WorldWideScience

Sample records for residential energy model

  1. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  2. Model documentation report: Residential sector demand module of the national energy modeling system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  3. Modeling and analysis of long term energy demands in residential sector of pakistan

    International Nuclear Information System (INIS)

    Rashid, T.; Sahir, M.H.

    2015-01-01

    Residential sector is the core among the energy demand sectors in Pakistan. Currently, various techniques are being used worldwide to assess future energy demands including integrated system modeling (ISM). Therefore, the current study is focused on implementation of ISM approach for future energy demand analysis of Pakistan's residential sector in terms of increase in population, rapid urbanization, household size and type, and increase/decrease in GDP. A detailed business-as-usual (BAU) model is formulated in TIMES energy modeling framework using different factors like growth in future energy services, end-use technology characterization, and restricted fuel supplies. Additionally, the developed model is capable to compare the projected energy demand under different scenarios e.g. strong economy, weak economy and energy efficiency. The implementation of ISM proved a viable approach to predict the future energy demands of Pakistan's residential sector. Furthermore, the analysis shows that the energy consumption in the residential sector would be 46.5 Mtoe (Million Ton of Oil Equivalent) in 2040 compared to 23 Mtoe of the base year (2007) along with 600% increase in electricity demands. The study further maps the potential residential energy policies to congregate the future demands. (author)

  4. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    International Nuclear Information System (INIS)

    Zhang Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e., economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK. - Highlights: ► This paper reviews the three traditional lines of research in residential energy consumption in the UK. ► Based on the literature review, the paper proposes a 3-D conceptual model for archetyping UK residential energy consumers. ► The 3-D archetype model can aid local energy policy/intervention design in the UK.

  5. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  6. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  7. Model documentation report: Residential sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  8. Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector

    International Nuclear Information System (INIS)

    Kelly, Scott

    2011-01-01

    Energy consumption from the residential sector is a complex socio-technical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM) is introduced to calculate the magnitude and significance of explanatory variables on residential energy consumption. The benefit of this approach is that it explains the complex relationships that exist between manifest variables and their overall effect though direct, indirect and total effects. Using the English House Condition Survey (EHCS) consisting of 2531 unique cases, the main drivers behind residential energy consumption are found to be the number of household occupants, floor area, household income, dwelling efficiency (SAP), household heating patterns and living room temperature. In the multivariate case, SAP explains very little of the variance of residential energy consumption. However, this procedure fails to account for simultaneity bias between energy consumption and SAP. Using SEM its shown that dwelling energy efficiency (SAP), has reciprocal causality with dwelling energy consumption and the magnitude of these two effects are calculable. When non-recursivity between SAP and energy consumption is allowed for, SAP is shown to have a negative effect on energy consumption but conversely, homes with a propensity to consume more energy also have higher SAP rates. -- Highlights: → A Structural Equation Model (SEM) is developed to explain residential energy demand. → Key variables that drive residential energy consumption are empirically identified. → Direct, indirect and total effects are determined. → It is found that occupancy and household income are strongly mediated by floor area. → A non-recursive relationship is found to exist between energy consumption and SAP.

  9. Energy-Independent Architectural Models for Residential Complex Plans through Solar Energy in Daegu Metropolitan City, South Korea

    Directory of Open Access Journals (Sweden)

    Sung-Yul Kim

    2018-02-01

    Full Text Available This study suggests energy-independent architectural models for residential complexes through the production of solar-energy-based renewable energy. Daegu Metropolitan City, South Korea, was selected as the target area for the residential complex. An optimal location in the area was selected to maximize the production of solar-energy-based renewable energy. Then, several architectural design models were developed. Next, after analyzing the energy-use patterns of each design model, economic analyses were conducted considering the profits generated from renewable-energy use. In this way, the optimum residential building model was identified. For this site, optimal solar power generation efficiency was obtained when solar panels were installed at 25° angles. Thus, the sloped roof angles were set to 25°, and the average height of the internal space of the highest floor was set to 1.8 m. Based on this model, analyses were performed regarding energy self-sufficiency improvement and economics. It was verified that connecting solar power generation capacity from a zero-energy perspective considering the consumer’s amount of power consumption was more effective than connecting maximum solar power generation capacity according to building structure. Moreover, it was verified that selecting a subsidizable solar power generation capacity according to the residential solar power facility connection can maximize operational benefits.

  10. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  11. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    Science.gov (United States)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  12. Keys to the House: Unlocking Residential Savings With Program Models for Home Energy Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Grevatt, Jim [Energy Futures Group (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffmeyer, Dale [US Department of Energy, Washington, DC (United States)

    2017-07-05

    After more than 40 years of effort, energy efficiency program administrators and associated contractors still find it challenging to penetrate the home retrofit market, especially at levels commensurate with state and federal goals for energy savings and emissions reductions. Residential retrofit programs further have not coalesced around a reliably successful model. They still vary in design, implementation and performance, and they remain among the more difficult and costly options for acquiring savings in the residential sector. If programs are to contribute fully to meeting resource and policy objectives, administrators need to understand what program elements are key to acquiring residential savings as cost effectively as possible. To that end, the U.S. Department of Energy (DOE) sponsored a comprehensive review and analysis of home energy upgrade programs with proven track records, focusing on those with robustly verified savings and constituting good examples for replication. The study team reviewed evaluations for the period 2010 to 2014 for 134 programs that are funded by customers of investor-owned utilities. All are programs that promote multi-measure retrofits or major system upgrades. We paid particular attention to useful design and implementation features, costs, and savings for nearly 30 programs with rigorous evaluations of performance. This meta-analysis describes program models and implementation strategies for (1) direct install retrofits; (2) heating, ventilating and air-conditioning (HVAC) replacement and early retirement; and (3) comprehensive, whole-home retrofits. We analyze costs and impacts of these program models, in terms of both energy savings and emissions avoided. These program models can be useful guides as states consider expanding their strategies for acquiring energy savings as a resource and for emissions reductions. We also discuss the challenges of using evaluations to create program models that can be confidently applied in

  13. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  14. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  15. Residential energy usage comparison: Findings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N.; Courteau, S. (Quantum Consulting, Inc., Berkeley, CA (United States))

    1991-08-01

    This report presents the research methods and results from the Residential Energy Usage Comparison (REUC) project, a joint effort by Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI). The REUC project design activities began in early 1986. The REUC project is an innovative demand-site project designed to measure and compare typical energy consumption patterns of energy efficient residential electric and gas appliances. 95 figs., 33 tabs.

  16. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  17. A Prediction Mechanism of Energy Consumption in Residential Buildings Using Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2018-02-01

    Full Text Available Internet of Things (IoT is considered as one of the future disruptive technologies, which has the potential to bring positive change in human lifestyle and uplift living standards. Many IoT-based applications have been designed in various fields, e.g., security, health, education, manufacturing, transportation, etc. IoT has transformed conventional homes into Smart homes. By attaching small IoT devices to various appliances, we cannot only monitor but also control indoor environment as per user demand. Intelligent IoT devices can also be used for optimal energy utilization by operating the associated equipment only when it is needed. In this paper, we have proposed a Hidden Markov Model based algorithm to predict energy consumption in Korean residential buildings using data collected through smart meters. We have used energy consumption data collected from four multi-storied buildings located in Seoul, South Korea for model validation and results analysis. Proposed model prediction results are compared with three well-known prediction algorithms i.e., Support Vector Machine (SVM, Artificial Neural Network (ANN and Classification and Regression Trees (CART. Comparative analysis shows that our proposed model achieves 2.96 % better than ANN results in terms of root mean square error metric, 6.09 % better than SVM and 9.03 % better than CART results. To further establish and validate prediction results of our proposed model, we have performed temporal granularity analysis. For this purpose, we have evaluated our proposed model for hourly, daily and weekly data aggregation. Prediction accuracy in terms of root mean square error metric for hourly, daily and weekly data is 2.62, 1.54 and 0.46, respectively. This shows that our model prediction accuracy improves for coarse grain data. Higher prediction accuracy gives us confidence to further explore its application in building control systems for achieving better energy efficiency.

  18. A DFuzzy-DAHP Decision-Making Model for Evaluating Energy-Saving Design Strategies for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Yu-Lung Chen

    2012-11-01

    Full Text Available The construction industry is a high-pollution and high-energy-consumption industry. Energy-saving designs for residential buildings not only reduce the energy consumed during construction, but also reduce long-term energy consumption in completed residential buildings. Because building design affects investment costs, designs are often influenced by investors’ decisions. A set of appropriate decision-support tools for residential buildings are required to examine how building design influences corporations externally and internally. From the perspective of energy savings and environmental protection, we combined three methods to develop a unique model for evaluating the energy-saving design of residential buildings. Among these methods, the Delphi group decision-making method provides a co-design feature, the analytical hierarchy process (AHP includes multi-criteria decision-making techniques, and fuzzy logic theory can simplify complex internal and external factors into easy-to-understand numbers or ratios that facilitate decisions. The results of this study show that incorporating solar building materials, double-skin facades, and green roof designs can effectively provide high energy-saving building designs.

  19. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  20. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    and Ben Polly, Joseph Robertson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Polly, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Collis, Jon [Colorado School of Mines, Golden, CO (United States)

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  1. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kruis, N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brandemuehl, M. [Univ. of Colorado, Boulder, CO (United States)

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  2. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  3. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  4. End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors

    International Nuclear Information System (INIS)

    Wilkerson, Jordan T.; Cullenward, Danny; Davidian, Danielle; Weyant, John P.

    2013-01-01

    The National Energy Modeling System (NEMS) is arguably the most influential energy model in the United States. The U.S. Energy Information Administration uses NEMS to generate the federal government's annual long-term forecast of national energy consumption and to evaluate prospective federal energy policies. NEMS is considered such a standard tool that other models are calibrated to its forecasts, in both government and academic practice. As a result, NEMS has a significant influence over expert opinions of plausible energy futures. NEMS is a massively detailed model whose inner workings, despite its prominence, receive relatively scant critical attention. This paper analyzes how NEMS projects energy demand in the residential and commercial sectors. In particular, we focus on the role of consumers' preferences and financial constraints, investigating how consumers choose appliances and other end-use technologies. We identify conceptual issues in the approach the model takes to the same question across both sectors. Running the model with a range of consumer preferences, we estimate the extent to which this issue impacts projected consumption relative to the baseline model forecast for final energy demand in the year 2035. In the residential sector, the impact ranges from a decrease of 0.73 quads (− 6.0%) to an increase of 0.24 quads (+ 2.0%). In the commercial sector, the impact ranges from a decrease of 1.0 quads (− 9.0%) to an increase of 0.99 quads (+ 9.0%). - Highlights: • This paper examines the impact of consumer preferences on final energy in the Commercial and Residential sectors of the National Energy Modeling System (NEMS). • We describe the conceptual and empirical basis for modeling consumer technology choice in NEMS. • We offer a range of alternative parameters to show the energy demand sensitivity to technology choice. • We show there are significant potential savings available in both building sectors. • Because the model uses its own

  5. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  6. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  7. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-06-01

    Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.

  8. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  9. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts for the i......The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts......'s involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system costs. It has been successfully applied...

  10. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  11. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  12. Thermal Profiling of Residential Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  13. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  14. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  15. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  16. Adaptive prediction model accuracy in the control of residential energy resources

    NARCIS (Netherlands)

    Negenborn, R.R.; Houwing, M.; De Schutter, B.; Hellendoorn, H.

    2008-01-01

    With the increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which automated energy management systems could control domestic

  17. Least-cost model predictive control of residential energy resources when applying ?mCHP

    NARCIS (Netherlands)

    Houwing, M.; Negenborn, R.R.; Heijnen, P.W.; De Schutter, B.; Hellendoorn, H.

    2007-01-01

    With an increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which households manage their own energy generation and consumption,

  18. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  19. Analysis of Applications to Improve the Energy Savings in Residential Buildings Based on Systemic Quality Model

    Directory of Open Access Journals (Sweden)

    Antoni Fonseca i Casas

    2016-10-01

    Full Text Available Creating a definition of the features and the architecture of a new Energy Management Software (EMS is complex because different professionals will be involved in creating that definition and in using the tool. To simplify this definition and aid in the eventual selection of an existing EMS to fit a specific need, a set of metrics that considers the primary issues and drawbacks of the EMS is decisive. This study proposes a set of metrics to evaluate and compare EMS applications. Using these metrics will allow professionals to highlight the tendencies and detect the drawbacks of current EMS applications and to eventually develop new EMS applications based on the results of the analysis. This study presents a list of the applications to be examined and describes the primary issues to be considered in the development of a new application. This study follows the Systemic Quality Model (SQMO, which has been used as a starting point to develop new EMS, but can also be used to select an existing EMS that fits the goals of a company. Using this type of analysis, we were able to detect the primary features desired in an EMS software. These features are numerically scaled, allowing professionals to select the most appropriate EMS that fits for their purposes. This allows the development of EMS utilizing an iterative and user-centric approach. We can apply this methodology to guide the development of future EMS and to define the priorities that are desired in this type of software.

  20. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  1. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  2. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  3. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Choosing the Right Technologies – A Model for Cost Optimized Design of a Renewable Supply System for Residential Zero Energy Buildings

    DEFF Research Database (Denmark)

    Milan, Christian

    , individual performance models are defined. For small scale residential systems the hot water tank is one of the main components, connecting supply and demand side and acting as a buffer during mismatch periods. For this reason, the developed hot water tank model is rather detailed accounting for three......This work presents a methodology to identify and investigate the cost optimal design of supply systems for Low and Net Zero Energy Buildings with the focus on residential single family houses. A preliminary analysis investigating relevant literature and existing computer tools resulted...... different temperature layers, two different supply and demand loops as well as individual heat losses. It is presented at the end of the technology chapter. Subsequently, the methodology is validated by investigating the output with one single technology at a time and thus the individual performance models...

  2. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    This paper presents a study of the potential energy savings by implementing dc distribution systems for residential applications. In general, it is commonly accepted that the use of dc voltage improves the efficiency of the distribution, due to a decrease in the conduction losses and an efficiency...... improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...... loads. However, for isolated microgrids, the use of dc voltage has the potential to bring a significant efficiency improvement. Nevertheless the potential for cost reduction in all scenarios is very promising....

  3. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  4. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  5. A Community Landscape Model of Pro-Environmental Behavior: The Effects of Landscape and Community Interaction on Residential Energy Behaviors in Two Pennsylvania Towns

    Science.gov (United States)

    Mainzer, Stephen P.

    We are using more energy every year. Between 2001 and 2011, Pennsylvania residential electricity sales increased by two and a half times the number of new customers, accounting for almost one third of the state's total electricity consumption. Our ability to meet demand by acquiring new energy sources faces several challenges. Confusion surrounds the physical and economic accessibility of remaining fossil fuel sources. Immense land use requirements and subsequent environmental impacts challenge a total shift to renewable energy sources. The laws of thermodynamics limit the potential for new technology to efficiently convert raw energy to consumable sources. As a result, any rational strategy to meet future energy demands must involve conservation. Conservation is a pro-environmental behavior, an act intended to benefit the environment surrounding a person. I posit that a transdisciplinary model, the community landscape model of the pro-environmental behavior, unifies the conceptually analogous - yet disparate - fields of landscape, community, and behavior towards explaining residential energy conservation actions. Specifically, the study attempted to describe links between the physical environment, social environment, and conservation behaviors through a mixed-method framework. Two Pennsylvania townships - Spring and East Buffalo townships - were selected from an analysis of housing, electricity consumption, and land cover trends. Key informants from both townships informed the design of a survey instrument that captured the utility consumption, residential conservation actions, energy and environmental values, types and levels of community engagement, perceived barriers, and socio-demographic information from 107 randomly selected households. A mixed-method analysis produced evidence that place-based values and intention to participate in the community were significantly linked to lower utility consumption in households. People who cared deeply about their town

  6. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  7. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  8. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  9. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  10. Application of Energy Performance Indicators for Residential Building Stocks

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Diefenbach, Nikolaus

    2016-01-01

    Energy performance indicators of residential building stocks can either describe existing empirical data of a building stock or the input and outcome of building stock modelling. In EPISCOPE both types of quantities are clearly separated by distinguishing monitoring indicators and scenario indica...

  11. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    Science.gov (United States)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  12. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  13. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  14. Residential energy usage comparison project: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

    1990-10-01

    This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

  15. An analysis of residential energy consumption in a temperate climate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  16. Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source

    International Nuclear Information System (INIS)

    Dineen, D.; Rogan, F.; Ó Gallachóir, B.P.

    2015-01-01

    This paper presents a novel bottom up approach to modelling the energy savings potential of energy efficiency improvement measures to be applied through retrofit of the existing dwelling stock. It takes advantage of a newly available, rich dataset on the construction characteristics of the 2011 housing stock in Ireland. The methodological innovation centres on the use of wall construction type in the modelling and analysis. While Ireland is the focus, this approach is applicable to any EU member state for which data on dwelling characteristics exists from surveys carried as part of Energy Performance Certificate calculations. The model is calibrated to the national energy balance for 2011 by varying the internal temperature assumptions. Sensitivity analysis is performed on the effects of internal temperature and rebound. The paper also highlights some limitations posed by data availability on the accuracy and sophistication of models that can currently be developed, specifically in the Irish case. - Highlights: • Archetype model of energy savings potential from retrofit of existing dwelling stock. • Takes advantage of rich dataset on the construction characteristics of the Irish housing stock. • Innovative use of wall construction types in archetype definition possible due to improved data. • Results calibrated to top down estimate of heating demand by adjusting internal temperature. • Highlights limitations on the accuracy and sophistication of models posed by data availability.

  17. Building and household X-factors and energy consumption at the residential sector

    International Nuclear Information System (INIS)

    Estiri, Hossein

    2014-01-01

    Energy use in residential buildings is one of the major sources of greenhouse gas emission production from cities. Using microdata from the 2009 Residential Energy Consumption Survey (RECS), this study applies structural equation modeling to analyze the direct, indirect, and total impacts of household and building characteristics on residential energy consumption. Results demonstrate that the direct impact of household characteristics on residential energy consumption is significantly smaller than the corresponding impact from the buildings. However, accounting for the indirect impact of household characteristics on energy consumption, through choice of the housing unit characteristics, the total impact of households on energy consumption is just slightly smaller than that of buildings. Outcomes of this paper call for smart policies to incorporate housing choice processes in managing residential energy consumption. - Highlights: • Households indirectly influence residential energy use through housing choice. • Households' total impact on energy use is comparable to that of buildings. • Understanding households' indirect impact will enhance residential energy policy. • Smart energy policies are needed to target both direct and indirect effects

  18. Residential energy use in Lithuania: The prospects for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Lab., CA (United States); Kazakevicius, E. [Kazakevicius (Eduardas), Vilnius (Lithuania)

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  19. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  20. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  1. ENERGY STAR Certified Residential Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  2. ENERGY STAR Certified Residential Clothes Dryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Clothes Dryers that are effective as of January...

  3. A methodology for modelling energy-related human behaviour: Application to window opening behaviour in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano P.

    2013-01-01

    . The occupant behaviour related to the building control potentialities is a very complex process that has been studied only in the last years with some focuses related to natural ventilation (window opening behaviour), space heating energy demand (in particular the adjustments in the temperature set...... for modelling the human behaviour related to the control of indoor environment. The procedure is applied at models of occupants’ interactions with windows (opening and closing behaviour). Models of occupants’ window opening behaviour were inferred based on measurements and implemented in a simulation program...

  4. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  5. Increasing self-consumption of photovoltaic electricity by storing energy in electric vehicle using smart grid technology in the residential sector. A model for simulating different smart grid programs

    NARCIS (Netherlands)

    Kam, M. van der; Sark, W.G.J.H.M. van

    2014-01-01

    In this paper a model has been developed which intends to simulate the increase of self-consumption of photovoltaic (PV)-power by storing energy in electric vehicle (EV) using smart grid technology in the residential sector. Three different possible smart grid control algorithms for a micro-grid

  6. Energy literacy, awareness, and conservation behavior of residential households

    International Nuclear Information System (INIS)

    Brounen, Dirk; Kok, Nils; Quigley, John M.

    2013-01-01

    The residential sector accounts for one-fifth of global energy consumption, resulting from the requirements to heat, cool, and light residential dwellings. It is therefore not surprising that energy efficiency in the residential market has gained importance in recent years. In this paper, we examine awareness, literacy and behavior of households with respect to their residential energy expenditures. Using a detailed survey of 1721 Dutch households, we measure the extent to which consumers are aware of their energy consumption and whether they have taken measures to reduce their energy costs. Our results show that “energy literacy” and awareness among respondents is low: just 56% of the respondents are aware of their monthly charges for energy consumption, and 40% do not appropriately evaluate investment decisions in energy efficient equipment. We document that demographics and consumer attitudes towards energy conservation, but not energy literacy and awareness, have direct effects on behavior regarding heating and cooling of the home. The impact of a moderating factor, measured by thermostat settings, ultimately results in strong variation in the energy consumption of private consumers. - Highlights: • We use a detailed survey of 1,721 Dutch households to measure awareness and conservation behavior in energy consumption. • Energy literacy and awareness among residential households is low. • 40 percent of the sample does not appropriately evaluate investment decisions in energy efficient equipment • Demographics and consumer attitudes affect behavior regarding heating and cooling of a home

  7. Methods of modeling TCO residential real estate in the life cycles of buildings as a promising energy efficiency management tool

    Directory of Open Access Journals (Sweden)

    Kulakov Kirill

    2017-01-01

    Full Text Available Building and developing an affordable housing market is a huge challenge for Russia’s national economy. Today, the housing construction industry finds itself in a situation torn by a conflict caused by the simultaneous needs to minimize the housing construction costs in order to make housing more affordable for Russians and to increase the energy efficiency of the housing projects, which is associated with additional costs for developers. To find solutions to this contradictory situation, one needs new theoretical and practical approaches and economic tools. The global economic trend of managing goods and services on the basis of the value of goods and services over the life cycle is also manifested in the construction industry in Russia. The problem of forming a new economic thinking in the housing sector predetermines the perception of the value of housing not only as the price of purchased real estate, but as the equivalent of the total cost of ownership of real estate throughout its life cycle. This approach allows to compensate the initial rise in the cost of construction resulting from the introduction of energy-efficient technologies by savings in the operational phase of the life cycle of the property. In this regard, management of the total cost of real estate ownership based on energy modeling is of high research and practical relevance.

  8. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  9. Residential energy consumption: A convergence analysis across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Aller, Carlos; Ordóñez, Javier

    2017-01-01

    The process of urbanization and the raise of living standards in China have led an increasing trend in the patterns of residential consumption. Projections for the population growth rate in urban areas do not paint a very optimistic picture for energy conservation policies. In addition, the concentration of economic activities around coastal areas calls for new prospects to be formulated for energy policy. In this context, the objective of this paper is twofold. First, we analyse the effect of the urbanization process of the Chinese economy in terms of the long-run patterns of residential energy consumption at national level. By using the concept of club convergence, we examine whether electricity and coal consumption in rural and urban areas converge to the same long-run equilibrium or whether in fact they diverge. Second, the impact of the regional concentration of the economic activity on energy consumption patterns is also assessed by source of energy across Chinese regions from 1995 to 2011. Our results suggest that the process of urbanization has led to coal being replaced by electricity in urban residential energy consumption. In rural areas, the evidence is mixed. The club convergence analysis confirms that rural and urban residential energy consumption converge to different steady-states. At the regional level, we also confirm the effect of the regional concentration of economic activity on residential energy consumption. The existence of these regional clusters converging to different equilibrium levels is indicative of the need of regional-tailored set of energy policies in China.

  10. Residential space heating systems: energy conservation and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.L.

    1979-01-01

    Annual energy use for residential space heating was 8.6 Quads in 1975. This accounted for over 50% of the energy used in the residential sector and 12% of energy used in the U.S. that year. Because residential space heating accounts for such a large share of energy use, improvements in new space heating systems could have significant long-term conservation effects. Several energy-saving design changes in residential space heating systems are examined to determine their energy conservation potential and cost effectiveness. Both changes in conventional and advanced systems are considered. Conventional design changes include options such as the flue damper, sealed combustion, electric ignition and improved heat exchangers. Some of the advanced designs include the gas heat pump, pulse combustion furnace, and dual speed compressor heat pump. The energy use and cost estimates are developed from current literature, heating and equipment manufacturers and dealers, and discussions with individuals doing research and testing on residential space heating equipment. Results indicate that implementation of conventional design changes can reduce energy use of representative gas, oil, and electric space heating systems by 26, 20, and 57%, respectively. These changes increase the capital cost of the systems by 27, 16, and 26%. Advanced gas and electric space heating systems can reduce energy use 45 and 67%, respectively. However, the advanced systems cost 80 and 35% more than representative gas and electric systems.

  11. Promoting Residential Renewable Energy via Peer-to-Peer Learning

    Science.gov (United States)

    Heiskanen, Eva; Nissilä, Heli; Tainio, Pasi

    2017-01-01

    Peer-to-peer learning is gaining increasing attention in nonformal community-based environmental education. This article evaluates a novel modification of a concept for peer-to-peer learning about residential energy solutions (Open Homes). We organized collective "Energy Walks" visiting several homes with novel energy solutions and…

  12. Compliance Verification Paths for Residential and Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  13. The structure of residential energy demand in Greece

    International Nuclear Information System (INIS)

    Rapanos, Vassilis T.; Polemis, Michael L.

    2006-01-01

    This paper attempts to shed light on the determinants of residential energy demand in Greece, and to compare it with some other OECD countries. From the estimates of the short-run and long-run elasticities of energy demand for the period 1965-1999, we find that residential energy demand appears to be price inelastic. Also, we do not find evidence of a structural change probably because of the low efficiency of the energy sector. We find, however, that the magnitude of the income elasticity varies substantially between Greece and other OECD countries

  14. Building and occupant characteristics as determinants of residential energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  15. Comprehensive areal model of residential heating demands

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.

    1978-01-01

    Data sources and methodology for modeling annual residential heating demands are described. A small areal basis is chosen, census tract or minor civil division, to permit estimation of demand densities and economic evaluation of community district heating systems. The demand model is specified for the entire nation in order to provide general applicability and to permit validation with other published fuel consumption estimates for 1970.

