for roofers (5.54), insulators (3.53), carpenters (2.05), and drywall installers (1.99). Descriptive information for falls from a different level resulting in paid lost time during 1993-1994 (n = 219) were reviewed to better determine the causes and circumstances of injuries. Falls from a roof accounted for 25.4 percent of the cases followed by

  20. New Jersey's residential radon remediation program - methods and experience

    International Nuclear Information System (INIS)

    Pluta, T.A.; Cosolita, F.J.; Rothfuss, E.

    1986-01-01

    As part of a remedial action program to decontaminate over 200 residential properties, 12 typical properties were selected and a demonstration program was initiated in the spring of 1985. The residences selected represented a range of contamination levels and configurations and differing architectural styles representative of the age of construction. The physical limitations of the sites and the overall nature of a decontamination project in active residential communities imposed a number of severe restrictions on work methods and equipment. Regulations governing transportation and disposal set virtually zero defect standards for the condition of containers. The intrusive nature of the work in residential neighborhoods required continual interaction with local residents, public officials and citizen task forces. Media coverage was very high. Numerous briefings were held to allay fears and promote public understanding. Numerous issues ranging in content from public health and safety to engineering and construction methods arose during the remedial action program. These issues were resolved by a multi-disciplined management team which was knowledgeable in public administration, radiation physics, and engineering design and construction. This paper discusses the nature of the problem, the methods applied to resolve the problem and the experience gained as a result of a remedial action program

  1. Unsightly urban menaces and the rescaling of residential segregation in the United States.

    Science.gov (United States)

    Hanlon, James

    2011-01-01

    In this article, the author uses a slum clearance project in Lexington, Kentucky, as a lens through which to examine the spatial dynamics of racial residential segregation during the first half of the twentieth century. At the time, urban migration and upward socioeconomic mobility on the part of African Americans destabilized extant residential segregation patterns. Amid this instability, various spatial practices were employed in the interest of maintaining white social and economic supremacy. The author argues that such practices were indicative of a thoroughgoing reinvention of urban socio-spatial order that in turn precipitated the vastly expanded scale of residential segregation still found in U.S. cities today. Evidence of this reinvented ordering of urban space lies in the rendering of some long-standing African American neighborhoods as “out of place” within it and the use of slum clearance to remove the “menace” such neighborhoods posed to it.

  2. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  3. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  4. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  5. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  6. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  7. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  8. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  9. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  10. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  11. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  12. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  13. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  14. Residential energy demand in Brazil

    International Nuclear Information System (INIS)

    Arouca, M.; Gomes, F.M.; Rosa, L.P.

    1981-01-01

    The energy demand in Brazilian residential sector is studied, discussing the methodology for analyzing this demand from some ideas suggested, for developing an adequate method to brazilian characteristics. The residential energy consumption of several fuels in Brazil is also presented, including a comparative evaluation with the United States and France. (author)

  15. Effects of Exterior Insulation on Moisture Performance of Wood-Frame Walls in the Pacific Northwest: Measurements and Hygrothermal Modeling

    Science.gov (United States)

    Samuel V. Glass; Borjen Yeh; Benjamin J. Herzog

    2016-01-01

    Continuous exterior insulation on above-grade walls is becoming more common in many parts of North America. It is generally accepted that exterior insulation provides advantages for energy performance, by reducing thermal bridging, and for moisture performance, by warming the wood structural members, thereby reducing the potential for wintertime moisture accumulation....

  16. Attitudes and preferences towards exercise training in individuals with alcohol use disorders in a residential treatment setting.

    Science.gov (United States)

    Stoutenberg, Mark; Warne, James; Vidot, Denise; Jimenez, Erika; Read, Jennifer P

    2015-02-01

    Alcohol use disorders (AUD) are a major public health concern due to their association with several acute and chronic health conditions. Exercise training offers a myriad of physical and mental health benefits, and may be a promising adjunct intervention for those in AUD treatment. The purpose of this study was to explore the possible role of exercise training as a treatment strategy by examining the attitudes, beliefs, and preferences of individuals entering residential AUD treatment. Surveys were administered to eligible individuals with AUD within 2days of intake to one of two residential treatment centers. The survey asked respondents about their attitudes, beliefs, and preferences towards exercise training as a part of their residential treatment. Respondents were in favor of receiving exercise counseling as part of their treatment (70.6%), in a face-to-face format (90.0%), and from an exercise counselor at the treatment center (55.5%). The top reported benefits included: improved health, feeling good about oneself, and feeling more confident. The most commonly reported barriers to exercise training included transportation issues, lack of motivation, knowledge, and proper equipment, and cost. Our study supports previous work in individuals with substance abuse disorders and suggests that exercise training would be widely accepted as a part of residential treatment for AUD. This study also identified several strategies that can be used to individualize exercise training programs to better meet the needs of AUD patients and maximize their participation in future interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    Lately there has been quite a large focus on retrofitting of the Danish buildings. The retrofitting of the building is done in order to solve one or more of the following problems: bad indoor climate, large use of energy for heating, insufficient durability or architectural unsatisfactory.In order...... to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties......, there is a need for a systematic approach when the building designer chooses which system should be used on the building which is to be retrofitted....

  18. Residential Care

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... longer an option Costs Choosing a care setting Types of residential care A good long-term care ...

  19. Process insulation. Isolation thermique des equipements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A manual is presented to assist managers and operating personnel to recognize industrial energy management opportunities, and provides mathematical equations, general information on proven techniques and technology, and examples. It deals with process insulation, focusing on the insulation of mechanical systems such as piping, process vessels, equipment, and ductwork. The manual describes the effects of insulation materials; commonly encountered types of insulation, coverings and protective finishes as well as common applications; energy management opportunities, divided into housekeeping, low cost, and retrofit; and includes worked examples of each. Includes glossary. 17 figs., 8 tabs.

  20. Ageing of insulation and diagnosis of electrical equipment through detection of partial discharge

    International Nuclear Information System (INIS)

    Lopez Vergara, T.; Velasco Bernal, C.

    1994-01-01

    Ageing in electrical equipment affects mainly its insulation system. Such ageing in the insulation system is determined by its organic nature, basically constituted by three families of materials: cellulose, resin and hydrocarbon. All of these are affected by high temperatures, which tend to produce a break in the molecular chains (if the temperatures are not too high) or carbonization and gasification of the material (if they are). The radiation absorbed by the insulating materials also destroys molecular chains, causing degradation of the material. The break of the molecular chains, especially in the polymer-based materials, fragments the material, mainly in areas subjected to mechanical forces and stresses. From the electrical point of view, fissures occurring the insulating material lead to a much lower dielectric strength in certain parts of the materials, which could produce partial discharge conditions. Therefore, the growth of partial discharges in electrical equipment items is frequently the consequences of ageing, and be used to evaluate their residual life. Empresarios Agrupados has developed a system to detect partial discharges which can be used while equipment is still in operation. The measurements taken with this system are sufficiently accurate and repetitive to be used in evaluating the condition of medium-voltage electrical equipment insulation. (Author)

  1. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  2. Labeling and advertising of home insulation

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

  3. Therapeutic Residential Care for Children and Youth:

    DEFF Research Database (Denmark)

    Whittaker, James K.; Holmes, Lisa; del Valle, Jorge F.

    2016-01-01

    so in closer collaboration with their families and in closer proximity to their home communities; and, (3) with the hope of reducing the high costs often associated with group residential provision. In some jurisdictions, efforts to reduce residential care resources in the absence of sufficient...... alternatives to serve high-resource needing youth has had unintended and negative consequences. It is within this context that a working group international experts representing research, policy, service delivery and families (International Work Group for Therapeutic Residential Care) convened at the Centre...... for Child and Family Research, Loughborough University in the U.K. for a Summit meeting on therapeutic residential care for children and youth funded by the Sir Halley Stewart Trust (UK). The focus centered on what is known about therapeutic residential care and what key questions should inform a priority...

  4. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  5. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  6. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Peter [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension on previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  7. Retailing residential electricity : A concept that makes sense?

    International Nuclear Information System (INIS)

    MacDonald, C.

    2003-07-01

    A heated debate centres around the deregulation of the electricity industry and the retailing of residential electricity. An assessment of the current situation in the industry was provided in this paper to provide a basis for discussion. The experience gained both in Alberta and Texas in residential retail was examined. The main issue of concern is whether residential customers will benefit from deregulation of the electricity sector. The Retail Energy Deregulation (RED) Index provides a benchmark for those jurisdictions considering the residential options. Deregulation has not led to significant benefits to residential customers in most jurisdictions. The electricity industry will always require a central dispatch/market process that will have to designed, governed, regulated, modified regularly. The benefits to residential consumers are not expected for a very long time. Standard market design is an issue that will require attention. refs., 7 figs

  8. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  9. Main challenges of residential areas

    Directory of Open Access Journals (Sweden)

    Oana Luca

    2017-06-01

    Full Text Available The present article is a position paper aiming to initiate a professional debate related to the aspects related to the urban dysfunctions leading to the wear of the residential areas. The paper proposes a definition of the wear process, identify the main causes leading to its occurrence and propose a number of solutions to neutralise the dysfunctions. The three wearing phases of residential areas components are emphasized, exploring their lifecycle. In order to perform the study of urban wear, the status of the residential areas components can be established and monitored, and also the variables of the function that can mathematically model the specific wear process may be considered. The paper is considered a first step for the model adjustment, to be tested and validated in the following steps. Based on the mathematical method and model, there can be created, in a potential future research, the possibility of determining the precarity degree for residential areas/neighbourhoods and cities, by minimising the subjective component of the analyses preceding the decision for renovation or regeneration.

  10. INFLUENCE OF NON-PERFORATED SCREEN LOCATION ON HEAT TRANSFER PROCESS IN BUILDING ENCLOSING PARTS

    Directory of Open Access Journals (Sweden)

    V. D. Sizov

    2017-01-01

    Full Text Available It is recommended to have a vapor-proof barrier on the internal side of heat insulation system in multi-layer building enclosing parts in order to ensure protection of a heat-insulation layer against humidification because relative humidity of internal air is generally higher than external one and diffusion of water steam is directed from premises outside. While having a barrier with high vapor permeability a part of moisture can be accumulated in the structure and heat insulation core and difference of actual and maximum possible partial pressures leads to condensate formation. In order to improve thermal properties of enclosing parts the necessity arises to create a vapor-proof protection screen. It complies with the design of a panel with a vapor-proof screen in the form of non-perforated aluminium foil. The given screen located at internal panel layer prevents penetration of water vapor from premises into enclosing part and heat insulation layer. In such a case condensation zones and, consequently, their moistening can occur in some layers of enclosing parts according to their thermal and physical characteristics. The paper contains a calculation of thermal and moisture regime of the enclosing parts with vapor-proof layer (non-perforated aluminium foil located in enclosing part core between various layers. An analysis of thermal and moisture regime diagrams for multi-layer external enclosing part demonstrates that the part of non-perforated screen (aluminium foil located between internal concrete layer and perforated heat insulation layer is considered the most rational one. At the same time other screens between separate layers are perforated.

  11. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  12. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  13. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  14. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  15. Performance investigation of heat insulation solar glass for low-carbon buildings

    International Nuclear Information System (INIS)

    Cuce, Erdem; Young, Chin-Huai; Riffat, Saffa B.

    2014-01-01

    Highlights: • U-value of HISG is found to be 1.10 W/m 2 K. • Maximum temperature difference is achieved by HISG with 12.70 °C. • HISG provides two times better insulation than standard double glazed windows. • HISG generates over 40 W electricity from a glazing surface of 0.66 m 2 . • 100% of UV in incoming solar radiation is absorbed by HISG. - Abstract: Heat insulation solar glass (HISG), which has been recently developed by Professor Chin-Huai Young in Taiwan is an extraordinary glazing technology for low/zero carbon buildings. HISG differs from traditional glazing technologies with its ability of producing electricity. It also offers some additional features such as thermal insulation, sound insulation, self-cleaning and energy saving. In this work, thermal insulation, power generation and optical performance of HISG are experimentally investigated. Thermal insulation performance of HISG is analysed through standardized co-heating test methodology, and the results are compared with different traditional double glazed window samples. For the power generation and optical performance of HISG, two samples (air filled HISG and Argon filled HISG) are experimentally investigated in real and simulated operating conditions. The results indicate that both configurations show similar performance in terms of power generation. Under a solar intensity of 850 W/m 2 , over 40 W electrical power is achieved from HISG samples with a glazing area of 0.66 m 2 . Performance of samples under solar simulator is not found to be promising due to the absence of UV and IR parts in the artificial light source. In terms of thermal insulation ability, HISG is also found to be attractive. The average U-value of HISG is determined to be 1.10 W/m 2 K, which is two times better than standard double glazed windows. Some simulation results for two different cities (Taipei, Taiwan and Nottingham, UK) demonstrating the energy saving potential of HISG are also presented

  16. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  17. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  18. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  19. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  20. Contemporary facades of multistorey residential buildings in Kiev: Videoecological aspect

    Directory of Open Access Journals (Sweden)

    Kozlova Nataliia

    2016-01-01

    Full Text Available The article is devoted to one of the actual problems concerning the current state of the facades on apartment buildings in residential districts in Kiev - videoecology. The main purpose of the article is to determine the degree of visual aggressiveness of multistorey residential buildings in Kiev. It also investigates the problem of finding the optimal criteria for creating an ecologically healthy and friendly inhabited environment in the capital city of Ukraine. The modern visual environment in the capital is contaminated, not only because of the increasing numbers of promotional billboards, but also because of the contemporary architecture of high-rise buildings such as office buildings, apartment buildings. Their composition is usually based on a simple description of a rhythm. There are also repetitions of the end parts of buildings in “lowercase” buildings, which are high-rise buildings that alternate with nine or identical apartment groups. It creates a sense of oppressive monotony and leads to psychological and visual fatigue, especially when these repetitions are the only pattern the eye perceives. In the article a theoretical block of ecological-aesthetic criteria is defined, which must be met by the modern architecture facades of multistorey residential houses in Kiev.

  1. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  2. Family events and the residential mobility of couples

    NARCIS (Netherlands)

    Michielin, F.; Mulder, C.H.

