WorldWideScience

Sample records for reservoir failure location

  1. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    Science.gov (United States)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water

  2. The HYDROMED model and its application to semi-arid Mediterranean catchments with hill reservoirs 3: Reservoir storage capacity and probability of failure model

    Directory of Open Access Journals (Sweden)

    R. Ragab

    2001-01-01

    Full Text Available This paper addresses the issue of "what reservoir storage capacity is required to maintain a yield with a given probability of failure?". It is an important issue in terms of construction and cost. HYDROMED offers a solution based on the modified Gould probability matrix method. This method has the advantage of sampling all years data without reference to the sequence and is therefore particularly suitable for catchments with patchy data. In the HYDROMED model, the probability of failure is calculated on a monthly basis. The model has been applied to the El-Gouazine catchment in Tunisia using a long rainfall record from Kairouan together with the estimated Hortonian runoff, class A pan evaporation data and estimated abstraction data. Generally, the probability of failure differed from winter to summer. Generally, the probability of failure approaches zero when the reservoir capacity is 500,000 m3. The 25% probability of failure (75% success is achieved with a reservoir capacity of 58,000 m3 in June and 95,000 m3 in January. The probability of failure for a 240,000 m3 capacity reservoir (closer to storage capacity of El-Gouazine 233,000 m3, is approximately 5% in November, December and January, 3% in March, and 1.1% in May and June. Consequently there is no high risk of El-Gouazine being unable to meet its requirements at a capacity of 233,000 m3. Subsequently the benefit, in terms of probability of failure, by increasing the reservoir volume of El-Gouazine to greater than the 250,000 m3 is not high. This is important for the design engineers and the funding organizations. However, the analysis is based on the existing water abstraction policy, absence of siltation rate data and on the assumption that the present climate will prevail during the lifetime of the reservoir. Should these conditions change, a new analysis should be carried out. Keywords: HYDROMED, reservoir, storage capacity, probability of failure, Mediterranean

  3. Fuel failure detection and location methods in CAGRs

    International Nuclear Information System (INIS)

    Harris, A.M.

    1982-06-01

    The release of fission products from AGR fuel failures and the way in which the signals from such failures must be detected against the background signal from uranium contamination of the fuel is considered. Theoretical assessments of failure detection are used to show the limitations of the existing Electrostatic Wire Precipitator Burst Can Detection system (BCD) and how its operating parameters can be optimised. Two promising alternative methods, the 'split count' technique and the use of iodine measurements, are described. The results of a detailed study of the mechanical and electronic performance of the present BCD trolleys are given. The limited experience of detection and location of two fuel failures in CAGR using conventional and alternative methods is reviewed. The larger failure was detected and located using the conventional BCD equipment with a high confidence level. It is shown that smaller failures may not be easy to detect and locate using the current BCD equipment, and the second smaller failure probably remained in the reactor for about a year before it was discharged. The split count technique used with modified BCD equipment was able to detect the smaller failure after careful inspection of the data. (author)

  4. Robust facility location: Hedging against failures

    International Nuclear Information System (INIS)

    Hernandez, Ivan; Emmanuel Ramirez-Marquez, Jose; Rainwater, Chase; Pohl, Edward; Medal, Hugh

    2014-01-01

    While few companies would be willing to sacrifice day-to-day operations to hedge against disruptions, designing for robustness can yield solutions that perform well before and after failures have occurred. Through a multi-objective optimization approach this paper provides decision makers the option to trade-off total weighted distance before and after disruptions in the Facility Location Problem. Additionally, this approach allows decision makers to understand the impact on the opening of facilities on total distance and on system robustness (considering the system as the set of located facilities). This approach differs from previous studies in that hedging against failures is done without having to elicit facility failure probabilities concurrently without requiring the allocation of additional hardening/protections resources. The approach is applied to two datasets from the literature

  5. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    Directory of Open Access Journals (Sweden)

    Yin Yanshu

    2017-12-01

    Full Text Available In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  6. SIMULATION OF SEDIMENT TRANSPORT IN THE JEZIORO KOWALSKIE RESERVOIR LOCATED IN THE GLOWNA RIVER

    Directory of Open Access Journals (Sweden)

    Joanna Jaskuła

    2015-07-01

    Full Text Available The purpose of the presented research is the analysis of bed elevation changes caused by sediment accumulation in the Jezioro Kowalskie reservoir. The Jezioro Kowalskie reservoir is a two stage reservoir constructed in such a way that the upper preliminary zone is separated from the main part of the reservoir. The split of the reservoir parts is done with a small pre-dam, located in Jerzykowo town. The analysis of such a construction impact on changes of bed elevations in the reservoir in different flow conditions is presented. The HEC-RAS 5.0 Beta model is used for simulations. The sediment transport intensity is calculated from England-Hansen and Meyer-Peter and Muller formulae. The results showed the processes of sediment accumulation and slight erosion occuring in the preliminary zone of the reservoir. The choice of the flow intensity does not have a huge importance. Similar results are obtained for low as well as high flows. The results confirm, that two stage construction with separated preliminary zone is effective method preventing from the sedimentation of the reservoir.

  7. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    Science.gov (United States)

    Rydlund, Jr., Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  8. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  9. Axial location of cladding failure during a slow transient overpower TREAT test

    International Nuclear Information System (INIS)

    Page, R.J.; Murphy, W.F.; Holland, J.W.

    1983-01-01

    The axial location of cladding failure following a transient overpower accident is of importance in fast reactor safety studies in that it is a determining factor in the relocation of fuel, and therefore in the possibility of inherent neutronic shutdown of the reactor. In-pile experimental data on the axial location of cladding failure of fuel in bundles of pins is sparse since, in general, the experimental fuel pin bundles are largely destroyed during the in-pile test. The post-test examination work has been completed for TREAT test J1. It was found that damage to the fuel elements during the irradiation was low enough for an accurate observation of the location of cladding failure to be made for each of the seven pins

  10. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide.

    Science.gov (United States)

    Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu

    2017-12-07

    It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.

  11. Studies Regarding the Safety in Operation of Ezer Reservoir

    Directory of Open Access Journals (Sweden)

    Balan Isabela

    2014-05-01

    Full Text Available The dam of the non-permanent reservoir Ezer, located on Jijia river is an earth dam with a maximum height of 6.18 m, which provides a global retention to the canopy of 10.330 million cubic meters. The dam founded on weak, muddy soils suffered in the years 1989 and 1992 downstream slope failures of the fillings. It was found that hydrostatic levels were high in the piezometric wells and that consolidation of the foundation soil was reduced. This paper presents a brief history of the dam and aspects regarding the behaviour monitoring of Ezer non-permanent reservoir during the years 2000-2012.

  12. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  13. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  14. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Directory of Open Access Journals (Sweden)

    Renzhi Liu

    2015-12-01

    Full Text Available Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA, designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River. Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  15. Log-based identification of sweet spots for effective fracs in shale reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hashmy, K.; Barnett, C.; Jonkers, J. [Weatherford (United States); Abueita, S. [Anadarko Petroleum (United States)

    2011-07-01

    Shale reservoir exploitation requires horizontal hydro-fracturing, often in a multi-stage configuration. Fracture stages are usually evenly spaced along the horizontal well, regardless of reservoir characteristics, even though wireline logs or logging-while-drilling (LWD) methods could be used to determine sweet spots for more cost-effective fracturing locations. This paper aims to show how failure to take into consideration a reservoir's geological properties can lead to less effective exploitation, and then goes on to describe logging techniques, LWD and wireline logs combined, and their usefulness in effectively placing fracturing stages on a reservoir's sweet spots. By studying logs from different LWD and wireline log techniques, such as gamma ray, resistivity, X-ray fluorescence or shockwave sonic measurements for different existing wells, the study shows how sweet spots, where kerogen concentration is higher, with higher porosity, can be determined. These logging techniques, requiring low investments, offer a variety of methods for identifying sweet spots in shale reservoirs, and fracturing only these spots will avoid unnecessary expenditure on frac stages in zones with poor reservoir characteristics.

  16. Failure of the inflatable penile prosthesis due to abnormal folding of a low-profile reservoir – A selected case from an overall series and systematic review

    Directory of Open Access Journals (Sweden)

    Roberto Alejandro Navarrete

    2017-09-01

    Full Text Available We present a case from a running series of inflatable penile prosthesis failure due to improper folding of the Conceal™ reservoir. The Conceal™ Low-Profile reservoir gained popularity due to claims of improved cosmesis and ease of implantation. As the number of patients receiving this and other low-profile reservoirs increases, it is imperative to review and document any novel complications. While the Conceal™ reservoir may be preferred in ectopic placement, it may be more prone to fluid lockout facilitated by conformational change. Our review did not identify prior reports of improper folding, which we believe is unique to these low-profile reservoirs.

  17. Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2018-06-01

    Full Text Available A single fault detection and location for Modular Multilevel Converter (MMC is of great significance, as numbers of sub-modules (SMs in MMC are connected in series. In this paper, a novel fault detection and location method is proposed for MMC in terms of the Insulated Gate Bipolar Translator (IGBT short-circuit failure in SM. The characteristics of IGBT short-circuit failures are analyzed, based on which a Differential Comparison Low-Voltage Detection Method (DCLVDM is proposed to detect the short-circuit fault. Lastly, the faulty IGBT is located based on the capacitor voltage of the faulty SM by Continuous Wavelet Transform (CWT. Simulations have been done in the simulation software PSCAD/EMTDC and the results confirm the validity and reliability of the proposed method.

  18. Fuel failure detection and location in LMFBRs

    International Nuclear Information System (INIS)

    Jacobi, S.

    1982-06-01

    The Specialists' Meeting on 'Fuel Failure Detection and Location in LMFBRs' was held at the Kernforschungszentrum Karlsruhe, Federal Republic of Germany, on 11-14 May 1981. The meeting was sponsored by the International Atomic Energy Agency (IAEA) on the recommendation of the International Working Group on Fast Reactors (IWGFR).The purpose of the meeting was to review and discuss methods and experience in the detection and location of failed fuel elements and to recommend future development. The technical sessions were divided into five topical sessions as follows: 1. Reactor Intrumentation, 2. Experience Gained from LMFBRs, 3. In-pile Experiments, 4. Models and Codes, 5. Future Programs. During the meeting papers were presented by the participants on behalf of their countries or organizations. Each presentation was followed by an open discussion in the subject covered by the presentation. After the formal sessions were completed, a final discussion session was held and general conclusions and recommendationswere reached. Session summaries, general conclusions and recommendations, the agenda of the meeting and the list of participants are given. (orig./RW)

  19. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  20. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  1. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  2. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  3. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  4. Comparison of static and dynamic resilience for a multipurpose reservoir operation

    Science.gov (United States)

    Simonovic, Slobodan P.; Arunkumar, R.