  16. Influence of India’s transformation on residential energy demand

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2015-01-01

    Highlights: • The middle income group emerges as the dominant segment by 2030. • Commercial residential energy demand increases 3–4 folds compared to 2010. • Electricity and LPG demand grows above 6% per year in the reference scenario. • India faces the potential of displacing the domination of biomass by 2030. - Abstract: India’s recent macro-economic and structural changes are transforming the economy and bringing significant changes to energy demand behaviour. Life-style and consumption behaviour are evolving rapidly due to accelerated economic growth in recent times. The population structure is changing, thereby offering the country with the potential to reap the population dividend. The country is also urbanising rapidly, and the fast-growing middle class segment of the population is fuelling consumerism by mimicking international life-styles. These changes are likely to have significant implications for energy demand in the future, particularly in the residential sector. Using the end-use approach of demand analysis, this paper analyses how residential energy demand is likely to evolve as a consequence of India’s transformation and finds that by 2030, India’s commercial energy demand in the residential sector can quadruple in the high scenario compared to the demand in 2010. Demand for modern fuels like electricity and liquefied petroleum gas is likely to grow at a faster rate. However, there is a window of opportunity to better manage the evolution of residential demand in India through energy efficiency improvement

  17. Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

    OpenAIRE

    L. L. Ivy-Yap; H. A. Bekhet

    2014-01-01

    As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential secto...

  18. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Shilei, Lv; Wu Yong

    2009-01-01

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5x10 8 m 2 of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested.

  19. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, Lv [School of Environment Science and Technology, Tianjin University, Tianjin 300072 (China); Yong, Wu [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5 x 10{sup 8} m{sup 2} of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested. (author)

  20. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin

    2011-07-01

    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  1. Modelling residential electricity demand in the GCC countries

    International Nuclear Information System (INIS)

    Atalla, Tarek N.; Hunt, Lester C.

    2016-01-01

    This paper aims at understanding the drivers of residential electricity demand in the Gulf Cooperation Council countries by applying the structural time series model. In addition to the economic variables of GDP and real electricity prices, the model accounts for population, weather, and a stochastic underlying energy demand trend as a proxy for efficiency and human behaviour. The resulting income and price elasticities are informative for policy makers given the paucity of previous estimates for a region with particular political structures and economies subject to large shocks. In particular, the estimates allow for a sound assessment of the impact of energy-related policies suggesting that if policy makers in the region wish to curtail future residential electricity consumption they would need to improve the efficiency of appliances and increase energy using awareness of consumers, possibly by education and marketing campaigns. Moreover, even if prices were raised the impact on curbing residential electricity growth in the region is likely to be very small given the low estimated price elasticities—unless, that is, prices were raised so high that expenditure on electricity becomes such a large proportion of income that the price elasticities increase (in absolute terms). - Highlights: • Residential electricity demand for Bahrain, Kuwait, Oman, and Saudi Arabia • Estimated residential electricity demand relationships using STSM/UEDT approach • LR income and price elasticities from 0.43 to 0.71 and − 0.16 to zero respectively • Impact CDD elasticities from 0.2 to 0.7 • Estimated UEDTs suggest exogenous electricity using behaviour.

  2. Statistical evaluation of Pacific Northwest Residential Energy Consumption Survey weather data

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, J.J.

    1986-02-01

    This report addresses an issue relating to energy consumption and conservation in the residential sector. BPA has obtained two meteorological data bases for use with its 1983 Pacific Northwest Residential Energy Survey (PNWRES). One data base consists of temperature data from weather stations; these have been aggregated to form a second data base that covers the National Oceanographic and Atmospheric Administration (NOAA) climatic divisions. At BPA's request, Pacific Northwest Laboratory has produced a household energy use model for both electricity and natural gas in order to determine whether the statistically estimated parameters of the model significantly differ when the two different meteorological data bases are used.

  3. 77 FR 29322 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2012-05-17

    ... the Buildings Technologies Program-Building Energy Codes Program Manager, U.S. Department of Energy... hotel, motel, and other transient residential building types of any height as commercial buildings for... insulation and length requirements Skylight definition change Penalizing electric resistance heating in the...

  4. A review of residential computer oriented energy control systems

    Energy Technology Data Exchange (ETDEWEB)

    North, Greg

    2000-07-01

    The purpose of this report is to bring together as much information on Residential Computer Oriented Energy Control Systems as possible within a single document. This report identifies the main elements of the system and is intended to provide many technical options for the design and implementation of various energy related services.

  5. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  6. Exploring residential energy consumers' willingness to accept and pay to offset their CO2-emission

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe

    2015-01-01

    Purpose Voluntary carbon offsets have the potential to contribute to reduce carbon emission and thereby meet the national and international target of carbon emission. The public support for such scheme in the energy sector is unclear. We invested whether and why residential energy consumers...... to pay for carbon offset. Finally, the ordered logit model is used in modelling willing to pay for carbon offset. Findings The results show that there is significant support from residential energy consumer to offset their CO2 emission from electricity consumption. The WTP is motivated by consumers......’ perceptions towards carbon offset, moral obligation and individual’s social-demographic backgrounds. Originality/value This paper contributes a new insight on whether and why residential energy consumers would be willing to pay to offset carbon emission from electricity consumption....

  7. A Method for Determining Optimal Residential Energy Efficiency Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  8. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  9. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  10. SIA model for buildings: energy-efficiency path for commercial and residential buildings. Preliminary study on the Swiss model for buildings - Basics for the revision of the 'SIA energy-efficiency path' - Final report; Gebaeudeparkmodell 'SIA Effizienzpfad Energie', Dienstleistungs- und Wohngebaeude. Vorstudie zum Gebaeudeparkmodell Schweiz - Grundlagen zur Ueberarbeitung des SIA Effizienzpfades Energie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heeren, N.; Gabathuler, M.; Wallbaum, H. [Institut fuer Bauplanung und Baubetrieb, Eidgenoessische Technische Hochschule Zuerich (ETHZ), Zuerich (Switzerland); Jakob, M.; Martius, M.; Gross, N. [TEP Energy GmbH, Technology Economics Policy - Research and Advice, Zuerich (Switzerland)

    2009-10-15

    The aim of the project was to provide a basis for the revision of the so-called 'Efficiency Path' of the Swiss Association of Engineers and Architects (SIA) in the context of the goals of the 2000-Watt-Society. Particularly, the objective is to find the conditions in which the specific goals of the 2000-Watt-Society for residential, school and office buildings could be reached. Considered indicators are the per capita primary energy use in terms of average power and the greenhouse gas emissions. A bottom-up model was developed to estimate final and primary energy demand of the mentioned building types, broken down by different types of energy utilisation. Assumptions were made regarding the most important physical drivers as well as for regarding energy efficiency parameters of new buildings, building retrofits, building technologies and other energy applications in the residential, school and office buildings. Two basic scenarios were developed: an ambitious efficiency scenario was compared to a reference scenario which included current and foreseeable energy policy elements. Regarding electricity supply three scenario-variants of the so-called Swiss Energy Perspectives of the Swiss Federal Office of Energy (SFOE) were used: variant I b 'business-as-usual - nuclear and central fossil plants', IV a: Path to the 2000-Watt-Society - nuclear' and, IV e 'Path to the 2000-Watt-Society - renewable energies'. With this respect it was found that in the case of the efficiency scenario the influence of the electricity generation mix is relatively small. This finding is explained by the fact that hydro power (which is held more or less at the current level) has a large share in the power supply mix in the case of the efficiency scenario with moderate electricity demand and that hydro power is efficient in terms of primary energy and has considerably low greenhouse gas emissions. The results of the study show that with the underlying

  11. Technology change and energy consumption: A comparison of residential subdivisions

    Science.gov (United States)

    Nieves, L. A.; Nieves, A. L.

    The energy savings in residential buildings likely to result from implementation of the building energy performance standards (BEPS) were assessed. The goals were to: compare energy use in new homes designed to meet or exceed BEPS levels of energy efficiency with that in similar but older homes designed to meet conventional building codes, and to survey the home owners regarding their energy conservation attitudes and behaviors and to ascertain the degree to which conservation attitudes and behaviors are related to residential energy use. The consumer demand theory which provides the framework for the empirical analysis is presented. The sample residences are described and the data collection method discussed. The definition and measurement of major variables are presented.

  12. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  13. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  14. Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ling; Lee, Doris; Sim, Alex; Borgeson, Sam; Wu, Kesheng; Spurlock, C. Anna; Todd, Annika

    2017-03-21

    Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checking of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.

  15. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  16. Residential Energy Efficiency Potential: New York

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New York single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Hampshire single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Jersey single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New Mexico single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by West Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Rhode Island single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Optimized Energy Management of a Single-House Residential Micro-Grid With Automated Demand Response

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Monsef, Hassan; Rahimi-Kian, Ashkan

    2015-01-01

    In this paper, an intelligent multi-objective energy management system (MOEMS) is proposed for applications in residential LVAC micro-grids where households are equipped with smart appliances, such as washing machine, dishwasher, tumble dryer and electric heating and they have the capability to t...... to reduce residential energy use and improve the user’s satisfaction degree by optimal management of demand/generation sides.......In this paper, an intelligent multi-objective energy management system (MOEMS) is proposed for applications in residential LVAC micro-grids where households are equipped with smart appliances, such as washing machine, dishwasher, tumble dryer and electric heating and they have the capability...... to take part in demand response (DR) programs. The superior performance and efficiency of the proposed system is studied through several scenarios and case studies and validated in comparison with the conventional models. The simulation results demonstrate that the proposed MOEMS has the capability...

  7. Energy Conservation for Residential Dwellings. Course Syllabus.

    Science.gov (United States)

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  8. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  9. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  10. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, P.; Ibanez, V.A.

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author

  11. Managing customer loyalty in liberalized residential energy markets: The impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, Patrick; Apaolaza Ibanez, Vanessa

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed

  12. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Ibanez, V.A. [University of the Basque Country, Bilbao (Spain). Facultad de Ciencias Economicas y Empresariales

    2007-04-15

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author].

  13. The Price Elasticity of Residential Energy Use,

    Science.gov (United States)

    household energy- consumption behavior : The difference between the own-price elasticity of total consumption and that of saturation is a measure of the responsiveness of ’conservation’ to price....estimates of the own-price elasticities of total consumption but almost surely will produce erroneous estimates of the cross-price elasticities. As regards

  14. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    Science.gov (United States)

    Rai, Varun; Sigrin, Benjamin

    2013-03-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

  15. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new

  16. Residential-commercial energy input estimation based on genetic algorithm (GA) approaches: an application of Turkey

    International Nuclear Information System (INIS)

    Ozturk, H.K.; Canyurt, O.E.; Hepbasli, A.; Utlu, Z.

    2004-01-01

    The main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on gross domestic product (GDP), population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. (author)

  17. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  18. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  19. Improved model for the calculation of the energy demand for the energetic evaluation of non-residential buildings; Verbessertes Modell zur Berechnung des Energiebedarfs zur energetischen Bewertung von Nichtwohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Heike

    2011-06-29

    The German Industrial Norm DIN V 18599, which is related to the German Energieeinsparverordnung (EnEV), addresses the energetic evaluation of nonresidential buildings. With its more than 800 pages it is very voluminous and complex. Due to the complex subject of DIN V 18599, discrepancies causing considerable differences in the overall result are possible. A further weak point in the current procedure for energetic evaluation is the composition of individual zones within the considered buildings and the subsequent effort for acquisition and determination of values needed during computation. Before a non-residential building can be evaluated energetically, the building has to be divided into individual areas with identical boundary conditions (zoning). The process of zoning is an elementary step within the balancing according to DIN V 18599. It provides, beside the determination of geometrical data, the basis for further computations. Thus, the energetic evaluation of non-residential buildings is based on the so-called Multiple-Zone-Model as described in DIN V 18599. Zoning, especially the gathering of data connected to it, is a very time-consuming task, because the building areas and volumes have to be determined for each zone individually. Nevertheless, zoning is mandatory because of the often completely different net energies to be provided. In order to reduce this effort, a Single-Zone-Model was added to the Energieeinsparverordnung, which may be used under certain preconditions. However, in comparison to the Multi-Zone-Model, differences in the evaluation results are possible. The elimination of weak points, that is to say the difference in time and result, is reached by the computation of the annual primary energy demand on the basis of an Improved-Single-Zone-Model. The Improved-Single-Zone-Model works with improved use values and includes computations of the Single-Zone-Model as well as the Multiple-Zone-Model. The advantage of the Improved-Single-Zone-Model

  20. Public participation in energy saving retrofitting of residential buildings in China

    International Nuclear Information System (INIS)

    Liu, Wenling; Zhang, Jinyun; Bluemling, Bettina; Mol, Arthur P.J.; Wang, Can

    2015-01-01

    Highlights: • We compare public participation in three early cases of residential retrofitting in Beijing. • Residents’ involvement in pre-retrofit activities as well as in the choice and use of technologies varied. • More involvement of residents during retrofitting improves energy saving performance. • Taking into account motives and energy use practices of residents improves energy saving through retrofitting. - Abstract: Retrofitting existing residential buildings has been claimed as one crucial way to reduce energy consumption and greenhouse gas emissions within the Chinese residential sector. In China’s government-dominated retrofitting projects, the participation of residents is often neglected. The objective of this paper is to assess the influence level of public participation (before, during and after retrofit) on energy saving by comparing three Beijing neighborhoods with different retrofitting models: a central government-led model, a local government-led model, and an old neighborhood retrofit model. In the three cases data were collected through interviews with neighborhood workers and residents. The results show that residents’ involvement in pre-retrofit activities, in technology selection and in the use of technology differs greatly among the three cases. This study concludes that in order to improve the effectiveness of energy saving interventions, the motives, intentions and living habits of residents need to be given more consideration when designing and implementing retrofitting. By highlighting the importance of public participation this paper contributes to energy saving policy development in China

  1. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  2. A model of residential energy end-use in Canada: Using conditional demand analysis to suggest policy options for community energy planners

    International Nuclear Information System (INIS)

    Newsham, Guy R.; Donnelly, Cara L.

    2013-01-01

    We applied conditional demand analysis (CDA) to estimate the average annual energy use of various electrical and natural gas appliances, and derived energy reductions associated with certain appliance upgrades and behaviours. The raw data came from 9773 Canadian households, and comprised annual electricity and natural gas use, and responses to >600 questions on dwelling and occupant characteristics, appliances, heating and cooling equipment, and associated behaviours. Replacing an old (>10 years) refrigerator with a new one was estimated to save 100 kW h/year; replacing an incandescent lamp with a CFL/LED lamp was estimated to save 20 kW h/year; and upgrading an old central heating system with a new one was estimated to save 2000 kW h/year. This latter effect was similar to that of reducing the number of walls exposed to the outside. Reducing the winter thermostat setpoint during occupied, waking hours was estimated to lower annual energy use by 200 kW h/°C-reduction, and lowering the thermostat setting overnight in winter relative to the setting during waking hours (night-time setback) was estimated to have a similar effect. This information may be used by policy-makers to optimize incentive programs, information campaigns, or other energy use change instruments. - Highlights: ► Conditional demand analysis (CDA) applied to data from 9773 Canadian households. ► Energy savings associated with certain appliance upgrades estimated. ► Energy savings associated with thermostat behaviours estimated. ► Policy-makers can use findings to optimize incentives and information campaigns

  3. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  4. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  5. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  6. Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2010-01-01

    The energy consumption in the existing residential building stock accounts for about 40% of the total energy consumption in the built environment. Different types of energy performance indicators to assess the energy consumption of buildings were and still are internationally under development. In

  7. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    Science.gov (United States)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  8. Prioritizing investment in residential energy efficiency and renewable energy-A case study for the U.S. Midwest

    International Nuclear Information System (INIS)

    Brecha, R.J.; Mitchell, A.; Hallinan, K.; Kissock, K.

    2011-01-01

    Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home construction characteristics, estimates are made for the efficacy of (i) changes to behavioral patterns that do not involve building shell modifications; (ii) straightforward air-infiltration mitigation measures, and (iii) insulation measures. We derive estimates of net lifetime savings resulting from these measures, in terms of energy, carbon emissions and dollars. This study points out explicitly the importance of local and regional patterns in decision-making about what fraction of necessary regional or national emissions reduction might be accomplished through energy-efficiency measures and how much might need to concentrate more heavily on renewable or other carbon-free sources of energy. - Highlights: → Macro-scale estimates of building energy efficiency measures are not adequate for implementing policy decisions. → Measures taken to implement building energy efficiency upgrades will likely encounter practical limits given the existing building stock. → Energy efficiency measures combined with increases in renewable energy use will be necessary for climate change mitigation. → Regional and local variations in building energy use must be taken into account in energy and climate policy.

  9. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Seon Park, Hyo

    2014-01-01

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO 2 emission density (i.e., CO 2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  10. A Spatially Extended Model for Residential Segregation

    Directory of Open Access Journals (Sweden)

    Antonio Aguilera

    2007-01-01

    Full Text Available We analyze urban spatial segregation phenomenon in terms of the income distribution over a population, and an inflationary parameter weighting the evolution of housing prices. For this, we develop a discrete spatially extended model based on a multiagent approach. In our model, the mobility of socioeconomic agents is driven only by the housing prices. Agents exchange location in order to fit their status to the cost of their housing. On the other hand, the price of a particular house depends on the status of its tenant, and on the neighborhood mean lodging cost weighted by a control parameter. The agent's dynamics converges to a spatially organized configuration, whose regularity is measured by using an entropy-like indicator. This simple model provides a dynamical process organizing the virtual city, in a way that the population inequality and the inflationary parameter determine the degree of residential segregation in the final stage of the process, in agreement with the segregation-inequality thesis put forward by Douglas Massey.

  11. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  12. The importance of engaging residential energy customers' hearts and minds

    International Nuclear Information System (INIS)

    Olaniyan, Monisola J.; Evans, Joanne

    2014-01-01

    In an attempt to reduce the contribution of residential greenhouse gas emissions the EU has implemented a variety of policy measures. The focus has been to promote domestic energy efficiency and ultimately a reduction in residential energy demand. In this study we estimate residential energy demand using Underlying Energy Demand Trend (UEDT) and Asymmetric Price Responses for 14 European OECD countries between 1978 and 2008. Our results support the conclusion that policies to reduce residential energy consumption and the consequent emissions need to account for behavioural, lifestyle and cultural factors in order to be effective. - Highlights: • Residential energy demand is estimated for 14 European OECD countries between 1978 and 2008. • Investigate the relative contributions of Underlying Energy Demand Trend (UEDT) which captures exogenous technical progress. • The most effective policies target behavioural, lifestyle and cultural factors to reduce residential energy consumption

  13. Economic and environmental impacts of community-based residential building energy efficiency investment

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Morrison, Drew; Hallinan, Kevin P.; Brecha, Robert J.

    2014-01-01

    A systematic framework for evaluating the local economic and environmental impacts of investment in building energy efficiency is developed. Historical residential building energy data, community-wide economic input–output data, and emission intensity data are utilized. The aim of this study is to show the comprehensive insights and connection among achieving variable target reductions for a residential building energy use, economic and environmental impacts. Central to this approach for the building energy reduction goal is the creation of individual energy models for each building based upon historical energy data and available building data. From these models, savings estimates and cost implications can be estimated for various conservation measures. A ‘worst to first’ (WF) energy efficient investment strategy is adopted to optimize the level of various direct, indirect, and induced economic impacts on the local community. This evaluation helps to illumine opportunities to establish specific energy reduction targets having greatest economic impact in the community. From an environmental perspective, short term economy-wide CO 2 emissions increase because of the increased community-wide economic activities spurred by the production and installation of energy efficiency measures, however the resulting energy savings provide continuous CO 2 reduction for various target savings. - Highlights: • WF energy efficient strategy helps to optimize various level of economic impacts. • Greatest community benefits are achieved from specific energy reduction targets. • Community-wide economic impacts vary for different energy conservation measures

  14. Residential versus Communal Combination of Photovoltaic and Battery in Smart Energy Systems

    DEFF Research Database (Denmark)

    Marczinkowski, Hannah Mareike; Østergaard, Poul Alberg

    2017-01-01

    This paper presents an analysis of small consumers’ involvement in smart island energy systems with a focus on the technical feasibility of photovoltaic (PV) systems in combination with batter-ies. Two approaches may be observed in the literature: the optimization on a household level with the aim...... of being self-reliant versus coordinated and collective technologies with increased inte-gration across sectors and energy carriers. Thus, for household systems, the placement of a battery – whether aggregated or residential – creates the basis for this investigation. The study is based on the case...... of the Danish island Samsø for which the two battery approaches are simulated using the energy system simulation model EnergyPLAN. Results indicate a tendency towards aggre-gated batteries being more favourable from a systems perspective – while on the other hand, resi-dential batteries are more motivating...

  15. Evaluation of heat pumps usage and energy savings in residential buildings

    OpenAIRE

    Nehad Elsawaf, Tarek Abdel-Salam, Leslie Pagliari

    2012-01-01

    The residential housing sector is a major consumer of energy in most countries around the world. In the United States the residential sector consumes about 21 % of the energy and about 35% of the electricity production. Of the total energy consumption per house hold about 33% is consumed for space heating. This study evaluates the energy consumption in residential houses during the heating season. The main objective of the study is to test the effectiveness of using heat pumps for space heati...

  16. Modeling radon transport in multistory residential buildings

    International Nuclear Information System (INIS)

    Persily, A.K.

    1993-01-01

    Radon concentrations have been studied extensively in single-family residential buildings, but relatively little work has been done in large buildings, including multistory residential buildings. The phenomena of radon transport in multistory residential buildings is made more complicated by the multizone nature of the airflow system and the numerous interzone airflow paths that must be characterized in such a system. This paper presents the results of a computer simulation of airflow and radon transport in a twelve-story residential building. Interzone airflow rates and radon concentrations were predicted using the multizone airflow and contaminant dispersal program (CON-TAM88). Limited simulations were conducted to study the influence of two different radon source terms, indoor-outdoor temperature difference and exterior wall leakage values on radon transport and radon concentration distributions

  17. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  18. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  19. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  20. Market influence on the low carbon energy refurbishment of existing multi-residential buildings

    International Nuclear Information System (INIS)

    Atkinson, Jonathan G.B.; Jackson, Tim; Mullings-Smith, Elizabeth

    2009-01-01

    This paper explores the relationship between the energy market; the political and regulatory context; and energy design decisions for existing multi-residential buildings, to determine what form the energy market landscape would take if tailored to encourage low carbon solutions. The links between market dynamics, Government strategies, and building designs are mapped to understand the steps that achieve carbon reduction from building operation. This is achieved using a model that takes financial and energy components with market and design variables to provide net present cost and annual carbon outputs. The financial component applies discounted cash flow analysis over the building lifespan, with discount rates reflecting contractual characteristics; the carbon component uses Standard Assessment Procedure (SAP) 2005. A scenario approach is adopted to test alternative strategies selected to encourage low carbon solutions in two residential and two office designs. The results show that the forward assumption of energy price escalation is the most influential factor on energy investment, together with the expected differentiation between the escalation of gas and electricity prices. Using this, and other influencing factors, the research reveals trends and strategies that will achieve mainstream application of energy efficiency and microgeneration technologies, and reduce carbon emissions in the existing multi-residential sector.

  1. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  2. Sample design for the residential energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  3. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  4. Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, M. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, I. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, B. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need for mechanical ventilation to protect indoor air quality. This study estimated the potential energy savings of implementing airtightness improvements or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope tightening, providing mechanical ventilation as needed. There are 113 million homes in the US. We calculated the change in energy demand for each home in a nationally representative sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey. Ventilation was provided as required by 2010 and proposed 2013 versions of ASHRAE Standard 62.2. Ensuring that all current homes comply with 62.2-2010 would increase residential site energy demand by 0.07 quads (0.07 exajoules (EJ)) annually. Improving airtightness of all homes at current average retrofit performance levels would decrease demand by 0.7 quads (0.74 EJ) annually and upgrading all homes to be as airtight as the top 10% of similar homes would double the savings, leading to roughly $22 billion in annual savings in energy bills. We also analyzed the potential benefits of bringing the entire stock to airtightness specifications of IECC 2012, Canada's R2000, and Passive House standards.

  5. Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M; Singer, Brett

    2014-06-01

    Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effect on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.

  6. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  7. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  8. A statistical method to investigate national energy consumption in the residential building sector of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuqin; Li, Nianping; Guan, Jun; Xie, Yanqun; Sun, Fengmei; Ni, Ji [Civil Engineering College, Hunan University, Changsha, Hunan 410082 (China)

    2008-07-01

    The purpose of this research is to found a national statistical system of energy consumption in the residential building sector of China, so as to look into the actuality of residential energy consumption, and to provide data support for building energy efficiency work in China. The frame of a national statistical system of residential energy consumption is presented in this paper, according to current status of the climate, social and historic conditions, and energy consumption characteristics in the five architecture climate divisions in China. The statistical index system of residential energy consumption is constituted which refers to housing unit characteristics, household characteristics, possession and utilization of energy consuming equipment, and residential energy consumption quantities. This index system suits for all the different utilization structures of residential energy consumption in different architecture climate divisions. On this base, a complete set of statistical reports is worked out to measure the energy consumption of cities, provinces and the country stage by stage. Finally the statistical method above is applied to measure residential energy consumption by case studies, in order to validate the feasibility of this method. The research in this paper covers the first step of the elaboration of the statistical method to investigate energy consumption in China, and more work will be done in future to further impel national statistics of residential energy consumption. (author)

  9. Energy and economic evaluation of the single-family residential building energy performance standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.L.; Jones, J.L.

    1981-11-01

    The Energy Production and Conservation Act (EPCA) of 1976 mandated the setting of building energy performance standards (BEPS) for all newly constructed buildings. One of the classes of buildings included in EPCA is single-family residences. These standards cover the energy used for space heating, air conditioning, and water heating. This report describes the evaluation of direct energy and economic impacts of three proposed levels of single-family BEPS: lenient, mid, and strict. The lenient level is the least stringent in requiring improvements in eneryperformance of residence while the strict is the most stringent. Each of the levels and the method of developing them are also described. The ORNL residential energy model is used to calculate energy savings and economic impacts of BEPS to the nation. The model is also used to estimate the sensitivity of the results to several exogenous variables: projected fuel prices, baseline energy codes, capital csts, short-run price elasticities, and discount rates. The Net Present Value (NPV) and cumulative energy savings from 1980 to 2020 are the two measures used to compare the standards. Both the lenient and mid level standards provide a positive economic benefit to the country of 1.24 and 2.58 billion dollars, respectively. Even though the strict standard has the largest energy savings, it has a negative economic cost of 1.5 billion dollars to the nation. The cumulative energy savings of the lenient, mid, and strict level standards are 4.2, 10.2, and 20.1 EJ, respectively.

  10. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  11. 78 FR 151 - Energy Conservation Program: Test Procedures for Residential Clothes Dryers

    Science.gov (United States)

    2013-01-02

    ... (NRDC), Alliance to Save Energy (ASE), Alliance for Water Efficiency (AWE), Northwest Power and... in the docket of the residential dishwasher, dehumidifier, and conventional cooking products test...

  12. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  13. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly

  14. Pilot Evaluation of Energy Savings from Residential Energy Demand Feedback Devices

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie [Florida Solar Energy Center, Cocoa, FL (United States)

    2008-01-01

    This report discusses instantaneous feedback on household electrical demand has shown promise to reduce energy consumption. This report reviews past research and describes a two year pilot evaluation of a low cost residential energy feedback system installed in twenty case study homes in FL.