    2008-01-01

    Using data from retrospective surveys carried out in the Netherlands during the early 1990s, we describe how the residential mobility of couples—that is, short-distance moves—is affected by family events and how fertility is affected by residential mobility. The results show that residential moves

  3. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  4. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  5. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  6. An experimental study on coolability through the external reactor vessel cooling according to RPV insulation design

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Koo, Kil Mo; Park, Rae Joon; Cho, Young Ro; Kim, Sang Baik

    2004-01-01

    LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the water accessibility and coolability in case of the external reactor vessel cooling. Alumina iron thermite melt was used as corium stimulant. And the hemispherical test vessel is linearly scaled-down of RPV lower plenum. 4 tests have been performed varying the melt composition and the configuration of the insulation system. Due to the limited steam venting capacity through the insulation, steam binding occurred inside the annulus in the LAVA- ERVC-1, 2 tests which were performed for simulating the KSNP insulation design. This steam binding brought about incident heat up of the vessel outer surface at the upper part in the LAVA-ERVC-1, 2 tests. On the contrary, in the LAVA-ERVC-3, 4 tests which were performed for simulating the APR1400 insulation design, the temperatures of the vessel outer surface maintained near saturation temperature. Sufficient water ingression and steam venting through the insulation lead to effective cooldown of the vessel characterized by nucleate boiling in the LAVA-ERVC-3, 4 tests. From the LAVA-ERVC experimental results, it could be preliminarily concluded that if pertinent modification of the insulation design focused on the improvement of water ingression and steam venting should be preceded the possibility of in-vessel corium retention through the external vessel cooling could be considerably increased.

  7. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... insulation on north-orientated walls, since the drying potential is reduced. Additionally, caution should be exercised also with west-orientated walls....

  8. Insulation Progress since the Mid-1950s

    Science.gov (United States)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  9. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  10. Environmental impacts from the EPSPEX-system. Part 1. Life-cycle analysis of a District Heating System with PEX-pipes insulated by expanded polystyrene; Miljoebelastning fraan EPSPEX-systemet. Del 1: Livscykelanalys av Polystyrenisolerat Fjaerrvaermesytem med PEX-mediaroer

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Kristin; Olsson, A. Maria; Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-15

    The EPSPEX system is a distribution system for district heat with media pipes of cross-linked polyethylene (PEX) insulated by blocks of expanded polystyrene (EPS). In this low-pressure distribution system two pipes are used for a space heating circuit, having layers of EVAL to hinder oxygen diffusion, whereas two pipes without diffusion barrier are used for delivery of hot tap water and warm water circulation. The four pipes are placed in the insulating blocks of EPS. Environmental impacts from production, laying and use of an EPSPEX district heat distribution system have been investigated using life cycle methodology. The distribution system is a secondary system developed specially for areas with low heat density. The case studied is the installation and use of an EPSPEX system in Vraaen, Vaernamo, Sweden. The environmental impacts are described in four categories: climate change, acidification, eutrophication and use of finite resources. Four weighting methods have also been used in the evaluation: EPS2000, Ecoscarcity, ExternE and EcoIndicator99. While carefully considering the precise circumstances of this study, the findings can be adapted for using the EPSPEX district heat distribution systems in other areas. During this study the question was raised of how this district heat delivery system compares with systems that use conventional district heating pipes. This has been further investigated and is reported in the second part of this report. In the second part the environmental impacts from the EPSPEX system have been compared with the impacts from conventional twin pipes (polyurethane insulated steel media pipes) used in a comparable setting. A discussion on the environmental choice between media pipes of PEX and steel can also be found in the second part. It should be noted that the two systems for district heat distribution are not fully comparable in function. The EPSPEX system has stricter limitations regarding pressure and temperature compared with

  11. Environmental impacts from the EPSPEX-system. Part 1. Life-cycle analysis of a District Heating System with PEX-pipes insulated by expanded polystyrene; Miljoebelastning fraan EPSPEX-systemet. Del 1: Livscykelanalys av Polystyrenisolerat Fjaerrvaermesytem med PEX-mediaroer

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Kristin; Olsson, A Maria; Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-15

    The EPSPEX system is a distribution system for district heat with media pipes of cross-linked polyethylene (PEX) insulated by blocks of expanded polystyrene (EPS). In this low-pressure distribution system two pipes are used for a space heating circuit, having layers of EVAL to hinder oxygen diffusion, whereas two pipes without diffusion barrier are used for delivery of hot tap water and warm water circulation. The four pipes are placed in the insulating blocks of EPS. Environmental impacts from production, laying and use of an EPSPEX district heat distribution system have been investigated using life cycle methodology. The distribution system is a secondary system developed specially for areas with low heat density. The case studied is the installation and use of an EPSPEX system in Vraaen, Vaernamo, Sweden. The environmental impacts are described in four categories: climate change, acidification, eutrophication and use of finite resources. Four weighting methods have also been used in the evaluation: EPS2000, Ecoscarcity, ExternE and EcoIndicator99. While carefully considering the precise circumstances of this study, the findings can be adapted for using the EPSPEX district heat distribution systems in other areas. During this study the question was raised of how this district heat delivery system compares with systems that use conventional district heating pipes. This has been further investigated and is reported in the second part of this report. In the second part the environmental impacts from the EPSPEX system have been compared with the impacts from conventional twin pipes (polyurethane insulated steel media pipes) used in a comparable setting. A discussion on the environmental choice between media pipes of PEX and steel can also be found in the second part. It should be noted that the two systems for district heat distribution are not fully comparable in function. The EPSPEX system has stricter limitations regarding pressure and temperature compared with

  12. Home Insulation With the Stroke of a Brush

    Science.gov (United States)

    2003-01-01

    Hy-Tech Thermal Solutions, LLC, of Melbourne, Florida, is producing a very complex blend of ceramic vacuum-filled refractory products designed to minimize the path of hot air transfer through ceilings, walls, and roofs. The insulating ceramic technology blocks the transfer of heat outward when applied to paint on interior walls and ceilings, and prevents the transfer of heat inward when used to paint exterior walls and roofs, effectively providing year-round comfort in the home. As a manufacturer and marketer of thermal solutions for residential, commercial, and industrial applications, Hy-Tech Thermal Solutions attributes its success to the high performance insulating ceramic microsphere originally developed from NASA thermal research at Ames Research Center. Shaped like a hollow ball so small that it looks as if it is a single grain of flour to the naked eye (slightly thicker than a human hair), the microsphere is noncombustible and fairly chemical-resistant, and has a wall thickness about 1/10 of the sphere diameter, a compressive strength of about 4,000 pounds per square inch, and a softening point of about 1,800 C. Hy-Tech Thermal Solutions improved upon these properties by removing all of the gas inside and creating a vacuum. In effect, a 'mini thermos bottle' is produced, acting as a barrier to heat by reflecting it away from the protected surface. When these microspheres are combined with other materials, they enhance the thermal resistance of those materials. In bulk, the tiny ceramic 'beads' have the appearance of a fine talcum powder. Their inert, nontoxic properties allow them to mix easily into any type of paint, coating, adhesive, masonry, or drywall finish. Additionally, their roundness causes them to behave like ball bearings, rolling upon each other, and letting the coatings flow smoothly. When applied like paint to a wall or roof, the microsphere coating shrinks down tight and creates a dense film of the vacuum cells. The resulting ceramic layer

  13. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  14. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  15. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  16. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome

    Science.gov (United States)

    Vorobyeva, Nadezhda E.; Mazina, Marina U.; Golovnin, Anton K.; Kopytova, Daria V.; Gurskiy, Dmitriy Y.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Georgiev, Pavel G.; Krasnov, Aleksey N.

    2013-01-01

    Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein. PMID:23609538

  17. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  18. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  19. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  20. Thermo-Insulation Properties Of Hemp-Based Products

    Directory of Open Access Journals (Sweden)

    Lekavicius V.

    2015-02-01

    Full Text Available As known, many multi-purpose plants can be used in different industries. This research is focused on the possibilities to utilize hemp as feedstock for thermal insulation products. The most advantageous features of hemp insulation are associated with health and environmental safety. The thermal conductivity of commercially available hemp insulation products is comparable with that of other fibrous insulation materials; however, it is possible to develop new products that could be more efficient in terms of cost and due to other important features.

  1. Dielectric and Insulating Technology 2004 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  2. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  3. Corrosion-under-insulation (CUI) guidelines

    CERN Document Server

    Staff, European Federation of Corrosion; Winnik, S

    2014-01-01

    Corrosion under insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. The European Federation of Corrosion (EFC) Working Parties WP13 and WP15 have worked to provide guidelines on managing CUI together with a number of major European refining, petrochemical and offshore companies including BP, Chevron-Texaco, Conoco-Phillips, ENI, Exxon-Mobil, IFP, MOL, Scanraff, Statoil, Shell, Total and Borealis. The guidelines within this document are intended for use on all plants and installations that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques (including n...

  4. 78 FR 20842 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2013-04-08

    ... DeLonghi); energy and environmental advocates (American Council for an Energy Efficient Economy (ACEEE... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-STD-0020] RIN 1904-AC98 Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners...

  5. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  6. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  7. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  8. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  9. Market opportunities in Canada for multimedia residential services in rural and small urban areas

    Science.gov (United States)

    Shariatmadar, Mehran; Narasimhan, Vasantha

    1995-01-01

    This paper reviews the studies which were undertaken jointly by Telesat and Industry Canada to provide an estimate of the market opportunities for residential multi-media services in the rural and small urban areas of Canada. This study is part of the Advanced Satcom program, a Ka-band satellite system proposal which is currently in the implementation proposal phase by the government and the Canadian space industry of which Telesat is an active member. Advanced Satcom extends the reach of terrestrial information highways to the remote and sparsely populated parts of the country in a cost-effective manner and thus provides a ubiquitous coverage of the information highways to all Canadians. Therefore, the rural and small urban markets are believed to be good opportunities for the Advanced Satcom. Although the results are primarily intended for fixed residential applications, they can also be used as input to market opportunity studies for wideband mobile applications.

  10. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  11. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  12. The highly insulated glass house. State report; Det hoejisolerede glashus. Statusrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Aggerholm, S.

    1997-11-01

    A house with glass facades and translucent thermo insulating glazing is being tested with regard to its thermal comfort, ventilation, interior architecture and energy conservation. The core of the house is constructed of concrete, and in this part the kitchen, bathroom etc. are located. Heating and ventilation are automated. Advantages and drawbacks (leaks, steam condensates etc) are summarized. (EG)

  13. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  14. PRN 2011-1: Residential Exposure Joint Venture

    Science.gov (United States)

    This PR Notice is to advise registrants of an industry-wide joint venture, titled the Residential Exposure Joint Venture (REJV), which has developed a national survey regarding residential consumer use/usage data for pesticides.

  15. A short course on topological insulators band structure and edge states in one and two dimensions

    CERN Document Server

    Asbóth, János K; Pályi, András

    2016-01-01

    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

  16. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  17. Technical Problems of Residential Construction

    Science.gov (United States)

    Nowogońska, Beata; Cibis, Jerzy

    2017-10-01

    Beauty, utility, durability - these are the features of good architecture and should also be the distinguishing qualities of every residential building. But do beauty and utility remain along with the passing of time? Performance characteristics are an indicator of both, the technical as well as aesthetic state of buildings. Aesthetic needs are in disagreement with the merciless aging process. The beauty of a city is formed not only by the original forms of new residential buildings, but also by existing tenement housing; thus preserving their aesthetics becomes a necessity. Time is continuously passing and along with it, aging intensifies. The aging process is a natural phenomenon for every material. The life expectancy of building materials is also limited. Along with the passing of time, the technical state of residential buildings continuously deteriorates. With the passing of time, the aesthetic values and preferences of users of flats change and the usability of the building decreases. The permanence of buildings, including residential buildings, is shaped not only by the forces of nature but also by activities of humans. A long lifespan is ensured by carrying out ongoing, systematic renovation-repair works. It is thanks to them that buildings derived from past centuries are still being used, and their market attractiveness is not decreasing.

  18. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  19. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  20. Effect of Nano Al2O3 Doping on Thermal Aging Properties of Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Ningchuan Liang

    2018-05-01

    Full Text Available The thermal aging property of oil-paper insulation is a key factor affecting the service life of transformers. In this study, nano-Al2O3 was added to insulating paper to improve its anti-thermal aging property and delay the aging rate of the insulating oil. The composite paper containing 2% nano-Al2O3 had the highest tensile strength and therefore was selected for the thermal aging test. The composite and normal papers were treated with an accelerated thermal aging experiment at the temperature of 130 °C for 56 days. The variations of the degree of polymerization (DP and tensile strength of the insulating papers with aging time were obtained. The characteristics of the insulating oil, including color, acid content, breakdown voltage, and dielectric loss were analyzed. The results revealed that compared with a plain paper, the composite paper maintained a higher DP, and its tensile strength decreased more slowly during the aging process. The oil-impregnated composite paper presented a lighter-colored oil, less viscosity changes, and a considerably lower quantity of thermal aging products. In addition, nano-Al2O3 can effectively adsorb copper compounds and keep part of the acid products and water away from the thermal aging process. This characteristic restrained the catalysis of copper compounds and H+ in the thermal aging reaction and reduced the thermal aging speed of both the insulating paper and the insulating oil.

  1. Energy saving innovations in residential buildings. Energiesparende Innovationen im Eigenheim

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, E; Meyer, T

    1983-01-01

    Socio-economic studies have been carried out in the course of the ''Landstuhl demonstration project'' with the aim of evaluating supporting and hampering factors for the realization of energy saving measures, especially for the use of innovation techniques and the use of passive solar energy in residential buildings. The results of two opinion polls have been presented by means of standardized personal interviews with building-owners (in the whole Federal Republic and in the demonstration area) and with building experts (264 persons questioned). The evaluations of the results of the opinion poll show that energy conservation plays an important but not a dominant part in the planning of residential buildings. In the ''Landstuhl area'' energy saving investments took an above-average high position (large impact of the demonstration project). The building-owners and experts most frequently wanted and recommended increased conventional measures. It could be shown that the imagination of the building-owners was asked too much when taking measures for the use of passive solar energy.

  2. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  3. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  4. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  5. Defect design of insulation systems for photovoltaic modules

    Science.gov (United States)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  6. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  7. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  8. Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster.

    Science.gov (United States)

    Krivega, Margarita; Savitskaya, Ekaterina; Krivega, Ivan; Karakozova, Marina; Parshikov, Aleksander; Golovnin, Anton; Georgiev, Pavel

    2010-08-01

    Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.

  9. Setting-related influences on physical inactivity of older adults in residential care settings : a review

    NARCIS (Netherlands)

    Douma, Johanna G.; Volkers, Karin M.; Engels, Gwenda; Sonneveld, Marieke H.; Goossens, Richard H. M.; Scherder, Erik J. A.