    2016-11-01

    Reliability, resilience, and vulnerability are the traditional risk measures used to assess the performance of a reservoir system. Among these measures, resilience is used to assess the ability of a reservoir system to recover from a failure event. However, the time-independent static resilience does not consider the system characteristics, interaction of various individual components and does not provide much insight into reservoir performance from the beginning of the failure event until the full performance recovery. Knowledge of dynamic reservoir behavior under the disturbance offers opportunities for proactive and/or reactive adaptive response that can be selected to maximize reservoir resilience. A novel measure is required to provide insight into the dynamics of reservoir performance based on the reservoir system characteristics and its adaptive capacity. The reservoir system characteristics include, among others, reservoir storage curve, reservoir inflow, reservoir outflow capacity, and reservoir operating rules. The reservoir adaptive capacity can be expressed using various impacts of reservoir performance under the disturbance (like reservoir release for meeting a particular demand, socioeconomic consequences of reservoir performance, or resulting environmental state of the river upstream and downstream from the reservoir). Another way of expressing reservoir adaptive capacity to a disturbing event may include aggregated measures like reservoir robustness, redundancy, resourcefulness, and rapidity. A novel measure that combines reservoir performance and its adaptive capacity is proposed in this paper and named "dynamic resilience." The paper also proposes a generic simulation methodology for quantifying reservoir resilience as a function of time. The proposed resilience measure is applied to a single multipurpose reservoir operation and tested for a set of failure scenarios. The dynamic behavior of reservoir resilience is captured using the system

  5. Estimation of radiating conditions in the reservoirs located close uranium mining of regions of Kazakhstan

    International Nuclear Information System (INIS)

    Bakhtin, M.; Kazymbet, P.; Akhmetova, Z.

    2010-01-01

    to 1750 Bk/kg. On a level of radioactive and chemical pollution the open foundation ditch uranium mining SKHK concerns to a category of special - dangerous objects, requires the constant control and supervision over service of radiating and toxic safety of the enterprise. The drying cards, they should be constantly filled with water. In the shallow reservoirs located near GMZ and in landlocked reservoirs Manibay and Culukamisk of thalwegs concentration radionuclides in water, ground deposits nand in hydrobionts is much higher in comparison with parameters of conditionally control reservoir. On the basis of the analysis of a level of radioactive pollution of potable water and open reservoirs loading for various groups of the population is designed. On the basis of the received data principles of the organization and use radiobioecological monitoring of open reservoirs in uranium regions of Kazakhstan are offered.

  6. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion

    Science.gov (United States)

    Fox, G. A.; Sheshukov, A.; Cruse, R.; Kolar, R. L.; Guertault, L.; Gesch, K. R.; Dutnell, R. C.

    2016-05-01

    The future reliance on water supply and flood control reservoirs across the globe will continue to expand, especially under a variable climate. As the inventory of new potential dam sites is shrinking, construction of additional reservoirs is less likely compared to simultaneous flow and sediment management in existing reservoirs. One aspect of this sediment management is related to the control of upstream sediment sources. However, key research questions remain regarding upstream sediment loading rates. Highlighted in this article are research needs relative to measuring and predicting sediment transport rates and loading due to streambank and gully erosion within a watershed. For example, additional instream sediment transport and reservoir sedimentation rate measurements are needed across a range of watershed conditions, reservoir sizes, and geographical locations. More research is needed to understand the intricate linkage between upland practices and instream response. A need still exists to clarify the benefit of restoration or stabilization of a small reach within a channel system or maturing gully on total watershed sediment load. We need to better understand the intricate interactions between hydrological and erosion processes to improve prediction, location, and timing of streambank erosion and failure and gully formation. Also, improved process-based measurement and prediction techniques are needed that balance data requirements regarding cohesive soil erodibility and stability as compared to simpler topographic indices for gullies or stream classification systems. Such techniques will allow the research community to address the benefit of various conservation and/or stabilization practices at targeted locations within watersheds.

  7. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  8. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo S. Pompeu

    2011-12-01

    Full Text Available In South America, one important symptom of the failure of fish passages to sustain fish migratory recruitment is the inability of eggs and larvae to reach the nurseries. This is especially so when the breeding areas are located upstream of a reservoir, and the floodplain is downstream of the dam. Therefore, the transport of fish larvae and eggs across reservoir barriers is a key factor in the development of effective conservation strategies. In this paper, we evaluate the potential for migratory fish larvae and egg transportation across a small size reservoir in eastern Brazil. We sampled fish daily between 15th October 2002 and 15th February 2003 (spawning period in the Mucuri River, immediately upstream of the reservoir and downstream of the Santa Clara Power Plant dam. Our study was the first to indicate the possibility of successful larval passage through the reservoir of a hydroelectric reservoir and dam in South America, and showed that the passage of migratory fish larvae was associated significantly with residence time of water in the reservoir. The relatively short water residence time and elevated turbidity of the Santa Clara's reservoir waters during the rainy season certainly contributed to the successful passage, and can be considered as key factors for a priori evaluations of the feasibility of a downstream larval passage.

  9. Application of some models of water quality in two places located in the reservoir The Penol, Guatape (Antioquia, Colombia)

    International Nuclear Information System (INIS)

    Aguirre, Nestor; Palacio, Jaime; Ramirez, John Jairo

    2002-01-01

    The dynamic behavior of two stations in El Penol-Guatape reservoir was studied during a year. The station one was located to the entrance of the Nare River (main tributary to the reservoir) and the station two in the area denominated Sun Island (with mainly lentic characteristics). In each station monthly samplings were done with the purpose of calculating two hydro biologics parameters and some models of loads of nutritients and of eutrophication were applied. According to the study, it was established that in the in the station one the rate assimilation of nutritious by microorganisms and the sedimentation rate of chlorophylled organisms were more elevated that in the station two. In general, it was found that the primary production in the station one was limited by the phosphorous and there were limitations for nitrogen during five months and seven months by the phosphorous in the station two. Starting from the model of prediction of the eutrophycation, in tropical warm lakes, it was found that El Penol Guatape reservoir is oligo productive

  10. HIV reservoirs and immune surveillance evasion cause the failure of structured treatment interruptions: a computational study.

    Directory of Open Access Journals (Sweden)

    Emiliano Mancini

    Full Text Available Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models.

  11. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    larger than the P-wave velocity. A Modified Discrete Element Approach is introduced because of limitations imposed by the regular DEM. The modified approach works on clusters made of three elements each. Each cluster behaves like a continuum medium before failure and like a DEM medium after failure. The method is tested using several numerical examples. The modified approach is used to model reservoir geomechanical behavior for two North Sea reservoirs. The first model is based on the Gullfaks field, where fracture development during fluid injection is modeled. Two scenarios are modeled, the first scenario shows a possibility of creating vertical fractures and the second shows the possibility of creating horizontal fractures. The directions of the fractures are mainly sensitive to the initial effective stresses of the reservoir. Based on a Gullfaks 4D seismic s cross-section, the horizontal fractures scenario appears to be a more likely possibility. 2D cross-sections from the Elgin-Franklin field are used to model the effects of fault reactivation on the stress field around a depleted reservoir. A 4D seismic s cross-section for the Elgin-Franklin reservoir is used for comparison. The cross-section shows a possibility of using 4D seismic s data to predict fault reactivation based on velocity changes. We can not, at this stage, rule out that the velocity changes shown on the 4D seismic s cross-section correspond to the stress changes around the reactivated fault obtained from the geomechanical model. (author) 88 refs, figs., tabs

  12. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  13. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  14. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  15. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    Science.gov (United States)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi-reservoir

  16. Most likely failure location during severe accident conditions

    International Nuclear Information System (INIS)

    Rempe, J.L.; Allison, C.M.

    1991-01-01

    This paper describes preliminary results from which finite element calculation results are used in conjunction with analytical calculation results to predict failure in different LWR vessel designs during a severe accident. Detailed analyses are being performed to investigate the relative likelihood of a BWR vessel and drain line penetration to fail during a wide range of severe accident conditions. Analytically developed failure maps, which were developed in terms of dimensionless groups, are applied to consider geometries and materials occurring in other LWR vessel designs. Preliminary numerical analysis results indicate that if ceramic debris relocates within the BWR drain line to a distance below the lower head, the drain line will reach failure temperatures before the vessel fails. Application of failure maps for these debris conditions to other LWR geometries indicate that in-vessel tube melting will occur in either BWR or PWR vessel designs. Furthermore, if this melt is assumed to fill the entire penetration flow area, the melt is predicted to travel well below the lower head in any of the reference LWR penetrations. However, failure maps suggest the result that ex-vessel tube temperatures exceed the penetration's ultimate strength is specific to the BWR drain line because of its material composition and relatively large effective diameter for melt flow

  17. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey

    Science.gov (United States)

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...

  18. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  19. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  20. Performance of a system of reservoirs on futuristic front

    Science.gov (United States)

    Saha, Satabdi; Roy, Debasri; Mazumdar, Asis

    2017-10-01

    Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.