  15. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... energy consumption, and because off mode is not applicable to water heaters, no amendment is required...

  16. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... procedures for residential water heaters include a full- year accounting of energy use, both electricity and... water heaters already account for standby mode and off mode energy consumption. III. Discussion In the...

  17. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... procedure for residential water heaters fully addresses standby mode and off mode energy consumption, this... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating...

  18. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  19. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  20. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  1. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  2. Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corrado, Vincenzo; Madonna, Francesco; Paduos, Simona; Ravasio, Franco

    2017-01-01

    The European residential building stock is largely composed of buildings with poor energy performance, therefore basic retrofit actions could lead to significant energy savings. However, energy refurbishment measures should be identified in accurate way, taking into account the technical viability and aiming both to increase the building energy performance and to restrain the costs. The present article investigates the effects of different measures applied to the Italian residential building stock by using the building typology, which consists of 120 building types, representative of six construction ages, four building sizes and five climatic zones. A quasi-steady state model has been used to calculate the energy performance; the economic evaluation has been carried out as specified in the EU cost-optimal comparative methodology (Directive 2010/31/EU). The most effective measures and packages of measures, in terms of energy saving and global cost reduction, are identified and discussed. The results are addressed to important purposes for energy policy, as for instance: (a) to provide political authorities with the most effective energy efficiency measures as to encourage retrofit processes through the allocation of financial incentives, (b) to offer a knowledge-base for developing energy refurbishment scenarios of residential building stocks and forecasting future energy resource demand. - Highlights: • Investigation of energy savings and cost effectiveness of the Italian housing stock refurbishments. • Application of the building typology approach of the IEE-TABULA project. • Knowledge-base for bottom-up models of the building stock energy performance. • Supporting the political authorities to promote effective refurbishment measures.

  3. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  4. An analysis of residential energy consumption in a temperate climate. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  5. An analysis of residential energy consumption in a temperate climate. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  6. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Sherman, Max

    2008-01-10

    The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

  7. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  8. Facade Refurbishment Toolbox. Supporting the Design of Residential Energy Upgrades

    Directory of Open Access Journals (Sweden)

    Thaleia Konstantinou

    2014-07-01

    Full Text Available The starting point of the research is the need to refurbish existing residential building stock, in order to reduce its energy demand, which accounts for over one fourth of the energy consumption in the European Union. Refurbishment is a necessary step to reach the ambitious energy and decarbonisation targets for 2020 and 2050 that require an eventual reduction up to 90% in CO2 emissions. In this context, the rate and depth of refurbishment need to grow. The number of building to be renovated every year should increase, while the energy savings in renovated buildings should be over 60% reduction to current energy demand. To achieve that, not only is it necessary to find politics and incentives, but also to enable the building industry to design and construct effective refurbishment strategies. This research focuses on refurbishment of the building envelope, as it is very influential with regard to energy reduction. The early design phases are particularly important, as decisions taken during this stage can determine the success or failure of the design. Even though the design decisions made earlier can have bigger impact with lower cost and effort, most existing tools focus on post-design evaluation. The integration of all aspects during the early design phases is complex, particularly as far as energy efficient design is concerned. At this stage, architects are in search for a design direction to make an informed decision. If the designer is provided with an indication of how efficient refurbishment options are, it is possible to apply them as part of an integrated strategy rather than trying to add measures at later stages, after the strategy has been developed. Therefore, taking into account the need to refurbish residential buildings and the importance of integrated design of façade refurbishment strategies, the thesis aims at answering the following question. How can the energy upgrade potential of residential façade refurbishment

  9. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  10. Multi-Level Energy Management and Optimal Control of a Residential DC Microgrid

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    of a residential DC microgrid (R-DCMG) with different distributed generations (DGs) and loads is proposed and implemented as an optimal hierarchical control strategy. A system-level optimizer is designed to calculate the optimal operating points of the controllable energy sources (CESs) when needed, while lower......-level controllers are utilized to enforce the CESs to follow optimal set-points.......Extensive exploitation of renewable energies together with the increased role of low-voltage DC (LVDC) micro-sources in the generation mix of the future electricity networks, have become the driving force behind the DC microgrid applications. In this paper, an optimal dispatch model...

  11. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  12. Identification of Parameters Affecting the Variability of Energy Use in Residential Buildings

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Nielsen, Per Sieverts

    2016-01-01

    Energy use of buildings varies significantly. When aggregating the demand profiles of a group of buildings, the variations of energy demand are critical to determine the aggregated load profile. Especially when dimensioning district energy systems, it is important to know the variability of energy...... demand that can guarantee the efficient operation of the system. For this reason, it is useful to distinguish the parameters that affect building energy performance the most and to estimate the magnitude of these variations on each parameter. The aim of the present study is to identify the parameters...... that lead to the largest variations in energy performance of residential buildings in Denmark. A set of sensitivity analysis has been carried out using an extensive search algorithm. These sensitivity analyses were then applied for modelling a reference building representing Danish single-family houses...

  13. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  14. Beyond the EPBD: The low energy residential settlement Borgo Solare

    International Nuclear Information System (INIS)

    Aste, Niccolo; Adhikari, R.S.; Buzzetti, Michela

    2010-01-01

    The European Directive on Energy Performance of Buildings (EPBD) imposes the adoption of measures for improving the energy efficiency in buildings. These measures should take into account the local weather conditions as well as internal thermal environment and cost-effectiveness. In this respect, Italy is a very interesting benchmark. For Northern Italy, the climatic context is particularly difficult to deal with cold winters and hot summers. The legislations are changing very rapidly, but has not fully adapted to the local context. The considered methodology still involves winter heating while summer cooling is addressed in incomplete and inadequate ways. The energy issue is addressed only partially as final energy consumption, but with little attention to LCA. Moreover, the belief that the buildings with high energy savings are too expensive, and therefore not attractive from economic point of view. For these reasons, it is very important to develop case studies to demonstrate the effectiveness of sustainable energy in architecture, according to a holistic approach. This paper describes a detailed techno-economic analysis for Borgo Solare project, an extremely advanced and innovative residential settlement designed on sustainable architecture concepts. One of the most innovative aspects of the project is that it is not just an experimental operation but Borgo Solare is a real urban district, which will be built without public funds and should be inhabited by common people. Excellent energy performance, therefore, must be accompanied by affordable market prices. The energy and economical analysis is presented taking into account also the embodied energy of the building. The results on the performance of a sample building (case study) of this settlement are reported, according to different construction standards: prior to EPBD, present from the EPBD and more efficient developed specifically for the project. It has been shown that using the better design practices

  15. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  16. Mathematical modeling to predict residential solid waste generation.

    Science.gov (United States)

    Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de

    2008-01-01

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.

  17. How might residential PV change the energy demand curve in Poland

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2016-01-01

    Full Text Available Photovoltaics (PV in terms of installed capacity play a minor role in the portfolio of renewable energy sources (RES in Poland. However current market tendencies indicate that residential PV installations are gaining on popularity and may in future significantly contribute to covering national energy demand. This study investigates the potential impact of numerous residential PV installations on the shape and statistical properties of the polish energy demand curve. Analysis employed statistical data on mean household energy consumption in different districts, typical energy demand patterns and hourly values of irradiation for the year 2012. Obtained results indicate that there is a possibility to integrate in total as much as 300 000 residential PV installations (0.9 GW from which generated energy will be utilized by households within given district. Further analysis has shown that to some extent increasing number of residential PV decreases the value of energy demand coefficient of variation.

  18. Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Brunone, S.; Cellura, M.; Franzitta, V. [Dipartimento di Ricerche Energetiche e Ambientali, Universita degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2008-03-15

    The aim of this study was to analyze energy, economic and environmental performances of a set of scenarios dealing with the production and the use of hydrogen as energy carriers in residential applications in combination with renewable energy (RE). The authors also made an investigation into the required economic conditions necessary for making H{sub 2}-RE residential systems competitive with conventional ones, which are based on the use of grid electricity and natural gas. A case study was enacted in a small residential district in Palermo (Italy) made by five multi-storey buildings. Many energy systems have been considered according to several fuel-device combinations (electric grid, fuel cell, PV panels, wind turbines, boiler etc.). The software HOMER (hybrid optimization model for electric renewables), developed by NREL and Midwest Research Institute (USA), was used, in order to study the energy balance of the system and its components. Moreover, it was possible to simulate the hourly operation of each system and to calculate technical, economic and environmental performance parameters. The net present cost and the cost of energy are the two main parameters used to compare economic performances of the systems with both actual and expected costs in the medium term. A sensitivity analysis was carried out in order to appreciate the most important parameters influencing the economic performances of the systems and to define possible future scenarios of competitiveness between technologies. Emissions of CO{sub 2} (the most important greenhouse gas) and other pollutants have been considered for an environmental benefits analysis. (author)

  19. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  20. Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption

    International Nuclear Information System (INIS)

    López-Rodríguez, M.A.; Santiago, I.; Trillo-Montero, D.; Torriti, J.; Moreno-Munoz, A.

    2013-01-01

    The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy. -- Highlights: •Active occupancy profiles of Spanish dwellings has been obtained and modeled from Time Use Survey data. •Occupancy profiles resulting from the model can be used to model domestic energy consumption. •The presence of three peaks of active occupation was verified, which coincide with morning, noon and evening. •Manual and incentive-based DSM programmes are considered the most suitable for Spanish dwellings. •TV electricity consumption becomes important at aggregate level

  1. Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, D.; Echo-Hawk, L.

    2005-02-01

    This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

  2. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  3. Using Radio Irregularity for Increasing Residential Energy Awareness

    Directory of Open Access Journals (Sweden)

    A. Miljković

    2012-06-01

    Full Text Available Radio irregularity phenomenon is often considered as a shortcoming of wireless networks. In this paper, the method of using radio irregularity as an efficient human presence detection sensor in smart homes is presented. The method is mainly based on monitoring variations of the received signal strength indicator (RSSI within the messages used for the communication between wireless smart power outlets. The radio signals used for the inter-outlets communication can be absorbed, diffracted or reflected by objects in their propagation paths. When a human enters the existing radio communication field, the variation of the signal strength at the receiver is even more expressed. Based on the detected changes and compared to the initial thresholds set during the initialization phase, the system detects human presence. The proposed solution increases user awareness and automates the power control in households, with the primary goal to contribute in residential energy savings. Compared to conventional sensor networks, this approach preserves the sensorial intelligence, simplicity and low installation costs, without the need for additional sensors integration.

  4. Residential energy contracts and the 28 day rule

    International Nuclear Information System (INIS)

    Littlechild, Stephen

    2006-01-01

    What measures are needed to protect customers when a utility market is first opened to competition? In the UK, residential (domestic) customers must be able to terminate energy contracts at 28 days' notice. This rule was introduced as a transitional protection for customers and for competition. However, the regulatory justification for the rule seems to have evolved over time. Removing the rule could have a number of advantages, including the development of fixed-price fixed-term contracts. The advantages of retaining the rule are questionable. In other retail sectors there is no regulatory concern or requirement of this kind. UK electricity suppliers have begun to offer capped prices for specified periods of time, suggesting that there is a growing customer demand for this. Fixed-price fixed-term contracts are a common form of competition in Scandinavia. The 28 day rule no longer seems necessary to protect customers and is more likely to distort than to protect competition. In retrospect, it would have been preferable not to introduce the rule in the first place. (author)

  5. FUGACITY-BASED INDOOR RESIDENTIAL PESTICIDE FATE MODEL

    Science.gov (United States)

    Dermal and non-dietary pathways are possibly important for exposure to pesticides used in residences. Limited data have been collected on pesticide concentrations in residential air and surfaces following application. Models may be useful for interpreting these data and to make...

  6. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  7. A Hybrid dasymetric and machine learning approach to high-resolution residential electricity consumption modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; McManamay, Ryan A [ORNL

    2017-01-01

    As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for detailed information regarding residential energy consumption patterns has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy consumption, the majority of techniques are highly dependent on region-specific data sources and often require building- or dwelling-level details that are not publicly available for many regions in the United States. Furthermore, many existing methods do not account for errors in input data sources and may not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more general hybrid approach to high-resolution residential electricity consumption modeling by merging a dasymetric model with a complementary machine learning algorithm. The method s flexible data requirement and statistical framework ensure that the model both is applicable to a wide range of regions and considers errors in input data sources.

  8. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  9. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Building Science Corporation, Westford, MA (United States)

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  10. FORECASTING RESIDENTIAL ELECTRICITY CONSUMPTION IN BRAZIL: APPLICATION OF THE ARX MODEL

    Directory of Open Access Journals (Sweden)

    Joao Bosco de Castro

    2010-11-01

    Full Text Available This work aims to propose the application of the ARX model to forecast residential electricity consumption in Brazil. Such estimates are critical for decision making in the energy sector,  from a technical, economic and environmentally sustainable standpoint. The demand for electricity follows a multiplicative model based on economic theory and involves four explanatory variables: the cost of residential electricity, the actual average income, the inflation of domestic utilities and the electricity consumption. The coefficients of the electricity consumption equation  were determined using the ARX model, which considers the influence of exogenous variables to estimate the dependent variable and employs an autoregression process for residual modeling to improve the explanatory power. The resulting model has a determination coefficient of 95.4 percent and all estimated coefficients were significant at the 0.10 descriptive level. Residential electricity consumption estimates were also determined for January and February 2010 within the 95 percent confidence interval, which included the actual consumption figures observed. The proposed model has been shown to be useful for estimating residential electricity consumption  in Brazil. Key-words: Time series. Electricity consumption. ARX modeling

  11. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  12. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  13. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  14. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  15. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  16. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  17. Energy statistics for non-residential premises 2012; Energistatistik foer lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data on a number of non-residential premises, heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  18. Continuity of Care and Outcomes in Residential Care: A Comparison of Two Care Giving Models

    Science.gov (United States)

    Jones, Loring

    2006-01-01

    This study examined differences in two residential care giving models (houseparent vs. child care worker) in providing continuity of care for youth in residential placement, and the effect that a care giving model had on selected program outcomes. Data for this research were collected in a residential facility that used both models. Youth with…

  19. Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Ouyang, Xiaoling

    2016-01-01

    Urbanization, one of the most obvious characteristics of economic growth in China, has an apparent “lock-in effect” on residential energy consumption pattern. It is expected that residential sector would become a major force that drives China's energy consumption after urbanization process. We estimate price and expenditure elasticities of residential energy demand using data from China's Residential Energy Consumption Survey (CRECS) that covers households at different income levels and from different regional and social groups. Empirical results from the Almost Ideal Demand System model are in accordance with the basic expectations: the demands for electricity, natural gas and transport fuels are inelastic in the residential sector due to the unreasonable pricing mechanism. We further investigate the sensitivities of different income groups to prices of the three types of energy. Policy simulations indicate that rationalizing energy pricing mechanism is an important guarantee for energy sustainable development during urbanization. Finally, we put forward suggestions on energy pricing reform in the residential sector based on characteristics of China's undergoing urbanization process and the current energy consumption situations.

  20. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  1. Energy use and conservation in China`s residential and commercial sectors: Patterns, problems, and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.

    1993-07-01

    This report discusses the determinants of residential and commercial energy demand, profiles the patterns and problems of energy consumption, and evaluates popular energy conservation measures of the People`s Republic of China. It also discusses technological and institutional opportunities for realizing greater energy conservation. General characteristics related to energy use include: population growth, economic growth, residential and commercial energy, and improved standards of living. Specific end-use areas that are examined in detail are space heating, cooking and water heating, and lighting and appliances.

  2. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Polly, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  3. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

    1980-10-01

    One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

  4. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  5. Assessing Impact of Large-Scale Distributed Residential HVAC Control Optimization on Electricity Grid Operation and Renewable Energy Integration

    Science.gov (United States)

    Corbin, Charles D.

    Demand management is an important component of the emerging Smart Grid, and a potential solution to the supply-demand imbalance occurring increasingly as intermittent renewable electricity is added to the generation mix. Model predictive control (MPC) has shown great promise for controlling HVAC demand in commercial buildings, making it an ideal solution to this problem. MPC is believed to hold similar promise for residential applications, yet very few examples exist in the literature despite a growing interest in residential demand management. This work explores the potential for residential buildings to shape electric demand at the distribution feeder level in order to reduce peak demand, reduce system ramping, and increase load factor using detailed sub-hourly simulations of thousands of buildings coupled to distribution power flow software. More generally, this work develops a methodology for the directed optimization of residential HVAC operation using a distributed but directed MPC scheme that can be applied to today's programmable thermostat technologies to address the increasing variability in electric supply and demand. Case studies incorporating varying levels of renewable energy generation demonstrate the approach and highlight important considerations for large-scale residential model predictive control.

  6. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  7. Design challenges for a climate adaptive multi-functional lightweight prefab panel for energy-efficient retrofitting of residential building based on one-room model simulations

    NARCIS (Netherlands)

    Dijkmans, T.J.A.; Donkervoort, D.R.; Phaff, J.C.; Valcke, S.L.A.

    2014-01-01

    Current solutions for highly energy-efficient retrofitting rely on thick static insulation, airtight construction and extensive ventilation systems to become independent from variable outdoor conditions. A building skin that adapts to the outdoor conditions to regulate the indoor conditions could

  8. Analysis of rural residential energy consumption and corresponding carbon emissions in China

    International Nuclear Information System (INIS)

    Yao Chunsheng; Chen Chongying; Li Ming

    2012-01-01

    The analysis of rural residential energy consumption in China from 2001 to 2008 and corresponding impacts on climate change is presented in the paper. It is found that rural residential energy consumption has shown obvious transition from non-commercial energy to commercial energy. The percentage of biomass energy consumption dropped from 81.5% in 2001 to 70.9% in 2008, while the percentage of commercial energy increased from 17.1% to 25.1%. Besides, other renewable energy increased very fast with annual growth rate of 19.8%. Correspondingly, total CO 2 emissions from rural residential energy consumption had significant increase from 152.2 Million tons in 2001 to 283.6 Million tons in 2008. The annual growth rate of per capita CO 2 emissions was nearly 2 times faster than that of urban area. The major driving force for the consumption of commercial energy was the income of rural farmers, while strong rural energy policies supported the development of renewable energy. To satisfy the goals of energy supply and CO 2 emissions reduction in rural areas, it is advised to change the energy structure and improve the energy efficiency, such as to generate electricity using renewable technologies and to replace coal with modern biomass energy for cooking and heating. - Highlights: ► This study analyzed rural residential energy consumption in China 2001–2008. ► It shows obvious transition from non-commercial energy to commercial energy. ► CO 2 emissions from rural residential energy consumption have significant increases. ► Major driving forces are income of rural farmers and rural energy policies. ► Generate electricity using renewable technology and replace coal with modern biomass.

  9. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity...... consumption costs accordingly, but also to satisfy user’s comfort level through optimal scheduling and operation management of both demand and supply sides.......In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity...

  10. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2010-09-03

    ... fraction of all new residential construction. The Wall Street Journal Online (June 3, 2003) reports three... correspond to those already in the code for steel walls. Another example is the relocation of the 51 pages of... and cooled zone. Additionally, new walls, doors or windows between the sunroom and the house must meet...

  11. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    Science.gov (United States)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  12. Optimization scheduling in intelligent Energy Management System for the DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    (EMS) with aid of the wireless communication and the smart meter is imperative in achieving ADR for DC residential community. This paper presents a framework of centralized management system integration and the key process of ADR in DC residential distribution system. The propose framework and methods......Smart DC residential distribution system(RDS) consisted by DC living homes will be a significant integral part in the future green transmission with demand flexibility. Meanwhile, the distributed generations will play an important role in the active demand response (DR). Energy Management System...

  13. Spatial analysis of participation in the Waterloo Residential Energy Efficiency Project

    Science.gov (United States)

    Song, Ge Bella

    Researchers are in broad agreement that energy-conserving actions produce economic as well as energy savings. Household energy rating systems (HERS) have been established in many countries to inform households of their house's current energy performance and to help reduce their energy consumption and greenhouse gas emissions. In Canada, the national EnerGuide for Houses (EGH) program is delivered by many local delivery agents, including non-profit green community organizations. Waterloo Region Green Solutions is the local non-profit that offers the EGH residential energy evaluation service to local households. The purpose of this thesis is to explore the determinants of household's participation in the residential energy efficiency program (REEP) in Waterloo Region, to explain the relationship between the explanatory variables and REEP participation, and to propose ways to improve this kind of program. A spatial (trend) analysis was conducted within a geographic information system (GIS) to determine the spatial patterns of the REEP participation in Waterloo Region from 1999 to 2006. The impact of sources of information on participation and relationships between participation rates and explanatory variables were identified. GIS proved successful in presenting a visual interpretation of spatial patterns of the REEP participation. In general, the participating households tend to be clustered in urban areas and scattered in rural areas. Different sources of information played significant roles in reaching participants in different years. Moreover, there was a relationship between each explanatory variable and the REEP participation rates. Statistical analysis was applied to obtain a quantitative assessment of relationships between hypothesized explanatory variables and participation in the REEP. The Poisson regression model was used to determine the relationship between hypothesized explanatory variables and REEP participation at the CDA level. The results show that

  14. Contribution of price/expenditure factors of residential energy consumption in China from 1993 to 2011: A decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Zengming; Zhao, Tao

    2015-01-01

    Highlights: • Analysis about energy prices and the residential expenditure on energy in China. • Though the prices of energy declined, the price effect was negative. • The effect of price was the strongest restraining contribution. • Discussion on the proportion of energy expenditure in residential incomes. - Abstract: Since the establishment of the market economy in 1993, the residential consumption of commodities, including energy, has been highly influenced by prices in China. However, the contribution of the factors related to prices in residential energy consumption is relatively unexplored. This paper extends the KAYA identity with price and expenditure factors and then applies the LMDI method to a decomposition of residential energy consumption in China from 1993 to 2011. Our results show the following: (1) Though the prices of a majority of residential energy sources in China declined, the effect of energy prices restrained residential energy consumption because the expenditure structure changed during the period. (2) During the research period, the urban energy expenditure proportion experienced two progresses of rising and falling, and the rural proportion, which was stable before 2002, sharply increased. (3) The energy consumption intensity effect, which is the negative of the average energy price effect, contributed to most of the decrease in energy consumption, whereas residential income played a key role in the growth of consumption. According to the conclusions, we suggest further marketization and deregulation of energy prices, the promotion of advanced energy types and guidance for better energy consumption patterns

  15. The evolution of the energy demand in France in the industrial, residential and transportation sectors

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides information, from 1970 to 2005, on the evolution of the energy intensity (ratio between the primary energy consumption and the gross domestic product in volume) and the actions of energy control for the industrial, residential and transportation sectors. (A.L.B.)

  16. Game-Theoretic Energy Management for Residential Users with Dischargeable Plug-in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available The plug-in electric vehicle (PEV has attracted more and more attention because of the energy crisis and environmental pollution, which is also the main shiftable load of the residential users’ demand side management (DSM system in the future smart grid (SG. In this paper, we employ game theory to provide an autonomous energy management system among residential users considering selling energy back to the utility company by discharging the PEV’s battery. By assuming all users are equipped with smart meters to execute automatic energy consumption scheduling (ECS and the energy company can adopt adequate pricing tariffs relating to time and level of energy usage, we formulate an energy management game, where the players are the residential users and the strategies are their daily schedules of household appliance use. We will show that the Nash equilibrium of the formulated energy management game can guarantee the global optimization in terms of minimizing the energy costs, where the depreciation cost of PEV’s battery because of discharging and selling energy back is also considered. Simulation results verify that the proposed game-theoretic approach can reduce the total energy cost and individual daily electricity payment. Moreover, since plug-in electric bicycles (PEBs are currently widely used in China, simulation results of residential users owing household appliances and bidirectional energy trading of PEBs are also provided and discussed.

  17. 77 FR 65941 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Science.gov (United States)

    2012-10-31

    ... designed to improve energy efficiency. (All references to EPCA refer to the statute as amended through the... cooking products,'' as used in this notice, refers to residential electric and gas kitchen ovens, ranges... section shall be reasonably designed to produce test results which measure energy efficiency, energy use...

  18. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  19. Modeling residential exposure to secondhand tobacco smoke

    Science.gov (United States)

    Klepeis, Neil E.; Nazaroff, William W.

    We apply a simulation model to explore the effect of a house's multicompartment character on a nonsmoker's inhalation exposure to secondhand tobacco smoke (SHS). The model tracks the minute-by-minute movement of people and pollutants among multiple zones of a residence and generates SHS pollutant profiles for each room in response to room-specific smoking patterns. In applying the model, we consider SHS emissions of airborne particles, nicotine, and carbon monoxide in two hypothetical houses, one with a typical four-room layout and one dominated by a single large space. We use scripted patterns of room-to-room occupant movement and a cohort of 5000 activity patterns sampled from a US nationwide survey. The results for scripted and cohort simulation trials indicate that the multicompartment nature of homes, manifested as inter-room differences in pollutant levels and the movement of people among zones, can cause substantial variation in nonsmoker SHS exposure.

  20. Next Step Toward Widespread Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    McIlvaine, J.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.; Martin, E.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  1. The Next Step Toward Widespread Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    McIlvaine, J. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Saunders, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Bordelon, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Baden, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Elam, L. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  2. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, Kristen; O' Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  3. Spatio-temporal modeling for residential burglary

    NARCIS (Netherlands)

    Mahfoud, M.; Bhulai, Sandjai; van der Mei, R.D.; Bhulai, Sandjai; Kardaras, Dimitris

    2017-01-01

    Spatio-temporal modeling is widely recognized as a promising means for predicting crime patterns. Despite their enormous potential, the available methods are still in their infancy. A lot of research focuses on crime hotspot detection and geographic crime clusters, while a systematic approach to

  4. State energy price projections for the residential sector, 1992--1993

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report, State Energy Price Projections for the Residential Sector, 1992--1993, is to provide projections of State-level residential prices for 1992 and 1993 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1991 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations

  5. Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings

    OpenAIRE

    G.R. Ashari; N.Hedayat; S. Shalbaf; E.Hajidavalloo

    2011-01-01

    In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the num...

  6. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. A flagship outcome of the project is anticipated to be a guidebook on design and operation of ventilation in residential buildings to achieve high IAQ with smallest possible energy consumption....

  7. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...... studies. A flagship outcome of the project will be a guidebook on design and operation of ventilation in residential buildings to achieve high IAQ with least possible energy consumption. The paper illustrates the working program of each of these activities....

  8. Energy engenderment: An industrialized perspective assessing the importance of engaging women in residential energy consumption management

    International Nuclear Information System (INIS)

    Elnakat, Afamia; Gomez, Juan D.