    2017-01-01

    Background: Despite the detrimental effects of physical inactivity for older adults, especially aged residents of residential care settings may spend much time in inactive behavior. This may be partly due to their poorer physical condition; however, there may also be other, setting-related factors

  10. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  11. A Neo-Rawlsian Approach to Residential Integration

    Directory of Open Access Journals (Sweden)

    Kevin J. Brown

    2013-08-01

    Full Text Available Over the past 40 years, the United States has engaged in various policies to integrate otherwise segregated black and white households within a shared space. However, little work has been done to fully articulate a moral argument for residential integration among black and white households. This paper offers what I refer to as the normative argument, which possesses two morally-impelled arguments for residential integration. Since the ethical appeal to integrate is often couched in the language of justice, I begin with a framework—based upon the work of the late philosopher John Rawls—for considering the moral aspects of residential integration. However, I go on to point out intractable problems related to the Rawlsian framework that would fail to flesh out all ethical considerations of the normative argument. From here, I provide a revised, or neo-Rawlsian, framework for understanding residential integration which addresses the aforementioned problems. This exercise is both important and necessary for the future of residential mixing, as better understanding the moral and ethical attributes of this discussion is, perhaps, the best means to lubricate the fundamental shift from 'spatial' to 'social' integration.

  12. Modeling of Dynamic Responses in Building Insulation

    Directory of Open Access Journals (Sweden)

    Anna Antonyová

    2015-10-01

    Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.

  13. 38 CFR 36.4357 - Combination residential and business property.

    Science.gov (United States)

    2010-07-01

    ... Reporting § 36.4357 Combination residential and business property. If otherwise eligible, a loan for the purchase or construction of a combination of residential property and business property which the veteran... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Combination residential...

  14. Estimation of the lifetime of resin insulators against baking temperature for JT-60SA in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Atsuhiko M., E-mail: morioka.atsuhiko@jaea.go.jp; Murakami, Haruyuki; Matsunaga, Go; Sakurai, Shinji; Takechi, Manabu; Yoshida, Kiyoshi; Ikeda, Yoshitaka

    2015-10-15

    Highlights: • The lifetime of resin insulators at about 200 °C was estimated. • We make use of the Arrhenius plot by the Weibull analysis for the estimation. • A suitable temperatures for the in-vessel coils were discussed. - Abstract: In the present study, the thermal endurance of epoxy-based, bismaleimides, and cyanate ester resins for the current design of the in-vessel coils was measured by performing acceleration tests to assess their insulation properties using the thermal endurance defined by the International Electrotechnical Commission (IEC-60216 Part1–Part 6) for a minimum of 5,000 h in the 180–240 °C temperature range. It was found that none of the resin insulators could tolerate the baking conditions of 40,000 h at ∼200 °C in the JT-60SA vacuum vessel. Therefore, the design of the in-vessel coils, including the error field correction coils (EFCC), was changed from the type without water cooling to with water cooling on JT-60SA.

  15. Microstructure examination of the interface of the glass-ceramic insulator of the molybdenum frame of a vacuum tube

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    A common technique used in examining the structural integrity of a glass-ceramic insulator-molybdenum cylinder bond in a vacuum tube subassembly is to slit the outer molybdenum cylinder and separate it from the glass-ceramic insulator. Typically, a black glassy layer (0.001 to 0.002 in. thick) remains on the cylinder. This layer has been interpreted as a requirement for an adequate seal. A subassembly was found that did not exhibit this feature. Further investigation of approximately 100 subassemblies revealed four more parts lacking a black glassy layer. These parts were found to be from two production runs and from three glass-ceramic lots. A microstructural analysis showed that on those parts having a black glassy layer, the crystalline phase in the glass-ceramic grew to within one to two microns of the metal interface and then terminated. A dark region existed in the insulator between the interface and the termination of the crystalline phase. This was attributed to molybdenum oxide dissolved in the glass. On those parts where the glass-ceramic broke clean from the cylinder, the crystalline phase extended up to the metal. Also observed on these parts was the appearance of a dark region adjacent to the metal that extended approximately one to two microns into the glass-ceramic. This was assumed to be an oxide of molybdenum. This report presents information concerning the microstructure of the interface

  16. Restructuring and the retail residential market for power in Pennsylvania

    International Nuclear Information System (INIS)

    Kleit, Andrew N.; Shcherbakova, Anastasia V.; Chen Xu

    2012-01-01

    In January 2010 electricity retail residential rate caps expired in a large part of Pennsylvania, allowing consumers to shop for electricity in the retail market. In this paper we employ customer-level data from the relevant territory to analyze what residential customer and community characteristics impacted the decision of whether or not to switch to an alternative electricity provider, and when to make the switch. Results show that customers with higher usage levels (especially around the time of the program's introduction), electric heating, and those living in more urban and more educated communities with lower unemployment rates and higher median household incomes were both more likely to switch, and more likely to do so faster. Lower switching rates and a slower switching response was observed from customers with more variable month to month usage (perhaps this made them unsure of future benefits from switching), those on alternative residential electricity rates (time-of-day and thermal storage programs), and those new to the relevant area (perhaps due to lack of information about the residential choice program). Critics of retail electricity competition have suggested that it disadvantages poor and elderly ratepayers. Our results do not support this contention. Customers living in communities with higher poverty rates were actually more likely to switch (and do so faster) than middle-income consumers. Communities with higher shares of senior population were not found to have lower switching rates from younger communities. - Highlights: ► We analyze introduction of retail competition in Pennsylvania's electricity sector. ► We evaluate what characteristics influence consumers to switch electric providers. ► Higher usage and electric heat influence customers to switch and to do so faster. ► More variable usage and being new to service area deter switching. ► High poverty rates induce switching; older communities no less likely to switch.

  17. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  18. EMISSIONS CHARACTERISTICS OF A RESIDENTIAL PELLET BOILER AND A STOVE

    OpenAIRE

    Win, Kaung Myat; Persson, Tomas

    2010-01-01

    Gaseous and particulate emissions from a residential pellet boiler and a stove are measured at a realistic 6-day operation sequence and during steady state operation. The aim is to characterize the emissions during each phase in order to identify when the major part of the emissions occur to enable actions for emission reduction where the savings can be highest. The characterized emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (...

  19. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  20. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  1. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  2. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  3. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  4. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  5. KSI's Cross Insulated Core Transformer Technology

    International Nuclear Information System (INIS)

    Uhmeyer, Uwe

    2009-01-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  6. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  7. Method of manufacturing a thermally insulating body

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.

    1988-10-11

    A method of manufacturing a microporous thermally insulating body comprises mixing together a finely divided microporous insulating material such as silica aerogel or pyrogenic silica and a solid ammonia-generating compound in particulate form, and compressing the mixture to form a thermally insulating body. The ammonia-generating compound is dispersed evenly throughout the insulating material and may comprise, for example, ammonium carbonate, ammonium acetate or urea. Preferably, the ammonia-generating compound comprises a mixture of about one third by weight of ammonium carbonate and about two thirds by weight of ammonium bicarbonate together with a small proportion of magnesium oxide. Experiments are described which illustrate the manufacturing process. 6 tabs.

  8. Residential normalcy and environmental experiences of very old people: changes in residential reasoning over time.

    Science.gov (United States)

    Granbom, Marianne; Himmelsbach, Ines; Haak, Maria; Löfqvist, Charlotte; Oswald, Frank; Iwarsson, Susanne

    2014-04-01

    The decision to relocate in old age is intricately linked to thoughts and desires to stay put. However, most research focuses either on strategies that allow people to age in place or on their reasons for relocation. There is a need for more knowledge on very old peoples' residential reasoning, including thoughts about aging in place and thoughts about relocation as one intertwined process evolving in everyday life. The aim of this study was to explore what we refer to as the process of residential reasoning and how it changes over time among very old people, and to contribute to the theoretical development regarding aging in place and relocation. Taking a longitudinal perspective, data stem from the ENABLE-AGE In-depth Study, with interviews conducted in 2003 followed up in interviews in 2011. The 16 participants of the present study were 80-89years at the time of the first interview. During analysis the Theoretical Model of Residential Normalcy by Golant and the Life Course Model of Environmental Experience by Rowles & Watkins were used as sensitizing concepts. The findings revealed changes in the process of residential reasoning that related to a wide variety of issues. Such issues included the way very old people use their environmental experience, their striving to build upon or dismiss attachment to place, and their attempts to maintain or regain residential normalcy during years of declining health and loss of independence. In addition, the changes in reasoning were related to end-of-life issues. The findings contribute to the theoretical discussion on aging in place, relocation as a coping strategy, and reattachment after moving in very old age. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

    OpenAIRE

    L. L. Ivy-Yap; H. A. Bekhet

    2014-01-01

    As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential secto...

  10. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  11. The role of the residential neighborhood in linking youths' family poverty trajectory to decreased feelings of safety at school.

    Science.gov (United States)

    Côté-Lussier, Carolyn; Barnett, Tracie A; Kestens, Yan; Tu, Mai Thanh; Séguin, Louise

    2015-06-01

    Although disadvantaged youth are more likely to be victimized at school, victimization only partly explains their decreased feelings of safety at school. We applied a socioecological approach to test the hypotheses that the experience of poverty is associated with decreased feelings of safety at school, and that residential neighborhood features partly mediate the relationship between poverty and feeling less safe at school. This study draws on the Québec Longitudinal Study of Child Development (QLSCD) which began in 1998 with a representative population-based cohort of 2,120 5-month old infants (49.1% female) and their primary caregiver. The study also includes measures of ego-centred residential neighborhood exposures (based on a 500 m circular buffer zone surrounding the family's residential postal code) derived from a spatial data infrastructure. We used latent growth modeling to estimate youth's family poverty trajectory from age 5 months to 13 years, and structural equation modeling to test our hypotheses. The results suggest that youth experiencing chronic and later-childhood poverty felt less safe at school in part because they lived in neighborhoods that their parents described as being disorderly (e.g., demarked by the presence of garbage, drug use and groups of trouble-makers). These neighborhoods also tended to have less greenery (e.g., trees, parks) and more lone-parent households. Neighborhood features did not help explain the relationship between early-childhood poverty and feeling less safe at school. The findings suggest that targeting residential neighborhood features such as greenery and disorder could improve youth's felt safety at school, particularly for those experiencing chronic and later-childhood poverty.

  12. Michigan residential heating oil and propane price survey: 1995-1996 heating season. Final report

    International Nuclear Information System (INIS)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan's Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy's (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply

  13. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  14. Compact gas-insulated transformer. Fourteenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  15. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...... access providers are implementing service differentiation in their networks where voice and video gets prioritised before data. This paper discusses the role of network access providers in multipurpose packet based networks and the available migration strategies for supporting multimedia services...... in digital subscriber line (DSL) based residential broadband networks. Four possible implementation scenarios and their technical characteristics and effects are described. To conclude, the paper discusses how network access providers can be induced to open their networks for third party service providers....

  16. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  17. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  18. Costs of day hospital and community residential chemical dependency treatment.

    Science.gov (United States)

    Kaskutas, Lee Ann; Zavala, Silvana K; Parthasarathy, Sujaya; Witbrodt, Jane

    2008-03-01

    Patient placement criteria developed by the American Society of Addiction Medicine (ASAM) have identified a need for low-intensity residential treatment as an alternative to day hospital for patients with higher levels of severity. A recent clinical trial found similar outcomes at social model residential treatment and clinically-oriented day hospital programs, but did not report on costs. This paper addresses whether the similar outcomes in the recent trial were delivered with comparable costs, overall and within gender and ethnicity stratum. This paper reports on clients not at environmental risk who participated in a randomized trial conducted in three metropolitan areas served by a large pre-paid health plan. Cost data were collected using the Drug Abuse Treatment Cost Analysis Program (DATCAP). Costs per episode were calculated by multiplying DATCAP-derived program-specific costs by each client's length of stay. Differences in length of stay, and in per-episode costs, were compared between residential and day hospital subjects. Lengths of stay at residential treatment were significantly longer than at day hospital, in the sample overall and in disaggregated analyses. This difference was especially marked among non-Whites. The average cost per week was USD 575 per week at day hospital, versus USD 370 per week at the residential programs. However, because of the longer stays in residential, per-episode costs were significantly higher in the sample overall and among non-Whites (and marginally higher for men). These cost results must be considered in light of the null findings comparing outcomes between subjects randomized to residential versus day hospital programs. The longer stays in the sample overall and for non-White clients at residential programs came at higher costs but did not lead to better rates of abstinence. The short stays in day hospital among non-Whites call into question the attractiveness of day hospital for minority clients. Outcomes and costs

  19. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  20. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  1. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  2. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  3. Insulators form gene loops by interacting with promoters in Drosophila.

    Science.gov (United States)

    Erokhin, Maksim; Davydova, Anna; Kyrchanova, Olga; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2011-09-01

    Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.

  4. A computational non-commutative geometry program for disordered topological insulators

    CERN Document Server

    Prodan, Emil

    2017-01-01

    This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder. In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the co...

  5. Family-centred residential care : the new reality?

    NARCIS (Netherlands)

    Geurts, Esther M. W.; Boddy, Janet; Noom, Marc J.; Knorth, Erik J.

    This paper considers therapeutic approaches to residential care with specific attention to the question of family involvement. It builds on a body of literature indicating the potential of residential care as a positive intervention for young people, and examines the contention that even when family

  6. Moisture buffer capacity of different insulation materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2004-01-01

    . In the isothermal tests the material samples were exposed to the same change in the relative humidity of the ambient air on both sides, while the samples were exposed to variations in relative humidity only on the cold side in the non-isothermal tests. The results of these rather different measurement principles...... lead to more durable constructions. In this paper, a large range of very different thermal insulation materials have been tested in specially constructed laboratory facilities to determine their moisture buffer capacity. Both isothermal and nonisothermal experimental set-ups have been used...... are discussed, and different ways are presented how to determine the moisture buffer capacity of the materials using partly standard material parameters and partly parameters determined from the actual measurements. The results so far show that the determination of moisture buffer capacity is very sensitive...

  7. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  8. Trial manufacture of an insulated amplifier

    International Nuclear Information System (INIS)

    Okuno, Shigeo; Matsuura, Kiyokata.

    1978-10-01

    Trial manufacture of an insulated amplifier was carried out. The input signals are divided by filters Th and Tl into high frequency component and low frequency component. The high frequency component drives a transformer T 1 , and secondary signals are induced. The low frequency component drives a transformer T 2 through a buffer and a modulator. The secondary signals from both transformers are recombined to make the output signals. Compensation for the frequency characteristics of the high frequency transformer and that for the effect of a filter in the demodulation circuit for low frequency component are considered. The time constant of output signals for rectangular input signals was 30 microsec, when only the low frequency part is operated. The drift of the direct current level is within 5 mV. The characteristic features of the high frequency part was also investigated. The overall characteristic features of this amplifier were good for the frequency range of 0 to 500 kHz. (Kato, T.)