  1. TROPHIC STATE OF SMALL RETENTION RESERVOIRS IN PODLASIE VOIVODESHIP

    Directory of Open Access Journals (Sweden)

    Joanna Szczykowska

    2017-09-01

    Full Text Available The study was carried out using water samples from two small retention reservoirs located in the communes: Czarna Białostocka and Turośń Kościelna in Podlaskie Voivodeship. The main tasks of both reservoirs are to improve the water balance by means of regulating the levels and water outflow. Three characteristic measurement and control points were selected on both reservoirs in accordance to the water flow in the longitudinal section. The first and third points were located near the inflow and outflow of water, while the second in the middle of the reservoirs. Samples of water for the study were collected from the surface layer of the shore zone of the reservoirs once a month from March 2015 to February 2017 (water from two hydrological years was analyzed. Water samples were subject to determination of total phosphorus, total nitrogen, and chlorophyll “a” concentrations, as well as turbidity. Contamination of the water reservoirs with biogenic compounds is a common problem and at the same time difficult to eliminate due to the scattered nature of external sources of pollution, especially in the case of agricultural catchments, as well as the inflow of untreated sewage from areas directly adjacent to the reservoirs. Based on achieved results, high values of TSI (TN, TSI (TP, TSI (Chl, and overall TSI, clearly indicate the progressive degradation of water quality in analyzed reservoirs. Appearing water blooms due to the mass development of phytoplankton adversely affect the quality of water in the reservoirs and biochemical processes occurring both in water and bottom sediments, are conditioned by progressive eutrophication.

  2. Detecting fluid leakage of a reservoir dam based on streaming self-potential measurements

    Science.gov (United States)

    Song, Seo Young; Kim, Bitnarae; Nam, Myung Jin; Lim, Sung Keun

    2015-04-01

    Between many reservoir dams for agriculture in suburban area of South Korea, water leakage has been reported several times. The dam under consideration in this study, which is located in Gyeong-buk, in the south-east of the Korean Peninsula, was reported to have a large leakage at the right foot of downstream side of the reservoir dam. For the detection of the leakage, not only geological survey but also geophysical explorations have been made for precision safety diagnosis, since the leakage can lead to dam failure. Geophysical exploration includes both electrical-resistivity and self-potential surveys, while geological surveys water permeability test, standard penetration test, and sampling for undisturbed sample during the course of the drilling investigation. The geophysical explorations were made not only along the top of dam but also transverse the heel of dam. The leakage of water installations can change the known-heterogeneous structure of the dam body but also cause streaming spontaneous (self) potential (SP) anomaly, which can be detected by electrical resistivity and SP measurements, respectively. For the interpretation of streaming SP, we used trial-and-error method by comparing synthetic SP data with field SP data for model update. For the computation, we first invert the resistivity data to obtain the distorted resistivity structure of the dam levee then make three-dimensional electrical-resistivity modeling for the streaming potential distribution of the dam levee. Our simulation algorithm of streaming SP distribution based on the integrated finite difference scheme computes two-dimensional (2D) SP distribution based on the distribution of calculated flow velocities of fluid for a given permeability structure together with physical properties. This permeability is repeatedly updated based on error between synthetic and field SP data, until the synthetic data match the field data. Through this trial-and-error-based SP interpretation, we locate the

  3. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  4. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    Science.gov (United States)

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  5. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  6. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (abstract)

    NARCIS (Netherlands)

    Ali, Y.S.A.; Omer, A.Y.A.; Crosato, A.

    2013-01-01

    Roseires Reservoir is located on the Blue Nile River, in Sudan (figure 1). It is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its storage capacity due to

  7. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    Science.gov (United States)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    ), rock slope stability probability classification (SSPC) and geological strength index (GSI) are employed to classify the rock mass. The results are further compared with one another to delineate the instability conditions and produce an instability map of the reservoir slopes. Instability of the reservoir slopes is found to be mainly associated with daylighting discontinuities, thinly bedded/foliated slates, and karstified limestone. It is also noted that these features are mostly located in the regional gliding plane and shear zone, which are related with old slides scars. In general, the instabilities are found relatively far from the dam axis, in relatively less elevated and less steep slopes, which are going to be nearly covered by the impoundment; thus, they are normally expected to have less hazard in relation to the reservoir setting. Some minor failures will be generally expected during the reservoir filling.

  8. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  9. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  10. TRANSFER RESERVOIR AS A RAINWATER DRAINAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Robert Malmur

    2016-06-01

    Full Text Available Intensive rainfalls and snow melting often cause floods in protected areas and overflow the existing sewage systems. Such cases are particularly burdensome for the inhabitants and cause considerable physical losses. One of the possible constructional solutions to ensure the effective outflow of stormwater are transfer reservoirs located between the draining system and a receiver set discussed in this paper. If gravity outflow of sewage is impossible, the initial part of sewage volume is accumulated in the transfer reservoir and then it is transferred into the water receiver set. However, gravity discharge of sewage to the water receiver set occurs through transfer chambers in the transfer reservoir.

  11. Water Quality and Trophic Status Study in Sembrong Reservoir during Monsoon Season

    Science.gov (United States)

    Hashim, S. I. N. S.; Talib, S. H. A.; Abustan, M. S.; Tajuddin, S. A. M.

    2018-04-01

    Sembrong is one of the reservoirs in Johor that supplies raw water to consumer for daily activities usage. Cleanliness and quality of water must be maintained to ensure that contamination is not applicable. This study is to determine the effects of sedimentation on water quality due to the deposition of sediment in the reservoir and to identify the rate of ammonia based on the location of the study area. There are several parameters required to obtain the data and reading for this study namely the temperature, dissolved oxygen, pH value, ammonia nitrogen and trophic status parameter that are consisting of Chlorophyll, total phosphorus and secchi depth. Seventeen (17) locations along Sembrong reservoir had been identified for sampling activities. From the result obtained, the reading of temperature and pH value has less significant differences between the locations involved. However, for dissolved oxygen, the highest readings were taken at location 6 and 7 which are 9.12 mg/L and 9.05 mg/L respectively compared to other location with the average reading of 8 mg/L. For ammonia nitrogen, the highest reading was at location 1 which is 2.24 mg/L, while the lowest reading at location 13 and 14 with 0.29 mg/L. Chlorophyll readings showed the highest reading of 92.33 μg/L at location 2 which is near to the inlet area while the lowest reading were taken at location 14 with 55.97 μg/L. For total phosphorus, location 1 has the highest reading of 19.50 μg/L compared to location 15 with 9.15 μg/L. The overall result indicates that the reading is high near the inlet and decreasing at the next location. So roughly, the river that connects to the Sembrong reservoir was carrying contaminants.

  12. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

    2003-01-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir

  13. Comprehensive Understanding of the Zipingpu Reservoir to the Ms8.0 Wenchuan Earthquake

    Science.gov (United States)

    Cheng, H.; Pang, Y. J.; Zhang, H.; Shi, Y.

    2014-12-01

    After the Wenchuan earthquake occurred, whether the big earthquake triggered by the storage of the Zipingpu Reservoir has attracted wide attention in international academic community. In addition to the qualitative discussion, many scholars also adopted the quantitative analysis methods to calculate the stress changes, but due to the different results, they draw very different conclusions. Here, we take the dispute of different teams in the quantitative calculation of Zipingpu reservoir as a starting point. In order to find out the key influence factors of quantitative calculation and know about the existing uncertainty elements during the numerical simulation, we analyze factors which may cause the differences. The preliminary results show that the calculation methods (analytical method or numerical method), dimension of models (2-D or 3-D), diffusion model, diffusion coefficient and focal mechanism are the main factors resulted in the differences, especially the diffusion coefficient of the fractured rock mass. The change of coulomb failure stress of the epicenter of Wenchuan earthquake attained from 2-D model is about 3 times of that of 3-D model. And it is not reasonable that only considering the fault permeability (assuming the permeability of rock mass as infinity) or only considering homogeneous isotropic rock mass permeability (ignoring the fault permeability). The different focal mechanisms also could dramatically affect the change of coulomb failure stress of the epicenter of Wenchuan earthquake, and the differences can research 2-7 times. And the differences the change of coulomb failure stress can reach several hundreds times, when selecting different diffusion coefficients. According to existing research that the magnitude of coulomb failure stress change is about several kPa, we could not rule out the possibility that the Zipingpu Reservoir may trigger the 2008 Wenchuan earthquake. However, for the background stress is not clear and coulomb failure

  14. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    Science.gov (United States)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our

  15. Failure of cargo aileron’s actuator

    Directory of Open Access Journals (Sweden)

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  16. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  17. FEASIBILITY STUDY OF SEDIMENT FLUSHING FROM MOSUL RESERVOIR, IRAQ

    Directory of Open Access Journals (Sweden)

    Thair Mahmood Al-Taiee

    2015-02-01

    Full Text Available The Feasibility of sediment flushing  from Mosul reservoir located northern iraq was conducted. Many up to date world criteria and indices for checking the efficiency of sediment flushing from reservoir which have been got through analyzing large amount of  data from many flushed reservoirs  in the world which were depended tested and applied in the present case study (Mosul Reservoir. These criteria and indices depend mainly on the hydrological , hydraulic and  topographical properties of the reservoirs in-addition to the operation plan of the reservoirs. They gave a good indication for checking the efficiency of the sediment flushing  process in the reservoirs. It was concluded that approximately the main criteria for the successful flushing sediment was  verified  in  Mosul  reservoir  such as  Sediment Balance Ratio   (SBR and the Long Term Capacity Ratio (LTCR,the shape factor  of reservoir (W/L and the hydraulic condition such as the percentage of (Qf/Qin and (Vf/Vin. This gave an indication that the processes of flushing sediment in Mosul reservoir is probably feasible and may be applied  in the future to maintain the water storage in the reservoir.

  18. Integrating Geographical Information Systems, Fuzzy Logic and Analytical Hierarchy Process in Modelling Optimum Sites for Locating Water Reservoirs. A Case Study of the Debub District in Eritrea

    Directory of Open Access Journals (Sweden)

    Rodney G. Tsiko

    2011-03-01

    Full Text Available The aim of this study was to model water reservoir site selection for a real world application in the administrative district of Debub, Eritrea. This is a region were scarcity of water is a fundamental problem. Erratic rainfall, drought and unfavourable hydro-geological characteristics exacerbates the region’s water supply. Consequently, the population of Debub is facing severe water shortages and building reservoirs has been promoted as a possible solution to meet the future demand of water supply. This was the most powerful motivation to identify candidate sites for locating water reservoirs. A number of conflicting qualitative and quantitative criteria exist for evaluating alternative sites. Decisions regarding criteria are often accompanied by ambiguities and vagueness. This makes fuzzy logic a more natural approach to this kind of Multi-criteria Decision Analysis (MCDA problems. This paper proposes a combined two-stage MCDA methodology. The first stage involved utilizing the most simplistic type of data aggregation techniques known as Boolean Intersection or logical AND to identify areas restricted by environmental and hydrological constraints and therefore excluded from further study. The second stage involved integrating fuzzy logic with the Analytic Hierarchy Process (AHP to identify optimum and back-up candidate water reservoir sites in the area designated for further study.