    2015-01-01

    This study assesses gender role and participation in energy utilization at the residential household level in an advanced industrial country setting. Two hundred and twenty one (221) standardized surveys of single-family residential households in San Antonio, Texas – the seventh largest city in the United States of America – are collected and used as a test case. The objective is to highlight the role of women in improving household energy efficiency. By coupling the behavioral and analytical sciences, studies such as this one provide better insight for the effective deployment of targeted energy efficiency programs that can benefit both households and municipalities while reducing impact on environmental resources. Study conclusions highlight 80% higher per capita consumption in female dominant households versus male dominant households (p=0.000) driven by approximately double the gas consumption in female-headed households (p=0.002), and 54% more electric usage (p=0.004). The higher use in female dominant homes is examined through the socio-demographic impacts of education, income, vintage of home occupied and size of home occupied. The theoretical framework and test case presented in this study promote the need for market segmented energy efficiency initiatives that better engage women in energy demand-side management in industrialized populated cities. -- Highlights: •Role of women in energy consumption is understudied in industrial settings. •There is a significant impact from women on energy consumption in test case. •Higher per capita, per square foot, and gas consumption are indicated for women. •Women’s intrinsic role at household level can allow for better energy efficiency

  9. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    Directory of Open Access Journals (Sweden)

    Abubakar S. Mahmoud

    2017-03-01

    Full Text Available Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed with the help of DesignBuilder software. The base case model has been validated with the help of 3-month measured data about the energy consumption without a green roof installed. The result shows that the energy consumption for the base case is 169 kWh/m2 while the energy consumption due to the application of a green roof on the entire roof surface is 110 kWh/m2. For the three investigated green roof options, energy saving is found to be in the range of 24% to 35%. The economic evaluation based on the net present value (NPV approach for 40 years with consideration to other environmental advantages indicates that the benefits of the green roof technology are realized towards the end of the life cycle of the building.

  10. Energy Performance of Three Residential College Buildings in University of Malaya Campus, Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Adi Ainurzaman Jamaludin

    2011-12-01

    Full Text Available Three residential colleges located in Kuala Lumpur, Malaysia, were selected for energy performance analysis in regards to its implementation of bioclimatic design strategies. Specifically, passive design strategies on daylighting and natural ventilation were examined. In Malaysia, the residential college or hostel is a multi-residential building providing accommodation to university students. The three residential colleges in this study, namely C1, C2 and C3, were built in different years with different designs and forms, particularly with regards to enclosure and facade design, solar control devices, passive daylight concepts, and natural ventilation strategies. The building designs were carefully studied and an electric consumption analysis was carried out in each residential college. This study revealed that the wide-scale implementation of bioclimatic design strategies in college C2 help reduced the annual energy consumption. The building bioclimatic design features that are accountable to reduce energy consumption are the internal courtyard and balconies on each unit of floor area, as shown in C3.Results from this study highly recommend internal courtyard and balcony building combination for multi residential building design, especially in tropical urban regions.

  11. Potency of energy saving and emission reduction from lighting system in residential sector of Indonesia

    Science.gov (United States)

    Ambarita, H.

    2018-03-01

    The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.

  12. Residential Conservation Service. Model Audit manual

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Model Audit is a free technical assistance resource for voluntary use by utilities. The manual contains procedures for customer interviews, residence inspections, and cost and saving calculations. Data forms, calculation aids, weather and other data, and a section on presenting results to the customer are included. This revision incorporates updates issued on the original February 1980 version: improved calculational procedures for cooling load, replacement air conditioners, solar domestic hot water, thermosiphon air panels, sunspaces, and new procedures for several state-added measures.

  13. Residential building energy estimation method based on the application of artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, S.; Kajl, S.

    1999-07-01

    The energy requirements of a residential building five to twenty-five stories high can be measured using a newly proposed analytical method based on artificial intelligence. The method is fast and provides a wide range of results such as total energy consumption values, power surges, and heating or cooling consumption values. A series of database were created to take into account the particularities which influence the energy consumption of a building. In this study, DOE-2 software was created for use in 8 apartment models. A total of 27 neural networks were used, 3 for the estimation of energy consumption in the corridor, and 24 for inside the apartments. Three user interfaces were created to facilitate the estimation of energy consumption. These were named the Energy Estimation Assistance System (EEAS) interfaces and are only accessible using MATLAB software. The input parameters for EEAS are: climatic region, exterior wall resistance, roofing resistance, type of windows, infiltration, number of storeys, and corridor ventilation system operating schedule. By changing the parameters, the EEAS can determine annual heating, cooling and basic energy consumption levels for apartments and corridors. 2 tabs., 2 figs.

  14. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m 2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  15. The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis

    Directory of Open Access Journals (Sweden)

    Tekla Sebestyén Szép

    2017-01-01

    Full Text Available The residential energy consumption is influenced by a lot of factors. Understanding and calculating these factors is essential to making conscious energy policy decisions and feedbacks. Since 2013 the energy prices for households have been controlled by the government in Hungary and as a result of the utility cost reduction program a sharp decline can be observed in residential electricity, district heating and natural gas prices. This paper applies the LMDI (~Logarithmic Mean Division Index method to decompose the absolute change of the residential energy consumption during the period of 2010-2015. We calculate the price, the intensive structure (it means the change of energy expenditure share on energy sources, the extensive structure (it is in connection with the change of energy expenditure share in total expenditure, expenditure (it is the change of per capita total expenditure and population effect. All of that shows the impact of the specific factor on the residential energy consumption by income deciles. Our results have verified the preliminary expectations: the decreasing energy prices for households have a positive impact on energy use and it has been strengthened by the expenditure effect as well. However, the intensive structure, the extensive structure and the population effect have largely offset it.

  16. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  17. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  18. Real-Time Energy Management System for a Hybrid AC/DC Residential Microgrid

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio J.; Anvari-Moghaddam, Amjad

    2017-01-01

    This paper proposes real-time Energy Management System (EMS) for a residential hybrid ac/dc microgrid. The residential microgrid is organized in two different distribution systems. A dc distribution bus which interconnect the renewable energy sources (RES), energy storage systems (ESS......) and the building’s common facilities; while the apartments are supplied by an ac distribution system connected to the grid. This architecture avoids any modifications in the electrical installation that supplies energy to the apartments. A pure dc voltage supply is not yet a feasible approach for residential...... setup. The results shown how the operational costs of the system are effectively decreased by 28%, even with non-accurate estimation of the RES generation or building parameters....

  19. A Probabilistic Model for Exteriors of Residential Buildings

    KAUST Repository

    Fan, Lubin

    2016-07-29

    We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available data such as aerial images and street-view images. First, we propose a parametric model to describe the exterior of a building (with a varying number of parameters) and propose a set of attributes as a building representation with fixed dimensionality. Second, we propose a hierarchical graphical model with hidden variables to encode the relationships between building attributes and learn both the structure and parameters of the model from the database. Third, we propose optimization algorithms to generate three-dimensional models based on building attributes sampled from the graphical model. Finally, we demonstrate our framework by synthesizing new building models and completing partially observed building models from photographs.

  20. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...... vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user...

  1. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  2. Design, architecture and implementation of a residential energy box management tool in a SmartGrid

    International Nuclear Information System (INIS)

    Ioakimidis, Christos S.; Oliveira, Luís J.; Genikomsakis, Konstantinos N.; Dallas, Panagiotis I.

    2014-01-01

    This paper presents the EB (energy box) concept in the context of the V2G (vehicle-to-grid) technology to address the energy management needs of a modern residence, considering that the available infrastructure includes micro-renewable energy sources in the form of solar and wind power, the electricity loads consist of “smart” and conventional household appliances, while the battery of an EV (electric vehicle) plays the role of local storage. The problem is formulated as a multi-objective DSP (dynamic stochastic programming) model in order to maximize comfort and lifestyle preferences and minimize cost. Combining the DSP model that controls the EB operation with a neural network based approach for simulating the thermal model of a building, a set of scenarios are examined to exemplify the applicability of the proposed energy management tool. The EB is capable of working under real-time tariff and placing bids in electricity markets both as a stand-alone option and integrated in a SmartGrid paradigm, where a number of EBs are managed by an aggregator. The results obtained for the Portuguese tertiary electricity market indicate that this approach has the potential to compete as an ancillary service and sustain business with benefits for both the microgrid and residence occupants. - Highlights: • The energy box is a residential energy management tool in the context of V2G (vehicle-to-grid). • Multi-objective dynamic stochastic programming is used to model the energy box. • The energy box is working under real-time electricity pricing. • The proposed implementation is capable of placing bids in electricity markets. • The results indicate its potential to compete in the Portuguese tertiary market

  3. Effectiveness of an energy-consumption information system for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Tsuyoshi [Central Research Institute of Electric Power Industry, Tokyo (Japan); Inada, Ryo; Saeki, Osamu; Tsuji, Kiichiro [Osaka University, (Japan). Graduate School of Engineering

    2006-08-15

    The authors have proposed a method of reducing the energy consumption in residential buildings by providing household members with information on energy consumptions in their own houses. An on-line interactive 'energy-consumption information system' that displays power consumptions of, at most, 18 different appliances, power and city-gas consumption of the whole house and room temperature, for the purpose of motivating energy-saving activities has been constructed and the effectiveness of the system investigated by installing it in 10 residential buildings. The experiment showed that energy-saving consciousness was raised and energy consumption was in fact reduced by the energy-saving activities of the household members. In this paper, the system is described in detail and the effectiveness of reducing energy-consumption of the whole house and for space heating will be discussed. Also the energy-saving activities in a certain household are shown by using load duration curves. (author)

  4. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  5. Assessment of the impact of energy-efficient household appliances on the electricity consumption in the residential sector of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Claudia; Ghisi, Enedir

    2010-09-15

    In many countries the residential sector accounts for about 20.0% of the electricity consumption, which increases the concern about energy savings. The main objective of this paper is to assess the impact of energy-efficient household appliances on the electricity consumption of the Brazilian residential sector by using electricity end-use data. The consumption of each appliance is obtained based on official data from existing studies, being estimated for a dwelling and for the whole residential sector. Results indicate that the potential for energy savings by replacing existing appliances with energy-efficient household appliances would be 29.5% in the residential sector of Brazil.

  6. Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M.J.; Ketoff, A.; Masera, O.

    1992-10-01

    This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

  7. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  8. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  9. 78 FR 19606 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Science.gov (United States)

    2013-04-02

    ... Procedures for Residential Furnace Fans AGENCY: Office of Energy Efficiency and Renewable Energy, Department... referred to as ``furnace fans.'' DOE proposes a test procedure that would be applicable to furnace fans..., even though DOE interprets its authority as encompassing more than just circulation fans used in...

  10. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2017-09-01

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  11. Occupant behaviour related to energy use in the residential sector : results from the Ecommon monitoring campaign

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Kornaat, Wim; Heiselberg, Per Kvols

    2016-01-01

    Buildings in Europe are the largest end use sector and especially residential buildings account for two thirds of this energy use. Despite the fact that building characteristics play a major role in a dwelling’s energy consumption, occupant characteristics and behaviour significantly affect this

  12. Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects

    International Nuclear Information System (INIS)

    Yu Biying; Junyi Zhang; Fujiwara, Akimasa

    2012-01-01

    It is expected that the residential location choice and household energy consumption behavior might correlate with each other. Besides, due to the existence of self-selection effects, the observed inter-relationship between them might be the spurious result of the fact that some unobserved variables are causing both. These concerns motivate us to (1) consider residential location choice and household energy consumption behavior (for both in-home appliances and out-of-home cars) simultaneously and, (2) explicitly control self-selection effects so as to capture a relatively true effect of land-use policy on household energy consumption behavior. An integrated model termed as joint mixed Multinomial Logit-Multiple Discrete-Continuous Extreme Value model is presented here to identify the sensitivity of household energy consumption to land use policy by considering multiple self-selection effects. The model results indicate that land-use policy do play a great role in changing Beijing residents’ energy consumption pattern, while the self-selection effects cannot be ignored when evaluating the effect of land-use policy. Based on the policy scenario design, it is found that increasing recreational facilities and bus lines in the neighborhood can greatly promote household's energy-saving behavior. Additionally, the importance of “soft policy” and package policy is also emphasized in the context of Beijing. - Highlights: ► Representing residential choice and household energy consumption behavior jointly. ► Land use policy is found effective to control the household energy use in Beijing. ► Multiple self-selection effects are posed to get the true effect of land use policy. ► Significant self-selection effects call an attention to the soft policy in Beijing. ► The necessity of package policy on saving Beijing residents’ energy use is confirmed.

  13. Energy conservation and CO2-emission abatement potential in the Greek residential services sector

    International Nuclear Information System (INIS)

    A policy for CO 2 -emission abatement will have to allow for the sectoral energy-conservation potential. The present paper outlines the energy-analysis method applied to the Greek residential and services sectors. The trends in energy requirements for 1990-2000 are forecast and energy-conservation and CO 2 -abatement measures are proposed. A Maximum Action Scenario (MAS) and a Realistic Scenario (RS) are compared with a No-Action Scenario (NAS). (Author)

  14. The impact of residential, commercial, and transport energy demand uncertainties in Asia on climate change mitigation

    International Nuclear Information System (INIS)

    Koljonen, Tiina; Lehtilä, Antti

    2012-01-01

    Energy consumption in residential, commercial and transport sectors have been growing rapidly in the non-OECD Asian countries over the last decades, and the trend is expected to continue over the coming decades as well. However, the per capita projections for energy demand in these particular sectors often seem to be very low compared to the OECD average until 2050, and it is clear that the scenario assessments of final energy demands in these sectors include large uncertainties. In this paper, a sensitivity analysis have been carried out to study the impact of higher rates of energy demand growths in the non-OECD Asia on global mitigation costs. The long term energy and emission scenarios for China, India and South-East Asia have been contributed as a part of Asian Modeling Exercise (AME). The scenarios presented have been modeled by using a global TIMES-VTT energy system model, which is based on the IEA-ETSAP TIMES energy system modeling framework and the global ETSAP-TIAM model. Our scenario results indicate that the impacts of accelerated energy demand in the non-OECD Asia has a relatively small impact on the global marginal costs of greenhouse gas abatement. However, with the accelerated demand projections, the average per capita greenhouse gas emissions in the OECD were decreased while China, India, and South-East Asia increased their per capita greenhouse gas emissions. This indicates that the costs of the greenhouse gas abatement would especially increase in the OECD region, if developing Asian countries increase their final energy consumption more rapidly than expected. - Highlights: ► Scenarios of final energy demands in developing Asia include large uncertainties. ► Impact of accelerated Asian energy demand on global mitigation costs is quite low. ► Accelerated Asian energy consumption increases GHG abatement costs in the OECD. ► 3.7 W/m 3 target is feasible in costs even with accelerated Asian energy demands. ► 2.6 W/m 2 target is beyond

  15. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  16. Consistent cost curves for identification of optimal energy savings across industry and residential sectors

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik; Baldini, Mattia

    with constructing and applying the cost curves in modelling: • Cost curves do not have the same cost interpretation across economic subsectors and end-use technologies (investment cost for equipment varies – including/excluding installation – adaptation costs – indirect production costs) • The time issue of when...... the costs are incurred and savings (difference in discount rates both private and social) • The issue of marginal investment in a case of replacement anyway or a full investment in the energy saving technology • Implementation costs (and probability of investment) differs across sectors • Cost saving......, the difference between marginal investment costs in residential heating of a more efficient building element (windows) in a larger renovation project compared to the costs of just replacing the windows. This is done based on some of the results from Zvingilaite & Klinge Jacobsen 2016. We compare to the results...

  17. Recommendations for energy conservation standards for new residential buildings: Volume 2: Automated residential energy standard---user's guide--version 1. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, V.B.; Taylor, Z.T.

    1989-05-01

    This report documents the development and testing of a set of recommendations from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team under the management of the DOE and its prime contractor, Pacific Northwest Laboratory (PNL).

  18. A methodology for energy performance classification of residential building stock of Hamirpur

    Directory of Open Access Journals (Sweden)

    Aniket Sharma

    2017-12-01

    Full Text Available In India, there are various codes, standards, guidelines and rating systems launched to make energy intensive and large sized buildings energy efficient whereas independent residential buildings are not covered even though they exist most in numbers of total housing stock. This paper presents a case study methodology for energy performance assessment of existing residential stock of Hamirpur that can be used to develop suitable energy efficiency regulations. The paper discusses the trend of residential development in Hamirpur followed by classification based on usage, condition, predominant material use, ownership size and number of rooms, source of lighting, assets available, number of storey and plot sizes using primary and secondary data. It results in identification of predominant materials used and other characteristics in each of urban and rural area. Further cradle to site embodied energy index of various dominant building materials and their market available alternative materials is calculated from secondary literature and by calculating transportation energy. One representative existing building is selected in each of urban and rural area and their energy performance is evaluated for material embodied energy and operational energy using simulation. Further alternatives are developed based on other dominant materials in each area and evaluated for change in embodied and operational energy. This paper identifies the energy performance of representative houses for both areas and in no way advocates the preference of one type over another. The paper demonstrates a methodology by which energy performance assessment of houses shall be done and also highlights further research.

  19. Residential radon in Finland: sources, variation, modelling and dose comparisons

    International Nuclear Information System (INIS)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.)

  20. Residential radon in Finland: sources, variation, modelling and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.).

  1. A fugacity-based indoor residential pesticide fate model

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.

    2002-06-01

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments. Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.

  2. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  3. Factor Analysis of Residential Energy Consumption at the Provincial Level in China

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2014-11-01

    Full Text Available This paper analyzes the differences in the amount and the structure of residential energy consumption at the provincial level in China and identifies the hidden factors behind such differences. The econometrical analysis reveals that population, economic development level, energy resource endowment and climatic conditions are the main factors driving residential energy consumption; while the regional differences in energy consumption per capita and the consumption structure can be mainly illustrated by various economic development levels, energy resource endowments and climatic conditions. Economic development level has a significant positive impact on the proportion of gasoline consumption, whereas its impact on the proportion of electricity consumption is not notable; energy resource endowment and climatic condition indirectly affect both the proportion of electricity consumption and that of gasoline consumption, primarily through their impacts on the proportions of coal consumption and heat consumption.

  4. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  5. Distributed multi-agent algorithm for residential energy management in smart grids

    OpenAIRE

    Mets, Kevin; Strobbe, Matthias; Verschueren, Tom; Roelens, Thomas; De Turck, Filip; Develder, Chris

    2012-01-01

    Distributed renewable power generators, such as solar cells and wind turbines are difficult to predict, making the demand-supply problem more complex than in the traditional energy production scenario. They also introduce bidirectional energy flows in the low-voltage power grid, possibly causing voltage violations and grid instabilities. In this article we describe a distributed algorithm for residential energy management in smart power grids. This algorithm consists of a market-oriented mult...

  6. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  7. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... reports of fuel mix since 1972. Both the dynamic impact potentials saved by using insulation and the impacts induced from insulations production are utilized to create an overall dynamic energy inventory for the life cycle assessment. Our study shows that the use of such a dynamic energy inventory......Residential building insulation is regarded as an easy solution for environmentally friendly building design. This assumption is based on the perception that the amount of thermal energy used to create insulation in most cases is much smaller than the amount of thermal energy that is needed...

  8. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  9. Recommendations for energy conservation standards for new residential buildings: Volume 1: Text of the standard

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    The purpose of this Standard is to provide for the development of requirements for new residential buildings that promote the efficient use of energy within economic constraints and without compromising the comfort and safety of the occupants. 1 fig., 8 tabs.

  10. Energy efficiency and household behavior : The rebound effect in the residential sector

    NARCIS (Netherlands)

    Aydin, Erdal; Kok, N.; Brounen, Dirk

    Over the years, various efficiency policies have been designed and implemented to reduce residential energy consumption. However, it is very common that the policy expectations that are based upon engineering calculations do not come true. The widely accepted explanation for the gap between

  11. Biomass energy utilization in the Pacific Northwest: impacts associated with residential use of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petty, P.; Hopp, W.; Chockie, A.

    1981-05-01

    The Pacific Northwest Region, including Washington, Oregon, and Idaho, is the geographic area for which an impact assessment of the residential use of solid fuels is performed. Increased use of solid fuels in the residential sector has led to a marked decline in per household use of other forms of energy. An estimate of the potential energy contained in the fuelwood burned annually and an estimate of the mean conversion efficiency of the regional capital stock of woodburning appliances leads to a reasoned assessment of the contribution of wood energy to the residential energy use in the region. The use of solid fuels has been associated with an increase in the incidence of residential fires nationally. This is also true of the Pacific Northwest Region. An estimate is made of the economic costs attributable to this source of fire incidence. An additional area of concern relates to the harvesting practices of hundreds of individuals, cutting fuelwood for their own use. Statistics describing injuries and deaths per Btu in the commercial logging industry are used as a basis for an estimate of injuries and deaths resulting from the increased collection of forest residues and fuelwood by private woodcutters. This analysis indicates that the private harvest of fuelwood may be extremely costly in terms of injuries and deaths suffered by private woodcutters in the region.

  12. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  13. Wind energy potential in Chile: Assessment of a small scale wind farm for residential clients

    International Nuclear Information System (INIS)

    Becerra, Miguel; Morán, José; Jerez, Alejandro; Cepeda, Francisco; Valenzuela, Miguel

    2017-01-01

    Highlights: • An assessment of a small scale wind farm was carried out. • Two Chilean locations were selected, which are geographically dissimilar. • The software tool selected for the project’s evaluation was HOMER. • All the project’s financial evaluations were negative. • Government policy tools and their applications were discussed. - Abstract: This work presents a techno-financial evaluation of two Chilean locations with promising wind potential: Laguna Verde placed in the central region of the country, and Porvenir in the southern region. A small scale wind farm was studied, considering a nominal electrical production capacity of 90 kW. This facility is comprised of three wind turbine models, all available in the national market. Currently, the tariff method used in Chile is the net billing scheme, where the energy bought and sold to the grid has different prices. The study is based on 300 hypothetical residential households. The software tool used to perform the assessment was the Hybrid Optimization of Multiple Energy Resources (HOMER). For all the scenarios the results showed a Net Present Cost (NPC), instead of a financial profit from the proposed projects. A sensitivity analysis was also carried out. From the group of variables studied, the NPC exhibited itself as more sensitive to the price of buying energy from the grid and to the annual average wind speed. Finally, a few government policies and their applications are discussed.

  14. A Canadian loan fund for residential energy efficiency and renewable energy

    International Nuclear Information System (INIS)

    Tampier, M.

    2008-01-01

    Financing is a major need in the residential sector. Only a few programs in Canada provide low-interest financing for renewable energy. This presentation discussed the leveraging of cheap capital that could be used to enable public and private offers. With financial incentives, the renewable energy market was expected to at least double. A financial incentive fund could be one of several tools to achieve net zero energy housing, and address fuel poverty. A business plan is also required to move closer towards realization. The presentation described a report that outlines similar programs within and outside Canada, and presented estimates on future market size. Key data that was provided in the presentation included market potential; start-up capital for the fund; and average loan size to intermediaries. Next steps were also discussed with particular reference to lobbying the federal government to pick up this idea; having provincial governments and utilities join in this effort; and involvement of industry associations who have a tangible product. 1 fig

  15. A prediction model for assessing residential radon concentration in Switzerland

    International Nuclear Information System (INIS)

    Hauri, Dimitri D.; Huss, Anke; Zimmermann, Frank; Kuehni, Claudia E.; Röösli, Martin

    2012-01-01

    Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th–90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40–111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69–215 Bq/m³) in the medium category, and 219 Bq/m³ (108–427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be

  16. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  17. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  18. Energy performance of building fabric - Comparing two types of vernacular residential houses

    Science.gov (United States)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  19. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    heating savings of 4% and electric heating savings of 3%. The slightly positive fractional annual heating energy savings likely resulted from the tile roof's high thermal capacitance, which increased the overnight temperature of the attic air. Thus cool tile roofs should be perceived as a technology that provides energy and environmental benefits during the cooling season as well as the heating season. The second topic investigates the direct and indirect effects of cool pavements on the energy use of California's building stock. First, a simple urban canyon model was developed to calculate the canyon albedo after the user provides the solar position, canyon orientation, and dimensions of the canyon walls, road, and setbacks. Next, a method is presented to correct the values of temperature changes obtained from previous urban climate models to values that would be obtained from canyon geometries that distinguish between road and setbacks (e.g. sidewalk, front yard). The new canyon model is used to scale the temperature changes obtained from a recent urban climate model that simulated the climatological impact of cool pavements on various California cities. The adjusted temperature changes are then combined with building energy simulations to investigate the effect of cool pavements on the cooling, heating, and lighting energy uses of buildings as well as the environmental impact related to these energy uses. Net (direct + indirect) conditioning (cooling + heating) energy savings and environmental savings from cool pavements were smaller in residential buildings than in commercial buildings. Additionally, residential buildings strongly dominate the building stock in all of the evaluated cities. Therefore, even though most cities yielded conditioning energy and environmental savings, they were small due to the minuscule savings from the residential buildings. When increasing the albedo by 0.20 of all public pavements in different California cities, Los Angeles was the city

  20. Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data

    International Nuclear Information System (INIS)

    Belaïd, Fateh; Garcia, Thomas

    2016-01-01

    Analysing household energy-saving behaviours is crucial to improve energy consumption predictions and energy policy making. How should we quantitatively measure them? What are their determinants? This study explores the main factors influencing residential energy-saving behaviours based on a bottom-up multivariate statistical approach using data from the recent French PHEBUS survey. Firstly, we assess energy-saving behaviours on a one-dimension scale using IRT. Secondly, we use linear regression with an innovative variable selection method via adaptive lasso to tease out the effects of both macro and micro factors on the behavioural score. The results highlight the impact of five main attributes incentivizing energy-saving behaviours based on cross-variable analyses: energy price, household income, education level, age of head of household and dwelling energy performance. In addition, our results suggest that the analysis of the inverted U-shape impact of age enables the expansion of the energy consumption life cycle theory to energy-saving behaviours. - Highlights: • We examine the main factors influencing residential energy-saving behaviours. • We use data from the recent French PHEBUS survey. • We use IRT to assess energy-saving behaviours on a one-dimension scale. • We use linear regression with an innovative variable selection method via adaptive lasso. • We highlight the impact of five main attributes incentivizing energy-saving behaviours.

  1. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  2. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Delia D’Agostino

    2017-01-01

    Full Text Available Buildings are the focus of European (EU policies aimed at a sustainable and competitive low-carbon economy by 2020. Reducing energy consumption of existing buildings and achieving nearly zero energy buildings (NZEBs are the core of the Energy Efficiency Directive (EED and the recast of the Energy Performance of Building Directive (EPBD. To comply with these requirements, Member States have to adopt actions to exploit energy savings from the building sector. This paper describes the differences between deep, major and NZEB renovation and then it provides an overview of best practice policies and measures to target retrofit and investment related to non-residential buildings. Energy requirements defined by Member States for NZEB levels are reported comparing both new and existing residential and non-residential buildings. The paper shows how the attention given to refurbishment of NZEBs increased over the last decade, but the achievement of a comprehensive implementation of retrofit remains one of main challenges that Europe is facing.