  9. Thermal paint production: the techno-economic evaluation of muscovite as insulating additive.

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes Ribas

    2016-09-01

    Full Text Available Muscovite is known by its thermal and electrical insulating properties. Based on this, it was hypothesized that its addition on paints should increase the thermal resistance. The use of muscovite as mineral insulating is pointed out as advantageous due to its low cost compared to other materials used for this purpose, such as the ceramic microsphere. The use of a low cost material could open the access to the medium and low income families, implying two aspects: the life quality increase by thermal comfort and the increase of energy saving. Thus, this part of the population could open a new market to thermal paints. Aiming to contribute to this issue, this work evaluated the thermal insulation performance of commercial paints containing muscovite additions and determined the economic evaluation for its industrial production. The thermal paint was formulated by adding 10%, 20% and 40% of muscovite to the commercial paint. This was applied on steel reinforced mortar boards. Thermal insulation tests were carried out in bench scale using an adapted box. The economic evaluation of the industrial production of muscovite-based thermal paint was conducted, considering the Brazilian economic market in this activity. The results showed its ability as an insulating agent due to a reduction of 0.667 °C/mm board by the addition of 40% muscovite. The economic analysis also demonstrated the feasibility of the thermal paint industrial production. The payback is favorable to 5 years when compared to the Selic short-term lending rate, with 21.53% of internal rate return and a net present value of US$ 15,085.76.

  10. Insulation Characteristics of Sisal Fibre/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    A. Shalwan

    2017-01-01

    Full Text Available Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.

  11. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  12. F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia

    Science.gov (United States)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  13. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  14. Large-Scale Residential Demolition

    Science.gov (United States)

    The EPA provides resources for handling residential demolitions or renovations. This includes planning, handling harmful materials, recycling, funding, compliance assistance, good practices and regulations.

  15. Residentialization of Public Spaces: Bratislava Example

    Science.gov (United States)

    Bacová, Andrea; Puškár, Branislav; Vráblová, Edita

    2017-10-01

    The housing estates in Bratislava saturated the housing needs of a large number of inhabitants who come after World War II to the city. Design of public spaces often did not have priority in the process of designing. The solutions for mentioned exterior spaces had been planned after blocks of flat realization, but many of them are not realized to this day. The article analyzes the example of the unrealized public spaces in existing housing estates Devinska Nova Ves and Petržalka (city districts of Bratislava) and offer practical solutions in relation to residencialization method. Residencialization of missing public places is an effective method of adding identities to settlements. It improves the quality of residential environment and public spaces. The main aim is to create better conditions for social activities in public areas, which are missing on the present. The research will be focused on the examination of the urban, cultural and construction potential of the existing residential enviroment in Bratislava. The main aim of residentialization is not only to enhance the quality of spatial and building structures in the selected residential area and maintain long-term sustainability in the pertinent programme area, but mainly to improve the quality of living for the residents. The outputs of the project are proposals and practical procedures developed with regard to planning documents for local municipal authorities and regional organizations. The solutions will have a positive impact on the enhancement of the quality of public spaces, attractive social activities and of a conceptual link - residentialization.

  16. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  17. Forecasting residential electricity demand in provincial China.

    Science.gov (United States)

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  18. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  19. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  20. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  1. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  3. The configuration of residential area in urban structure of the palace in Siak Sri Indrapura - Riau

    Science.gov (United States)

    Rijal, Muhammad

    2018-05-01

    This article is part of major research in describing the configuration of waterfront residential area in urban space structure of the palace and related to the Malay Kingdom in the waterside of the Strait of Malacca. This research aimed to identify the configuration of riverfront residential area in Siak Sri Indrapura City based on physical and non-physical aspects. The method used in this research was qualitative rationalistic referring to the components of urban design theory. The results of the research showed that the spatial configuration in Siak Sri Indrapura City is linear and related to the past events and socio-cultural and socio-economic interaction of the society.

  4. Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore county, MD

    Science.gov (United States)

    Neely L. Law; Lawrence E. Band; J. Morgan. Grove

    2004-01-01

    A residential lawn care survey was conducted as part of the Baltimore Ecosystem Study, a Long-term Ecological Research project funded by the National Science Foundation and collaborating agencies, to estimate the nitrogen input to urban watersheds from lawn care practices. The variability in the fertilizer N application rates and the factors affecting the application...

  5. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  6. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  7. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  8. Adjustment problems and residential care environment

    Directory of Open Access Journals (Sweden)

    Jan Sebastian Novotný

    2015-01-01

    Full Text Available Problem: Residential care environment represents a specific social space that is associated with a number of negative consequences, covering most aspects of children and youth functioning. The paper analyzes of the presence of adjustment problems among adolescents from institutional care environment and compares this results with a population of adolescents who grew up in a family. Methods: The sample consisted of two groups of adolescents. The first group included 285 adolescents currently growing up in an residential care environment, aged 13 to 21 (M = 16.23, SD = 1.643. The second group consisted of 214 adolescents growing up in a family, aged 15 to 20 (M = 17.07, SD = 1.070. We used a questionnaire Youth Self Report. Data were analyzed using descriptive statistics and MANOVA. Results: Results showed that adolescents in residential care exhibit higher average values in all adjustment problems. Also, in the context of diagnostic categories are the residential care adolescents more frequently in non-normal range (borderline and clinical, primarily in the border range. The greatest differences were reflected in the Thought problems and Rule-breaking behavior. MANOVA showed a significant multivariate effect between groups of adolescents, Hotelling's T = .803, F(8, 490 = 49.202, p <.001, d = .445 (large effect. Univariate analysis further showed a significant effect for Withdrawn/depressed (p = .044, d = .089, small effect, Somatic complaints (p = .002, d = .139, medium effect, Social problems (p = 004, d = .127, a small effect, Thought problems (p <.001, d = .633, strong effect, Attention problems (p <.001, d = .320,strong effect, Rule-breaking behavior (p <.001 , d = .383, strong effect, and Aggressive behavior (p = 015, d = .110, small effect. Results for the dimension of Anxious/depressed were not significant (p = .159. Discussion: The results didn’t confirmed the assumption that more than 30% of residential care adolescents have adjustment

  9. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  10. Importance of space-time fluctuations and non-linearities for the transport inside insulating glasses

    International Nuclear Information System (INIS)

    Ladieu, F.

    2003-07-01

    This work deals with transport in insulating glasses. In such solids, the discrete translational symmetry is lost, which means that the plane wave analysis is not a priori the right 'starting point'. As a result, the transport is more difficult to handle, and a huge amount of works have been devoted to many aspects of transport in disordered systems, especially since the seventies. Here we focus on three specific questions: (i) the heat transport in glasses submitted to micro-beams and the associated irreversible vaporization; (ii) the electronic d.c. transport, below 1 Kelvin, in Mott-Anderson insulators, i.e. in 'electron glasses' where both disorder and electron-electron interactions are relevant; (iii) the low frequency dielectric constant in 'structural glasses' (i.e. 'ordinary glasses') which, below 1 Kelvin, is both universal (i.e. independent on the chemical composition) and very different of that of crystals. For each topic, we present both original experiments and the new theoretical concepts that we have elaborated so as to understand the main experimental features. Eventually, it appears that, in any case, transport in insulating glasses is strongly dominated by quite a small part of the 'glass-applied field' ensemble and that the nonlinear response is a relevant tool to get informations on this 'sub-part' which dominates the transport in the whole system. (author)

  11. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  12. Risks from Radon: Reconciling Miner and Residential Epidemiology

    International Nuclear Information System (INIS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-01-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the

  13. [Effects of functional interactions between nonhomologous insulators Wari and Su(Hw)].

    Science.gov (United States)

    Erokhin, M M; Georgiev, P G; Chetverina, D A

    2010-01-01

    Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.

  14. Concepts for evaluation of sound insulation of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2005-01-01

    Legal sound insulation requirements have existed more than 50 years in some countries, and single-number quantities for evaluation of sound insulation have existed nearly as long time. However, the concepts have changed considerably over time from simple arithmetic averaging of frequency bands......¬ments and classification schemes revealed significant differences of concepts. The paper summarizes the history of concepts, the disadvantages of the present chaos and the benefits of consensus concerning concepts for airborne and impact sound insulation between dwellings and airborne sound insulation of facades...... with a trend towards light-weight constructions are contradictory and challenging. This calls for exchange of data and experience, implying a need for harmonized concepts, including use of spectrum adaptation terms. The paper will provide input for future discussions in EAA TC-RBA WG4: "Sound insulation...

  15. Effect of Sweating on Insulation of Footwear.

    Science.gov (United States)

    Kuklane, Kalev; Holmér, Ingvar

    1998-01-01

    The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19-25% (30-37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.

  16. 28 CFR 550.52 - Non-residential drug abuse treatment services.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Non-residential drug abuse treatment... INSTITUTIONAL MANAGEMENT DRUG PROGRAMS Drug Abuse Treatment Program § 550.52 Non-residential drug abuse treatment services. All institutions must have non-residential drug abuse treatment services, provided...

  17. An experimental study on thermal properties of composite insulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gyoung-Seok [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea); Kang, Jae-Sik; Jeong, Young-Sun; Lee, Seung-Eon [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); Sohn, Jang-Yeul [College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea)

    2007-04-01

    In accordance with the insulation standards reinforced since 2001 and the compulsory standards on floor impact sound insulation that have been enforced since 2004, insulation materials for actual buildings have been converted to composite materials and new insulation materials have been released in the market. However, Korea is lagging behind the world in fundamental experimental studies and resources. In case of some composite insulation materials, there also have been problems of distorted performance occurring as a result of tests being conducted without having verification and evaluation on the accuracy and inaccuracy of such tests. Therefore, this study grasped the thermal properties of composite insulation materials using thermal conductivity test equipment by heat flux method, and performed quantitative evaluation on the measurement precision and uncertainty of composite materials. (author)

  18. The Smart Residential Complex Effect on Personality Formation of Children

    Directory of Open Access Journals (Sweden)

    Seyed Kasra Mirpadyab

    2017-06-01

    Full Text Available The interaction between human beings and the environment has been a question of all times; however, the Industrial Revolution has begun to change its way. It can be seen that the human beings were a part of their environment in the past, but now with the advancement of knowledge and technology, the man can dominate in their environment. But today, the man’s needs should be well known about the interaction with the natural environment and with respect to the position of the residential complexes in the modern society, these buildings are designed to create the psychological comfort and the formation of the personality. The authors of this paper believe the mentioned event will be happening in the future generation of the buildings. These buildings will be equipped with smart automation system for all their activities. This research conducted by grounded theories about the explanation of the smart residential complexes equipped with the BMS, which can be effective for shaping the managerial character of the children in their future.

  19. Comparison of Heat Insulations for Cryogenic Tankers Using Analytical and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Ramón Miralbés Buil

    2013-01-01

    Full Text Available This paper presented a methodology for the design of heat insulations used in cryogenic tankers. This insulation usually comprises a combination of vacuum and perlite or vacuum and superinsulation. Concretely, it is a methodology to obtain the temperatures, heat fluxes, and so forth. Using analytical tools has been established, which is based on the equivalence with an electric circuit, and on numerical tools using finite elements. Results obtained with both methods are then compared. In addition, the influence of the outer finish of the external part, due to the effect of the solar radiation, is analyzed too, and the equations to determine the maximum time available to transport the cryogenic liquid have been established. All these aspects are applied to a specific cryogenic commercial vehicle.

  20. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  1. The drivers to adopt renewable energy among residential users.

    Science.gov (United States)

    Rahman, Zahari Abdul; Elinda, Esa

    2016-03-01

    This study aims to examine the drivers to adopt renewable energy (RE) among residential users in Malaysia. Based on the theoretical framework of a consumer’s decision making process, an empirical study of the adoption of RE was conducted. A total of 501 residential users were used in this study. This study proved that perceived utility of new technology, perceived utility of new service, and perceived benefit of new technology are the drivers to adopt RE among residential users. These factors are knowing crucial to RE suppliers and producers because it will generates more demand from the residential users and the percentage of energy mix from RE sources can be increase.

  2. Contemporary moment of residential architecture at the global level: HOUSING 15

    Directory of Open Access Journals (Sweden)

    Petrović Vladana

    2017-01-01

    Full Text Available 'That architectonic exhibitions are an indispensable and significant part of the history of architecture has been proven by numerous exhibitions dating back from the first decades of the 20th century, the Paris exhibitions (Salon d'Automne, where three manifest exhibition designs by Le Corbusier were presented, promoting a new system of values of the forthcoming modernist movement, then the Berlin exhibitions in the second half of the 20th century (Interbau 1957, IBA 1987 where the Postmodern was promoted, up to the second decade of the 21st century and the Biennial in Venice (La Biennale di Venezia, 2014, whose uniting topic was One Hundred Years of ,Modernity' (prof arch Darko Marušić, quote from the catalogue of the HOUSING 15. HOUSING 15 is an exhibition that was created on the initiative of the Department of Residential Building, Faculty of Civil Engineering and Architecture, University of Nis, in order to present the modern housing architecture at the global level. The exhibition was shown at the BINA 2016 and was followed by a round table discussion upon the topic Contemporary moment of residential architecture at the global level. The idea of the round table was to compare domestic and international experience in this field and draw attention toward the attitude on the present, electronic time considering the development of the residential architecture. The specificity of this exhibition, compared to the other events of a similar nature, is that in addition to architectural design the scientific expert reviews for the selected works are also presented, given by the international scientific and artistic committee of the exhibition. The paper is the summary of the discussion held at the round table, and it presents the potential problems, answers and conclusions relating to residential architecture today from the professional perspective.

  3. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  4. Integration of motor traffic in residential areas.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1977-01-01

    In stead of banning the cars from residential areas, the plan is to integrate them in such a way that they can still be used, but that they will loose their predominant position. The areas where this integration is to take place are called residential yards. This paper concentrates on the lighting

  5. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...... histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology....

  6. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  7. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  8. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  9. The Analysis of Differences in Residential Property Price Indices

    Directory of Open Access Journals (Sweden)

    Kokot Sebastian

    2014-10-01

    Full Text Available Residential property price indices can serve as a useful tool in the practice of real property market analysts, investment advisers, property developers, certified property appraisers, estate agents and managers. They can also be applied in property price valorization in specific legal positions. The Polish Act on Real Estate Management puts an obligation on the President of the Central Statistical Office to announce real property price indices, but the CSO fails to fulfill this obligation. The author’s rationale for this article is to contribute to works on rules of how to build property price indices. Presented within are the results of research on determining the price indices of such types of residential property as: a part of a building constituting a separate property and strata titles in housing cooperatives. The flats were divided into categories by floor area and by their location in 16 voivodeship capitals. The major purpose of the study is to prove that the prices of flats of different floor area change at different rates. Consequently, it seems worth considering whether a more detailed segmentation of the real estate market would be worthwhile for the sake of more accurate real property price indicators.