  19. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  20. Reservoir souring: it is all about risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Kuijvenhoven, Cor [Shell (Canada)

    2011-07-01

    The presence of H2S in produced fluid can be due to various sources, among which are heat/rock interaction and leaks from other reservoirs. This paper discusses the reasons, risk assessment and tools for mitigating reservoir souring. Uncontrolled microorganism activity can cause a sweet reservoir (without H2S) to become sour (production of H2S). The development of bacteria is one of the main causes of reservoir souring in unconventional gas fields. It is difficult to predict souring in seawater due to produced water re-injection (PWRI). Risk assessment and modeling techniques for reservoir souring are discussed. Some of the factors controlling H2S production include injection location, presence of scavenging minerals and biogenic souring. Mitigation methods such as biocide treatment of injection water, sulphate removal from seawater, microbial monitoring techniques such as the molecular microbiology method (MMM), and enumeration by serial dilution are explained. In summary, it can be concluded that reservoir souring is a long-term problem and should be assessed at the beginning of operations.

  1. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  2. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Directory of Open Access Journals (Sweden)

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  3. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Science.gov (United States)

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  4. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  5. The detection of leakages in open reservoirs by the radioisotope sorption method

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Wierzchnicki, R.; Urbanski, T.; Chmielewski, A.G.; Szpilowski, S.

    1992-01-01

    Location of leakages in large hydro-engineering plants and industrial water reservoirs is of great importance from view-point of both safety and economy of their exploitation. Large variety of water reservoirs encountered in hydro-engineering and industry calls for adaptation of investigation methods to their specific features. In the paper a number of methodological variants of known radiotracer technique developed at the INCT is presented. They are intended to detect and locate leakages in hydro-engineering reservoirs and dams as well as large open industrial tanks. The radioisotopes Au-198 and In-133 m being used for that purpose show excellent sorption characteristic on typical construction materials users to build such objects. (author). 8 refs, 8 figs

  6. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  7. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...... the switching of variables and equations required when the number of phases changes. We extend the method to handle full phase equilibrium described by an equation of state. Experiments show that the new algorithm improves the robustness of the integration process near phase boundaries by lowering the number...

  8. Status of Burbot (Lota lota) in Arrow Lakes Reservoir

    International Nuclear Information System (INIS)

    Arndt, S.; Baxter, J.

    2006-03-01

    Burbot populations at a water reservoir were assessed in order to examine the operational impacts of a hydro-electric dam in British Columbia. The study assessed the distribution, relative abundance, size, and age structure of the Burbot population. Spawning locations were evaluated, and an underwater camera was used to make population estimates. The distribution of burbot was determined using data derived from set line sampling catches conducted in 1995. The surveys indicated that the burbot were widely distributed throughout the reservoir. The burbots were larger than burbots seen in other lakes, and the age structure showed evidence of dominant and weak cohorts. Average growth rates were higher than most other populations in the province. Fish monitored in a radio-tagging experiment were located in various spawning areas in the vicinity of the reservoir. It was concluded that no aggregations of spawning burbot were observed in the narrows where an underwater video camera was installed. 31 refs., 5 tabs., 12 figs

  9. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  10. Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play

    Science.gov (United States)

    Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing

    2018-01-01

    Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or

  11. Can nearby eutrophic reservoirs sustain a differentiated biodiversity of planktonic microcrustaceans in a tropical semiarid basin?

    Science.gov (United States)

    Diniz, Leidiane P; Melo-Júnior, Mauro DE

    2017-01-01

    This paper aims to compare alpha and beta diversities of planktonic microcrustaceans from three reservoirs located nearby in a tropical semiarid basin. Our hypothesis was that alpha and beta diversities of the community are different, although the ecosystems are located close to each other. We carried out two sampling campaigns: dry and rainy seasons. The sampling of microcrustaceans and environmental variables (dissolved oxygen, chlorophyll a and nutrient) was performed at twelve stations and were distributed throughout the three zones (river, transition, and lacustrine), using a plankton net (45 µm). The reservoirs showed different uses and types of nitrogen predominance: Cachoeira (supply/nitrate), Borborema (sewage/ammonia) and Saco (aquaculture/ammonia). Seventeen species were recorded whose richness was assessed as particularly specific to each one of the studied reservoirs. Seasonally, both reservoirs with high anthropogenic alteration showed greater richness in the dry season. The three reservoirs located in a same basin showed different richness and composition, but the diversity did not differ between the zones of the reservoirs. Although communities are close to each other, their composition and richness were found to be distinct for each reservoir. This may be in response to the peculiar particularities, such as nitrogen sources and the different uses.

  12. Can nearby eutrophic reservoirs sustain a differentiated biodiversity of planktonic microcrustaceans in a tropical semiarid basin?

    Directory of Open Access Journals (Sweden)

    LEIDIANE P. DINIZ

    Full Text Available ABSTRACT This paper aims to compare alpha and beta diversities of planktonic microcrustaceans from three reservoirs located nearby in a tropical semiarid basin. Our hypothesis was that alpha and beta diversities of the community are different, although the ecosystems are located close to each other. We carried out two sampling campaigns: dry and rainy seasons. The sampling of microcrustaceans and environmental variables (dissolved oxygen, chlorophyll a and nutrient was performed at twelve stations and were distributed throughout the three zones (river, transition, and lacustrine, using a plankton net (45 µm. The reservoirs showed different uses and types of nitrogen predominance: Cachoeira (supply/nitrate, Borborema (sewage/ammonia and Saco (aquaculture/ammonia. Seventeen species were recorded whose richness was assessed as particularly specific to each one of the studied reservoirs. Seasonally, both reservoirs with high anthropogenic alteration showed greater richness in the dry season. The three reservoirs located in a same basin showed different richness and composition, but the diversity did not differ between the zones of the reservoirs. Although communities are close to each other, their composition and richness were found to be distinct for each reservoir. This may be in response to the peculiar particularities, such as nitrogen sources and the different uses.

  13. Analysis of the influence of input data uncertainties on determining the reliability of reservoir storage capacity

    Directory of Open Access Journals (Sweden)

    Marton Daniel

    2015-12-01

    Full Text Available The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.

  14. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  15. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  16. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    Science.gov (United States)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San

  17. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  18. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  19. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  20. Aging Reservoirs in a Changing Climate: Examining Storage Loss of Large Reservoirs and Variability of Sedimentation Rate in a Dominant Cropland Region

    Science.gov (United States)

    Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.

    2015-12-01

    Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.

  1. Risk Analysis of Reservoir Flood Routing Calculation Based on Inflow Forecast Uncertainty

    Directory of Open Access Journals (Sweden)

    Binquan Li

    2016-10-01

    Full Text Available Possible risks in reservoir flood control and regulation cannot be objectively assessed by deterministic flood forecasts, resulting in the probability of reservoir failure. We demonstrated a risk analysis of reservoir flood routing calculation accounting for inflow forecast uncertainty in a sub-basin of Huaihe River, China. The Xinanjiang model was used to provide deterministic flood forecasts, and was combined with the Hydrologic Uncertainty Processor (HUP to quantify reservoir inflow uncertainty in the probability density function (PDF form. Furthermore, the PDFs of reservoir water level (RWL and the risk rate of RWL exceeding a defined safety control level could be obtained. Results suggested that the median forecast (50th percentiles of HUP showed better agreement with observed inflows than the Xinanjiang model did in terms of the performance measures of flood process, peak, and volume. In addition, most observations (77.2% were bracketed by the uncertainty band of 90% confidence interval, with some small exceptions of high flows. Results proved that this framework of risk analysis could provide not only the deterministic forecasts of inflow and RWL, but also the fundamental uncertainty information (e.g., 90% confidence band for the reservoir flood routing calculation.

  2. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    Science.gov (United States)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar

  3. Technical Reviews on the Radioisotope Application for Leak Detection in Reservoirs

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Jung, Sung Hee; Kim, Jong Bum; Kim, Jae Ho

    2006-02-01

    The previous techniques on the detection of leaks from reservoirs are difficult to identify the leak points and leak pathways in reservoirs. Additionally the complexity and ambiguity of data analysis resulted from them can increase the failures of leak detection. While, The technique using radioisotope as a tracer is considered to be very promising. In the same context, systematic studies led by IAEA are being practiced by organizing the task force team. The detection technique using natural tracer can give information about the age of ground water and the interconnection between ground water and reservoir water and the seepage origin. On the other hand, the one using artificial tracer can identify the leak point in reservoirs directly, in which radioactive cloud migration method and radioactive tracer adsorption method are included. The former is using hydrophilic radioisotope tracer, and the latter adsorptive radioisotope tracer which is emitting gamma ray. The radiotracer are injected at a point of the reservoir near to the bottom. Afterwards, the migration of the radioactive tracer is followed by means of submerged scintillation detectors suspended from boats. Usually 131 I, 82 Br, 46 Sc, and 198 Au etc. can be used as tracer. The point reaching the maximum concentration of tracer corresponds to the leak point in reservoirs

  4. Technical Reviews on the Radioisotope Application for Leak Detection in Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Jung, Sung Hee; Kim, Jong Bum; Kim, Jae Ho

    2006-02-15

    The previous techniques on the detection of leaks from reservoirs are difficult to identify the leak points and leak pathways in reservoirs. Additionally the complexity and ambiguity of data analysis resulted from them can increase the failures of leak detection. While, The technique using radioisotope as a tracer is considered to be very promising. In the same context, systematic studies led by IAEA are being practiced by organizing the task force team. The detection technique using natural tracer can give information about the age of ground water and the interconnection between ground water and reservoir water and the seepage origin. On the other hand, the one using artificial tracer can identify the leak point in reservoirs directly, in which radioactive cloud migration method and radioactive tracer adsorption method are included. The former is using hydrophilic radioisotope tracer, and the latter adsorptive radioisotope tracer which is emitting gamma ray. The radiotracer are injected at a point of the reservoir near to the bottom. Afterwards, the migration of the radioactive tracer is followed by means of submerged scintillation detectors suspended from boats. Usually {sup 131}I, {sup 82}Br, {sup 46}Sc, and {sup 198}Au etc. can be used as tracer. The point reaching the maximum concentration of tracer corresponds to the leak point in reservoirs.