  3. Distributed demand-side management optimisation for multi-residential users with energy production and storage strategies

    Directory of Open Access Journals (Sweden)

    Emmanuel Chifuel Manasseh

    2014-12-01

    Full Text Available This study considers load control in a multi-residential setup where energy scheduler (ES devices installed in smart meters are employed for demand-side management (DSM. Several residential end-users share the same energy source and each residential user has non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative distributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio (PAR in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the proposed game theoretic-based distributed DSM technique.

  4. Advertising Model of Residential Real Estate Object in Lithuania

    Directory of Open Access Journals (Sweden)

    Jelena Mazaj

    2012-07-01

    Full Text Available Since the year 2000, during the period of economic growth, the real estate market has been rapidly expanding. During this period advertising of real estate objects was implemented using one set of similar channels (press advertising, Internet advertising, leaflets with contact information of real estate agents and others, however the start of the economic recession has intensified the competition in the market and forced companies to search for new advertising means or to diversify the advertising package. The article presents real estate property, as a product, one of the marketing components – including advertising, conclusions and suggestions based on conducted surveys and a model for advertising the residential real estate objects.Article in Lithuanian

  5. Model projections for household energy use in India

    NARCIS (Netherlands)

    van Ruijven, B.J.; van Vuuren, D.P.; de Vries, B.J.M.; Isaac, M.; van der Sluijs, J.P.; Lucas, P.L.; Balachandra, P.

    2011-01-01

    Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is

  6. Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence

    International Nuclear Information System (INIS)

    Guta, Dawit Diriba

    2012-01-01

    It is well known that poor rural households in low-income economies are reliant on traditional fuels to meet basic domestic energy needs, but little is known about the specific underlying socio-economic drivers of residential fuel choices in Ethiopia. I used the linear approximation almost ideal demand system (LAAIDS) with normalized prices to compute expenditure elasticity and a multinomial logit model (MLM) to examine household fuel use. The LAAIDS model result showed that expenditure was elastic for modern fuels, but inelastic for traditional fuels. Regression results from the MLM indicated that fuel choice behaviour of rural households could be more accurately described as ‘fuel stacking’ behaviour as opposed to the ‘energy ladder’ hypothesis. In rural areas household fuel choice may be constrained by limited access to commercial fuels and efficient cook stoves, supply dependency and affordability, consumer preferences and a web of other intricate factors. Rural households had less incentive for fuel switching due to underlying factors and the availability of fuel wood without direct financial cost. With continued deforestation and receding forests, households are expected to develop inter fuel substitution and switching behaviour conditional on access to modern energy technologies. - Highlights: ► Two step LAAIDS model and MLM were applied to analysis of residential fuel use. ► I examined issues of ‘energy ladder’ versus ‘fuel stacking’ behavior of households. ► Controlling other factors increase in welfare increases demand for modern fuel. ► Traditional fuels are income inelastic but not necessarily cheaper. ► Residential fuel choice is determined by intricate web of socio-economic factors.

  7. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  8. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  9. Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia

    Science.gov (United States)

    Surahman, U.; Kubota, T.; Wijaya, A.

    2016-04-01

    In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).

  10. Understanding change and continuity in residential energy consumption

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2011-01-01

    Practice theory has recently emerged within consumer studies as a promising approach that shifts focus from the individual consumer towards the collective aspects of consumption and from spectacular and conspicuous dimensions of consumption towards routine and mundane aspects of consumption...... of material consumer goods in practice theory. Case studies on household energy consumption are used as an empirical basis for these discussions. Looking at household energy consumption through the theoretical lens of practice theory necessitates discussion on whether energy consumption should be viewed....... Practice theory is, however, not a commonly agreed upon theory but more like an approach or a turn within contemporary social theory. When using practice theory in consumer studies, there are thus several conditions that need further clarification. The focus in this article is on how change and continuity...

  11. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  12. Window opening behaviour: simulations of occupant behaviour in residential buildings using models based on a field survey

    DEFF Research Database (Denmark)

    Valentina, Fabi; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... In particular, reliable information regarding user behaviour in residential buildings is crucial for suitable prediction of building performance (energy consumption, indoor environmental quality, etc.). To face this issue, measurements of indoor climate and outdoor environmental parameters and window “opening...... and closing” actions were performed in 15 dwellings from January to August 2008 in Denmark. Probabilistic models of inhabitants’ window “opening and closing” behaviour were developed and implemented in the energy simulation software IDA ICE to improve window opening and closing strategies in simulations...

  13. Trends in Residential Energy Consumption in Saudi Arabia with Particular Reference to the Eastern Province

    Directory of Open Access Journals (Sweden)

    Farajallah Alrashed

    2014-12-01

    Full Text Available Residential buildings are vital in the energy scenario of Saudi Arabia as they account for 52% of the total electricity consumption. The Eastern Province, due to its harsh weather conditions, is one of the most challenging areas in Saudi Arabia in terms of residential energy consumption. The province is vital also because of its large land area, accounting for almost one third of the entire country. This article investigates some of the important factors related to the residential energy consumption i.e. weather conditions, types of dwellings, building envelops, air-conditioning (A/C systems and domestic appliances especially cooking ovens. The work is based upon an analysis of the actual monthly electricity consumption for 115 dwellings in Dhahran for the year 2012. The investigated buildings include 62 apartments, 28 villas, and 25 traditional houses. The annual average electricity consumption for the surveyed dwellings was found to be 176.5 kWh/m2, a value higher than international energy-efficiency benchmarks. It is found that the use of mini-split A/C systems, thermal insulation and double-glazed windows can help reduce the electricity consumption by over 30%.

  14. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.

    Science.gov (United States)

    Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke

    2011-03-01

    This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Directory of Energy Information Administration models 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  16. The effects of landscaping on the residential cooling energy

    Science.gov (United States)

    Misni, A.

    2018-02-01

    This paper examines the effectiveness of landscaping on the air-conditioning energy saving of houses in a tropical environment. This case study involved looking at the construction and landscaping of three single-family houses in three sections of Shah Alam, Selangor, Malaysia. The houses ranged in age from 5 to 30 years old, which provided different examples of construction and maturity levels of the surrounding landscaping. Landscaping affects the thermal performance as well as on the air-conditioning energy of houses, in how it provides shade, channels wind, and evapotranspiration. While the construction of the three houses was similar, they were different in size and design, including their landscape design. These houses were chosen because they are representative of single-family tropical houses and landscaping styles in Malaysia since 30 years ago. Three houses were chosen; the 30-year-old house, the 10-year-old house, and the 5-year-old house. In a tropical country, landscaping is used to reduce the effects of the hot and humid climate. The houses spent 15-45% of the electricity cost on cooling. These results were influenced by human factors and the surrounding landscaping. Every type of vegetation, such as trees, grass, shrubs, groundcover, and turf, contributes to reducing air temperatures near the house and providing evaporative cooling.

  17. Modeling hourly consumption of electricity and district heat in non-residential buildings

    International Nuclear Information System (INIS)

    Kipping, A.; Trømborg, E.

    2017-01-01

    Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield important data for energy system planning and management. In this study hourly meter data, combined with cross-sectional data derived from the Norwegian energy label database, is used to model hourly consumption of both district heat and electrical energy in office buildings and schools which either use direct electric heating (DEH) or non-electric hydronic heating (OHH). The results of the study show that modeled hourly total energy consumption in buildings with DEH and in buildings with OHH (supplied by district heat) exhibits differences, e.g. due to differences in heat distribution and control systems. In a normal year, in office buildings with OHH the main part of total modeled energy consumption is used for electric appliances, while in schools with OHH the main part is used for heating. In buildings with OHH the share of modeled annual heating energy is higher than in buildings with DEH. Although based on small samples our regression results indicate that the presented method can be used for modeling hourly energy consumption in non-residential buildings, but also that larger samples and additional cross-sectional information could yield improved models and more reliable results. - Highlights: • Schools with district heating (DH) tend to use less night-setback. • DH in office buildings tends to start earlier than direct electric heating (DEH). • In schools with DH the main part of annual energy consumption is used for heating. • In office buildings with DH the main part is used for electric appliances. • Buildings with DH use a larger share of energy for heating than buildings with DEH.

  18. Assessing cooling energy performance of windows for residential buildings in the Mediterranean zone

    International Nuclear Information System (INIS)

    Tsikaloudaki, K.; Theodosiou, Th.; Laskos, K.; Bikas, D.

    2012-01-01

    Highlights: ► Cooling energy performance of residential windows in warm climates is studied. ► It is primarily determined by the window’s solar transmittance g and orientation. ► Advanced windows perform worse when compared to conventional ones with the same g. ► Shading contributes notably in decreasing the cooling loads attributed to the window. ► Equations for predicting the cooling energy performance of windows were developed. - Abstract: Heat transfer through windows accounts for a significant proportion of energy used in the building sector for covering both heating and cooling needs, since the optical and the thermal characteristics of conventional fenestration products constitute them more “vulnerable” in energy flows when compared to opaque building elements. In this study, an approach for evaluating the cooling energy performance of residential windows is presented. It is based on a parametric study, which aims at highlighting the impact of the window configuration on its energy behavior in terms of geometrical characteristics, thermophysical and optical properties, as well as orientation and shading levels. The results underlined the magnitude of the relationship between the thermal and optical properties of the transparent elements with respect to their orientation; especially for residential buildings, the solar transmittance determines at a considerable extent the cooling energy performance of fenestration, at least in the warmest part of Europe. Furthermore, the statistical analysis of the derived data provided mathematical expressions, which can be used in praxis for predicting the cooling energy performance of windows with respect to their thermal and optical characteristics.

  19. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy

    International Nuclear Information System (INIS)

    Jain, Rishee K.; Smith, Kevin M.; Culligan, Patricia J.; Taylor, John E.

    2014-01-01

    Highlights: • We develop a building energy forecasting model using support vector regression. • Model is applied to data from a multi-family residential building in New York City. • We extend sensor based energy forecasting to multi-family residential buildings. • We examine the impact temporal and spatial granularity has on model accuracy. • Optimal granularity occurs at the by floor in hourly temporal intervals. - Abstract: Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10 min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for

  20. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    Science.gov (United States)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific

  1. Feedback as a means of decreasing residential energy consumption. Report PU/CES 34

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, C; Darley, J M

    1976-08-01

    When residential units are analyzed in human factor terms, it is apparent that the consumption level feedback (typically a bill, calculated once a month, over all appliances) is inadequate to give the resident useful information about his energy consuming actions. The present study tested the hypothesis that providing immediate feedback to homeowners concerning their daily rate of electric usage would be effective in reducing electric consumption. In the studied homes, central air-conditioning is the largest single source of electric power consumption during the summer. Accordingly, it was possible to predict the household's expected electric consumption in terms of the average daily outdoor temperature. Predicted electric consumption was derived from a previous month's modeling period during which a regression line was fitted to predict consumption from average daily temperature, for each home. Feedback was expressed as a percentage of actual consumption over predicted consumption. Feedback was displayed to homeowners four times a week for approximately one month. The results confirmed the prediction. Before feedback began, the feedback and control groups were consuming electricity at approximately equal rates. During the feedback period, the feedback group used 10.5 percent less electricity. The effectiveness of the feedback procedure was explained in terms of its cueing, motivational, and commitment functions.

  2. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  3. SOME SPECIFIC FEATURES OF ENERGY CONSUMPTION IN MODERN RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2018-01-01

    Full Text Available Over the past 20 years there have been significant changes in the customer requirements for housing in the countries of the former USSR. Besides, new materials and construction products, such as the ones for sealed windows and balcony doors have appeared in the market. The number of vacant flats with the heating off in the winter significantly increased that may cause condensation on the surfaces of interroom partitions and the formation of mold. Meanwhile, the requirements for lower energy consumption are constantly increasing, that is especially pronouncedly manifested in the growth of normative values of thermal resistance of enclosing structures of buildings and in the increased interest in the use of secondary energy resources extracted from the air and effluent wastewater. The present article describes the method to prevent moisture condensation on the fencing of adjacent premises with different temperatures containing heating systems and the use of waste heat removed from the room exhaust air. For quick emergency switching of in-house systems of heat and gas supply to outdoor mobile sources of heat and gas it is recommended to install special taps with connectors insulated in special niches in the walls or other parts of buildings considering the possibility of placing them close to the outer mobile sources of heat and gas. In the case of heating the building with the aid of a roof gas boiler or by doorto-door heaters fueled by gas, a single pipeline (collector, equipped with an additional device for the connection of emergency gas supply is being put along the wall. In order to reduce specific heat consumption for heating of buildings it is recommended to increase the net enclosure volume of buildings and to improve their form in various ways, including by combining two or more adjacent low-rise buildings in one secondary building with increasing height and with the broadening of either or each side for modernization and reconstruction

  4. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr-1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 μg/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 μg/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  5. Model projections for household energy use in developing countries

    NARCIS (Netherlands)

    Daioglou, V.; Ruijven, B.J. van; Vuuren, D.P. van

    2012-01-01

    The residential sector plays an important role in the energy system of developing countries. In this paper we introduce a bottom up simulation model for household energy use. The model describes energy demand for several end-use functions based on a set of physical drivers, such as floor space and

  6. Essays in economics of energy efficiency in residential buildings - An empirical analysis[Dissertation 17157

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.

    2007-07-01

    for policy priority setting and design, for inputs in energy models, and for building owners, developers and builders as decision support elements. Scope of the research was the sector of new and existing residential buildings in Switzerland. Based on price and technical data of additional insulation, improved window, ventilation and heating systems, and architectural concepts, it was found that the marginal and average costs of energy efficiency are to a large extent below or in the range of the marginal costs of energy (heat) generation, especially from a societal perspective. Many energy efficiency investments are economically viable also from a private perspective; particularly if best practice is applied and if long-term considerations are being made. The flat character of the curve of annualized capital and energy costs as a function of increasing energy efficiency levels implies that advanced energy efficiency levels are as cost-effective as low ones, having the advantage of a decreased energy price risk exposure. (...) The analysis of the total benefits of energy efficiency attributes from the building user perspective such as increased thermal comfort, constantly high indoor air quality, protection from external noise nuisance, property value and energy price risk hedging, revealed a considerable willingness-to-pay of a relevant proportion of home-purchasers and tenants for these benefits, making such investments also attractive for multi-family house owners due to potentially increased rental revenues. The willingness-to-pay, which was estimated by a choice experiment based on stated preferences, is generally higher than the costs of implementing these attributes. Particularly, this applies also to housing ventilation systems which makes them economically interesting although their costs cannot be covered by energy cost savings alone. The low-cost energy efficiency potentials and the considerable valuation of their benefits by a large proportion of the

  7. Data-Driven Residential Load Modeling and Validation in GridLAB-D

    Energy Technology Data Exchange (ETDEWEB)

    Gotseff, Peter; Lundstrom, Blake

    2017-05-11

    Accurately characterizing the impacts of high penetrations of distributed energy resources (DER) on the electric distribution system has driven modeling methods from traditional static snap shots, often representing a critical point in time (e.g., summer peak load), to quasi-static time series (QSTS) simulations capturing all the effects of variable DER, associated controls and hence, impacts on the distribution system over a given time period. Unfortunately, the high time resolution DER source and load data required for model inputs is often scarce or non-existent. This paper presents work performed within the GridLAB-D model environment to synthesize, calibrate, and validate 1-second residential load models based on measured transformer loads and physics-based models suitable for QSTS electric distribution system modeling. The modeling and validation approach taken was to create a typical GridLAB-D model home that, when replicated to represent multiple diverse houses on a single transformer, creates a statistically similar load to a measured load for a given weather input. The model homes are constructed to represent the range of actual homes on an instrumented transformer: square footage, thermal integrity, heating and cooling system definition as well as realistic occupancy schedules. House model calibration and validation was performed using the distribution transformer load data and corresponding weather. The modeled loads were found to be similar to the measured loads for four evaluation metrics: 1) daily average energy, 2) daily average and standard deviation of power, 3) power spectral density, and 4) load shape.

  8. The role of information for energy efficiency in the residential sector

    International Nuclear Information System (INIS)

    Ramos, A.; Gago, A.; Labandeira, X.; Linares, P.

    2015-01-01

    In spite of the large potential and existing efforts to foster energy efficiency in the residential sector, much remains to be achieved. This may be partially due to the many barriers and market failures faced by energy efficiency, which are even greater in this sector. In particular, informational failures seem to be pervasive and relevant in this area. Addressing these issues requires specific policy instruments and strategies. This paper reviews the empirical evidence on the effectiveness of such instruments, focusing on energy certificates, feedback programs, and energy audits. Results show that energy certificates and feedback programs can be effective, but only if they are carefully designed, whereas the evidence about the effectiveness of energy audits is mixed. In addition, the paper points out the large potential for new instruments as well as combinations of existing ones.

  9. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  10. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  11. Residential solar energy users: a review of empirical research and related literature

    Energy Technology Data Exchange (ETDEWEB)

    Unseld, C.T.; Crews, R.

    1979-12-01

    This report reviews 15 empirical studies of residential solar energy users and related literature on residential solar energy use. The purpose of the review is to summarize and analyze the experiences of residential solar users for helping formulate policies concerning the accelerated commercialization of solar technologies. Four of the studies employed case histories or focus group techniques. The 11 questionnaire studies represented interviews with over 1,600 owners of solar systems. The demographic characteristics of samples are listed and compared; research findings and conclusions are presented. Findings on user satisfaction and system performance, possible reasons for evidence of lacking correlation between them, and implications for consumer protection and future research are discussed. General findings are: (1) systematic research on the experiences of solar users is lacking - much research remains to be done; (2) the reported overall experiences of users has been very positive; (3) user reports indicate that system performance is generally good but there is some evidence that user reports are not accurate measures of actual performance; (4) a need exists for adequate consumer protection; (5) design or installation problems are evidenced in significant numbers of early solar installations; and (6) these problems evidently are resolvable. An annotated bibliography describes 10 other studies in progress.

  12. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China

    Directory of Open Access Journals (Sweden)

    Jizhong Shao

    2016-04-01

    Full Text Available Based on the Great Western Development Strategy and the requirement for sustainable development in the west of China, rural affordable housing, energy conservation, and environmental protection are becoming development standards in the construction field. This paper mainly explores an innovative, sustainable, residential construction method for rural areas in western China, particularly the integration of solar energy technology with modern prefabricated building techniques, formally named solar energy block-based construction. The conscious approach of using volumetric blocks provides superior adaptability and expansibility in integration with a steel structure, thereby reducing the construction time and cost. Allowing a wide variety of configurations and styles in the building layout, this approach can be customized to the end-user’s precise location and climate, making rural residential buildings much more flexible and modern. To take advantage of adequate solar energy resource in western China, the blocks are associated with active and passive solar energy technologies, thereby reducing pollution, mitigating global warming, and enhancing sustainability. Therefore, we concluded that solar energy block-based construction could bring significant benefits to the environment, economy, and society. It could also promote sustainable development in the rural regions of western China.

  13. Solar power and policy powerlessness − perceptions of persuasion in distributed residential solar energy policy development

    Directory of Open Access Journals (Sweden)

    Simpson Genevieve

    2017-01-01

    Full Text Available Distributed residential solar energy (photovoltaic technologies have been praised as a mechanism to not only increase the penetration of renewable energy but engage the community in a clean energy revolution. In spite of this it is unclear how much potential there is for stakeholders to influence processes around the adoption of solar energy, including policy development and regulation. As part of a wider research project assessing the social acceptance of residential solar energy in Western Australia a variety of stakeholders, including public servants, network operators, Members of Parliament, energy advocates, renewable energy industry members and community members, were asked whether they thought they had the potential to influence solar policy. The objective of this research was to highlight positions of influence over policy development. In total 23 interviews with regional Western Australian householders and 32 interviews with members of industry and government were undertaken between May and October 2015. Most respondents believed that they had previously, or could in future, influence solar policy by taking advantage of networks of influence. However, stakeholders perceived as having policy influence did not necessarily demonstrate the capacity to influence policy beyond providing information to decision-makers, namely Cabinet members. Instead, networks of renewable energy advocates, industry and community members could apply political pressure through petitions, media coverage and liaising with parliamentarians to develop support for policy changes. Furthermore, while policies for the promotion of solar energy, and renewable energy more generally, could be implemented at various levels of government, only those policies delivered at the state level could address socio-political barriers to renewable energy adoption. These barriers include: a lack of political will and funding to overcome technical issues with network connection

  14. California residential energy standards: problems and recommendations relating to implementation, enforcement, and design. [Thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    Documents relevant to the development and implementation of the California energy insulation standards for new residential buildings were evaluated and a survey was conducted to determine problems encountered in the implementation, enforcement, and design aspects of the standards. The impact of the standards on enforcement agencies, designers, builders and developers, manufacturers and suppliers, consumers, and the building process in general is summarized. The impact on construction costs and energy savings varies considerably because of the wide variation in prior insulation practices and climatic conditions in California. The report concludes with a series of recommendations covering all levels of government and the building process. (MCW)

  15. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  16. Conceptual provisions of the implementation of energy saving measures in the residential facilities

    Directory of Open Access Journals (Sweden)

    Meshcheryakova Tatiana

    2017-01-01

    Full Text Available Research purpose is identification of sales problems of energy saving actions for residential sector of economy, including with use of the power service contract. The choice of the object of the study is related to the general issues on energy saving of residential facilities and increasing the number of unresolved problems. Unfortunately, the efficiency of energy consumption of housing stock is extremely low that directly leads to an increase in citizens’ payments for public utilities (housing and communal services. There are many problems associated with the aging of fixed assets: it becomes especially evident in winter seasons. The level of quality of delivery, distribution and consumption of expensive heat resources that has the greatest impact on a residence comfort and sometimes human life and health, is very low. Our population faces to year overheating or freezing, to leakages through worn pipes and the subsequent disconnection of water and heat. Despite the public declaration of the of the active processes of modernization of the housing municipal economy in the Russian Federation, the implementation of the necessary energy-saving elements in the housing sector is evolving very slowly. The article presents conceptual positions, which will bring the issues related to energy saving and efficiency to a new level.

  17. From energy efficiency to integrated sustainable urbanism in residential development in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhichang Cai

    2010-06-15

    China has adopted Sustainable Development as a national strategy for all industries. In civil construction sector, sustainability is regarded as the development of Green Building in China. Since 2000, China has introduced a series of policies and laws to promote Green Building. Green Building was defined as buildings that are 'energy-efficient, land-efficient, water-efficient, and material-efficient' and emit 'minimal pollution' in during its entire life cycle, and meets a specified standard for indoor environment at the same time. However, energy efficiency is the central issue of current Green Building development in China, while issues of resources and pollution are neglected, which is partly due to China's energy structure. Social and economic aspects are also always ignored. The main aim of this thesis is to map pathways towards more comprehensive frameworks for how residential areas in China could be constructed in a more sustainable way in hot summer and cold-winter area. Case study was the main method used to examine the specifications of Green Residential Building in China. This paper offers a general overview of the current green trend in China and presents a specific analysis on three cases to search for the proper approach for China's unique situation by three specific cases representing three types of Green Building: Modern Vernacular Architecture, Eco-office and Mass-housing, according to their features in scale, location and function. This paper then presents a specific integrated sustainability analysis of the Landsea Housing Project in Nanjing, a hot-summer/cold-winter zone. Hammarby Sjoestad, a cutting edge project in Stockholm, is also discussed as a reference area from which experiences can be drawn for China. The aim was to improve the framework for construction of residential buildings in China in a more sustainable way, from energy efficiency to integrated sustainability. The paper also discusses the relationship

  18. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  19. The residential dual-energy program of Hydro-Quebec: An economic analysis

    International Nuclear Information System (INIS)

    Bergeron, C.; Bernard, J.-T.

    1991-01-01

    Higher than expected electricity consumption in recent years and increasing objections to capacity expansion on environmental grounds have led Quebec's government-owned electric utility, Hydro-Quebec, to launch an innovative program to reduce peak period residential electric heating demand. When the outside temperature drops below -12 degree C, customers who have opted for the program are charged 10 cents/kWh for their electricity (substantially above the 4.46 cents/kWh paid by normal residential customers) and they are automatically switched to a non-electric heating source, whereas above -12 degree C they pay 2.75 cents/kWh for all uses. A cost benefit analysis of this dual energy program finds that if, as Hydro-Quebec forecasts, 150,000 residential customers were to opt for this program, they would benefit by $19.0 million per year, while the utility and the government would lose $21.6 million and $1.6 million respectively, with a total net loss to Quebec society of $4.25 million a year. 12 refs., 4 figs., 6 tabs

  20. 76 FR 67037 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-10-31

    ... systems are relatively high due to the price of electricity, so using an electric system in a cold climate... marginal residential and commercial electricity prices in its life-cycle-cost analysis; (4) technical...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0...

  1. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  2. A method of identifying and weighting indicators of energy efficiency assessment in Chinese residential buildings

    International Nuclear Information System (INIS)

    Yang Yulan; Li Baizhan; Yao Runming

    2010-01-01

    This paper describes a method of identifying and weighting indicators for assessing the energy efficiency of residential buildings in China. A list of indicators of energy efficiency assessment in residential buildings in the hot summer and cold winter zone in China has been proposed, which supplies an important reference for policy makings in energy efficiency assessment in buildings. The research method applies a wide-ranging literature review and a questionnaire survey involving experts in the field. The group analytic hierarchy process (group AHP) has been used to weight the identified indicators. The size of survey samples are sufficient to support the results, which has been validated by consistency estimation. The proposed method could also be extended to develop the weighted indicators for other climate zones in China. - Research highlights: →Method of identifying indicators of building energy efficiency assessment. →The group AHP method for weighting indicators. →Method of solving multi-criteria decision making problems of choice and prioritisation in policy makings.