  10. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  11. Facility for endurance tests of thermal insulations

    International Nuclear Information System (INIS)

    Mauersberger, R.

    1984-01-01

    In the following report the design and construction of an experimental facility for endurance tests of thermal insulations is presented. It's name in abbreviation is 'ADI' standing for the German words A nlage zum Dauertest von Isolierungen . This test facility was build by HRB in order to investigate the performance of thermal insulation systems of hot gas ducts for the process heat-reactor-project. The tests are intended to simulate the conditions of reactor operation. They include short-time experiments for selection of insulation-concepts and in a second step long-time experiments as performance tests. During these tests are measured the effective heat conductivity the local heat losses the temperature profiles of the insulation, of the fixing elements and along the wall of the duct. The design-data required to perform all these tasks are shown in the first picture: The gas-atmosphere must be Helium in tests like in reactor with regard to the special thermal and hydraulic properties of Helium and to the influence of Helium on mechanic friction and wear. The hot gas temperature in the PNP-reactor will be 950 deg. C and should be equal in the experiments. The temperature on the cold side of the insulation has to be adjustable from 50 deg. C up to 300 deg. C. The Helium pressure in the hot gas ducts of a HTR-plant is about 42 bar. The ADI was laid out for 70 bar to cover the hole range of interest. A Helium mass flow has to stream through the insulated test duct in order to realize equal temperatures on the hot side of the insulation. A flow rate of 4,5 kg/s is sufficient for this requirement. The axial pressure gradient along the insulation must be the same as in the reactor, because this has an essential influence on the heat losses. This pressure gradient is about 40 Pa/m

  12. Residential electricity demand in Singapore

    International Nuclear Information System (INIS)

    Ang, B.W.; Goh, T.N.; Liu, X.Q.

    1992-01-01

    Residential electricity consumption in Singapore increased at a rate of 8.8% per year between 1972 and 1990. Estimates of the long-run income and price elasticities are 1.0 and -0.35, respectively. The energy-conservation campaigns that have been launched are found to have marginal effects on consumption. A statistical analysis shows that the consumption is sensitive to small changes in climatic variables, particularly the temperature, which is closely linked to the growing diffusion of electric appliances for environmental controls. There has been a temporal increase in the ownership levels of appliances associated with increasing household incomes. However, other factors were involved since the ownership levels would also increase over time after the elimination of the income effect. A large part of the future growth in electricity demand will arise from the growing need for air-conditioning, which will lead to increasingly large seasonal variations in electricity use. (author)

  13. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  14. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  15. Insulation coordination workstation for AC and DC substations

    International Nuclear Information System (INIS)

    Booth, R.R.; Hileman, A.R.

    1990-01-01

    The Insulation Coordination Workstation was designed to aid the substation design engineer in the insulation coordination process. The workstation utilizes state of the art computer technology to present a set of tools necessary for substation insulation coordination, and to support the decision making process for all aspects of insulation coordination. The workstation is currently being developed for personal computers supporting OS/2 Presentation Manager. Modern Computer-Aided Software Engineering (CASE) technology was utilized to create an easily expandable framework which currently consists of four modules, each accessing a central application database. The heart of the workstation is a library of user-friendly application programs for the calculation of important voltage stresses used for the evaluation of insulation coordination. The Oneline Diagram is a graphic interface for data entry into the EPRI distributed EMTP program, which allows the creation of complex systems on the CRT screen using simple mouse clicks and keyboard entries. Station shielding is graphically represented in the Geographic Viewport using a three-dimensional substation model, and the interactive plotting package allows plotting of EPRI EMTP output results on the CRT screen, printer, or pen plotter. The Insulation Coordination Workstation was designed by Advanced Systems Technology (AST), a division of ABB Power Systems, Inc., and sponsored by the Electric Power Research Institute under RP 2323-5, AC/DC Insulation Coordination Workstation

  16. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  17. Residential damage in an area of underground coal mining

    International Nuclear Information System (INIS)

    Padgett, M.F.

    1988-01-01

    In order to estimate the potential for future subsidence-related residential damage, a statistical analysis of past residential damage in the Boulder-Weld, Colorado, coal field was performed. The objectives of this study were to assess the difference in damage severity and frequency between undermined and non-undermined areas, and to determine, where applicable, which mining factors significantly influence the severity and frequency of residential damage. The results of this study suggest that undermined homes have almost three times the risk of having some type of structural damage than do non-undermined homes. The study also indicated that both geologic factors, such as the ratio of sandstone/claystone in the overburden, and mining factors, such as the mining feature (room, pillar, entry, etc.), can significantly affect the severity of overlying residential damage. However, the results of this study are dependent on local conditions and should not be applied elsewhere unless the geologic, mining, and residential conditions are similar

  18. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  19. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  20. Transport attitudes, residential preferences, and urban form effects on cycling and car use

    DEFF Research Database (Denmark)

    Transport attitudes, residential preferences, and urban form effects on cycling and car use. Promotion of walking and cycling is part of policies at multiple levels and reasoned in public health as well as environmental sustainability outcomes. Urban form and neighborhood characteristics are thou....... Reduced car use seems to require a high degree of convenience of not driving – by means of very short, walkable distances to services...

  1. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  2. Action dependent heuristic dynamic programming based residential energy scheduling with home energy inter-exchange

    International Nuclear Information System (INIS)

    Xu, Yancai; Liu, Derong; Wei, Qinglai

    2015-01-01

    Highlights: • The algorithm is developed in the two-household energy management environment. • We develop the absent energy penalty cost for the first time. • The algorithm has ability to keep adapting in real-time operations. • Its application can lower total costs and achieve better load balancing. - Abstract: Residential energy scheduling is a hot topic nowadays in the background of energy saving and environmental protection worldwide. To achieve this objective, a new residential energy scheduling algorithm is developed for energy management, based on action dependent heuristic dynamic programming. The algorithm works under the circumstance of residential real-time pricing and two adjacent housing units with energy inter-exchange, which can reduce the overall cost and enhance renewable energy efficiency after long-term operation. It is designed to obtain the optimal control policy to manage the directions and amounts of electricity energy flux. The algorithm’s architecture is mainly constructed based on neural networks, denoting the learned characteristics in the linkage of layers. To get close to real situations, many constraints such as maximum charging/discharging power of batteries are taken into account. The absent energy penalty cost is developed for the first time as a part of the performance index function. When the environment changes, the residential energy scheduling algorithm gains new features and keeps adapting in real-time operations. Simulation results show that the developed algorithm is beneficial to energy conversation

  3. Tracking the Sun VIII. The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Grue, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-01

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar report series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.

  4. Thermal-performance study of liquid metal fast breeder reactor insulation

    International Nuclear Information System (INIS)

    Shiu, K.K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations

  5. Thermal insulation product for insulation, especially in nuclear power engineering, and method of its production

    International Nuclear Information System (INIS)

    Veselovsky, P.; Zink, S.; Balacek, P.; Mares, I.

    1989-01-01

    The insulation consists of a sewn fabric cover made of inorganic fibers, in which the fiber filling is reinforced mechanically by dense point interweaving. The inorganic fibers, 1 to 5 μm in diameter, consist of min. 97 wt.% mixture of aluminium and silicon oxides in the vitreous state. The fibers making up the cover consist of min. 95% silicon, aluminium, calcium, magnesium and boron oxides in the vitreous state; the rest can consist of alloy steel fibres. The bulk density of the insulation is 70 to 150 kg/m 3 . The product is highly resistant to temperature and to the action of chemicals, water, and acid and alkaline deactivation solutions. Its manufacture is fast and undemanding. It is designed for thermal insulation of pipes, tanks and valves in nuclear power plants. (M.D.). 2 figs

  6. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines.

    Science.gov (United States)

    Babič, Monika Novak; Zalar, Polona; Ženko, Bernard; Schroers, Hans-Josef; Džeroski, Sašo; Gunde-Cimerman, Nina

    2015-03-01

    Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Assessment of Residential History Generation Using a Public-Record Database

    Directory of Open Access Journals (Sweden)

    David C. Wheeler

    2015-09-01

    Full Text Available In studies of disease with potential environmental risk factors, residential location is often used as a surrogate for unknown environmental exposures or as a basis for assigning environmental exposures. These studies most typically use the residential location at the time of diagnosis due to ease of collection. However, previous residential locations may be more useful for risk analysis because of population mobility and disease latency. When residential histories have not been collected in a study, it may be possible to generate them through public-record databases. In this study, we evaluated the ability of a public-records database from LexisNexis to provide residential histories for subjects in a geographically diverse cohort study. We calculated 11 performance metrics comparing study-collected addresses and two address retrieval services from LexisNexis. We found 77% and 90% match rates for city and state and 72% and 87% detailed address match rates with the basic and enhanced services, respectively. The enhanced LexisNexis service covered 86% of the time at residential addresses recorded in the study. The mean match rate for detailed address matches varied spatially over states. The results suggest that public record databases can be useful for reconstructing residential histories for subjects in epidemiologic studies.

  8. Residential Mobility Across Early Childhood and Children's Kindergarten Readiness.

    Science.gov (United States)

    Mollborn, Stefanie; Lawrence, Elizabeth; Root, Elisabeth Dowling

    2018-04-01

    Understanding residential mobility in early childhood is important for contextualizing family, school, and neighborhood influences on child well-being. We examined the consequences of residential mobility for socioemotional and cognitive kindergarten readiness using the Early Childhood Longitudinal Study-Birth Cohort, a nationally representative longitudinal survey that followed U.S. children born in 2001 from infancy to kindergarten. We described individual, household, and neighborhood characteristics associated with residential mobility for children aged 0-5. Our residential mobility indicators examined frequency of moves, nonlinearities in move frequency, quality of moves, comparisons between moving houses and moving neighborhoods, and heterogeneity in the consequences of residential mobility. Nearly three-quarters of children moved by kindergarten start. Mobility did not predict cognitive scores. More moves, particularly at relatively high frequencies, predicted lower kindergarten behavior scores. Moves from socioeconomically advantaged to disadvantaged neighborhoods were especially problematic, whereas moves within a ZIP code were not. The implications of moves were similar across socioeconomic status. The behavior findings largely support an instability perspective that highlights potential disruptions from frequent or problematic moves. Our study contributes to literature emphasizing the importance of contextualizing residential mobility. The high prevalence and distinct implications of early childhood moves support the need for further research.

  9. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  10. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  11. Topological insulators and superconductors: tenfold way and dimensional hierarchy

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W

    2010-01-01

    It has recently been shown that in every spatial dimension there exist precisely five distinct classes of topological insulators or superconductors. Within a given class, the different topological sectors can be distinguished, depending on the case, by a Z or a Z 2 topological invariant. This is an exhaustive classification. Here we construct representatives of topological insulators and superconductors for all five classes and in arbitrary spatial dimension d, in terms of Dirac Hamiltonians. Using these representatives we demonstrate how topological insulators (superconductors) in different dimensions and different classes can be related via 'dimensional reduction' by compactifying one or more spatial dimensions (in 'Kaluza-Klein'-like fashion). For Z-topological insulators (superconductors) this proceeds by descending by one dimension at a time into a different class. The Z 2 -topological insulators (superconductors), on the other hand, are shown to be lower-dimensional descendants of parent Z-topological insulators in the same class, from which they inherit their topological properties. The eightfold periodicity in dimension d that exists for topological insulators (superconductors) with Hamiltonians satisfying at least one reality condition (arising from time-reversal or charge-conjugation/particle-hole symmetries) is a reflection of the eightfold periodicity of the spinor representations of the orthogonal groups SO(N) (a form of Bott periodicity). Furthermore, we derive for general spatial dimensions a relation between the topological invariant that characterizes topological insulators and superconductors with chiral symmetry (i.e., the winding number) and the Chern-Simons invariant. For lower-dimensional cases, this formula relates the winding number to the electric polarization (d=1 spatial dimensions) or to the magnetoelectric polarizability (d=3 spatial dimensions). Finally, we also discuss topological field theories describing the spacetime theory of

  12. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  13. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  14. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  15. Crosslinking of wire and cable insulation using electron accelerators

    International Nuclear Information System (INIS)

    Feng Yongxiang; Ma Zueteh

    1992-01-01

    Radiation crosslinking of wire and cable insulation is a well-established technology that is widely used in industry. The advantages of radiation crosslinking over chemical crosslinking have helped maintain its steady growth. Since successful utilization of electron beam processing relies on the formulation of compounds used in insulation, the radiation crosslinking of various polymers is reviewed. The handling technology for crosslinking wire and cable insulation and the throughput capacity of electron beam processors are also discussed. More than 30% of the industrial electron accelerators in the world are used for the radiation crosslinking of wire and cable insulation. Prospects of increased use of electron accelerators for crosslinking of wire and cable insulation are very good. (orig.)

  16. Simulation of Contamination Deposition on Typical Shed Porcelain Insulators

    Directory of Open Access Journals (Sweden)

    Yukun Lv

    2017-07-01

    Full Text Available The contamination deposition characteristics of insulators can be used in the development of antifouling work. Using COMSOL software, numerical simulations on the pollution-deposited performance of a porcelain three-umbrella insulator and porcelain bell jar insulator in a wind tunnel were conducted, and the simulated results were compared with the tested results. The comparison shows that the deposit amount is consistent with the order of magnitude and presents a similar tendency with Direct Current (DC voltage variation; then the rationality of the simulation is verified. Based on these results, simulations of the natural contamination deposition on porcelain insulators and the distribution of pollution along the umbrella skirt were performed. The results indicates that, under a same wind speed, contamination of the porcelain three-umbrella insulator and porcelain bell jar insulator under DC voltage was positively correlated with the particle size. With the same particle size, the proportion of the deposit amount under DC voltage (NSDDDC to the deposit amount under AC voltage (NSDDAC of both insulators decreases with the increase in wind speed. However, the ratio increases as particle size increase. At a small wind speed, the deposit amount along the umbrella skirt of the two insulators displays a U-shaped distribution under DC voltage while there is little difference in the contamination amount of each skirt under Alternating Current (AC voltage.