  5. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  6. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Reynolds; Dean S. Oliver; Yannong Dong; Ning Liu; Guohua Gao; Fengjun Zhang; Ruijian Li

    2004-12-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. The volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade. The techniques developed in this research will make it easier to use all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. In this project, we have developed computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Specifically, we have developed methods for adjusting porosity and permeability fields to match both production and time-lapse seismic data and have also developed a procedure to adjust the locations of boundaries between facies to match production data. In all cases, the history matched rock property fields are consistent with a prior model based on static data and geologic information. Our work also indicates that it is possible to adjust relative permeability curves when history matching production data.

  7. Improved water management with the development of Snake Lake Reservoir

    International Nuclear Information System (INIS)

    Kemp, P.; Miller, D.; Webber, J.

    1998-01-01

    The $10.3 million Snake Lake Reservoir which is located south of the TransCanada Highway between Bassano and Brooks, in Alberta, was completed in 1997. It provides 19.1 million cubic meters of storage to improve the water supply for the irrigation of 29,000 hectares of agricultural land in the Eastern Irrigation District. One of challenges that engineers faced during the construction of the reservoir was the extremely soft dam foundation conditions. The resolution of this and other challenges are discussed. In addition to water storage, the reservoir also provides wildlife, recreation and aquaculture opportunities. 8 refs., 5 figs

  8. Electro-magnetic heating in viscous oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    This paper discussed electromagnetic (EM) heating techniques for primary and secondary enhanced oil recovery (EOR) processes. Ohmic, induction, and formation resistive heating techniques were discussed. Issues related to energy equivalence and hardware requirements were reviewed. Challenges related to heat losses in vertical wellbores, well integrity, and galvanic corrosion were also outlined. A pair of 1500 foot horizontal wells in a heavy oil reservoir were then modelled in order to optimize EM recovery processes. DC current was used in a base case water flood run. Electrical conductivities were measured. The model was converted to a homogenous model in order to study injector and producer electrodes. The study showed that reservoir resistance was low, and most of the heating took place near the electrode area where electric lines diverged or converged. Results of the study suggested that EM heating in formations is not as efficient as steam-based processes. Accurate simulations of EM heating processes within reservoirs are difficult to obtain, as the amounts of estimated heat input are sensitive to grid refinement. It was concluded that hot spots in the EM electrodes have also caused failures in other field applications and studies. 11 refs., 12 figs.

  9. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  10. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo

    2017-09-01

    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  11. An efficient cooling loop for connecting cryocooler to a helium reservoir

    International Nuclear Information System (INIS)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.; Leitner, M.; Lyneis, C.M.

    2003-01-01

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented

  12. Failure location prediction by finite element analysis for an additive manufactured mandible implant.

    Science.gov (United States)

    Huo, Jinxing; Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-Michaél; Gamstedt, E Kristofer

    2015-09-01

    In order to reconstruct a patient with a bone defect in the mandible, a porous scaffold attached to a plate, both in a titanium alloy, was designed and manufactured using additive manufacturing. Regrettably, the implant fractured in vivo several months after surgery. The aim of this study was to investigate the failure of the implant and show a way of predicting the mechanical properties of the implant before surgery. All computed tomography data of the patient were preprocessed to remove metallic artefacts with metal deletion technique before mandible geometry reconstruction. The three-dimensional geometry of the patient's mandible was also reconstructed, and the implant was fixed to the bone model with screws in Mimics medical imaging software. A finite element model was established from the assembly of the mandible and the implant to study stresses developed during mastication. The stress distribution in the load-bearing plate was computed, and the location of main stress concentration in the plate was determined. Comparison between the fracture region and the location of the stress concentration shows that finite element analysis could serve as a tool for optimizing the design of mandible implants. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Limnological study with reference to fish culture of Bothali (Mendha) reservoir, district - Gadchiroli (India).

    Science.gov (United States)

    Tijare, Rajendra V

    2012-04-01

    Limnological study with reference to fish culture was carried out at Bothali (Mendha) reservoir, district Gadchiroli, India. Water samples from different sampling locations were collected and processed for physico-chemical analysis. The physico-chemical analysis revealed that the reservoir is favourable for fish culture as the phosphate content in water is moderate in amount. This reservoir can produce a good yield of fishes. Though the reservoir is presently exploited and is under pisciculture, a better treatment of the reservoir such as prevention of entry of organic matter, reduction of phosphate ion concentration to certain extent is necessary to obtain a maximum fish yield.

  14. Ray-based stochastic inversion of pre-stack seismic data for improved reservoir characterisation

    NARCIS (Netherlands)

    van der Burg, D.W.

    2007-01-01

    To estimate rock and pore-fluid properties of oil and gas reservoirs in the subsurface, techniques can be used that invert seismic data. Hereby, the detailed information about the reservoir that is available at well locations, such as the thickness and porosity of individual layers, is extrapolated

  15. Analyzing the Risk of Well Plug Failure after Abandonment

    International Nuclear Information System (INIS)

    Mainguy, M.; Longuemare, P.; Audibert, A.; Lecolier, E.

    2007-01-01

    All oil and gas wells will have to be plugged and abandoned at some time. The plugging and abandonment procedure must provide an effective isolation of the well fluids all along the well to reduce environmental risks of contamination and prevent from costly remedial jobs. Previous works have analyzed the plug behavior when submitted to local pressure or thermal changes but no work has looked to the effects of external pressure, thermal and stress changes resulting from a global equilibrium restoration in a hydrocarbon reservoir once production has stopped. This work estimates those changes after abandonment on a reservoir field case using a reservoir simulator in conjunction with a geomechanical simulator. Such simulations provide the pressure and thermal changes and the maximum effective stress changes in the reservoir cap rock where critical plugs are put in place for isolating the production intervals. These changes are used as loads in a well bore stress model that explicitly models an injector well and predict stress rearrangements in the plug after abandonment. Results obtained with the well bore stress model for a conventional class G cement plug show that the main risk of failure is tensile failure because of the low tensile strength of the cement. Actually, soft sealing materials or initially pre-stressed plug appears to be more adapted to the downhole conditions changes that may occurs after well plugging and abandonment. (authors)

  16. Sediment accumulation and water volume in Loch Raven Reservoir, Baltimore County, Maryland

    Science.gov (United States)

    Banks, William S.L.; LaMotte, Andrew E.

    1999-01-01

    Baltimore City and its metropolitan area are supplied with water from three reservoirs, Liberty Reservoir, Prettyboy Reservoir, and Loch Raven Reservoir. Prettyboy and Loch Raven Reservoirs are located on the Gunpowder Falls (figure 1). The many uses of the reservoir system necessitate coordination and communication among resource managers. The 1996 Amendment to the Safe Drinking Water Act require States to complete source-water assessments for public drinking-water supplies. As part of an ongoing effort to provide safe drinking water and as a direct result of these laws, the City of Baltimore and the Maryland Department of the Environment (MDE), in cooperation with other State and local agencies, are studying the Gunpowder Falls Basin and its role as a source of water supply to the Baltimore area. As a part of this study, the U.S. Geological Survey (USGS), in cooperation with the Maryland Geological Survey (MGS), with funding provided by the City of Baltimore and MDE, is examining sediment accumulation in Loch Raven Reservoir. The Baltimore City Department of Public Works periodically determines the amount of water that can be stored in its reservoirs. To make this determination, field crews measure the water depth along predetermined transects or ranges. These transects provide consistent locations where water depth, or bathymetric, measurements can be made. Range surveys are repeated to provide a record of the change in storage capacity due to sediment accumulation over time. Previous bathymetric surveys of Loch Raven Reservoir were performed in 1943, 1961, 1972, and 1985. Errors in data-collection and analysis methods have been assessed and documented (Baltimore City Department of Public Works, 1989). Few comparisons can be made among survey results because of changing data-collection techniques and analysis methods.

  17. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    International Nuclear Information System (INIS)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2

  18. Autoinflation Leading to Failure of Two-Piece Ambicor Implantable Penile Prosthesis: An Outcome from a Methodical Treatment of Recalcitrant Stuttering Priapism

    Directory of Open Access Journals (Sweden)

    R. Charles Welliver

    2014-01-01

    Full Text Available Introduction. We present the case of a patient who received a two-piece Ambicor penile prosthesis for idiopathic recurrent “stuttering” priapism refractory to other treatment options. The patient returned unable to deflate the device due to an interesting anatomically induced mechanical failure. Aims. To describe the method and findings of this inflatable prosthesis failure. Results. Prosthesis failure occurred due to restrictive corporal diameter and the unique characteristics of fluid reservoir location in the two-piece inflatable prosthesis. The patient was successfully converted to a semirigid prosthesis with resolution of the pain that was due to his prosthesis autoinflation. Conclusion. Stuttering priapism remains a challenging clinical problem. Penile implantation is a reasonable long-term solution in a patient refractory to less invasive options. In patients with fibrotic corpora, a malleable device should be considered (at least temporarily if unable to dilate comfortably to 13 mm.

  19. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  1. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    Science.gov (United States)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  2. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Science.gov (United States)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  3. Reservoir safety, politics and conflict resolution : a British experience

    International Nuclear Information System (INIS)

    Clark, C.