  3. Impact of natural gas prices on Saskatchewan residential consumers : A report prepared for SaskEnergy

    International Nuclear Information System (INIS)

    1998-07-01

    Major trends in the natural gas industry, including deregulation and the impact of natural gas commodity competition on consumers, and SaskEnergy's current and historical residential rate structures were reviewed. The object of the exercise was to provide the Utility (i.e. SaskEnergy) with independent advice on the proposed changes to rate structures and billing practices for residential customers in Saskatchewan. It was concluded that SaskEnergy 's historical and current rate methodologies are consistent with generally accepted practices in the natural gas industry. The proposed changes to rate structures and billing practices to unbundle the gas commodity from delivery services is an important step in the evolution of competition in the supply of natural gas. Customers will not only have more choice in terms of supplier, they will be able to have a better understanding of both the impact of volatile commodity prices and any changes in the cost of delivery services on rates charged by SaskEnergy

  4. Evolution of Hungarian residential energy efficiency support programmes. Road to and operation under the Green Investment Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Czako, V. [Central European University, Budapest (Hungary)

    2012-05-15

    The residential sector is the largest final energy consumer and is responsible for 30% of total carbon dioxide emissions in Hungary. In order to address the general poor condition of the building stock and resulting inefficiency in energy use, from 1990 onwards, the government and local authorities initiated energy efficiency support programmes in the residential buildings sector. Furthermore, technical assistance and loan guarantee schemes by the International Finance Corporation (IFC) helped to establish a market for financing energy efficiency investments. EU funds also played a role in the modernisation of non-residential buildings. Residential energy efficiency support programmes entered a new phase in 2009 with the start of the Green Investment Scheme (GIS). While Hungary was a front-runner in establishing the legal framework for GIS, the success of early AAU sales (the financing source of the scheme) were overshadowed by reputation concerns in terms of additionality and the disbursement of funds. At the same time the GIS brought with it improved environmental integrity compared to earlier programmes in terms of monitoring and verification of results, establishing a focus on GHG emission reductions in addition to energy savings, and introducing incentives for deeper refurbishment. The aim of the paper is to provide an overview of the evolution of energy efficiency support programmes for residential buildings in the Hungarian context, pointing out prevailing problematic elements, as well as areas of improvement and good practice.

  5. The impact of VAT introduction on UK residential energy demand: an investigation using the cointegration approach

    International Nuclear Information System (INIS)

    Fouquet, Roger

    1995-01-01

    Over a two-year period, which started in April 1994, the real price of energy to UK households was expected to rise by 17.5% as a result of value-added tax (VAT) introduction. The regressive nature of the tax forced the government to limit VAT on residential fuel to 8%. Using a cointegration approach, to take account of the non-stationarity fuel consumption time series, this paper estimates real energy and fuel specific price and income elasticities for the period 1974:1-1994:1. They suggest that natural gas has a positive real energy price elasticity indicating that, as real price of energy rises, households scrap inefficient heaters and invest in more efficient ones, principally natural gas. These estimates enable projections to be made of the impact of the introduction of VAT and imply a rise in natural gas consumption as a result of the additional VAT, although at the expense of other less efficient fuels. (author)

  6. Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey

    Directory of Open Access Journals (Sweden)

    Antimo Barbato

    2014-09-01

    Full Text Available The residential sector is currently one of the major contributors to the global energy balance. However, the energy demand of residential users has been so far largely uncontrollable and inelastic with respect to the power grid conditions. With the massive introduction of renewable energy sources and the large variations in energy flows, also the residential sector is required to provide some flexibility in energy use so as to contribute to the stability and efficiency of the electric system. To address this issue, demand management mechanisms can be used to optimally manage the energy resources of customers and their energy demand profiles. A very promising technique is represented by demand-side management (DSM, which consists in a proactive method aimed at making users energy-efficient in the long term. In this paper, we survey the most relevant studies on optimization methods for DSM of residential consumers. Specifically, we review the related literature according to three axes defining contrasting characteristics of the schemes proposed: DSM for individual users versus DSM for cooperative consumers, deterministic DSM versus stochastic DSM and day-ahead DSM versus real-time DSM. Based on this classification, we provide a big picture of the key features of different approaches and techniques and discuss future research directions.

  7. Challenges faced by western-modelled residential care institutions ...

    African Journals Online (AJOL)

    Some commentators have blamed these residential care centres for their apparent failure to bring up the orphans and other vulnerable children in their care, sufficiently well groomed in local culture and values, and that the perceived failure had led to a situation where such children grew up with anti-social tendencies.

  8. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  9. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  10. Economic Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    Model Predictive Control (MPC) can be used to control the energy distribution in a Smart Grid with a high share of stochastic energy production from renewable energy sources like wind. Heat pumps for heating residential buildings can exploit the slow heat dynamics of a building to store heat...

  11. The economic impact of energy saving retrofits of residential and public buildings in Croatia

    International Nuclear Information System (INIS)

    Mikulić, Davor; Bakarić, Ivana Rašić; Slijepčević, Sunčana

    2016-01-01

    The purpose of this paper is to estimunate the impact of energy saving investment in residential and public buildings in Croatia for the period 2015–2020. The aim is to assess the overall socio-economic impact of energy saving renovation measures defined in Croatian strategic documents in terms of the direct, indirect and induced growth of gross value added, employment and government revenues. An estimate of the avoided costs of air pollution is also included. The overall economic impact assessment is based on an input-output methodology. From the point of view of individual investors, the benefits in terms of reduced future expenses related to energy products are usually below energy efficient renovation investment costs, making an investment financially viable only if government support is provided. If the benefits for society as a whole are included, energy efficient renovation could be assessed as viable even in the short-run. Energy saving retrofits of residential and public buildings positively contribute to economic growth, employment and protection of the environment. Because of economic growth, the tax revenues induced by these investments could compensate for government expenditures, and the overall impact on the public deficit is expected to be neutral even in the short-run. - Highlights: •Estimate of the overall socioeconomic impact of energy saving renovation measures on national economy. •Energy efficient renovation if not subsidised is not financially viable from the owner perspective. •Total social benefits are higher than social costs due to positive externalities. •Impact of subsidies on public deficit is neutral even in the short run.

  12. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, a. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  13. 77 FR 32307 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Science.gov (United States)

    2012-05-31

    ... Efficiency Levels 5. Proprietary Designs 6. Reverse Engineering D. Markups Analysis E. Energy and Water Use...; technology options; approaches to the engineering, life-cycle cost, payback period and national impact... dates adequately consider the typical clothes washer model design cycle for manufacturers. (3) Whether...

  14. Load curve modelling of the residential segment electric power consumption applying a demand side energy management program; Modelagem da curva de carga das faixas de consumo de energia eletrica residencial a partir da aplicacao de um programa de gerenciamento de energia pelo lado da demanda

    Energy Technology Data Exchange (ETDEWEB)

    Rahde, Sergio Barbosa [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre (Brazil). Dept. de Engenharia Mecanica e Mecatronica]. E-mail: sergio@em.pucrs.br; Kaehler, Jose Wagner [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre (Brazil). Faculdade de Engenharia]. E-mail: kaehlerjw@pucrs.br

    2000-07-01

    The dissertation aims to offer a current vision on the use of electrical energy inside CEEE's newly defined area of operation. It also intends to propose different alternatives to set up a Demand Side Management (DSM) project to be carried out on the same market segment, through a Residential Load Management program. Starting from studies developed by DNAEE (the Brazilian federal government's agency for electrical energy), to establish the load curve characteristics, as well as from a research on electrical equipment ownership and electricity consumption habits, along with the contribution supplied by other utilities, especially in the US, an evaluation is offered, concerning several approaches to residential energy management, setting up conditions that simulate the residential segment's scenarios and their influence on the general system's load. (author)

  15. An Efficient Approach for Energy Consumption Optimization and Management in Residential Building Using Artificial Bee Colony and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2016-01-01

    Full Text Available The energy management in residential buildings according to occupant’s requirement and comfort is of vital importance. There are many proposals in the literature addressing the issue of user’s comfort and energy consumption (management with keeping different parameters in consideration. In this paper, we have utilized artificial bee colony (ABC optimization algorithm for maximizing user comfort and minimizing energy consumption simultaneously. We propose a complete user friendly and energy efficient model with different components. The user set parameters and the environmental parameters are inputs of the ABC, and the optimized parameters are the output of the ABC. The error differences between the environmental parameters and the ABC optimized parameters are inputs of fuzzy controllers, which give the required energy as the outputs. The purpose of the optimization algorithm is to maximize the comfort index and minimize the error difference between the user set parameters and the environmental parameters, which ultimately decreases the power consumption. The experimental results show that the proposed model is efficient in achieving high comfort index along with minimized energy consumption.

  16. Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector

    International Nuclear Information System (INIS)

    Elsland, Rainer; Divrak, Can; Fleiter, Tobias; Wietschel, Martin

    2014-01-01

    Turkey’s energy demand has been growing by 4.5% per year over the last decade. As a reaction to this, the Turkish government has implemented the Strategic Energy Efficiency Plan (SEEP), which provides a guideline for energy efficiency policies in all sectors. The aim of this study is to analyse the potential of the SEEP on final energy demand in the Turkish residential sector until 2030. Three scenarios are developed based on a detailed bottom-up modelling approach using a vintage stock model to simulate the energy demand of heating systems and appliances. The results show a decreasing final energy demand in the reference scenario from about 944 PJ in 2008 to 843 PJ in 2030. This reflects a structural break, which is mainly caused by a high building demolition rate and low efficiency in the existing building stock. The SEEP achieves additional savings of around 111 PJ until 2030, while a scenario with even higher efficiency shows further savings of 91 PJ. Electricity demand increases in all scenarios – mainly due to growing ownership rates of appliances. The SEEP will achieve around 10 TWh of electricity savings in 2030 compared to the reference scenario, mainly through more ambitious end-use standards

  17. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia

    DEFF Research Database (Denmark)

    Földváry, Veronika; Bekö, Gabriel; Langer, Sarka

    2017-01-01

    efficiency of these buildings rarely consider their impact on the indoor air quality (IAQ). The objective of the present study was to evaluate the impact of simple energy renovation on IAQ, air exchange rates (AER) and occupant satisfaction in Slovak residential buildings. Three pairs of identical naturally...... of nitrogen dioxide (NO2), formaldehyde and total and individual volatile organic compounds (VOC) were also measured. CO2 concentrations were significantly higher and AERs were lower in the renovated buildings. Formaldehyde concentrations increased after renovation and were positively correlated with CO2...

  18. The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy

    Directory of Open Access Journals (Sweden)

    Federica Cucchiella

    2017-09-01

    Full Text Available A solar photovoltaic system produces electricity by converting energy from the sun. By the end of 2016, the global installed solar photovoltaic capacity reached 305 GW. Its growth is impressive in the last years; in fact, it was only equal to 41 GW in 2010. However, Europe has installed only 6.9 GW in 2016 (−1.7 GW in comparison to previous year and this annual power installed is equal to 9% of global one in according to data released by Solar Power Europe. The profitability of PV systems in mature markets depends on the harmonization between demanded energy and produced one residential energy storage when combined with photovoltaic panels is able to increase the share of self-consumption. This work proposes a mathematical model, in which a Discounted Cash Flow analysis is conducted to evaluate the financial feasibility of photovoltaic-integrated lead acid battery systems in Italy. The indicator used is Net Present Value. Furthermore, a break-even point analysis, in terms of an increase of self-consumption, is conducted. The residential sector is investigated and energy storage system investment is incentivized by fiscal deduction and regional subsidies. The analysis provides several case studies, determined by combinations of the following variables: photovoltaic plant size, battery capacity, the increase of the share of self-consumption, and the useful lifetime of energy storage system. The same case studies are proposed also in four alternative scenarios, where is the modified the structure of subsidies. Results confirm that the profitability can be reached in presence of subsidies.

  19. A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

    Directory of Open Access Journals (Sweden)

    Mira Conci

    2017-05-01

    Full Text Available Building energy renovation quotas are not currently being met due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

  20. Towards a Residential Air-Conditioner Usage Model for Australia

    Directory of Open Access Journals (Sweden)

    Mark Goldsworthy

    2017-08-01

    Full Text Available Realistic models of occupant behaviour in relation to air-conditioner (a/c use are fundamentally important for developing accurate building energy simulation tools. In Australia and elsewhere, such simulation tools are inextricably bound both in legislation and in the design of new technology, electricity infrastructure and regulatory schemes. An increasing number of studies in the literature confirm just how important occupants are in determining overall energy consumption, but obtaining the data on which to build behaviour models is a non-trivial task. Here data is presented on air-conditioner usage derived from three different types of case study analyses. These are: (i use of aggregate energy consumption data coupled with weather, demographic and building statistics across Australia to estimate key predictors of energy use at the aggregate level; (ii use of survey data to determine characteristic a/c switch on/off behaviours and usage frequencies; and (iii use of detailed household level sub-circuit monitoring from 140 households to determine a/c switch on/off probabilities and their dependence on different building and occupant parameters. These case studies are used to assess the difficulties associated with translation of different forms of individual, aggregate and survey based information into a/c behaviour simulation models. Finally a method of linking the data gathering methodologies with the model development is suggested. This method would combine whole-of-house “smart”-meter data measurements with linked targeted occupant surveying.

  1. Economic power schedule and transactive energy through an intelligent centralized energy management system for a DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    is aligned with the command of the unit power schedule. In this work, a DC RDS is used as a case study to demonstrate the process, the RDS is associated with unit economic models, and a cost minimization objective is proposed that is to be achieved based on the real-time electrical price. The results show...... that the proposed framework and methods will help the targeted DC residential system to reduce the total cost and reach stability and efficiency....

  2. AWARENESS ON ENERGY MANAGEMENT IN RESIDENTIAL BUILDINGS: A CASE STUDY IN KAJANG AND PUTRAJAYA

    Directory of Open Access Journals (Sweden)

    MAYTHAM S. AHMED

    2017-05-01

    Full Text Available This paper presents a case study on a survey and measurement being carried out for the purpose of determining residential electric power consumption and awareness toward smart energy management system in the areas of Putrajaya and Kajang, Malaysia. Questionnaires were developed with 37 questions grouped in 5 different sections related to home appliance information. Data was collected from a sample size of 384 respondents with confidence level of 95%. The accuracy of the percentage energy usage data were analysed by applying the SPSS software. Actual residential electric power consumption was measured by using a power quality analyser to determine the total power consumption at weekday and weekend and power consumption of each electrical appliance. The measurement results showed that the average energy consumption is 25.8 kWh/day during weekend and 21.9 kWh/day during weekdays with 11.5 kWh/day for the air conditioner only. The survey results revealed that 89.06% of the respondents expressed awareness toward household power consumption and that they are willing to install home automation system to reducing their electricity bill.

  3. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  4. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    Science.gov (United States)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  5. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model

    International Nuclear Information System (INIS)

    Zhu Qin; Peng Xizhe; Wu Kaiya

    2012-01-01

    Based on the input–output model and the comparable price input–output tables, the current paper investigates the indirect carbon emissions from residential consumption in China in 1992–2005, and examines the impacts on the emissions using the structural decomposition method. The results demonstrate that the rise of the residential consumption level played a dominant role in the growth of residential indirect emissions. The persistent decline of the carbon emission intensity of industrial sectors presented a significant negative effect on the emissions. The change in the intermediate demand of industrial sectors resulted in an overall positive effect, except in the initial years. The increase in population prompted the indirect emissions to a certain extent; however, population size is no longer the main reason for the growth of the emissions. The change in the consumption structure showed a weak positive effect, demonstrating the importance for China to control and slow down the increase in the emissions while in the process of optimizing the residential consumption structure. The results imply that the means for restructuring the economy and improving efficiency, rather than for lowering the consumption scale, should be adopted by China to achieve the targets of energy conservation and emission reduction. - Highlights: ► We build the input–output model of indirect carbon emissions from residential consumption. ► We calculate the indirect emissions using the comparable price input–output tables. ► We examine the impacts on the indirect emissions using the structural decomposition method. ► The change in the consumption structure showed a weak positive effect on the emissions. ► China's population size is no longer the main reason for the growth of the emissions.

  6. Reaching people with energy conservation information: four statewide residential case studies

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Braid, R.B.; Jones, D.W.; Reed, J.H.

    1983-09-01

    Four state residential energy conservation programs are reviewed in terms of their origins, evolutions, purposes and goals, administration, organization, and outcomes. The four programs chosen were selected from among 30 nominated by state energy offices and regional Department of Energy personnel as being illustrative in terms of organization and/or outcomes. While intended primarily for state-level program managers and staff, the profiles of programs, conclusions, and recommendations should be useful to anyone interested in developing viable, action-oriented conservation programs. The four case studies included Oregon's Master Conserver program, Oklahoma's energy education project for low-income and elderly families, Virginia's workshops for heating dealers service and contractors, and Maine's three energy education projects - the Energy Bus, Energy Conservation Month, and the Home Energy Check-up. All four programs utilized Energy Extension Service (EES) funds from the federal government, and three were directly managed through the state EES organization. The findings of the study indicate that these programs (1) had flexibility to experiment, iterate, and reorganize as a result of their initial experiences, (2) made extensive use of networking to involve local groups in program delivery, (3) employed a large variety of delivery methods, and (4) made substantial efforts to tailor literature and handouts to the target audiences.

  7. Investigation and modeling of the residential infiltration of fine particulate matter in Beijing, China.

    Science.gov (United States)

    Xu, Chunyu; Li, Na; Yang, Yibing; Li, Yunpu; Liu, Zhe; Wang, Qin; Zheng, Tongzhang; Civitarese, Anna; Xu, Dongqun

    2017-06-01

    The objective of this study was to estimate the residential infiltration factor (Finf) of fine particulate matter (PM 2.5 ) and to develop models to predict PM 2.5 Finf in Beijing. Eighty-eight paired indoor-outdoor PM 2.5 samples were collected by Teflon filters for seven consecutive days during both non-heating and heating seasons (from a total of 55 families between August, 2013 and February, 2014). The mass concentrations of PM 2.5 were measured by gravimetric method, and elemental concentrations of sulfur in filter deposits were determined by energy-dispersive x-ray fluorescence (ED-XRF) spectrometry. PM 2.5 Finf was estimated as the indoor/outdoor sulfur ratio. Multiple linear regression was used to construct Finf predicting models. The residential PM 2.5 Finf in non-heating season (0.70 ± 0.21, median = 0.78, n = 43) was significantly greater than in heating season (0.54 ± 0.18, median = 0.52, n = 45, p air conditioner use were the most important predictors during non-heating season, which could explain 57% variations across residences, while the outdoor temperature was the only predictor identified in heating season, which could explain 18% variations across residences. The substantial variations of PM 2.5 Finf between seasons and among residences found in this study highlight the importance of incorporating Finf into exposure assessment in epidemiological studies of air pollution and human health in Beijing. The Finf predicting models developed in this study hold promise for incorporating PM 2.5 Finf into large epidemiology studies, thereby reducing exposure misclassification. Failure to consider the differences between indoor and outdoor PM 2.5 may contribute to exposure misclassification in epidemiological studies estimating exposure from a central site measurement. This study was conducted in Beijing to investigate residential PM 2.5 infiltration factor and to develop a localized predictive model in both nonheating and heating seasons. High variations

  8. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Cao, Sunliang; Hasan, Ala; Sirén, Kai

    2015-01-01

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  9. Modeling the Temperature Effect of Orientations in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Sabahat Arif

    2012-07-01

    Full Text Available Indoor thermal comfort in a building has been an important issue for the environmental sustainability. It is an accepted fact that their designs and planning consume a lot of energy in the modern architecture of 20th and 21st centuries. An appropriate orientation of a building can provide thermally comfortable indoor temperatures which otherwise can consume extra energy to condition these spaces through all the seasons. This experimental study investigates the potential effect of this solar passive design strategy on indoor temperatures and a simple model is presented for predicting indoor temperatures based upon the ambient temperatures.

  10. Residential energy efficiency retrofits: How program design affects participation and outcomes

    International Nuclear Information System (INIS)

    Hoicka, Christina E.; Parker, Paul; Andrey, Jean

    2014-01-01

    Better methods of characterizing and addressing heterogeneity in preferences and decision making are needed to stimulate reductions in household greenhouse gas emissions. Four residential energy efficiency programs were delivered consecutively in the Region of Waterloo, Canada, between 1999 and 2011, and each offered a unique combination of information, financial reward structure, and price. A natural quasi-experimental intervention design was employed to assess differences in outcomes across these program structures. Participation at the initial (evaluation by an energy advisor) and follow-up (verification of retrofit) stages, and the material characteristics (e.g., energy performance) were measured and compared between the groups of houses included in each program at each stage. The programs appealed to people with different types of material concerns; each phase of the program was associated with houses with a different mix of material characteristics and depths of recommended and achieved changes. While a performance-based reward attracted fewer houses at each stage than a larger list-based reward, older houses with poorer energy performance were included at each stage. The findings support experimentation with program designs to target sub-populations of housing stock; future program designs should experiment more carefully and with larger performance-based rewards and test parallels with potential carbon market structures. - Highlights: • Multi-program data over 12 years detailing residential energy retrofits. • Natural experimental intervention research design for program evaluation. • Number and attributes of participating households differed by program design. • Financial rewards attracted more participants to the verification stage. • Performance-based incentives have the largest potential for energy savings

  11. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess

  12. New Hampshire Carbon Challenge: Reducing Residential Energy Use and Greenhouse Gas Emissions

    Science.gov (United States)

    Schloss, A. L.; Bartlett, D.; Blaha, D.; Skoglund, C.; Dundorf, J.; Froburg, E.; Pasinella, B.

    2007-12-01

    The New Hampshire Carbon Challenge is an initiative of the Institute for the Study of Earth, Oceans and Space at the University of New Hampshire. Our goal is to educate New Hampshire residents about climate change and also encourage them to reduce their household greenhouse gas emissions by 10,000 pounds. The Northeast region is undergoing climate changes consistent with those expected due to increasing levels of CO2 in the atmosphere, while also contributing to climate change as the world's seventh largest source of CO2 emissions. In the USA, approximately 40 percent of CO2 emissions from fossil fuel combustion come from residential energy consumption for space heating, electricity usage, and transportation. Homeowners typically are not aware that modest energy reductions can result in significant carbon savings. Most campaigns that raise awareness of climate change and residential energy usage disseminate information to consumers through newspaper articles, brochures, websites, or other traditional means of communication. These information-only campaigns have not been very effective in changing residential energy consumption. Bombarded with information in their daily lives, the public has become quite adept at tuning most of it out. When much of the information they receive about climate change is confusing and contradictory, residents have even less incentive to change their behavior. The Challenge is unique in that it couples accurate information about climate change with concrete actions homeowners can take to reduce their carbon emissions. Our strategy is to utilize the tools of Community Based Social Marketing, which has been shown to be effective in changing behavior, and also to leverage existing networks including the NH Department of Environmental Services, UNH Cooperative Extension, faith-based communities, municipal energy committees and Climate Project volunteers, to effectively reach residents throughout the state. The response to our program has

  13. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    Lutzenhiser, Loren

    1992-01-01

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  14. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  15. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-03

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  16. Using ANNS to predict energy consumption of split AC systems in residential buildings and offices

    Energy Technology Data Exchange (ETDEWEB)

    Karatasou, S.; Santamouris, M.; Geros, V. [National and Kapodistrian Univ. of Athens., Athens (Greece). Dept. of Physics

    2007-07-01

    Artificial neural networks (ANNs) were used to predict AC power consumption in residential and small office buildings in Greece. The aim of the study was to produce a simple algorithm capable of predicting AC power consumption for a period of 24 hours. The performance of short-term predictors was evaluated. The predictive abilities of single step and 24-step predictors were then compared. Real data from an apartment building and a small office building in Athens were used. Datasets covered the summer period, and input variables were pre-selected among the available environmental and calendar variables. Feed forward ANNs with a single hidden layer of units were used. A single linear output to predict hourly energy consumptions consisted of 3 parts: the identification of all potential relevant inputs; the selection of hidden units for the preliminary set of inputs; and the removal of irrelevant inputs and useless hidden units through a subtractive phase. A Lavenberg Marquardt (LM) algorithm was used to train the networks. The network architecture was determined for both datasets through the selection procedures. Performance of the predictors was evaluated using the considered training and test sets. Results showed that both the single step and the 24-step predictors were accurate in the case of office buildings. However, the apartment building mean bias error (MBE) was approximately 10 per cent. Attempts to predict the residential building's energy consumption over a 24 hour period yielded an MBE of more than 30 per cent. 10 refs., 2 tabs., 3 figs.

  17. The 1992 Pacific Northwest Residential Energy Survey: Phase 1 : Book 1 : Getting Started.

    Energy Technology Data Exchange (ETDEWEB)

    Applied Management & Planning Group (firm); United States. Bonneville Power Administration. End-Use Research Section.

    1993-08-01

    This Executive Summary outlines the general processes employed in and the major findings from the conduct of Phase I of the Pacific Northwest Residential Energy Survey (PNWRES92-I) during the last quarter of 1992. This study was Bonneville`s third comprehensive residential survey of the region, conducted to provide data on energy usage, conservation awareness and behaviors, and associated consumer characteristics for use in forecasting and planning. The summary is divided into four sections: Background sets the stage with respect to the need for the survey, relates it to previous work, outlines the implementation processes, and summarizes the data products. Profiling the respondents summarizes the survey results under these six categories: Demographics; Housing Units; Room Inventory; Appliance Inventory; Air-Conditioning/Heating; Water-Heating; and Opinion. Reports and cross-tabulations describes the various individual documents. Bonneville Power Plus provides a short description of an Excel-spreadsheet-based software program that contains all of the tabulated material in a format that encourages browsing among the tables and charts, with special feature that they can be copied directly into other Windows-based documents.

  18. Employment impacts of energy conservation schemes in the residential sector. Calculation of direct and indirect employment effects using a dedicated input/output simulation approach

    International Nuclear Information System (INIS)

    Jeeninga, H.; Weber, C.; Maeenpaeae, I.; Rivero Garcia, F.; Wiltshire, V.; Wade, J.

    1999-10-01

    The relationship between investments in energy efficiency and employment is investigated. The employment effects of several energy conservation schemes implemented in the residential sector are determined by means of a dedicated input/output simulation approach. The employment effects of energy conservation schemes were determined for France, Germany, the Netherlands, Spain and the United Kingdom. Within the time frame of the project, it was not feasible to perform a comparable analysis for Greece, Ireland and Austria. For Finland, the employment effects of energy auditing schemes were investigated by means of a macro economic simulation model. The main driving force behind the positive employment effect of investment in energy efficiency in the residential sector is the fact that the energy sector has a rather low labour intensity. The resulting shift of expenditures from the energy sector to other sectors with higher labour intensity leads to increased employment. The main mechanisms that determine the net shift in employment resulting from investments in energy conservation are: 1. The employment effect related to the initial investment in energy efficiency; 2. The energy saving effect. Due to lower energy bill, a shift in expenditure pattern will occur from the labour extensive energy sector towards sectors with higher labour intensity, thus inducing a net positive effect on employment; 3. The effects of money transfers between sectors. For example, when the investment is subsidised by the government, money is transferred from the governmental sector to the residential sector; 4. Changes in the total government budget as a result of changes in total tax revenue and expenditures on unemployment benefits. Different financing methods for the investment in energy efficiency are analysed. The initial investment can be financed from the general household consumption budget, by means of a loan, using a subsidy or using private savings. The following input parameters

  19. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    Science.gov (United States)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  20. Integration of renewable energy systems to residential installations; Integracao de sistemas de energia renovavel a instalacoes residenciais

    Energy Technology Data Exchange (ETDEWEB)

    Marujo, Raquel; Simoes, Teresa; Estanqueiro, Ana [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao (Portugal)

    2010-11-15

    The micro generation residential systems which produce energy from renewable sources need specific legislation and tools to identify the potentials and the feasibility to implant technological solutions adapted to urban environment. Examples of implementation of wind, photovoltaic and hybrid systems in a building are analyzed, with debates about energy and economic aspects.