  17. The electric tariff in the residential sector; Tarificacion electrica en el sector residencial

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1997-12-31

    The main objective of this paper is to make an historical revision and analyze the current condition of the electric tariffs in the Mexican residential sector and ask ourselves if the equalization of tariffs generates the possibility that the entire population has access to the electricity service. The document is divided into three parts. The first one presents the history and the tendencies of the tariffs in the domestic sector in Mexico since 1973 until 1996 and the current tariff structure. The second one describes the characteristics of the residential users and mention is made of how the increment of the electric tariffs would affect the various population sectors. The last part of this paper presents some tariff criteria, that take into account energy conservation measures [Espanol] El objetivo principal de este trabajo es hacer una revision historica y analizar la situacion actual de las tarifas electricas en el sector residencial mexicano y preguntarnos si la igualdad de tarifas genera la posibilidad de que toda la poblacion tenga acceso al servicio electrico. El documento se divide en tres partes. La primera presenta la historia y tendencias de las tarifas del sector domestico en Mexico desde 1973 hasta 1996 y la estructura tarifaria actual. La segunda describe las caracteristicas de los usuarios residenciales y se menciona como afectaria el incremento de las tarifas electricas a los distintos sectores de la poblacion. La ultima parte de este trabajo presenta algunos criterios de tarificacion, que toman en cuenta medidas de ahorro de energia

  18. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  19. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

  20. The importance of engaging residential energy customers' hearts and minds

    International Nuclear Information System (INIS)

    Olaniyan, Monisola J.; Evans, Joanne

    2014-01-01

    In an attempt to reduce the contribution of residential greenhouse gas emissions the EU has implemented a variety of policy measures. The focus has been to promote domestic energy efficiency and ultimately a reduction in residential energy demand. In this study we estimate residential energy demand using Underlying Energy Demand Trend (UEDT) and Asymmetric Price Responses for 14 European OECD countries between 1978 and 2008. Our results support the conclusion that policies to reduce residential energy consumption and the consequent emissions need to account for behavioural, lifestyle and cultural factors in order to be effective. - Highlights: • Residential energy demand is estimated for 14 European OECD countries between 1978 and 2008. • Investigate the relative contributions of Underlying Energy Demand Trend (UEDT) which captures exogenous technical progress. • The most effective policies target behavioural, lifestyle and cultural factors to reduce residential energy consumption

  1. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    Directory of Open Access Journals (Sweden)

    Huang Can

    2014-08-01

    Full Text Available In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation (MTI is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.

  2. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  3. A system for the thermal insulation of a pre-stressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    This invention concerns the thermal insulation of a pre-stressed concrete vessel for a pressurised water nuclear reactor, this vessel being fitted internally with a leak-proof metal lining. Two rings are placed at the lower and upper parts of the vessel respectively. The upper ring is closed with a cover. These rings differ in diameter, are fitted with a metal insulating and mark the limits of a chamber between the vaporisable fluid and the internal wall of the vessel. This chamber is filled with a fluid in the liquid phase up to the liquid/vapor interface level of the fluid and with a gas above that level, the covering of the rings forming a cold fluid liquid seal. Each ring is supported by the vessel. Leak-proof components take up the radial expansion of the rings [fr

  4. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  5. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  6. Residential hospice environments: evidence-based architectural and landscape design considerations.

    Science.gov (United States)

    Verderber, Stephen

    2014-01-01

    The residential hospice care movement is increasingly accepted and supported globally, and yet, unfortunately, the amount of literature on best practices in the planning and design of residential hospice facilities and adjacent outdoor spaces remains relatively small. This paper reports on a compendium of architectural and landscape design considerations that reflect the fundamental dimensions of the residential hospice experience: site and context, arrival spaces, communal and private spaces of the residential milieu, transitional spaces, and nature connectivity. Additionally, key staffing and administrative ramifications of this built-environment compendium are addressed, as are prognostications and challenges for the future.

  7. Enact legislation supporting residential property assessed clean energy financing (PACE)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Devashree

    2012-11-15

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  8. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  9. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  10. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Guide 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have how been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design of heavily insulated pipe systems are then recommended

  11. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Code 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have now been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design for heavily insulated pipe systems are then recommended

  12. Condition assessment and strengthening of residential units

    Directory of Open Access Journals (Sweden)

    Tatheer Zahra

    2014-01-01

    Full Text Available About 40, ground plus one (G+1 residential units were designed using a hybrid structural framing system (RC frame and load bearing walls. A few months after the completion of the ground floor of the residential units, cracks appeared at several locations in the structure. Field and Laboratory testing was conducted to ascertain the in situ strength of concrete and steel reinforcement. The results of the experimental work were used in the analytical ETABS model for the structural stability calculations. The results indicated that residential units were marginally safe in the existing condition (completed ground floor, but the anticipated construction of the floor above the ground floor (G+1 could not be carried out as the strength of the structural system was inadequate. To increase the safety of existing ground floor and to provide the option of the construction of one floor above, rehabilitation and strengthening design was performed. The proposed strengthening design made use of welded wire fabric (WWF and carbon fibre reinforced polymer (CFRP laminates/sheets for the strengthening of walls, columns and slabs. The residential units will be strengthened in the near future.

  13. Employee influenza vaccination in residential care facilities.

    Science.gov (United States)

    Apenteng, Bettye A; Opoku, Samuel T

    2014-03-01

    The organizational literature on infection control in residential care facilities is limited. Using a nationally representative dataset, we examined the organizational factors associated with implementing at least 1 influenza-related employee vaccination policy/program, as well as the effect of vaccination policies on health care worker (HCW) influenza vaccine uptake in residential care facilities. The study was a cross-sectional study using data from the 2010 National Survey of Residential Care Facilities. Multivariate logistic regression analysis was used to address the study's objectives. Facility size, director's educational attainment, and having a written influenza pandemic preparedness plan were significantly associated with the implementation of at least 1 influenza-related employee vaccination policy/program, after controlling for other facility-level factors. Recommending vaccination to employees, providing vaccination on site, providing vaccinations to employees at no cost, and requiring vaccination as a condition of employment were associated with higher employee influenza vaccination rates. Residential care facilities can improve vaccination rates among employees by adopting effective employee vaccination policies. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  14. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  15. Occupational safety issues in residential construction surveyed in Wisconsin, United States.

    Science.gov (United States)

    Choi, Sang D; Carlson, Kathryn

    2014-01-01

    Residential construction is a high-risk industry in the U.S. due to the exposure to work-related safety hazards and fall injuries. This study aimed to examine the safety training and safe work practices of construction workers within the small residential construction industry. In order to achieve the study objectives, a survey was designed and sent to approximately 200 Wisconsin based residential construction contractors. About one third of the respondents stated that they did not have any form of safety programs. The study indicated that the most common types of work-related injuries in residential construction were slips/trips/falls and cuts/lacerations. The survey findings also suggested that the residential construction contractors needed to increase the utilization of fall protection safety equipment. Further education and subject matter expert training could provide benefits to improve occupational safety and health of the small business workforce in the residential construction industry.

  16. INCAS residential building energy savings design code: User's guide. INCAS: guida all'uso del codice di calcolo di diagnosi energetica nell'abitazione

    Energy Technology Data Exchange (ETDEWEB)

    Carderi, A.

    1991-01-01

    The INCAS residential building energy savings design code comes complete with data banks giving designers all the necessary technical and economic information and energy savings options for the code's efficacious application to obtain the optimum energy efficient/cost beneficial solution. This user's manual contains descriptions of the types of data to be input, the code's methodology, the data banks, and complete instructions for the code's implementation. The energy savings alternatives include: choice of heating plant and fuel; choice, application location and thickness of thermal insulation. For the case of building heating system retrofits, the code takes into account the existing condition of building components.

  17. Gentrification and Residential Mobility in Philadelphia.

    Science.gov (United States)

    Ding, Lei; Hwang, Jackelyn; Divringi, Eileen

    2016-11-01

    Gentrification has provoked considerable controversy surrounding its effects on residential displacement. Using a unique individual-level, longitudinal data set, this study examines mobility rates and residential destinations of residents in gentrifying neighborhoods during the recent housing boom and bust in Philadelphia for various strata of residents and different types of gentrification. We find that vulnerable residents, those with low credit scores and without mortgages, are generally no more likely to move from gentrifying neighborhoods compared with their counterparts in nongentrifying neighborhoods. When they do move, however, they are more likely to move to lower-income neighborhoods. Residents in gentrifying neighborhoods at the aggregate level have slightly higher mobility rates, but these rates are largely driven by more advantaged residents. These findings shed new light on the heterogeneity in mobility patterns across residents in gentrifying neighborhoods and suggest that researchers should focus more attention on the quality of residential moves and nonmoves for less advantaged residents, rather than mobility rates alone.

  18. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    International Nuclear Information System (INIS)

    Kavousian, Amir; Rajagopal, Ram; Fischer, Martin

    2013-01-01

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. - Highlights: • Weather, location and floor area are the most important determinants of residential electricity use. • Daily minimum and maximum are explained by different factors. • Number of refrigerators and entertainment devices explain daily minimum the best. • Number of occupants and high-consumption appliances explain daily maximum the best. • Other factors such as energy efficient features and household's socioeconomic status are examined

  19. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  20. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  1. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  2. Measuring urban tree loss dynamics across residential landscapes.

    Science.gov (United States)

    Ossola, Alessandro; Hopton, Matthew E

    2018-01-15

    The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by

  3. In-home performance of residential cordwood stoves

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.

    1991-01-01

    The air quality impacts of residential cordwood stoves have been of concern to regulators, energy planners, and members of the woodstove industry. In addition, the reliability of laboratory certification emission values in predicting 'real world' emissions has been questioned. In response to these concerns, particulate emissions from residential cordwood stoves under actual in-home use have been measured for 5 heating seasons as part of 12 separate studies in Oregon, New York, Vermont, and the Yukon Territory. Monitoring was conducted using an automated emission sampler (AES) system. The system has been deployed in nearly 100 individual homes. Typically, emissions from several 1-week-long integrated sampling periods over the course of the heating season were measured with the AES system at each home. Particulate emission rates in grams of particles per hour of stove operation, grams of particles per kilogram of dry wood burned, and grams of particles per million Joules were calculated. Ancillary data provided by the studies included wood burn rates, homeowner wood loading patterns, wood moisture content and species, hours of operation of auxiliary heating appliances in the study homes, room ambient, flue gas, catalyst, and pre-catalyst temperatures, and hours of catalyst operation. Conventional stoves, high-technology non-catalytic stoves, catalytic stoves, and stoves equipped with retrofit catalytic devices have been studied. In addition to the 12 cordwood stove studies, the AES system has been used in 2 pellet stove studies and 1 fireplace study

  4. Built-in unit with short-circuit insulation for hermetic cable ducts

    International Nuclear Information System (INIS)

    Tschacher, B.; Gurr, W.; Kusserow, J.; Katzmarek, W.

    1984-01-01

    The invention concerns a built-in unit with short-circuit insulation for hermetic cable ducts, especially for containments of nuclear power reactors. The short-circuit insulation is achieved by an insulation plate made from radiation-resistant insulating materials of high mechanical strength

  5. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  6. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  7. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  8. Modeling temporal variations in global residential energy consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Chen, Han; Huang, Ye; Shen, Huizhong; Chen, Yilin; Ru, Muye; Chen, Yuanchen; Lin, Nan; Su, Shu; Zhuo, Shaojie; Zhong, Qirui; Wang, Xilong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2016-01-01

    Highlights: • Space-for-time substitution was tested for seasonality of residential energy. • Regression models were developed to simulate global residential energy consumption. • Factors affecting the temporal trend in residential energy use were identified. • Climate warming will induce changes in residential energy use and emissions. - Abstract: Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO_2, SO_2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

  9. Thermal Analysis of Low Layer Density Multilayer Insulation Test Results

    Science.gov (United States)

    Johnson, Wesley L.

    2011-01-01

    Investigation of the thermal performance of low layer density multilayer insulations is important for designing long-duration space exploration missions involving the storage of cryogenic propellants. Theoretical calculations show an analytical optimal layer density, as widely reported in the literature. However, the appropriate test data by which to evaluate these calculations have been only recently obtained. As part of a recent research project, NASA procured several multilayer insulation test coupons for calorimeter testing. These coupons were configured to allow for the layer density to be varied from 0.5 to 2.6 layer/mm. The coupon testing was completed using the cylindrical Cryostat-l00 apparatus by the Cryogenics Test Laboratory at Kennedy Space Center. The results show the properties of the insulation as a function of layer density for multiple points. Overlaying these new results with data from the literature reveals a minimum layer density; however, the value is higher than predicted. Additionally, the data show that the transition region between high vacuum and no vacuum is dependent on the spacing of the reflective layers. Historically this spacing has not been taken into account as thermal performance was calculated as a function of pressure and temperature only; however the recent testing shows that the data is dependent on the Knudsen number which takes into account pressure, temperature, and layer spacing. These results aid in the understanding of the performance parameters of MLI and help to complete the body of literature on the topic.

  10. Design and construction of the mineral insulated magnets

    International Nuclear Information System (INIS)

    Kurokawa, S.; Hirabayashi, H.; Taino, M.; Tsuchiya, K.; Yamamoto, A.

    1978-01-01

    The radiation resistant magnets with mineral insulated coils are designed and constructed. The electrical insulation of the cable is maintained by magnesium oxide in the form of a powder held around the copper hollow conductor by a copper shieth. By the direct water cooling through a hollow conductor the sometimes conflicting requirements of good insulation and high field are fulfilled. The magnets can with stand more than 10 12 rad of absorbed dose. (author)

  11. Impact of insulation and consumer behavior on natural gas consumption

    Energy Technology Data Exchange (ETDEWEB)

    van Mastrigt, P.

    1983-09-01

    The influence of insulation measures and certain changes in behavioral patterns on gas consumption for home heating has been examined, both on an annual basis and on the maximum day and at the maximum hour. By means of good insulation (cavity wall insulation and double glazing on the ground floor) annual gas consumption can be brought down by 28-35%, depending on the type of dwelling, as compared with moderate insulation. Maximum day consumption will go down by 26-33% and maximum hour consumption by no more than 20-28%. Further insulation, to current Danish standards, would enable savings of up to 72% of annual consumption, 64-66% of maximum day consumption and 52-55% of maximum hour consumption. By further night reduction from 14.5 degrees C to 12 degrees C 2% of the annual consumption can be saved in moderately insulated dwellings. It also leads, however, to an increase in maximum hour consumption by some 11%. In heavily insulated dwellings further night reduction does not yield any additional savings on the annual consumption. By lowering the thermostat setting by 2 degrees C in the daytime annual consumption in a moderately insulated dwelling can be cut by 9%. With increasing insulation level the savings will get higher, up to 11% in heavily insulated dwellings. Drawing the curtains during the evening and night may yield savings of 4-6% depending on the ratio of glass surface to total outer wall surface. These savings will be lower as the insulation level increases. The results of the study have been converted to the overall domestic natural gas consumption in the Netherlands. In 1985 the annual consumption will be 7% lower than in 1978 as a result of insulation measures and changes in consumer behavior, even at a rise in the total number of connections. Maximum day consumption will be 5% lower and maximum hour consumption will be virtually the same. This trend became already manifest during the 1978-1982 period.