    1998-01-01

    The flooding problem in southwest England, in particular at Somerset, Bruton, was discussed. Recent research has shown that the reservoir spillways in the area may have been underdesigned. A study was conducted in the late 1970s of the local rainfall data in order to determine whether the Bruton area is subject to an increase in severe rainfall and to determine the design of the dam. The probable maximum flood was calculated using the flood studies report method and was found to be 240 m 3 /s. The spillway was designed accordingly and the dam was constructed in 1984. Later, the probable maximum flood was recalculated using different assumptions and the new value obtained was 360 m 3 /s, an increase of 50 per cent over the original value. A subsequent report by a consulting engineering firm pointed out that some overtopping of the dam crest would have to take place and that the integrity of the dam would have to be maintained by the cover of the grass present. This, and other examples illustrate that reservoir design is not always the result of scientific research designed to prevent future reservoir failures, but that it is driven by political considerations, evolving in response to failures of existing structures. The situation remains unresolved to date, due to hesitation on the part of the Environment Agency, the Institute of Hydrology, and the Department of Environment and Transport to discuss and consider the conflicting results of the new research. 19 refs

  4. Acoustic study of fish and invertebrate behavior in a tropical reservoir

    NARCIS (Netherlands)

    Prchalová, M.; Drastík, V.; Kubeka, J.; Sricharoendham, B.; Schiemer, F.; Vijverberg, J.

    2003-01-01

    The fish and invertebrate behavior of the Ubol Ratana Reservoir, Thailand, were monitored using up- and downlooking split beam sonar located at a fixed location. In the same area and period, ichthyoplankton nets and multimesh gillnets were used. The bulk of targets, recorded by acoustics and direct

  5. Failure behavior of single sand grains: theory versus experiment

    NARCIS (Netherlands)

    Brzesowsky, R.H.; Spiers, C.J.; Peach, C.J.; Hangx, S.J.T.

    2011-01-01

    Grain‐scale brittle fracture and grain rearrangement play an important role in controlling the compaction behavior of reservoir rocks during the early stages of burial. Therefore, the understanding of single‐grain failure is important. We performed constant displacement rate crushing tests

  6. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  7. Kinbasket Reservoir and Upper Columbia River Kokanee spawner index 2005

    International Nuclear Information System (INIS)

    Manson, H.; Porto, L.

    2006-01-01

    The results of an escapement survey for tributaries to the Kinbasket Reservoir and the Upper Columbia River were provided. Two aerial surveys were conducted during October, 2005. The Kokanee were grouped in schools and summed in order to provide independent estimates. Otoliths of the fish were also extracted in order to determine their age. Results of the survey showed that an estimated 236,760 Kokanee fish were spawning within 11 index streams and rivers within the Kinbasket Reservoir drainage area. Mean fork length was estimated at 24.7 cm. While the Columbia River continues to be the most important Kokanee spawning location in the Kinbasket Reservoir drainage area, the 2005 Kokanee escapement index was the third lowest recorded since 1996. It was concluded that declining fish size and declining abundance may indicate reduced reservoir productivity. 5 refs., 1 tab., 4 figs

  8. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  9. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    Science.gov (United States)

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  10. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  11. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    Science.gov (United States)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  12. Mapping seepage through the River Reservoir Dam near Eagar, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, P.

    2005-06-30

    This article describes the actions taken to address an unusual amount of water seepage from the left abutment weir-box of the River Reservoir dam built in 1896 near Eagar, Arizona. Upon noting the seepage in March 2004, the operator, Round Valley Water Users Association, contacted the State of Arizona who funded the investigation and subsequent remediation activities through an emergency fund. The dam was originally built with local materials and did not include a clay core. It was modified at least four times. The embankment sits on basalt bedrock and consists of clayey soils within a rock-fill shell. AquaTrack technology developed by Willowstick Technologies was used to assess the deteriorating situation. AquaTrack uses a low voltage, low amperage audio-frequency electrical current to energize the groundwater or seepage. This made it possible to follow the path of groundwater between the electrodes. A magnetic field was created which made it possible to locate and map the field measurements. The measured magnetic field data was processed, contoured and correlated to other hydrogeologic information. This identified the extent and preferential flow paths of the seepage. The survey pinpointed the area with the greatest leakage in both the horizontal and vertical directions. Fluorescent dyes were also used for tracer work to confirm previous findings that showed a serious seepage problem. The water of the reservoir was lowered to perform remedial measures to eliminate the risk of immediate failure. Funding for a more permanent repair is pending. 10 figs.

  13. Metallothionein and heavy metals in daphnia pulex from Jose Antonio Alzate reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, I.; Diazdelgado, C.

    2001-01-01

    Water and specimens of the freshwater cladoceran Dhapnia pulex were collected at 4 different sites located in an area influenced by industrial, agricultural and urban activities in the Jose Antonio Alzate Reservoir in two different seasons. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico. There are about 2,500 industrial discharges between the river source and the Alzate Reservoir which makes the Lerma river and the Jose Antonio Alzate Reservoir the most contaminated water bodies in the State of Mexico. The Monitoring National Network recognises these waters as highly contaminated, especially in the zone located between the Mexico-Toluca highway and the Alzate Reservoir. Water samples and freshwater cladoceran were analysed for Cu and Zn by Energy Dispersive X-Ray Fluorescence (EDXRF) and for Hg and Cd by Neutron Activation Analysis (NAA). As a general feature, the heavy metal concentrations of the water were found to decrease in the sequence: Cu > Zn > Hg > Cd. Metallothioneins (MT) were determined by silver saturation method. Tissue concentrations of MT in Dhapnia pulex varied between 5.69 and 8.96 (mg MT/ g wet wt) in rain season and between 48.87 and 74.00 (mg MT/ g wet wt) in dry season. Metallothioneins levels in Dhapnia pulex were significantly correlated (P < 0.01) with tissue Hg concentrations. In contrast, correlations between MT and tissue levels of Cu and Zn were weak. These observations suggest that Hg2+ activity is the key environmental factor to which metallothionein levels in Daphnia pulex are responding in the studied reservoir

  14. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  15. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Directory of Open Access Journals (Sweden)

    N. Avisse

    2017-12-01

    Full Text Available In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii a statistical correction of DEM data to characterize the topography of each reservoir, and (iii a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  16. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts

    International Nuclear Information System (INIS)

    Du, J.; Olson, J.E.

    2001-01-01

    A forward model was constructed to numerically predict surface subsidence and reservoir compaction following the approach of Segall [Pure Appl. Phys. 139 (1992) 536]. A nucleus of poroelastic strain is numerically integrated over a rectangular prism assuming constant pressure change. This fundamental geometry allows a reservoir to be divided into many small cubic blocks in a manner similar to reservoir simulation. The subsidence and compaction effects of the pressure change throughout the reservoir are calculated by the superposition of results from each individual block. Using forward modeling, pressure boundary conditions can be acquired from pressure test data or reservoir simulation predictions. An inversion model also was developed that can track pressure fronts in a subsurface reservoir using surface displacements. The capability of the inversion model was demonstrated using synthetic examples of one-well and four-well cases with different layouts of surface observation locations. The impact of noise on the inversion result is also included

  17. Occurrence of Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae in Two Reservoirs of the Capibaribe Watershed Located in Semiarid Region | Ocorrência de Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae em Dois Reservatórios da Baía de Capibaribe Localizada na Região Semiárida

    Directory of Open Access Journals (Sweden)

    Indira Maria Estolano Macedo

    2016-06-01

    Full Text Available (Occurrence of Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae in Two Reservoirs of the Capibaribe Watershed Located in Semiarid Region. This study reported the first occurrence of Ceratium furcoides (Levander Langhans 1925 species in two eutrophic in the Capibaribe river basin (Pernambuco-Brazil, located in semiarid region. Fortnightly, samples were collected in the sub-surface reservoirs. The following abiotic variables were analyzed: pH, apparent color, turbidity, conductivity, total hardness, chlorides, ammonia, nitrate, nitrite, inorganic phosphate, iron, copper, manganese and zinc.  Phytoplankton biomass was quantified through its density. C. furcoides occurred in 17% of the samples in both reservoirs, and also presented high biomass (2.14 mm3.L-1 in Jucazinho and 4.04 mm3.L-1 in Toritama. The studied reservoirs are eutrophic and showed high concentrations of nutrients, particularly nitrite, as well as high conductivity and total hardness values.

  18. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    Science.gov (United States)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  19. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  20. Radioactive fallout reconstruction from contemporary measurements of reservoir sediments

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.; Miller, K.M.

    1990-01-01

    The temporal history of atmospheric deposition to a watershed area can be preserved in the sediment of a lake or reservoir that is supplied by the watershed. The 137 Cs and isotopic Pu concentrations with depth were determined in the sediments of two reservoirs, Enterprise and Deer Creek, which are located in widely separated regions of the state of Utah. Our data not only reconstruct the history of the total radioactive fallout in the area, but also permit estimating the contributions from global sources and from the Nevada Test Site detonations in the 1950s

  1. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  2. On-farm irrigation reservoirs for surface water storage in eastern Arkansas: Trends in construction in response to aquifer depletion

    Science.gov (United States)

    Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.

    2017-12-01

    On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.

  3. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  4. POLLUTION OF SMALL RESERVOIRS OF WATER IN BIALYSTOK AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2016-05-01

    Full Text Available The aim of the study work was to evaluate the impact of the emissions of heavy metals of roads and streets in the surface water in reservoirs located near the main roads of the Bialystok City. The analysis was conducted for a period of six weeks from March to April 2014. During the study five reservoirs were selected. Two of them, the first and the forth of them are located in Parks. One of them – the third one is a public bathing beach. The second is located near the crossroads in the center of the city and last one – the fifth object is situated within buildings and parking of trucks. Study includes an analysis of indicators such as total suspended solids, BOD5, CODCr, selected heavy metal such as, lead, nickel, copper, cobalt and chromium. All determinations were made in accordance to given methodology, and the evaluation was performed by comparing achieved results to a limit values presented in the Decree of Environment Ministry.

  5. Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication

    Directory of Open Access Journals (Sweden)

    Suelen Cristina Alves da Silva

    2014-06-01

    Full Text Available AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i through two‑way ANOVAs considering the stand extent (m and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand; and ii through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.

  6. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  7. Are Geotehrmal Reservoirs Stressed Out?

    Science.gov (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  8. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  9. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    Science.gov (United States)

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  10. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    Directory of Open Access Journals (Sweden)

    Bruno Molino

    2014-07-01

    Full Text Available Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. represents a relevant sustainable alternative to landfill and other more consolidated practices.

  11. Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2012-12-01

    Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.