  1. Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07

    International Nuclear Information System (INIS)

    Das, Aparna; Paul, Saikat Kumar

    2013-01-01

    A substantial amount of primary and secondary energy is consumed by the residential sector. Residential energy consumption includes energy required for construction activity and household consumption. Hence there is a need to quantify energy consumption, its significance and causes. Calculating energy intensity of goods and services is the first step towards quantifying the causes. This research is based on the 115 sector classification input–output tables for India, for 1993–94, 1998–99 and 130 sector classification input–output tables for 2003–04 and 2006–07. Energy intensity of sectors related to household consumption has been calculated to analyze the trend between 1993–94 and 2006–07. Indirect energy requirements of Indian households have been assessed in this study from calculations of total primary energy intensity along with private final consumption expenditure. Results indicate that energy consumption has increased for all categories except “medical care and hygiene”. Percentage increase in indirect primary energy consumed by households is maximum for “house building” and “recreation” categories. Finally a complete decomposition analysis of indirect primary energy consumed by households has been carried out based on changing structural composition of the private final consumption expenditure, energy intensity patterns, per capita expenditures on energy and population. - Highlight: ► Energy intensity trend of goods and services between 1993–94 and 2006–07 presented. ► Analysis of energy consumption by sectors constituting residential use highlighted. ► Per capita and residential indirect energy consumption for main categories presented. ► Decomposition of changes into structure, intensity, activity and population done. ► Percentage increase of embodied energy maximum for house building and recreation.

  2. Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector

    International Nuclear Information System (INIS)

    Charlier, Dorothée; Risch, Anna

    2012-01-01

    A cut in energy consumption by 2050 to reach 50 kWh pe /m 2 /year and reduce GHG emissions by 75% are important objectives of environmental policy in France. The residential sector represents a significant potential source of energy savings. In this paper, our main objective is to construct a simulation model and to evaluate the impact of environmental public policy measures. We model energy consumption and GHG emissions, the decision to invest in energy saving renovations and the dynamics of the housing stock. Particular attention is paid to household investment decisions regarding home renovation. To generate the dynamics and the structure of the housing stock through 2050, we introduce socioeconomic variables that alter the number of renovations and new constructions. This study has three major outputs. First, we estimate the energy consumption and GHG emissions of the residential sector in France through 2050. Second, we study the impact of environmental public policy measures. Lastly, we propose different means to reach the objectives. The results show that while current policies are effective, they are not sufficient to reach the objectives. - Highlights: ► We model the decision to invest in energy saving renovations and dynamics of the housing stock. ► We model and estimate the energy consumption and GHG emissions. ► We study the impact of current environmental public policy measures ► We simulate different public policies to reach the French objectives ► Results show that current policies are effective but not sufficient.

  3. Energy requirements of a multi-sensor based demand control ventilation system in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chul Seong, Nam; Min Hong, Sung; Won Yoon, Dong [Kyoungwon University, Seoul (Korea, Republic of); Jun Moon, Hyeun [Dankook University, Yongin (Korea, Republic of); Augenbroe, Godfried [Georgia Institute of Technology, Atlanta (United States)

    2010-07-01

    Nowadays, people spend most of their time indoors. Therefore indoor air quality is of high importance and the building regulation in Korea was revised to apply 0.7 air change rate in residential apartment housing. However residents do not often operate mechanical ventilation systems mainly due to their utility cost. The aim of this paper is to present a demand control ventilation (DCV) system which implements ventilation strategies to meet the ventilation requirements. An evaluation was conducted on both conventional ventilation and sensor based DCV systems to compare their energy requirements. The study showed that the use of the DCV system results in a better indoor air quality and a lower energy consumption than conventional ventilation. This paper highlighted that the Korean ventilation regulation is not enough to control the CO2 concentration and that the use of the sensor-based DCV would result in a healthier and more comfortable indoor environment.

  4. Background information for programs to improve the energy efficiency of Northwest residential rental property

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.

    1986-02-01

    This report was prepared for the Office of Conservation, Bonneville Power Administration. The report will be used by the Office as background information to support future analysis and implementation of electricity conservation programs for owners of residential rental housing in the Northwest. The principal objective of the study was to review market research information relating to attitudes and actions of Northwest rental housing owners and, to a lesser extent, tenants toward energy conservation and energy-efficiency improvements. Available market research data on these subjects were found to be quite limited. The most useful data were two surveys of Seattle rental housing owners conducted in late 1984 for Seattle City Light. Several other surveys provided supplemental market research information in selected areas. In addition to market research information, the report also includes background information on rental housing characteristics in the Northwest.

  5. Application of Prefabricated Panels for the Energy Retrofit of Portuguese Residential Buildings Facades: A Case Study

    Directory of Open Access Journals (Sweden)

    Sousa J.

    2013-09-01

    Full Text Available This article aims to evaluate the potential application of prefabricated panels in energy retrofit of facades in the Portuguese building stock. The fundamentals of this study were part of Annex 50, which was an international ECBCS IEA project, with the purpose of developing an innovative concept of building renovation for the most representative buildings based on prefabricated systems. To analyze the potential application of energy retrofit using prefabricated panels, was important to know the reality of the existing building stock and its morphology. To know the reality of the building stock, an analysis was done based on the existing statistical data and to find the most representative residential buildings, target of the study, three criteria were defined: buildings built before 1990, with 2 to 6 floors and with renovation needs in the exterior envelope.

  6. Energy efficiency campaign for residential housing at the Fort Lewis army installation

    Energy Technology Data Exchange (ETDEWEB)

    AH McMakin; RE Lundgren; EL Malone

    2000-02-23

    In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

  7. Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

    1989-06-01

    The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

  8. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB

    Directory of Open Access Journals (Sweden)

    Thibault Q. Péan

    2017-05-01

    Full Text Available In this study, simulation work has been carried out to investigate the impact of a demand-side management control strategy in a residential nZEB. A refurbished apartment within a multi-family dwelling representative of Mediterranean building habits was chosen as a study case and modelled within a simulation framework. A flexibility strategy based on set-point modulation depending on the energy price was applied to the building. The impact of the control strategy on thermal comfort was studied in detail with several methods retrieved from the standards or other literature, differentiating the effects on day and night living zones. It revealed a slight decrease of comfort when implementing flexibility, although this was not prejudicial. In addition, the applied strategy caused a simultaneous increase of the electricity used for heating by up to 7% and a reduction of the corresponding energy costs by up to around 20%. The proposed control thereby constitutes a promising solution for shifting heating loads towards periods of lower prices and is able to provide benefits for both the user and the grid sides. Beyond that, the activation of energy flexibility in buildings (nZEB in the present case will participate in a more successful integration of renewable energy sources (RES in the energy mix.

  9. A Reflection on Low Energy Renovation of Residential Complexes in Southern Europe

    Directory of Open Access Journals (Sweden)

    Helena Corvacho

    2016-09-01

    Full Text Available The transformation of European existing building stock towards very low energy buildings requires a new approach. In this context, it seems reasonable to think that buildings should no longer be renovated individually but as part of a global energy system. Focusing on larger urban units may present some scale advantages and may constitute an opportunity to change the urban environment in a smart energy way. Specificities of Southern European countries are addressed. Due either to the climate or the life style, there are large differences in energy consumption per dwelling among southern and northern European countries. How much heating energy will be saved by over-insulating building envelopes if people do not feel the need to heat their houses in the first place? In addition, real energy use in buildings frequently shows major differences with respect to the predicted consumption. The definition of realistic solutions demands the availability of realistic predictions. A case of a residential complex in Portugal is used to illustrate the main questions and to conclude that moving from a building to a group of buildings scale may be an interesting challenge for policy makers to look closer in the near future.

  10. Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application

    Directory of Open Access Journals (Sweden)

    Eun-Chul Kang

    2016-09-01

    Full Text Available Micro polygeneration utilizing renewable energy is a suitable approach to reduce energy consumption and carbon emission by offering high-efficiency performance, offsetting the need for centrally-generated grid electricity and avoiding transmission/distribution losses associated with it. This paper investigates the energy and environmental potential of a renewable trigeneration system in a residential application under Incheon (Korea and Ottawa (Canada weather conditions. The trigeneration system consists of a ground-to-air heat exchanger (GAHX, photovoltaic thermal (PVT panels and an air-to-water heat pump (AWHP. The study is performed by simulations in TRNSYS (Version 17.02 environment. The performance of the trigeneration system is compared to a reference conventional system that utilizes a boiler for space and domestic hot water heating and a chiller for space cooling. Simulation results showed substantial annual primary energy savings from the renewable trigeneration system in comparison to the reference system—45% for Incheon and 42% for Ottawa. The CO2eq emission reduction from the renewable trigeneration system is also significant, standing at 43% for Incheon and 82% for Ottawa. Furthermore, trigeneration systems’ capability to generate electricity and thermal energy at the point of use is considered as an attractive option for inclusion in the future smart energy network applications.

  11. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Eastment, M.

    2006-08-01

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  12. Residential sector dossier. Energy savings as target; Dossier residentiel. Les economies d'energie en point de mire

    Energy Technology Data Exchange (ETDEWEB)

    Sappa, F.

    2004-05-01

    With the 2003 heat wave in Europe, the sales of air conditioning split systems have reached records with a progress of about 40%. Beside these data, it is a new perception of these devices that is progressively gaining the consumers mind, in particular in the residential sector which has been considered as 'very promising' by air conditioning professionals, but which has never reached its expected development in France, so far. Manufacturers are more and more looking towards this sector with the energy savings and the environment protection as main arguments. The French scientific and technical committee of air conditioning industries (Costic) is carrying out several actions in parallel which aim at giving help to professionals for the realisation of quality air conditioning installations. This dossier takes stock of the technical and regulatory aspects of residential air conditioning (choice of appliances, evacuation of condensates, air flow, abatement of energy consumptions and noise pollution, Vivrelec offer of Electricite de France (EdF), improvement of esthetics and efficiency..). Some examples of innovative realizations illustrate this dossier: high environmental quality house with 77% of space heating savings, combination of ventilation and radiant ceiling. (J.S.)

  13. Emergency residential care settings: A model for service assessment and design.

    Science.gov (United States)

    Graça, João; Calheiros, Maria Manuela; Patrício, Joana Nunes; Magalhães, Eunice Vieira

    2018-02-01

    There have been calls for uncovering the "black box" of residential care services, with a particular need for research focusing on emergency care settings for children and youth in danger. In fact, the strikingly scant empirical attention that these settings have received so far contrasts with the role that they often play as gateway into the child welfare system. To answer these calls, this work presents and tests a framework for assessing a service model in residential emergency care. It comprises seven studies which address a set of different focal areas (e.g., service logic model; care experiences), informants (e.g., case records; staff; children/youth), and service components (e.g., case assessment/evaluation; intervention; placement/referral). Drawing on this process-consultation approach, the work proposes a set of key challenges for emergency residential care in terms of service improvement and development, and calls for further research targeting more care units and different types of residential care services. These findings offer a contribution to inform evidence-based practice and policy in service models of residential care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Does energy labelling on residential housing cause energy savings? Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2008-12-15

    More than 80% of energy used in households is dedicated to space heating. Large potential energy savings have been identified in the existing housing stock. Energy labelling of single-family houses is seen as an important instrument to provide new house owners with information on efficient energy saving investments that can be made on the house. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using actual consumption of energy and register data describing the houses and households. We do not find significant energy savings due to the Danish Energy Labelling Scheme. (Author)

  15. Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations

    International Nuclear Information System (INIS)

    Amstalden, Roger W.; Kost, Michael; Nathani, Carsten; Imboden, Dieter M.

    2007-01-01

    The aim of this paper is to analyse the profitability of energy-efficient retrofit investments in the Swiss residential building sector from the house owner's perspective. Different energy price expectations, policy instruments such as subsidies, income tax deduction and a carbon tax, as well as potential future cost degression of energy efficiency measures were taken into account. The discounted cash flow method was used for the investment analysis of different retrofit packages applied to a model building scheduled for renovation, i.e. a single-family house constructed between 1948 and 1975. The results show that present Swiss policy instruments push investments for energy-efficient retrofitting to profitability. Cost degression has a minor significance for investment profitability. However, the most relevant factor for the investment analysis is the expected energy price. Expecting a future fuel oil price at the level of 2005, efficiency investments are close to profitability even without policy support. If higher energy prices were expected, energy-efficient retrofitting would be an attractive investment opportunity

  16. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  17. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  18. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    Science.gov (United States)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  19. Study of the Effect of Time-Based Rate Demand Response Programs on Stochastic Day-Ahead Energy and Reserve Scheduling in Islanded Residential Microgrids

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Najafi, Hamid Reza; Anvari-Moghaddam, Amjad

    2017-01-01

    In recent deregulated power systems, demand response (DR) has become one of the most cost-effective and efficient solutions for smoothing the load profile when the system is under stress. By participating in DR programs, customers are able to change their energy consumption habits in response...... to energy price changes and get incentives in return. In this paper, we study the effect of various time-based rate (TBR) programs on the stochastic day-ahead energy and reserve scheduling in residential islanded microgrids (MGs). An effective approach is presented to schedule both energy and reserve...... in presence of renewable energy resources (RESs) and electric vehicles (EVs). An economic model of responsive load is also proposed on the basis of elasticity factor to model the behavior of customers participating in various DR programs. A two-stage stochastic programming model is developed accordingly...

  20. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  1. Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector

    International Nuclear Information System (INIS)

    Beerepoot, Milou; Beerepoot, Niels

    2007-01-01

    The recent implementation of energy performance policy as a way to tackle energy consumption in the building sector in Europe draws attention to the effect it has on the development and diffusion of energy-saving innovations. According to innovation system literature, government regulation through norms and standards is one of the factors stimulating innovation. This paper concentrates on the role of stricter government regulation as an incentive to innovation in the Dutch residential building sector. Innovation in this sector is predominantly a process of applying incremental modifications to comply with new and stricter government regulations and standards. Energy performance policy in its current shape will therefore not contribute to the diffusion of really new innovation in energy techniques for residential buildings in the Netherlands. If diffusion of really new innovation is an explicit aim of energy performance policy then the European wide introduction of this scheme needs reconsideration

  2. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  3. 75 FR 19296 - Energy Conservation Program: Test Procedures and Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-04-14

    ... mode electrical consumption was small as compared to the fossil fuel energy consumption currently... mode energy consumption into the statutorily identified efficiency descriptor, Annual Fuel Utilization...

  4. Designing, building, and testing a solar thermoelectric generation, STEG, for energy delivery to remote residential areas in developing regions

    Science.gov (United States)

    Moumouni, Yacouba

    New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators can be a cost-effective alternative to photovoltaics for a remote residential household power supply. A complete solar thermoelectric energy harvesting system is presented for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with LTspice simulator software via thermal-to-electrical analogy schemes. Valuable data in conjunction with two novel LTspice circuits were obtained, showing the achievability of analyzing transient heat transfer with the Spice simulator. Hence, the proposed study begins with a comprehensive method of extracting thermal parameters that appear in thermoelectric modules. A step-by-step procedure was developed and followed to succinctly extract parameters, such as the Seebeck coefficient, electrical conductivity, thermal resistance, and thermal conductivity needed to model the system. Data extracted from datasheet, material properties, and geometries were successfully utilized to compute the thermal capacities and resistances necessary to perform the analogy. In addition, temperature variations of the intrinsic internal parameters were accounted for in this process for accuracy purposes. The steps that it takes to simulate any thermo-electrical system with the LTspice simulator are thoroughly explained in this work. As a consequence, an improved Spice model for a thermoelectric generator is proposed. Experimental results were compiled in the form of a lookup table and then fed into the Spice simulator using the piecewise linear (PWL) command in order to validate the model. Experimental results show that a temperature differential of 13.43°C was achievable whereas the simulation indicates

  5. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  6. Pacific Northwest residential energy survey. Volume 4. Pacific Northwest cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Responses for the Pacific Northwest to fifty questions asked during the survey (plus four variables computed from responses to several other questions) cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use are presented. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana with a total of 4030 households sampled. Information on the 54 tables is explained. (MCW)

  7. Temporal De-biasing of Behaviour in Residential Energy Consumption: Supporting Conservation Compliance Through Feedback Design

    Science.gov (United States)

    Trinh, Kevin

    Despite years of research in residential energy conservation, means of inducing conservation behaviour through feedback are not well understood. In this thesis I take a novel approach to feedback design by addressing temporal inconsistencies that may hinder individuals from forming an intention to conserve. To help understand conservation compliance strategies, I proposed a visual framework to categorize interventions. I present two design heuristics that were inspired by temporal construal theory (Liberman & Trope, 2003). They were the impetus for the design of three feedback display prototypes, which were examined. Due to methodological limitations, significant improvements to compliance were not found. However, evidence suggests that comparative feedback may have supported reasoning about conservation rather than supporting conservation compliance directly. Future work includes refinement of feedback displays to avoid direct comparisons, exploring the use of nature imagery, and the study of a possible interaction between environmental values and comparative feedback on compliance.

  8. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  9. Improving pregnancy outcome during imprisonment: a model residential care program.

    Science.gov (United States)

    Siefert, K; Pimlott, S

    2001-04-01

    The female prison population has increased dramatically in recent years. Most women prisoners are involved with drugs, and as many as 25 percent are pregnant or have delivered within the past year. Reproductive health and drug treatment services for women in prison are inadequate, if they are available at all, and although illicit drugs are readily available in prison, drug-involved pregnant women often are incarcerated to protect fetal health. Studies of pregnancy outcome among women prisoners have demonstrated high rates of perinatal mortality and morbidity. This article examines issues related to pregnancy among women prisoners and describes an innovative residential program designed for pregnant, drug-dependent women in a state adult corrections system. Social workers can play an important role in promoting policy reform and improved services for this underserved population.

  10. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  11. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  12. Underlying energy demand trends in South Korean and Indonesian aggregate whole economy and residential sectors

    International Nuclear Information System (INIS)

    Sa'ad, Suleiman

    2011-01-01

    This paper used annual time series data over the period 1973-2008 to estimate energy demand functions for South Korea and Indonesian aggregated whole economy and Residential sectors. Furthermore, the underlying energy demand trend (UEDT), which may be non-linear and reflects not only technical progress, which usually produces greater energy efficiency, but also other factors such as changes in consumer tastes and the economic structure that may be working in the opposite direction, is also examined in the paper. In estimating the price and income elasticities, the study applies Harvey's structural time series approach where a stochastic trend is used as a proxy for UEDT. Empirical evidence from this study reveals that the estimated long-run income and price elasticities range from 0.58 to 1.15 and from -0.09 to -066, respectively. Furthermore the stochastic form for the UEDT is preferred for both countries and sectors, suggesting a wide variation in the exogenous effects of energy saving technical progress in addition to other pertinent exogenous factors such as economic structure, consumer preferences, and socio-economic influences. (author)

  13. Scenario analysis of energy saving and CO2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO 2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO 2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO 2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO 2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO 2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO 2 intensity from electricity is a key factor in the reduction of CO 2 emissions.

  14. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  15. 77 FR 5784 - Decision and Order Granting a Waiver to Sub-Zero From the Department of Energy Residential...

    Science.gov (United States)

    2012-02-06

    ... designing new refrigerator-freezers that incorporate dual compressors. In its petition, Sub-Zero seeks a... Department of Energy Residential Refrigerator and Refrigerator-Freezer Test Procedures AGENCY: Office of... to Sub-Zero, Inc. (Sub-Zero) a waiver from the DOE electric refrigerator and refrigerator-freezer...

  16. 78 FR 65623 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential...

    Science.gov (United States)

    2013-11-01

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Refrigerator and... decision and order in Case No. RF-032 that grants to Samsung Electronics America, Inc. (Samsung) a waiver... set forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure...

  17. 78 FR 35899 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential...

    Science.gov (United States)

    2013-06-14

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Refrigerator and... decision and order (Case No. RF-026) that grants to Samsung Electronics America, Inc. (Samsung) a waiver... forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure to...

  18. 77 FR 75428 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential...

    Science.gov (United States)

    2012-12-20

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Refrigerator and... decision and order (Case No. RF-021) that grants to Samsung Electronics America, Inc. (Samsung) a waiver... forth in its petition for waiver in Case RF-021. In its petition, Samsung provides an alternate test...

  19. 76 FR 70996 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential Clothes...

    Science.gov (United States)

    2011-11-16

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Clothes Washer Test... No. CW-020) that grants to Samsung Electronics America, Inc. (Samsung) a waiver from the DOE clothes... forth in its petition for waiver. Under today's decision and order, Samsung shall be required to test...

  20. 78 FR 35898 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential...

    Science.gov (United States)

    2013-06-14

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Refrigerator and... decision and order in Case No. RF-027 that grants to Samsung Electronics America, Inc. (Samsung) a waiver... set forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure...

  1. 76 FR 50207 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential Clothes...

    Science.gov (United States)

    2011-08-12

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Clothes Washer Test... No. CW-019) that grants to Samsung Electronics America, Inc. (Samsung) a waiver from the DOE clothes... forth in its petition for waiver. Under today's decision and order, Samsung shall be required to test...

  2. 78 FR 35901 - Decision and Order Granting a Waiver to Samsung From the Department of Energy Residential...

    Science.gov (United States)

    2013-06-14

    ... and Order Granting a Waiver to Samsung From the Department of Energy Residential Refrigerator and... decision and order in Case No. RF-025 that grants to Samsung Electronics America, Inc. (Samsung) a waiver... set forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure...

  3. 78 FR 48661 - Notice of Petition for Waiver of Whirlpool Corporation From the Department of Energy Residential...

    Science.gov (United States)

    2013-08-09

    ... use system'' saves water from the final rinse of a given dishwasher cycle for use in a subsequent.... Background The dishwasher ``water use system'' saves water from the final rinse of a given dishwasher cycle... Petition for Waiver of Whirlpool Corporation From the Department of Energy Residential Dishwasher Test...

  4. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Meeting: Atlanta, Georgia, March 16-18, 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-05-01

    This meeting brought together more than 200 professionals representing organizations with vested interest in energy efficiency improvements in residential buildings. Participants identified or reinforced a wide variety of needs and issues associated with delivering high-performance homes in both new and existing home scenarios,

  5. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    Science.gov (United States)

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  6. A Multi-Scale Energy Demand Model suggests sharing Market Risks with Intelligent Energy Cooperatives

    NARCIS (Netherlands)

    G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)

    2015-01-01

    textabstractIn this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for

  7. Effects of Vernacular Climatic Strategies (VCS on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City

    Directory of Open Access Journals (Sweden)

    Amin Mohammadi

    2017-10-01

    Full Text Available This study aims to use the vernacular climatic strategies (VCS of traditional dwellings in Bushehr, in the common residential buildings of this southern Iranian city (which is characterized by its hot and humid climate, and provide answers to the following question: What effects do VCS have in terms of energy consumption in these buildings? This study has been conducted at three levels. At the first level, three context-based climatic solutions including shading, natural ventilation, and insulation of external walls and roofs were identified and selected based on bibliographic study. At the second level, a case study reflecting the current typology of common residential buildings in Bushehr city was selected. A combination of the mentioned climatic solutions was used in the baseline case to create a developed model. Based on the space layout of the developed model and some design criteria, a series of proposed models was also created and modeled. The selected case study building was also used to establish a local weather station at a height of 12 m based on the roof, collecting local climate data which were then used for simulation to improve simulation accuracy. Finally, all models were simulated with the use of Design Builder software under natural ventilation conditions during moderate climatic periods of the year while split air-conditioning systems were used during hot and humid periods. The results showed reductions of 16% in energy consumption and 22% in CO2 emissions for the developed model, and reductions of 24–26% in energy consumption and 32–34% in CO2 emissions for the proposed models, as compared with the baseline model. Furthermore, all proposed models achieved lower annual energy consumption when compared with a selection of international sustainable low energy standards and domestic energy performance references for the Middle East region. Further studies are also recommended, and there is potential for combining VCS with

  8. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna.

    Science.gov (United States)

    Gaube, Veronika; Remesch, Alexander

    2013-07-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible - among many other factors - for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use.

  9. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna☆

    Science.gov (United States)

    Gaube, Veronika; Remesch, Alexander

    2013-01-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible – among many other factors – for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use. PMID:27667962

  10. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-06-27

    ... Presumption Payback Period G. National Impact Analysis-National Energy Savings and Net Present Value 1... Standards Cases 3. Installed Cost per Unit 4. National Energy Savings 5. Net Present Value of Consumer.... National Impact Analysis a. Significance of Energy Savings b. Net Present Value of Consumer Costs and...

  11. 76 FR 22453 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2011-04-21

    .... National Impact Analysis--National Energy Savings and Net Present Value Analysis 1. Shipments 2. Forecasted Efficiency in the Base Case and Standards Cases 3. National Energy Savings 4. Net Present Value of Consumer... Energy Savings b. Net Present Value of Consumer Costs and Benefits c. Impacts on Employment 4. Impact on...

  12. Generation of a Tropically Adapted Energy Performance Certificate for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Karl Wagner

    2014-11-01

    Full Text Available Since the 1990s, national green building certification indices have emerged around the globe as promising measurement tools for environmental-friendly housing. Since 2008, tools for countries in the Northern “colder” hemisphere have been adapted to tropical countries. In contrast, the Tropically Adapted Energy Performance Certificate (TEPC, established in 2012, translates the United Nations’ triple bottom line principle into green building sustainability (planet, thermal comfort (people and affordability (profit. The tool has been especially developed and revamped for affordable green building assessment helping to reduce global warming. Hence, by the comparably simple and transparent energy audit it provides, the TEPC examines buildings for their: (1 contribution to reduce CO2; (2 transmission rate in shielding a building’s envelope against the effects of the tropical heat; (3 generation of thermal comfort and (4 referring total cost of ownership to green the building further. All four dimensions are measured in the rainbow colour scale in compliance with national energy regulations. Accordingly, this research examines the tool’s implementation in tropical countries. Exemplified tropical case studies in residential areas seek to demonstrate the practicability of the approach and to derive a holistic certification by an internationally accredited certification board.