  12. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  13. Chieti-Pescara Metropolitan Area: International Migrations, Residential Choices and Economic Deconcentration

    Directory of Open Access Journals (Sweden)

    Armando Montanari

    2006-06-01

    Full Text Available The subject of human mobility – with reference to the migratory component – has taken on specific significance during the last decade, particularly with regard to the concept of place. This paper considers the subject in relation to residential and economic deconcentration. The specific point of reference is the metropolitan area of Chieti-Pescara, in the central part of Italy’s Adriatic coast. The research was carried out through quantitative analysis of official data from population censuses and register offices. The results highlight the links between movements of residents and those of firms, in which foreign residents show distinctive behaviour. The residential choices made by foreigners in the area are based on economic reasons and are primarily linked to housing and transport costs. Their communities tend to be concentrated in specific zones of the metropolitan area and in specific districts of the cities, as a consequence of a feeling of belonging and solidarity. Although there are no clear signs of segregation phenomena, the native population tends to avoid mingling with foreigners from marginal countries.

  14. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  15. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  17. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials

    Science.gov (United States)

    Wang, Xiaole; Luo, Xudong; Zhao, Hui; Huang, Zhenyu

    2018-01-01

    We report the mechanism for simultaneous realization of acoustic perfect absorption (PA) and broadband insulation (BI) in the acoustic free field by a layered acoustic metamaterial (LAM). The proposed LAM comprises two critically coupled membrane-type acoustic metamaterials sandwiching a porous material layer. Both theoretical and experimental results verify that the proposed LAM sample can achieve nearly PA (98.4% in experiments) at 312 Hz with a thickness of 15 mm (1/73 of wavelength) and BI in the frequency range of 200-1000 Hz with an areal density of 2.2 kg/m2. In addition, the real parts of both the effective dynamic density and bulk modulus reach zero precisely at the critical frequency of 312 Hz, arising from the monopolar eigenmode of LAM. Our work advances the concept of synthetic design of sound absorption and insulation properties of multi-impedance-coupled acoustic systems and promotes membrane-type acoustic metamaterials to more practical engineering applications.

  18. Numerical simulations of quantum many-body systems with applications to superfluid-insulator and metal-insulator transitions

    International Nuclear Information System (INIS)

    Niyaz, P.

    1993-01-01

    Quantum Monte Carlo techniques were used to study two quantum many-body systems, the one-dimensional extended boson-Hubbard Hamiltonian, a model of superfluid-insulator quantum phase transitions, and the two-dimensional Holstein Model, a model for electron-phonon interactions. For the extended boson-Hubbard model, the authors studied the ground state properties at commensurate filling (density = 1) and half-integer filling (density = 1/2). At commensurate filling, the system has two possible insulating phases for strong coupling. If the on-site repulsion dominates, the system freezes into an insulating phase where each site is singly occupied. If the intersite repulsion dominates, doubly occupied and empty sites alternate. At weak coupling, the system becomes a superfluid. The authors investigated the order of phase transitions between these different phases. At half-integer filling, the authors found one strong coupling insulating phase, where singly occupied and empty sites alternate, and a weak coupling superfluid phase. The authors also investigated the possibility of a supersolid phase and found no clear evidence of such a new phase. For the electron-phonon (Holstein) model, the authors focused on the finite temperature phase transition from a metallic state to an insulating charge density wave (CDW) state as the temperature is lowered. The authors present the first calculation of the spectral density from Monte Carlo data for this system. The authors also investigated the formation of a CDW state as a function of various parameters characterizing the electron-phonon interactions. Using these numerical results as benchmarks, the authors then investigated different levels of Migdal approximations. The authors found the solutions of a set of gapped Migdal-Eliashberg equations agreed qualitatively with the Monte Carlo results

  19. Energy-oriented modernisation of prefabricated residential buildings in East Germany, illustrated by the example of large-panel buildings at Weimar, Ludwig-Feuerbach-Str. 10-18; Energetische Sanierung des industriell errichteten Wohnungsbaus in den neuen Bundeslaendern am Beispiel der Grossblockbauweise in Weimar, Ludwig-Feuerbach-Str. 10 bis 18

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, J.; Erhorn, H. [Fraunhofer-Institut fuer Bauphysik, Stuttgart (Germany); Augner, R.; Warnstedt, K. [Weimarer Wohnstaette GmbH, Weimar (Germany); Nitschke, S.; Wenzel, P. [Architektengemeinschaft Nitschke-Donath, Weimar (Germany)

    1997-12-31

    The demonstration object with 40 residential units is described in the condition prior to its redevelopment. The parts of the redevelopment concept dealing with energy conservation and design are discussed in detail. Further, the execution of the construction work and the measurements necessary to make a thermal and energetic analysis of the building are described. In tabulated form, heat energy consumption quantities are listed as a function of space air temperature. Similarly, the cost of redevelopment and area-specific costs of the thermal insulation systems installed at the building are indicated. (MSK) [Deutsch] Das Demonstrationsobjekt mit 40 Wohnungen wird in seinem Zustand vor der Sanierung beschrieben. Die energetischen Massnahmen des Sanierungskonzepts sowie gestalterische Massnahmen werden naeher erlaeutert. Weiter werden die Bauausfuehrung und die fuer die thermische und energetische Gebaeudeanalyse notwendigen Messungen beschrieben. Tabellarische werden die Heizwaermeverbraeuche in Abhaengigkeit von der Raumlufttemperatur aufgezeigt. Ebenso sind die Kosten fuer die Sanierung sowie die flaechenspezifischen Kosten fuer die am Gebaeude ausgefuehrten Daemmsysteme aufgefuehrt.

  20. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  1. [Level of microwave radiation from mobile phone base stations built in residential districts].

    Science.gov (United States)

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  2. Fire Situations and Prevention Measures of residential building

    Directory of Open Access Journals (Sweden)

    Zhou Baixia

    2017-01-01

    Full Text Available The proportion of residential building is the largest in all buildings. With the development of urbanization, residential building fires are at high momentum. The paper lists the residential building fires and the number of casualties’ proportion to total fires from 2011 to 2014, analyzing the high incidence causes of the fires and casualties and putting forward suggestions and countermeasures including carrying out fire safety education to improve the fire safety awareness of residents, fulfilling responsibility to enhancing fire safety management capabilities, perfecting fire apparatus to develop fire safety environment and enhancing public awareness of fire safety, equipping evacuation equipments to promote response ability to deal with disasters etc.

  3. Effects of radiation on insulation materials

    International Nuclear Information System (INIS)

    Poehlchen, R.

    1992-01-01

    This presentation will concentrate on the insulation materials which are suitable for the insulation of superconducting magnets for fusion. For the next generation of fusion machines with magnetic confinement as NET and ITER general agreement exists that the insulation will consist of fibre reinforced organic matrix material, a composite. Much effort has been put into the investigation of the radiation resistance of such materials during the last 20-30 years, see in particular the numerous reports of accelerator laboratories on this subject. But very few of the published data are relevant for the superconducting magnets of fusion machines. Either the irradiation and testing was carried out at RT or LN 2 temperature and/or the irradiation spectrum was not representative for a fusion machine and/or the materials investigated are not applicable for the insulation of S.C. fusion magnets. Therefore test programs have been launched recently, one by the NET team. The intention of the first chapter is to give guidance on the choice of materials which are suitable as insulation materials from a more general point of view. A good understanding of the coil manufacturing process is needed for this purpose. The second chapter explains the irradiation spectrum seen by the magnets. A third chapter does present the NET/ITER test programme. Step 1 was completed at the end of 1989, the second step will be carried out in the autumn of 1991. Finally, a general assessment of materials and testing methods will be given with recommendations for further testing

  4. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  5. Hydrothermal hardened high-temperature thermal insulation material CALUTHERM {sup registered} from hibonite and alumina cement. Pt. 1; Hydrothermal erhaerteter Hochtemperaturwaermedaemmstoff CALUTHERM {sup registered} aus Hibonit und Tonerdezement. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher, Tobias; Schneider, Hans-Juergen [Calsitherm Silikatbaustoffe GmbH, Bad Lippspringe (Germany); Schlegel, Ernst

    2013-07-01

    The first part features an overview to the properties of all calcium aluminates followed by a presentation of CALUTHERM {sup registered}, a high temperature-thermal insulating material. CALUTHERM is produced on the bases of SLA-92, a calcium hexaaluminat aggregate, and calcium aluminate cement CA-14 W as binder. The comprehensive studies focus on properties and changes of these raw materials during the technological stages of the CALUTHERM's production. The second part will present CALUTHERM's properties and its variants throughout the production process. A possible correlation between the properties of raw materials and thermal insulation material is researched and finally application examples are presented. CALUTHERM is suited for thermal insulation up to 1600 C and has a remarkable low thermal conductivity near 0.4 W/m . K at these high temperatures. For that reason CALUTHERM is a top high-temperature thermal insulating material. (orig.)

  6. Toward a geoinformatics framework for understanding the social and biophysical influences on urban nutrient pollution due to residential impervious service connectivity

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2012-12-01

    Water sustainability has been recognized as a fundamental problem of science whose solution relies in part on high-performance computing. Stormwater management is a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater nutrient pollution requires consideration of fine-scale residential stormwater management, which in turn requires high-resolution LIDAR and landcover data not provided through national spatial data infrastructure, as well as field observation at the household scale. The objectives of my research are twofold: (1) advance understanding of the relationship between residential stormwater management practices and the export of nutrient pollution from stormwater in urbanized ecosystems; and (2) improve the informatics workflows used in community ecohydrology modeling as applied to heterogeneous urbanized ecosystems. In support of these objectives, I present preliminary results from initial work to: (1) develop an ecohydrology workflow platform that automates data preparation while maintaining data provenance and model metadata to yield reproducible workflows and support model benchmarking; (2) perform field observation of existing patterns of residential rooftop impervious surface connectivity to stormwater networks; and (3) develop Regional Hydro-Ecological Simulation System (RHESSys) models for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program); these models will be used to simulate nitrogen loading resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research builds on work done as part of the NSF EarthCube Layered Architecture Concept Award where a RHESSys workflow is being implemented in an iRODS (integrated Rule

  7. Ginsburg-Landau equation around the superconductor-insulator transition

    International Nuclear Information System (INIS)

    Ng, T.K.

    1991-01-01

    Based on the scaling theory of localization, we construct a Ginsburg-Landau (GL) equation for superconductors in an arbitrary strength of disordered potential. Using this GL equation, we reexamine the criteria for the superconductor-insulator transition and find that the transition to a localized superconductor can happen on both sides of the (normal) metal-insulator transition, in contrast to a previous prediction by Ma and Lee [Phys. Rev. B 32, 5658 (1985)] that the transition can only be on the insulator side. Furthermore, by comparing our theory with a recent scaling theory of dirty bosons by Fisher et al. [Phys. Rev. Lett. 64, 587 (1990)], we conclude that nontrivial crossover behavior in transport properties may occur in the vicinity of the superconductor-insulator transition

  8. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  9. Infrared circular photogalvanic effect in topological insulators

    Science.gov (United States)

    Luo, Siyuan

    2018-04-01

    Topological insulators have attracted a lot of attention in recent years due to its unique phenomena. Circular photogalvanic effect (CPGE) is one of the important phenomena in topological insulators. Bi2Se3, as one of the 3D topological insulators, consist of a single Dirac cone at the Γ point in k-space [1], corresponding to the surface states. Controlled by the Berry curvature of the surface band, the dominant photo response due to the interband transition is helicity dependent [2]. In addition, due to the spin-momentum locking in topological insulators' surface, the sign of spin-angular-momentum of obliquely incident light and photo currents are locked together. On the other hand, Bi2Se3 consists of quintuple layers which make it possible to be exfoliated and transferred based on graphene fabrication. In this paper, Bi2Se3 devices were fabricated and Ohm contact was achieved. We experimentally demonstrated the CPGE in Bi2Se3 using 1550nm incident laser.

  10. Impacts of US federal energy efficiency standards for residential appliances

    International Nuclear Information System (INIS)

    Meyers, S.; McMahon, J.E.; McNeil, M.; Liu, X.

    2003-01-01

    This study estimated energy, environmental, and consumer impacts of US federal residential energy efficiency standards taking effect in the 1988-2007 period. These standards have been the subject of in-depth analyses conducted as part of the US Department of Energy's (DOE's) standards rulemaking process. This study drew on those analyses, but updated key data and developed a common framework and assumptions for all of the products. We estimate that the considered standards will reduce residential primary energy consumption and carbon dioxide (CO 2 ) emissions by 8-9% in 2020 compared to the levels expected without any standards. The standards will save a cumulative total of 26-32 EJ (25-30 quads) by the year 2015, and 63 EJ (60 quads) by 2030. The estimated cumulative net present value of consumer benefit amounts to nearly US$80 billion by 2015, and grows to US$130 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts in the 1987-2050 period is 2.75:1. The cumulative cost of the DOE's program to establish and implement the standards is in the range of US$200-US$250 million. (author)

  11. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  12. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  13. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  14. Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes

    Directory of Open Access Journals (Sweden)

    Kaleem Abbas

    2018-03-01

    Full Text Available The performance of metal-insulator-metal diodes is investigated for insulating vanadium oxide (VOx composite composed of concomitant mixed phases using the Pt metal as the top and the bottom electrodes. Insulating VOx composite in the Pt/VOx/Pt diode exhibits a high asymmetry of 10 and a very high sensitivity of 2,135V−1 at 0.6 V. The VOx composite provides Schottky-like barriers at the interface, which controls the current flow and the trap-assisted conduction mechanism. Such dramatic enhancement in asymmetry and rectification performance at low applied bias may be ascribed to the dynamic control of the insulating and metallic phases in VOx composites. We find that the nanostructure details of the insulating VOx layer can be critical in enhancing the performance of MIM diodes.

  15. Impact of Moistened Bio-insulation on Whole Building Energy Use

    Directory of Open Access Journals (Sweden)

    Latif Eshrar

    2017-01-01

    Full Text Available One of the key properties of hemp insulation is its moisture adsorption capacity. Adsorption of moisture can increase both thermal conductivity and heat capacity of the insulation. The current study focuses on the effect of moisture induced thermal mass of installed hemp insulation on the whole building energy use. Hygrothermal and thermal simulations were performed using the CIBSE TRY weather data of Edinburgh and Birmingham with the aid of following simulation tools: WUFI and IES. Following simplified building types were considered: building-1 with dry hemp wall and loft insulations, building-2 with moistened hemp wall and loft insulation and building-3 with stone wool insulation. It was observed that the overall conditioning load of building-1 was 1.2 to 2.3% higher than building-2 and 3. However, during the summer season, the cooling load of building-2 was 3-7.5% lower than the other buildings. It implies that, moistened insulation can potentially mitigate the effect of increasing cooling degree days induced by global warming.