  12. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2012

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2013-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2011, surface-water diversions of about 199,000 acre-feet to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir altitude and nearby pumping from production wells. Between 2004 and 2011, a total of about 19,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, a total of about 21,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2011, about 106,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water quality was sampled at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2012, this recharge arrived at four monitoring wells located within about 1,000 feet of the reservoir. Changing geochemical conditions at five other monitoring wells could indicate other processes, such as changing groundwater levels and mobilization of vadose-zone salts, rather than arrival of reservoir recharge.

  13. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  14. Modeling Permeability Alteration in Diatomite Reservoirs During Steam Drive, SUPRI TR-113

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Suniti Kumar; Kovscek, Anthony R.

    1999-08-09

    There is an estimated 10 billion barrels of original oil in place (OOIP) in diatomaceous reservoirs in Kern County, California. These reservoirs have low permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has been found to be an effective way to recover oil from these reservoir. However, steam drive in these reservoirs has its own complications. The rock matrix is primarily silica (SiO2). It is a known fact that silica is soluble in hot water and its solubility varies with temperature and pH. Due to this fact, the rock matrix in diatomite may dissolve into the aqueous phase as the temperature at a location increases or it may precipitate from the aqueous phase onto the rock grains as the temperature decreases. Thus, during steam drive silica redistribution will occur in the reservoir along with oil recovery. This silica redistribution causes the permeability and porosity of the reservoir to change. Understanding and quantifying these silica redistribution effects on the reservoir permeability might prove to be a key aspect of designing a steam drive project in these formations.

  15. Optimizing Reservoir Operation to Adapt to the Climate Change

    Science.gov (United States)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  16. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  17. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  18. Dolutegravir reshapes the genetic diversity of HIV-1 reservoirs.

    Science.gov (United States)

    Gantner, Pierre; Lee, Guinevere Q; Rey, David; Mesplede, Thibault; Partisani, Marialuisa; Cheneau, Christine; Beck-Wirth, Geneviève; Faller, Jean-Pierre; Mohseni-Zadeh, Mahsa; Martinot, Martin; Wainberg, Mark A; Fafi-Kremer, Samira

    2018-04-01

    Better understanding of the dynamics of HIV reservoirs under ART is a critical step to achieve a functional HIV cure. Our objective was to assess the genetic diversity of archived HIV-1 DNA over 48 weeks in blood cells of individuals starting treatment with a dolutegravir-based regimen. Eighty blood samples were prospectively and longitudinally collected from 20 individuals (NCT02557997) including: acutely (n = 5) and chronically (n = 5) infected treatment-naive individuals, as well as treatment-experienced individuals who switched to a dolutegravir-based regimen and were either virologically suppressed (n = 5) or had experienced treatment failure (n = 5). The integrase and V3 loop regions of HIV-1 DNA isolated from PBMCs were analysed by pyrosequencing at baseline and weeks 4, 24 and 48. HIV-1 genetic diversity was calculated using Shannon entropy. All individuals achieved or maintained viral suppression throughout the study. A low and stable genetic diversity of archived HIV quasispecies was observed in individuals starting treatment during acute infection. A dramatic reduction of the genetic diversity was observed at week 4 of treatment in the other individuals. In these patients and despite virological suppression, a recovery of the genetic diversity of the reservoirs was observed up to 48 weeks. Viral variants bearing dolutegravir resistance-associated substitutions at integrase position 50, 124, 230 or 263 were detected in five individuals (n = 5/20, 25%) from all groups except those who were ART-failing at baseline. None of these substitutions led to virological failure. These data demonstrate that the genetic diversity of the HIV-1 reservoir is reshaped following the initiation of a dolutegravir-based regimen and strongly suggest that HIV-1 can continue to replicate despite successful treatment.

  19. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  20. Analysis of Sedimentation in Wonogiri Reservoir

    Directory of Open Access Journals (Sweden)

    Tri Joko Inti Budi Santosa

    2016-01-01

    Full Text Available The Wonogiri reservoir which has 730 million cubic meters of total storage, 90 square kilometers of water area, and 1260 square kilometers of catchment area, is located in the Wonogiri Regency, Central Java Province. It was first established in 1981 and began its operation in 1982 with the expectation that it would last for about 100 years. Today (2002 the reservoir has got a serious problem of sedimentation. The sedimentation is so large that it would decrease the capacity storage of the reservoir and would shorten the length of operation. Therefore, it is necessary to predict the sediment that comes into the reservoir. This research would be based on the total sediment calculation of the sedimentation, through some methods, such as echo sounding measured data, land erosion (USLE, the calculation of the sediment in rivers. This research calculates the sediment capacities based on the water flow data and the sediment rating curves in rivers of Keduang, Tirtomoyo, Temon, upstream reach of Bengawan Solo, Alang, and Wuryantoro. The suspended load was calculated based on the sediment rating curves, whereas the bed load was computed as the percentage of the suspended load. The sum of both calculation results would be the total sediment. The calculation result showed that the total sediment which has come into the reservoir is 6.68 million cubic meters per year. As a comparison, the writer noted that the former researcher using echo sounding method done by the Faculty of Geography of the Universitas Gadjah Mada in 1985, it found that the total sediment capacity which came into the reservoir was 6.60 million cubic meters per year or 5.40 mm per year of sheet erosion. The other research using echo sounding method done by JICA in 2000 found that the total sediment which had come into the reservoir was 4.50 million cubic meters per year or 3.50 mm per year of sheet erosion. By knowing the results of calculation of the total sediment, we can learn that

  1. Cap plasticity models and compactive and dilatant pre-failure deformation

    International Nuclear Information System (INIS)

    Fossum, Arlo F.; Fredrich, Joanne T.

    2000-01-01

    At low mean stresses, porous geomaterials fail by shear localization, and at higher mean stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening elliptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deformation that occurs before the shear failure or limit-state shear stress is reached. In this work, a continuous surface cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading the stress point can pass freely through the critical state point separating compactive from dilatant deformation. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated flow rule. The new model is stable in that Drucker's stability postulates are satisfied. The study has applications to several geosystems of current engineering interest (oil and gas reservoirs, nuclear waste repositories, buried targets, and depleted reservoirs for possible use for subsurface sequestration of greenhouse gases)

  2. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  3. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  4. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  5. Earthquakes and depleted gas reservoirs: which comes first?

    Science.gov (United States)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2015-10-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.

  6. Prediction of radionuclide accumulation in main ecosystem components of NPP cooling water reservoirs and assessment of acceptable radionuclide disposal into water reservoir

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Kazakov, S.V.

    1987-01-01

    The problems of prediction of radionuclide accumulation in ecosystem main components of NPP cooling water-reservoirs (CWR) and assessment of radionuclide acceptable disposal into water reservoir are considered. Two models are nessecary for the calculation technique: model of radionuclide migration and accumulation in CWR ecosystem components and calculation model of population dose commitment due to water consumption (at the public health approach to the normalization of the NPP radioactive effect on CWC) or calculation model of dose commitment on hydrocenosis components (at the ecological approach to the normalization). Analytical calculations and numerical calculation results in the model CWC, located in the USSR middle region, are presented

  7. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  8. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  9. WATER LOSS OF KOKA RESERVOIR, ETHIOPIA: COMMENTS ON

    African Journals Online (AJOL)

    to be used for Awash River simulation model. Key words/phrases: Ethiopia, Koka Reservoir water loss, leakage rate, subsurface inflow, water balance. INTRODUCTION. Koka Dam was built on Awash River, Ethiopia, in 1960 for hydropower and irrigation purposes. It is located at 8°24'N latitude and 39°05'E longitude (Fig.

  10. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  11. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  12. From obc seismic to porosity volume: A pre-stack analysis of a turbidite reservoir, deepwater Campos Basin, Brazil

    Science.gov (United States)

    Martins, Luiz M. R.

    The Campos Basin is the best known and most productive of the Brazilian coastal basins. Turbidites are, by far, the main oil-bearing reservoirs. Using a four component (4-C) ocean-bottom-cable (OBC) seismic survey I set out to improve the reservoir characterization in a deep-water turbidite field in the Campos Basin. In order to achieve my goal, pre-stack angle gathers were derived and PP and PS inversion were performed. The inversion was used as an input to predict the petrophysical properties of the reservoir. Converting seismic reflection amplitudes into impedance profiles not only maximizes vertical resolution but also minimizes tuning effects. Mapping the porosity is extremely important in the development of a hydrocarbon reservoirs. Combining seismic attributes derived from the P-P data and porosity logs I use linear multi-regression and neural network geostatistical tools to predict porosity between the seismic attributes and porosity logs at the well locations. After predicting porosity in well locations, those relationships were applied to the seismic attributes to generate a 3-D porosity volume. The predicted porosity volume highlighted the best reservoir facies in the reservoir. The integration of elastic impedance, shear impedance and porosity improved the reservoir characterization.

  13. Radioecological impact of effluents from a nuclear facility being decommissioned in the Antas river hydro graphic basin in the state of Minas Gerais, Brazil. Radioecological impact of effluents in the Antas reservoir

    International Nuclear Information System (INIS)

    Ronque, Leilane Barbosa; Azevedo, Heliana de; Lopes do Nascimento, Marcos Roberto; Roque, Claudio Vitor; Silva, Nivaldo Carlos da; Rodgher, Suzelei; Regali-Seleghim, Mirna Helena

    2008-01-01

    The Antas reservoir receives the treated effluents which come from acid drainage of uranium ore from the UTM-INB (Ore Treatment Unit - Brazilian Nuclear Industries), located in Caldas, Minas Gerais. This study was conducted in order to determine the possible environmental impact caused by discharge of the treated liquid effluent from the UTM into the Antas reservoir. Biological (ciliated protozoa and Peridinium sp. phytoflagellate) and physicochemical variables (manganese, zinc, sulfate, uranium, dissolved oxygen and temperature), trophic state and saprobity indexes were evaluated. Sampling in reservoir (Cab, P41, P14S, and P14F points) took place during the dry winter season (July 2006). Each day, samples were collected four times (6:00 am, 12:00 pm, 6:00 pm, and 12:00 am). Biological variables analyzed at the Antas reservoir classified it as an oligo trophic and beta-mesosaprobic environment. Chemical parameters indicate failures in the nuclear facility effluent treatment plant, showing that effluents outside of standard limits established by Brazilian current legislation for Class II water are being discharged at point P41. These results agree with biological analyses, since point P41 has the lowest diversity and biomass values for ciliated protozoa organisms, indicating possible environmental impacts on the ecosystem due to effluent discharge by this mining company.(author)

  14. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  15. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  16. Practical considerations of reservoir heterogeneities on SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.; Fong, C.; Li, T. [Epic Consulting Services Ltd., Calgary, AB (Canada); Bowes, C.; Toews, M. [Calgary Univ., AB (Canada)

    2008-10-15

    Significant emphasis has been placed on developing cost-effective strategies for the production of large heavy oil and bitumen reserves located in western Canada and around the world. An effective method that has been proven to be effective in this regard is steam-assisted gravity drainage (SAGD). However, determining the optimum and cost-effective strategy is a challenge to any SAGD reservoir. Average rock quality and reservoir heterogeneities have a significant impact on steam chamber development and the overall volumetric sweep. As well, the approach to SAGD simulation varies as heterogeneity changes. This paper examined two well pairs with different degrees of heterogeneity in the Surmont pilot project. The paper also addressed potential geological risk through analogy and the amount of heterogeneity that must be accounted for when developing a representative simulation. The paper provided background information on the Surmont pilot project, which consists of three horizontal SAGD well pairs in the Athabasca oil sands of northeast Alberta. The reservoir simulation model was then described. Results and conclusions were offered. It was concluded that careful production controls and strategy must be applied particular to the reservoir to ensure that the SAGD well pairs were capable of draining the mobilized oil. 5 refs., 1 tab., 25 figs.