  13. Operational energy in the life cycle of residential dwellings: The experience of Spain and Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Oscar [University of Rovira i Virgili, Environmental and Analysis Management Group (AGA), Department of Chemical Engineering, Av. Paisos Catalanes 26, 43007 Tarragona (Spain); University of Pamplona, Department of Industrial Engineering, Km 1 Via Bucaramanga, Pamplona, N de S (Colombia); Castells, Francesc [University of Pamplona, Department of Industrial Engineering, Km 1 Via Bucaramanga, Pamplona, N de S (Colombia); Sonnemann, Guido [University of Rovira i Virgili, Visiting Senior Research Fellow, AGA Group (AGA) (Spain)

    2010-02-15

    Life Cycle Assessment (LCA) has been applied within the residential building sector of two buildings, one in each a developed (Spain) and a developing (Colombia) country. The main goal of this paper involves the environmental loads and also brings together the operational energy for activities during the operation phase such as HVAC, domestic hot water, electrical appliances, cooking and illumination. The present research compares two real scenarios: Situation 1, where 100% of the dwelling's energy is supplied with electricity only and Situation 2, where dwellings can be operated with natural gas plus electricity. The results for the environmental impacts using natural gas plus electricity show that of the Spanish environmental impacts air conditioning had the highest impact with approximately 27-42% due to the electricity used to power it. In Colombian results showed that electrical appliances had the highest environmental impacts in the same order of magnitude with approximately 60% and cooking had the best reduction of emissions due to the use of natural gas, from 10% down to less than 2%. The origin of the energy source used in each Country plays an important role to minimize environmental impacts, as was demonstrated by the environmental impacts of its use in Colombia where 78% of the electricity came from hydroelectric plants whereas in Spain it is more mixed, fossil fuels represented 55%, nuclear 18% and wind 9%. In summary, LCA has been applied because this methodology supports the decision making to concern environmental sustainability. (author)

  14. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  15. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  16. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    Science.gov (United States)

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  17. From Schelling to Schools: A comparison of a model of residential segregation with a model of school segregation

    OpenAIRE

    Stoica, Victor; Flache, Andreas

    2014-01-01

    We address theoretically whether and under what conditions Schelling’s celebrated result of ‘self-organized’ unintended residential segregation may also apply to school segregation. We propose here a computational model of school segregation that is aligned with a corresponding Schelling-type model of residential segregation. To adapt the model for application to school segregation, we move beyond previous work by combining two preference arguments in modeling parents’ school choice, ...

  18. Model projections for household energy use in India

    International Nuclear Information System (INIS)

    Ruijven, Bas J. van; Vuuren, Detlef P. van; Vries, Bert J.M. de; Isaac, Morna; van der Sluijs, Jeroen P.; Lucas, Paul L.; Balachandra, P.

    2011-01-01

    Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO 2 emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65–75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9–10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO 2 emissions via increased electricity use. - Highlights: ► A bottom-up model for residential energy use was developed and applied to India. ► The model distinguishes five end-use functions and rural/urban income quintiles. ► We explore consequences of income distribution and electrification on energy use. ► Equal income and electrification enhance the transition to commercial fuels. ► Higher CO 2 emissions from increased electricity use are a trade-off.

  19. Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements

    International Nuclear Information System (INIS)

    Foulds, Chris; Powell, Jane

    2014-01-01

    In devising viable energy efficiency policies that can reduce the greenhouse gas emissions of existing dwellings (e.g. UK's Green Deal), data are required on current insulation levels and its influences. One such data source is the seldom used UK Energy Saving Trust's Homes Energy Efficiency Database (HEED), which this paper investigates using Norfolk UK local authorities as a case study. The HEED's reactive and longitudinal data collection strategies contribute to underlying biases, which is the likely reasoning for its differences with the English Housing Survey and UK 2001 Census. These differences had a cascading effect in that they manifested themselves in the indicative financial and carbon assessments undertaken. Similarly, sampling concerns also implicated correlations surrounding influences of current dwelling insulation levels. Providing one is transparent about potential biases and data concerns, the HEED can play a substantial role in guiding policy decisions and understanding dwelling stock characteristics (e.g. what makes dwellings ‘Hard to Treat'). In particular, its vast (national) geographic coverage yet high resolution enables local context to be explored: a factor that this study shows to significantly shape insulation levels. - Highlights: • The Homes Energy Efficiency Database's (HEED) integrity and role is investigated. • HEED biases exist due to reactive and longitudinal data collection strategies. • Biases contribute to differences with Census and English Housing Survey. • Its high resolution and national coverage can bring local context to the fore. • It can play a substantial role in shaping residential energy efficiency policies

  20. Energy intervention in the residential sector in the south of Spain: Current challenges

    Directory of Open Access Journals (Sweden)

    Sendra, J. J.

    2013-12-01

    Full Text Available It can be estimated that approximately half of energy consumption in Spanish residential buildings derives from heating and air conditioning systems. It is therefore advisable to invest in retrofitting projects to reduce energy demand. However, although as a rule energy interventions are expected to bring about significant potential energy savings, it should be noted that this is often not so straightforward, particularly in southern Spain, where there are significant deviations from the expected energy scenario. Recent research shows that in many cases there is no direct relationship between energy demand and real energy use, and the low energy rate is combined with deficiencies in comfort conditions. In order to ensure the real cost-efficiency of the actions is essential, further research for defining these behaviours. The European EnergyTIC project is a continuation of the work already carried out in this context by the EFFICACIA and AMEC research projects.En los edificios de viviendas españoles podemos estimar que la mitad del consumo energético se debe a los sistemas de calefacción y refrigeración. En general, resulta aconsejable invertir en proyectos de rehabilitación para limitar su demanda energética, sin embargo, aunque las intervenciones energéticas puedan suponer un significativo potencial de ahorro de energía, habría que manifestar que en muchas situaciones, especialmente en el área sur, no siempre será así, con desviaciones importantes de los comportamientos energéticos esperados. Investigaciones recientes sobre edificios de viviendas protegidas en el Sur de España señalan que no existe habitualmente una relación directa entre demanda de energía y uso real de la misma, asociado el bajo consumo a una carencia de prestaciones de confort. Para rentabilizar las actuaciones es fundamental profundizar en investigación y caracterización de estos comportamientos. En este contexto, se han desarrollado los proyectos de

  1. Benchmarking energy performance of residential buildings using two-stage multifactor data envelopment analysis with degree-day based simple-normalization approach

    International Nuclear Information System (INIS)

    Wang, Endong; Shen, Zhigang; Alp, Neslihan; Barry, Nate

    2015-01-01

    Highlights: • Two-stage DEA model is developed to benchmark building energy efficiency. • Degree-day based simple normalization is used to neutralize the climatic noise. • Results of a real case study validated the benefits of this new model. - Abstract: Being able to identify detailed meta factors of energy performance is essential for creating effective residential energy-retrofitting strategies. Compared to other benchmarking methods, nonparametric multifactor DEA (data envelopment analysis) is capable of discriminating scale factors from management factors to reveal more details to better guide retrofitting practices. A two-stage DEA energy benchmarking method is proposed in this paper. This method includes (1) first-stage meta DEA which integrates the common degree day metrics for neutralizing noise energy effects of exogenous climatic variables; and (2) second-stage Tobit regression for further detailed efficiency analysis. A case study involving 3-year longitudinal panel data of 189 residential buildings indicated the proposed method has advantages over existing methods in terms of its efficiency in data processing and results interpretation. The results of the case study also demonstrated high consistency with existing linear regression based DEA.

  2. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    Science.gov (United States)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  3. 78 FR 12969 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-26

    ... option for their members who do not have access to natural gas, as it allows them to heat water using...) that vary based on the rated storage volume of the water heater, the type of energy it uses (i.e., gas... Energy factor as of Product class January 20, 2004 April 16, 2015 Gas-fired Water Heater...... 0.67 - (0...

  4. Comparison of Four Probabilistic Models (CARES, Calendex, ConsEspo, SHEDS) to Estimate Aggregate Residential Exposures to Pesticides

    Science.gov (United States)

    Two deterministic models (US EPA’s Office of Pesticide Programs Residential Standard Operating Procedures (OPP Residential SOPs) and Draft Protocol for Measuring Children’s Non-Occupational Exposure to Pesticides by all Relevant Pathways (Draft Protocol)) and four probabilistic mo...

  5. Comparative economic assessment of the energy performance of air-conditioning within the Mexican residential sector

    Directory of Open Access Journals (Sweden)

    Ivan Oropeza-Perez

    2016-11-01

    Full Text Available This work shows a sensitivity analysis of the economic impact of different energy performances of air-conditioning within the Mexican housing sector. For this purpose, a cooling-load calculator program in function of the indoor temperature is developed. The program also calculates the electricity consumption along with the expenditure with the different residential rates of the Mexican Federal Commission of Electricity (CFE, initials in Spanish set according to the season of the year and zone of the country. After the results onto the national-scale scenario are validated with the literature, a sensitivity analysis is carried out by changing three parameters that are considered as influential on the consumption and which can be considered as energy saving strategies. With these strategies, it is found that the indoor temperature decrease due to the use of a passive cooling system is the most important characteristic to take into account followed by the coefficient of performance (COP of the air-conditioning and the increase of the comfort temperature set-point, respectively. Thereby, an economic analysis is carried out, finding an annual saving up to 770 USD within a single air-conditioned dwelling having a payback period of 3 years for using a combination of passive cooling techniques and increasing the comfort temperature set-point; or a 2 years payback period if the air-conditioning is changed by a high-efficient equipment.

  6. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters... residential water heaters, direct heating equipment, and pool heaters. This rulemaking is intended to fulfill... water heaters, possible clarifications and improvement of the direct heating equipment test procedures...

  7. 77 FR 28673 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Science.gov (United States)

    2012-05-15

    ... multipliers based on climate, consumer behavior assumptions, and product characteristics (e.g., multi-stage or... Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans; Proposed Rule #0;#0... Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans AGENCY: Office of...

  8. Brazilian energy model

    Science.gov (United States)

    1981-05-01

    A summary of the energy situation in Brazil is presented. Energy consumption rates, reserves of primary energy, and the basic needs and strategies for meeting energy self sufficiency are discussed. Conserving energy, increasing petroleum production, and utilizing other domestic energy products and petroleum by-products are discussed. Specific programs are described for the development and use of alcohol fuels, wood and charcoal, coal, schist, solar and geothermal energy, power from the sea, fresh biomass, special batteries, hydrogen, vegetable oil, and electric energy from water power, nuclear, and coal. Details of the energy model for 1985 are given. Attention is also given to the energy demands and the structure of global energy from 1975 to 1985.

  9. 78 FR 42389 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2013-07-16

    ... conservation standard on receipt of a statement submitted jointly by interested persons that are fairly... (AWE), Northwest Power and Conservation Council (NPCC), and Northeast Energy Efficiency Partnerships... (NCLC)) [[Page 42390

  10. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  11. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  12. Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, Willliam JN [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Changing the rate of airflow through a home affects the annual thermal conditioning energy. Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a wellvalidated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

  13. Residential electricity consumption in Portugal: Findings from top-down and bottom-up models

    International Nuclear Information System (INIS)

    Wiesmann, Daniel; Lima Azevedo, Ines; Ferrao, Paulo; Fernandez, John E.

    2011-01-01

    An econometric study of the Portuguese residential electricity consumption is presented, with a focus on the influence of dwelling characteristics on consumption. The relationship between the dwelling and household characteristics on per capita residential electricity consumption is estimated at two different scales, involving two distinct databases: the first includes data at the municipality level for 2001, the second is the most recent Portuguese consumer expenditure survey that was collected in 2005 and 2006. The results of the analysis at both scales are consistent and indicate that household and dwelling characteristics have a significant influence on residential electricity consumption. Our results show that in Portugal the direct effect of income on electricity consumption is low and becomes smaller when more relevant control variables are included in the analysis. Future demand of electricity in Portugal will be significantly influenced by trends in socioeconomic factors as well as changes in the building stock. These trends should be taken in consideration in the formulation of policy measures to reduce electricity consumption. - Research highlights: → Econometric study of per capita residential electricity consumption in Portugal. → Comparing models at two levels of aggregation: by municipality and by household. → Using proxies for the dwelling characteristics on the municipality level. → Results from both scales are consistent. → Income elasticity is low and the influence of dwelling characteristics is significant.

  14. SOLPLAN Report: An Assessment of Barriers and Incentives to Conservation and Alternative-Energy Use in the Residential Sector in Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Fulenwider, Claire K.; Weiss, Lonnie S.; Pfefferkorn, Carol; Wiener, Don E.; Feldman, Stephen L.

    1981-03-01

    The Alternative Energy Policy Project of the Wisconsin Center for Public Policy focused upon two principle objectives: (1) gathering and analyzing new and previously unavailable data on barriers and incentives to greater energy conservation and alternative energy commercialization in the state of Wisconsin; and (2) building consensus around alternative energy policy to develop guidelines for alternative energy policy for the state. Particular attention was paid to public involvement in the policy process and to assessing barriers and incentives from as many key sectors of the energy field as possible. Thus, data were gathered from the general public, alternative energy users, the heating industry generally, the alternative-energy industry specifically, and key decision makers. The report is divided into four principal sections. The first looks at findings and analyses dealing with barriers to greater conservation and alternative energy use. Incentives for accelerating the extent of residential conservation and alternative energy use are discussed in the second section. The decision-making process itself in energy policy has been little analyzed and seldom documented. The role of consensus-building in the alternative-energy field and analysis of the decision-making process are discussed in Section III. Appendices in Section IV provide survey instruments and descriptions, a compendium of energy-related legislation developed within the project, and various reports. The total report reflects the interactive decision-making model as it was applied in SOLPLAN. (MCW)

  15. From Schelling to Schools : A comparison of a model of residential segregation with a model of school segregation

    NARCIS (Netherlands)

    Stoica, Victor; Flache, Andreas

    2014-01-01

    We address theoretically whether and under what conditions Schelling's celebrated result of 'self-organized' unintended residential segregation may also apply to school segregation. We propose here a computational model of school segregation that is aligned with a corresponding Schelling-type model

  16. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Directory of Open Access Journals (Sweden)

    R. Ots

    2018-04-01

    Full Text Available Evidence is accumulating that emissions of primary particulate matter (PM from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012, as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source. The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist – all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than

  17. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Science.gov (United States)

    Ots, Riinu; Heal, Mathew R.; Young, Dominique E.; Williams, Leah R.; Allan, James D.; Nemitz, Eiko; Di Marco, Chiara; Detournay, Anais; Xu, Lu; Ng, Nga L.; Coe, Hugh; Herndon, Scott C.; Mackenzie, Ian A.; Green, David C.; Kuenen, Jeroen J. P.; Reis, Stefan; Vieno, Massimo

    2018-04-01

    Evidence is accumulating that emissions of primary particulate matter (PM) from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal) burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012), as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source). The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA) component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist - all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC) concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than inventory

  18. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-03-15

    ... estimates the national energy savings (NES) and the net present value (NPV) of total consumer costs and... in present-value terms. The PBP represents the number of years needed to recover the increase in... furnaces in today's notice. DOE presents additional issues throughout the RAP for which DOE also seeks...

  19. 76 FR 57515 - Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators...

    Science.gov (United States)

    2011-09-15

    ... Energy Savings b. Net Present Value of Consumer Costs and Benefits c. Indirect Impacts on Employment 4... national net present value (NPV) of total consumer costs and savings of the amended standards for products... to 2010. The industry net present value (INPV) is the sum of the discounted cash flows to the...

  20. 78 FR 64067 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-10-25

    ... Analysis 2. Net Present Value Analysis I. Consumer Subgroup Analysis J. Manufacturer Impact Analysis 1... of Carbon Values Used in Past Regulatory Analyses c. Current Approach and Key Assumptions 2.... Cumulative Regulatory Burden 3. National Impact Analysis a. Significance of Energy Savings b. Net Present...

  1. 77 FR 31917 - Energy Conservation Program: Energy Conservation Standards for Residential Dishwashers

    Science.gov (United States)

    2012-05-30

    ... Analysis--National Energy Savings and Net Present Value Analysis 1. Shipments 2. Forecasted Efficiency in... Savings 5. Net Present Value of Consumer Benefit H. Consumer Subgroup Analysis I. Manufacturer Impact.... DOE estimates that the present monetary value of the CO 2 emissions reductions is between $16 and $242...

  2. 76 FR 26656 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2011-05-09

    ... submitted jointly by interested persons that are fairly representative of relevant points of view (including... Water Efficiency (AWE), Northwest Power and Conservation Council (NPCC), and Northeast Energy Efficiency... Center (NCLC)) (collectively, the ``Joint Petitioners''). This collective set of comments, which DOE...

  3. 78 FR 20842 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2013-04-08

    ... standard on receipt of a statement submitted jointly by interested persons that are fairly representative... Energy (ASE), Alliance for Water Efficiency (AWE), Northwest Power and Conservation Council (NPCC), and... collective set of comments, which DOE refers to in this notice as the ``Joint Petition'' \\1\\ or ``Consensus...

  4. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  5. Determining residential energy consumption-based CO2 emissions and examining the factors affecting the variation in Ankara, Turkey

    Science.gov (United States)

    Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen

    2017-11-01

    Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.

  6. Generative Models of Segregation: Investigating Model-Generated Patterns of Residential Segregation by Ethnicity and Socioeconomic Status

    Science.gov (United States)

    Fossett, Mark

    2011-01-01

    This paper considers the potential for using agent models to explore theories of residential segregation in urban areas. Results of generative experiments conducted using an agent-based simulation of segregation dynamics document that varying a small number of model parameters representing constructs from urban-ecological theories of segregation can generate a wide range of qualitatively distinct and substantively interesting segregation patterns. The results suggest how complex, macro-level patterns of residential segregation can arise from a small set of simple micro-level social dynamics operating within particular urban-demographic contexts. The promise and current limitations of agent simulation studies are noted and optimism is expressed regarding the potential for such studies to engage and contribute to the broader research literature on residential segregation. PMID:21379372

  7. Pacific Northwest residential energy survey. Volume 9. Climate Zone 1 cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Responses for Climate Zone 1 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 1, defined according to the sum of heating and cooling degree days, amounts to less than 6000. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories; dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled; 1873 households were sampled in Climate Zone 1. Information in 54 tables is explained. (MCW)

  8. Pacific Northwest residential energy survey. Volume 11. Climate Zone 3 cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Responses for Climate Zone 3 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 3 is defined according to the sum of heating and cooling degree days, and amounts to 7000 to 7999. A map outlines these four zones. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled. 480 households were sampled in Climate Zone 3. Information on 54 tables is explained. (MCW)

  9. Energy consumption of biomass in the residential sector of Italy in 1999

    International Nuclear Information System (INIS)

    Gerardi, V.; Perrella, G.

    2001-01-01

    The report aims at showing the situation in Italian residential sector in the year 1999 about the consumption of biomass like energy source. Data presented are the result of a statistical survey on the Italian family. Taking into account the year 1999, the survey allowed to estimate a national consumption of vegetal fuels equal to about 14 Mt, with an average value by family of 3 t. The following aspects have been put in evidence: the consumption of biomass in Italy is characterised mainly bu the use of wood, 98.5% out of the total vegetal fuel consumption. Olive pits, charcoal and nutshells can be considered as marginal. Biomass supplying system by the families is related to the single biomass typology; in the case of wood there is a substantial equilibrium between the purchase (42.5%) and the self production/supplies (47%). In the case of olive pits the supplying system is mostly the purchase, on the contrary for the nutshells is the self production/supplies; Biomass are mostly used in the principal house (84.8% of the families using biomass); the families expressed satisfaction; the energetic systems that use vegetal fuels have a complementary character in relation to the systems not fuelled with biomass [it

  10. Spatial emission modelling for residential wood combustion in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Brandt, Jørgen

    2016-01-01

    model with the developed weighting factors (76 ton PM2.5) is in good agreement with the case study (95 ton PM2.5), and that the new model has improved the spatial emission distribution significantly compared to the previous model (284 ton PM2.5). Additionally, a sensitivity analysis was done...

  11. Marginal costs of intensified energy-efficiency measures in residential buildings; Grenzkosten bei forcierten Energie-Effizienzmassnahmen in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.; Jochem, E. [Eidgenoessische Technische Hochschule (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Kristen, K. [Eidgenoessische Technische Hochschule (ETH), Architektur und Baurealisation, Zuerich (Switzerland)

    2002-07-01

    This detailed report for the Swiss Federal Office of Energy (SFOE) examines the large potential for increasing the energy efficiency of residential buildings in Switzerland. The aims of the research project are described including investigation of costs and marginal costs for thermal insulation and efficiency measures, the updating of technical parameters for cost - efficiency characteristics on an empirical basis, a transparent presentation of cost/benefit ratios for different concepts. Another aim is to obtain a more detailed overview of costs and benefits that could be of use for planners, building owners and technology companies. The methodology used for the collection of data for the study is described. The report also takes a look at the indirect advantages of improving the thermal insulation of buildings and examines the initial economic and technical situation. A detailed review of the costs and benefits is given for the various elements of a building such as walls, floors and windows and a reference development scenario for the period 2000 -2030 is presented. Marginal cost curves for various categories of buildings are presented for thermal insulation and ventilation measures.

  12. National estimation of children in residential care institutions in Cambodia: a modelling study.

    Science.gov (United States)

    Stark, Lindsay; Rubenstein, Beth L; Pak, Kimchoeun; Kosal, Sok

    2017-01-16

    The primary objective of this study was to collect baseline data on the number of children living in residential care institutions in Cambodia. The secondary objective was to describe the characteristics of the children (eg, age, sex, duration of stay, education and health). The data were intended to guide recent efforts by the Government of Cambodia to reduce the number of children living in residential care institutions and increase the number of children growing up in supportive family environments. Data were collected in Cambodia across 24 sites at the commune level. Communes-administrative divisions roughly equivalent to counties-were selected by the National Institute of Statistics using a two-stage sampling method. Government lists and key informant interviews were used to construct a complete roster of institutions across the 24 communes. All identified institutions were visited to count the number of children and gather data on their basic characteristics. The rate of children in residential care in the selected communes was calculated as a percentage of total population using a Poisson model. This rate was applied to all districts in Cambodia with at least one reported residential care institution. A total of 3588 children were counted across 122 institutions. A child living in a residential care institution was defined as anyone under the age of 18 years who was sleeping in the institution for at least four nights per week during the data collection period. There are an estimated 48 775 children living in residential care institutions in Cambodia. The vast majority of children have a living parent and are school-aged. More than half are between 13 and 17 years of age. Nearly 1 of every 100 children in Cambodia is living in residential care. This raises substantial concerns for child health, protection and national development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  13. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  14. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2011-09-13

    ...-Conditioning and Warm Air Heating Equipment and Commercial and Industrial Refrigeration Equipment Manufacturing... Refrigeration Institute (AHRI) recommended that to avoid unnecessary burden, the existing test procedure..., and Refrigeration Institute's Directory of Certified Product Performance for Residential Furnaces and...

  15. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing.

    Science.gov (United States)

    Lin, Yu-Hsiu; Hu, Yu-Chen

    2018-04-27

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  16. Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Rose, Jørgen; Christen Mørck, Ove

    2016-01-01

    including new facades, new windows, additional insulation, mechanical ventilation with heat recovery and a photovoltaic installation on the roof. The measured energy consumption for heating and domestic hot water before and after renovation was 139.1 kWh/m2/year and 95.6 kWh/m2/year respectively...... before and after the retrofit. In three of the flats in Traneparken measurements of ventilation conditions were performed using passive tracer gas technique together with continuous registration of the room air temperature, the relative humidity and the CO2-concentration using programmable data loggers....

  17. Towards an energy end use model

    International Nuclear Information System (INIS)

    Smith Fontana, Raul

    2003-01-01

    The general equilibrium energy end use model proposed, uses linear programming as te basic and central element to optimization of variables defined in the economic and energy areas of the country related to a four factors structure: Energy, Raw Material, Capital and Labor, and related to the sectors: Residential, Commercial, Industrial, Transportation and Import/Export. Input-Output coefficients are defined in an input-output matrix of processes representing the supply of Electricity (generated by nuclear- not available in Chile-hydro, gas, fuel-oil and coal), Petroleum, Imported Natural Gas (transported and distributed) National Natural Gas, LPG, Coal, Wood and representing a demand of Residential, Commercial, Industrial, Transportation and Import/Export. There is an interaction of the final demand composition, the prices of capital, labor and taxes with the levels of operation for each process and the prices of goods and services. In addition to the prices of fuels for each annual period, to the supply and demand of energy and to the total demand it can forecast the optimum coefficients of the final demand. If the data to be collected result reasonably complete and consistent, the model will be useful for planning. A special effort should be placed in specifying a certain number of typical energy activities, the available options for fuels, the selection of them attending rational market decisions and conservation according to well known economical criteria of substitution. To simulate the process of options selection given by the activities and to allow substitutions, it is possible to introduce the logit function characterized by a Weibull distribution and the generalized substitution function characterized by the constant electricity. The model would allow, assuming differents scenario, to visualize general policies in the penetration of energy technologies. To study the penetration of electric energy generated by nuclear, in which the country does not have

  18. Verification of Occupants’ Behaviour Models in Residential Buildings

    DEFF Research Database (Denmark)

    Andersen, Rune Korsholm

    During the last decade, studies about stochastic models of occupants’ behaviour in relation to control of the indoor environment have been published. Often the overall aim of these models is to enable more reliable predictions of building performance using building performance simulations (BPS...... to determine if the event takes place or not. Finally, the simulated window position is compared to the measured ones and the True Positive Rate and False Positive Rate along with other metrics can be calculated and compared. The method evaluates the models abilities to predict the position of the window...... based on the dataset. In each time step, the probabilities are subtracted from the observed transitions, to find the residuals. Finally, the residuals can be averaged, and compared. The validation by simulation relies on detailed Building Performance Simulations (BPS) using models under evaluation...

  19. Consumer’s Attitude Towards Investments in Residential Energy-Efficient Appliances: How End-User Choices Contribute to Change Future Energy Systems

    DEFF Research Database (Denmark)

    Baldini, Mattia; Trivella, Alessio; Wente, Jordan William Halverson

    2017-01-01

    uses logistic regression over a set of socioeconomic, demographic, and behavioral variables to predict purchase propensities. The findings are relevant for policy makers interested in targeting consumers in the appliance market, particularly for a relatively wealthy national context. The study......The proliferation of increasingly energy-efficient (EE) appliances is a key strategy to address the impacts of rising residential electricity demand (Danish Energy Agency 2017). To this end, governments and institutions are interested in understanding the drivers of consumer choice between...

  20. Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management

    Directory of Open Access Journals (Sweden)

    Julio Pascual

    2014-01-01

    Full Text Available This paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW consumption, a heating, ventilation and air conditioning (HVAC system as well as the typical electric loads. An energy management strategy has been designed which optimizes the power exchanged with the grid profile in terms of peaks and fluctuations, in applications with high penetration levels of renewables. The proposed energy management strategy has been evaluated and validated experimentally in a full scale residential microgrid built in our Renewable Energy Laboratory, by means of continuous operation under real conditions. The results show that the combination of electric and thermal storage systems with controllable loads is a promising technology that could maximize the penetration level of renewable energies in the electric system.