  16. Radiaton-resistant electrical insulation on the base of cement binders

    International Nuclear Information System (INIS)

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  17. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  18. Insulating materials for cables: state of the technology and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Blechschmidt, H H [Hessische Elektrizitaets-A.G., Darmstadt (Germany, F.R.)

    1977-02-01

    This article gives a summary of old and new insulating materials for electrical cables. The electrical properties of some polymer insulating materials (PVC, polyethelene (PE), polymerised polyethelene (VPE), polypropylene) are compared in a table with the properties of paper insulation. The changeover from oiled paper to plastic insulation is almost complete for low voltage cables. Soft PVC is the dominant insulating material in this field. For medium voltage cables (10 kV and 20 kV supplies) and for high voltage cables (60 kV and 110 kV supplies) there is a trend to plastic PE/VPE, because these insulating materials have better electrical properties than PVC.

  19. Study of thermal conductivity of multilayer insulation

    International Nuclear Information System (INIS)

    Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.

    1994-01-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)

  20. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  1. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  2. Social implications of residential demand response in cool temperate climates

    International Nuclear Information System (INIS)

    Darby, Sarah J.; McKenna, Eoghan

    2012-01-01

    Residential electrical demand response (DR) offers the prospect of reducing the environmental impact of electricity use, and also the supply costs. However, the relatively small loads and numerous actors imply a large effort: response ratio. Residential DR may be an essential part of future smart grids, but how viable is it in the short to medium term? This paper reviews some DR concepts, then evaluates the propositions that households in cool temperate climates will be in a position to contribute to grid flexibility within the next decade, and that that they will allow some automated load control. Examples of demand response from around the world are discussed in order to assess the main considerations for cool climates. Different tariff types and forms of control are assessed in terms of what is being asked of electricity users, with a focus on real-time pricing and direct load control in energy systems with increasingly distributed resources. The literature points to the significance of thermal loads, supply mix, demand-side infrastructure, market regulation, and the framing of risks and opportunities associated with DR. In concentrating on social aspects of residential demand response, the paper complements the body of work on technical and economic potential. - Highlights: ► Demand response implies major change in governance of electricity systems. ► Households in cool temperate climates can be flexible, mainly with thermal loads. ► DR requires simple tariffs, appropriate enabling technology, education, and feedback. ► Need to test consumer acceptance of DR in specific conditions. ► Introduce tariffs with technologies e.g., TOU tariff plus DLC with electric vehicles.

  3. Analysis of Pathogenesis of Autoimmune Insulitis in NOD Mice: Adoptive Transfer Experiments of Insulitis in ILI and NOD Nude Mice

    OpenAIRE

    Nakamura, Moritaka; Nishimura, Masahiko; Koide, Yukio; Takato, O.Yoshida

    2003-01-01

    In an effort to study the pathophysiological events in the development of insulitis in NOD mice, we have developed ILI- and NOD-nu/nu mice. ILI mice are a nondiabetic inbred strain but are derived from the same Jcl:ICR mouse as NOD mice and share the same H-2 allotype with NOD mice. Splenocytes and CD4+ cells from diabetic NOD mice appeared to transfer insulitis to ILI-nu/nu mice, suggesting that ILI mice already express autoantigen(s) responsible for insulitis. But reciprocal thymic grafts f...

  4. Sustainable residential districts : the residents' role in project success

    NARCIS (Netherlands)

    Abdalla, G.

    2012-01-01

    Sustainable residential districts have been realized worldwide. These districts are promoted to be efficient in the use of natural materials and sustainable energy resources. Realization of sustainable residential districts can strongly contribute to achieve environmental objectives as imposed by

  5. Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Guo Jun-Ji; Liao Wen-Hu

    2014-01-01

    Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n—n junction and n—p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ θ < π/2 and π/2 < θ ≤ π, the transmission probability of the n—n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n—p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs

  6. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  7. External built residential environment characteristics that affect mental health of adults.

    Science.gov (United States)

    Ochodo, Charles; Ndetei, D M; Moturi, W N; Otieno, J O

    2014-10-01

    External built residential environment characteristics include aspects of building design such as types of walls, doors and windows, green spaces, density of houses per unit area, and waste disposal facilities. Neighborhoods that are characterized by poor quality external built environment can contribute to psychosocial stress and increase the likelihood of mental health disorders. This study investigated the relationship between characteristics of external built residential environment and mental health disorders in selected residences of Nakuru Municipality, Kenya. External built residential environment characteristics were investigated for 544 residents living in different residential areas that were categorized by their socioeconomic status. Medically validated interview schedules were used to determine mental health of residents in the respective neighborhoods. The relationship between characteristics of the external built residential environment and mental health of residents was determined by multivariable logistic regression analyses and chi-square tests. The results show that walling materials used on buildings, density of dwelling units, state of street lighting, types of doors, states of roofs, and states of windows are some built external residential environment characteristics that affect mental health of adult males and females. Urban residential areas that are characterized by poor quality external built environment substantially expose the population to daily stressors and inconveniences that increase the likelihood of developing mental health disorders.

  8. Spatially-protected Topology and Group Cohomology in Band Insulators

    Science.gov (United States)

    Alexandradinata, A.

    This thesis investigates band topologies which rely fundamentally on spatial symmetries. A basic geometric property that distinguishes spatial symmetry regards their transformation of the spatial origin. Point groups consist of spatial transformations that preserve the spatial origin, while un-split extensions of the point groups by spatial translations are referred to as nonsymmorphic space groups. The first part of the thesis addresses topological phases with discretely-robust surface properties: we introduce theories for the Cnv point groups, as well as certain nonsymmorphic groups that involve glide reflections. These band insulators admit a powerful characterization through the geometry of quasimomentum space; parallel transport in this space is represented by the Wilson loop. The non-symmorphic topology we study is naturally described by a further extension of the nonsymmorphic space group by quasimomentum translations (the Wilson loop), thus placing real and quasimomentum space on equal footing -- here, we introduce the language of group cohomology into the theory of band insulators. The second part of the thesis addresses topological phases without surface properties -- their only known physical consequences are discrete signatures in parallel transport. We provide two such case studies with spatial-inversion and discrete-rotational symmetries respectively. One lesson learned here regards the choice of parameter loops in which we carry out transport -- the loop must be chosen to exploit the symmetry that protects the topology. While straight loops are popular for their connection with the geometric theory of polarization, we show that bent loops also have utility in topological band theory.

  9. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  10. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  11. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  12. Tracking the Sun IX: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Darghouth, Naïm [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cates, Sarah [Exeter Associates, Columbia, MD (United States); DiSanti, Nicholas [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States)

    2016-08-16

    Now in its ninth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and non-residential systems installed through year-end 2015, with preliminary trends for the first half of 2016. An accompanying LBNL report, Utility-Scale Solar, addresses trends in the utility-scale sector. This year’s report incorporates a number of important changes and enhancements from prior editions. Among those changes, LBNL has made available a public data file containing all non-confidential project-level data underlying the analysis in this report. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. Refer to the text box to the right for several key notes about these data. In total, data were collected and cleaned for more than 820,000 individual PV systems, representing 85% of U.S. residential and non-residential PV systems installed cumulatively through 2015 and 82% of systems installed in 2015. The analysis in this report is based on a subset of this sample, consisting of roughly 450,000 systems with available installed price data.

  13. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  14. Improving the reliability of stator insulation system in rotating machines

    International Nuclear Information System (INIS)

    Gupta, G.K.; Sedding, H.G.; Culbert, I.M.

    1997-01-01

    Reliable performance of rotating machines, especially generators and primary heat transport pump motors, is critical to the efficient operation on nuclear stations. A significant number of premature machine failures have been attributed to the stator insulation problems. Ontario Hydro has attempted to assure the long term reliability of the insulation system in critical rotating machines through proper specifications and quality assurance tests for new machines and periodic on-line and off-line diagnostic tests on machines in service. The experience gained over the last twenty years is presented in this paper. Functional specifications have been developed for the insulation system in critical rotating machines based on engineering considerations and our past experience. These specifications include insulation stress, insulation resistance and polarization index, partial discharge levels, dissipation factor and tip up, AC and DC hipot tests. Voltage endurance tests are specified for groundwall insulation system of full size production coils and bars. For machines with multi-turn coils, turn insulation strength for fast fronted surges in specified and verified through tests on all coils in the factory and on samples of finished coils in the laboratory. Periodic on-line and off-line diagnostic tests were performed to assess the condition of the stator insulation system in machines in service. Partial discharges are measured on-line using several techniques to detect any excessive degradation of the insulation system in critical machines. Novel sensors have been developed and installed in several machines to facilitate measurements of partial discharges on operating machines. Several off-line tests are performed either to confirm the problems indicated by the on-line test or to assess the insulation system in machines which cannot be easily tested on-line. Experience with these tests, including their capabilities and limitations, are presented. (author)

  15. Sustainable refurbishment of exterior walls and building facades. Final report, Part B - General refurbishment concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vares, S.; Pulakka, S.; Toratti, T. [and others

    2012-11-01

    This report is the second part of the final report of Sustainable refurbishment of building facades and exterior walls (SUSREF). SUSREF project was a collaborative (small/medium size) research project within the 7th Framework Programme of the Commission and it was financed under the theme Environment (including climate change) (Grant agreement no. 226858). The project started in October 1st 2009 and ended in April 30th 2012. The project included 11 partners from five countries. SUSREF developed sustainable concepts and technologies for the refurbishment of building facades and external walls. This report together with SUSREF Final report Part B and SUSREF Final Report Part C introduce the main results of the project. Part A focuses on methodological issues. The descriptions of the concepts and the assessment results of the developed concepts are presented in SUSREF Final report part B (generic concepts) and SUSREF Final report Part C (SME concepts). The following list shows the sustainability assessment criteria defined by the SUSREF project. These are Durability; Impact on energy demand for heating; Impact on energy demand for cooling; Impact on renewable energy use potential; Impact on daylight; Environmental impact of manufacture and maintenance; Indoor air quality and acoustics; Structural stability; Fire safety; Aesthetic quality; Effect on cultural heritage; Life cycle costs; Need for care and maintenance; Disturbance to the tenants and to the site; Buildability. This report presents sustainability assessment results of general refurbishment concepts and gives recommendations on the basis of the results. The report covers the following refurbishment cases - External insulation - Internal insulation - Cavity wall insulation - Replacement Insulation during renovation.

  16. Building and household X-factors and energy consumption at the residential sector

    International Nuclear Information System (INIS)

    Estiri, Hossein

    2014-01-01

    Energy use in residential buildings is one of the major sources of greenhouse gas emission production from cities. Using microdata from the 2009 Residential Energy Consumption Survey (RECS), this study applies structural equation modeling to analyze the direct, indirect, and total impacts of household and building characteristics on residential energy consumption. Results demonstrate that the direct impact of household characteristics on residential energy consumption is significantly smaller than the corresponding impact from the buildings. However, accounting for the indirect impact of household characteristics on energy consumption, through choice of the housing unit characteristics, the total impact of households on energy consumption is just slightly smaller than that of buildings. Outcomes of this paper call for smart policies to incorporate housing choice processes in managing residential energy consumption. - Highlights: • Households indirectly influence residential energy use through housing choice. • Households' total impact on energy use is comparable to that of buildings. • Understanding households' indirect impact will enhance residential energy policy. • Smart energy policies are needed to target both direct and indirect effects

  17. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  18. Improved design of a high-voltage vacuum-insulator interface

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2005-05-01

    Full Text Available We have conducted a series of experiments designed to measure the flashover strength of various azimuthally symmetric 45° vacuum-insulator configurations. The principal objective of the experiments was to identify a configuration with a flashover strength greater than that of the standard design, which consists of a 45° polymethyl-methacrylate (PMMA insulator between flat electrodes. The thickness d and circumference C of the insulators tested were held constant at 4.318 and 95.74 cm, respectively. The peak voltage applied to the insulators ranged from 0.8 to 2.2 MV. The rise time of the voltage pulse was 40–60 ns; the effective pulse width [as defined in Phys. Rev. ST Accel. Beams 7, 070401 (2004PRABFM1098-440210.1103/PhysRevSTAB.7.070401] was on the order of 10 ns. Experiments conducted with flat aluminum electrodes demonstrate that the flashover strength of a crosslinked polystyrene (Rexolite insulator is (18±7% higher than that of PMMA. Experiments conducted with a Rexolite insulator and an anode plug, i.e., an extension of the anode into the insulator, demonstrate that a plug can increase the flashover strength by an additional (44±11%. The results are consistent with the Anderson model of anode-initiated flashover, and confirm previous measurements. It appears that a Rexolite insulator with an anode plug can, in principle, increase the peak electromagnetic power that can be transmitted across a vacuum interface by a factor of [(1.18(1.44]^{2}=2.9 over that which can be achieved with the standard design.

  19. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  20. Cellulose insulation as an air barrier

    Energy Technology Data Exchange (ETDEWEB)

    Manning, K.

    1989-10-01

    The objective of this study was to determine if a wet sprayed cellulose wall insulation system would function satisfactorily without use of a polyethylene air/vapour barrier. The research was designed to demonstrate that this particular insulation system would form enough of a barrier to air leakage, that moisture accumulation from condensation and vapour diffusion would be insignificant. Field work conducted in Alberta, involved construction of a conventional duplex housing unit which was insulated with wet sprayed cellulose in the exterior walls and dry loose-fill cellulose in the attic areas. One half of the unit did not have a polyethylene air/vapor barrier installed. Air leakage and exterior wall moisture levels were monitored for a year following construction. Data collected during this time indicated that the moisture added to the walls during the insulating process was dissipated over the study period. The presence of polyethylene sheeting had no significant effect on the moisture levels in either the wall or attic areas of the test structure. On the other hand, testing indicated that the use of polyethylene sheeting in the wall system did serve to improve blower door air test results. In conclusion, although the air leakage resistance apparently provided by the polyethylene sheeting is significant, the amount is probably not more than could otherwise be obtained by more careful attention to sealing procedures such as those used in the airtight drywall technique. A more important finding is that the use of polyethylene sheeting is not essential in a structure which has the degree of air leakage resistance provided by the insulation system used in this project. 6 figs., 2 tabs.