  17. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  18. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  19. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, S.; Roy, R.; Repeta, D.J.; Gauns, M.; Shenoy, D.M.; Suresh, T.; Sarkar, A.; Narenkar, G.; Johnson, C.G.; Naqvi, S.W.A.

    Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located...

  20. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  1. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  2. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  3. Hydrologic characterization of Bushy Park Reservoir, South Carolina, 2013–15

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; Falls, W. Fred; Lanier, Timothy H.

    2017-06-14

    profilers were deployed at six locations over different periods. The deployment period for the velocity profiler ranged from 2 weeks to 4 months. During the investigation, tidal cycle (13-hour) streamflow measurements were made at 30-minute intervals at five locations.The Williams Station is a coal-fired powerplant that withdraws water from Bushy Park Reservoir for cooling purposes. The magnitude of the withdrawal (approximately 550 million gallons per day) is the major factor controlling the circulation in the reservoir. The net flow in Durham Canal to the reservoir is comparable to the withdrawal rates of the powerplant. When the Williams Station is not withdrawing water, the net flow in Durham Canal quickly goes to zero or reverses with a net flow away from the reservoir and to the Cooper River. Plan views of the velocity vectors for the tidal cycle streamflow measurements and rose diagram of the velocity profilers created with the Williams Station withdrawing and not withdrawing water show substantial effects of the distribution of magnitude and direction of the water velocities.

  4. Limnological characteristics of a reservoir in semiarid Northeastern Brazil subject to intensive tilapia farming (Orechromis niloticus Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Luis Artur Valões Bezerra

    2014-03-01

    Full Text Available AIM: There is currently no consensus regarding the physical and chemical variability of tropical reservoirs. In semiarid Northeastern Brazil, reservoirs are among other things used for human consumption, industrial water supply and intensive fish farming, all of which can impact water quality. The objective of this study was to evaluate the physical and chemical variability of the water in Sítios Novos, a reservoir in semiarid Northeastern Brazil, comparing samples collected in areas of intensive tilapia (Oreochromis niloticus farming to samples from areas not directly impacted by aquaculture, in both the dry and the rainy season. METHODS: Between October 2010 and July 2011, data were collected on temperature, conductivity, pH, turbidity, salinity, chlorophyll a, dissolved oxygen, oxygen demand, total phosphorus and total nitrogen levels in the water column using a multiparametric probe at four different sampling locations. Physical and chemical differences between the four locations were evaluated with the Kruskal-Wallis (KW test and Dunn's post test, while the t test, followed by Welchʼs correction, was used to compare samples collected in different seasons. RESULTS: No influence of intensive aquaculture was detected when comparing sampling locations near fish farms (180C and 300C to locations not directly impacted by aquaculture (LIMN1, near the dam, and LIMN2, near the debouch of the São Gonçalo river. However, the sampling locations differed significantly (p<0.05 with regard to conductivity, pH, turbidity and chlorophyll a levels. CONCLUSIONS: The physical and chemical variability was greater between seasons than between locations when the data were analyzed with the t test. That analysis showed significant differences for 22 of 40 comparisons between the 10 physical and chemical parameters in the two seasons at the four sampling locations. In conclusion, the physical and chemical variability registered for the Sítios Novos reservoir

  5. Abdominal candidiasis is a hidden reservoir of echinocandin resistance.

    Science.gov (United States)

    Shields, Ryan K; Nguyen, M Hong; Press, Ellen G; Clancy, Cornelius J

    2014-12-01

    FKS mutant Candida isolates were recovered from 24% (6/25) of abdominal candidiasis patients exposed to echinocandin. Candida glabrata (29%) and Candida albicans (14%) mutants were identified. Multidrug-resistant bacteria were recovered from 83% of FKS mutant infections. Mutations were associated with prolonged echinocandin exposure (P = 0.01), breakthrough infections (P = 0.03), and therapeutic failures despite source control interventions (100%). Abdominal candidiasis is a hidden reservoir for the emergence of echinocandin-resistant Candida. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    Science.gov (United States)

    Lotspeich, Russell

    2012-01-01

    Breckenridge Reservoir is located within the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because it serves as the principal water supply for the U.S. Marine Corps Base in Quantico, an assessment of the water-quality of Breckenridge Reservoir was initiated. Water samples were collected and physical properties were measured by the U.S. Geological Survey at three sites in Breckenridge Reservoir, and physical properties were measured at six additional reservoir sites from September 2008 through August 2009. Water samples were also collected and physical properties were measured in each of the three major tributaries to Breckenridge Reservoir: North Branch Chopawamsic Creek, Middle Branch Chopawamsic Creek, and South Branch Chopawamsic Creek. One site on each tributary was sampled at least five times during the study. Monthly profiles were conducted for water temperature, dissolved-oxygen concentrations, specific conductance, pH, and turbidity measured at 2-foot intervals throughout the water column of the reservoir. These profiles were conducted at nine sites in the reservoir, and data values were measured at these sites from the water surface to the bottom of the reservoir. These profiles were conducted along three cross sections and were used to define the characteristics of the entire water column of the reservoir. The analytical results of reservoir and tributary samples collected and physical properties measured during this study were compared to ambient water-quality standards of the Virginia Department of Environmental Quality and Virginia State Water Control Board. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and turbidity measured in Breckenridge Reservoir generally indicated a lack of stratification in the water column of the reservoir throughout the study period. This is unlike most other reservoirs in the region and may be influenced by

  7. Extreme Threshold Failures Within a Heterogeneous Elastic Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the Groningen Gas Field

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.

    2017-12-01

    Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.

  8. Nitrogen and phosphorus in cascade multi-system tropical reservoirs: water and sediment

    Directory of Open Access Journals (Sweden)

    Pompêo Marcelo

    2017-09-01

    Full Text Available The aim of this research was to analyze the horizontal spatial heterogeneity of both water and superficial sediment quality among and within the reservoirs of the Cantareira System (CS, focusing on concentrations of N and P, attributed to the dumping of raw domestic sewage into water bodies, which is the main cause of water pollution in São Paulo State (Brazil. The CS is a multi-system complex composed of five interconnected reservoirs, with water transported by gravity through 48 km of tunnels and channels. From the last reservoir of the CS, with an output of 33 m3 s−1, the water is conducted to a water treatment plant, producing half of the water consumed by 19 million people inhabiting São Paulo city. The upstream reservoirs are more eutrophic than the downstream ones. Data also suggest that the low phytoplankton biomass (ranging from 0.9 to 14.4 μg dm−3 is regulated by the low nutrient availability, mainly of phosphorus (TP ranging from below the detection limit, <9.0 μg dm−3, to 47.3 μg dm−3. For water, the DIN/TP ratios values range from 19 to 380. The upstream reservoirs function as nutrient accumulators and the sediment is the main compartment in which P and N are stored. Although the reservoirs are located in different river basins and are not in sequence along the same river, the results suggest a marked gradient between the reservoirs, with features similar to those of cascade reservoirs. The large volumes flowing through the canals and tunnels could explain the observed pattern. The CS reservoirs can therefore be considered multi-system reservoirs in cascade, constituting a particular case of multi-system reservoirs.

  9. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock

  10. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    Science.gov (United States)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.

  11. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  12. Treatment of posthemorrhagic hydrocephalus in premature infants with subcutaneous reservoir drainage.

    Science.gov (United States)

    Yu, Bo; Li, Shasha; Lin, Zhenlang; Zhang, Nu

    2009-01-01

    To investigate the effectiveness of subcutaneous reservoir drainage as a treatment for the different types of posthemorrhagic hydrocephalus in premature infants. 11 premature infants with posthemorrhagic hydrocephalus underwent subcutaneous reservoir embedment surgery, and cerebrospinal fluid (CSF) was drained via the reservoir intermittently for 8 weeks. During the period of drainage, ultrasound and computerized tomography were used to measure ventricle size. CSF examinations were performed routinely to assess the presence of intraventricular hemorrhage (IVH) and/or infection. (1) Five infants were diagnosed as having obstructive hydrocephalus; 2 had nearly normal ventricle sizes with treatment and drainage was stopped after 8 weeks, 2 had nearly normal ventricle sizes after 4 more weeks of drainage, and 1 underwent ventriculoperitoneal shunt (V-P shunt) surgery due to failure of ventricle size reduction. (2) Six infants were diagnosed as having communicating hydrocephalus; 4 had further enlarged ventricle size after 8 weeks and underwent V-P shunt surgery, 1 had treatment aborted at week 8 of drainage, and only 1 had moderate reduction of ventricle size after 8 weeks. (3) None of the 11 infants had progressive IVH and/or intracranial infection during drainage. Subcutaneous reservoir drainage is a suitable and safe treatment for posthemorrhagic hydrocephalus in premature infants. It is more effective for obstructive hydrocephalus than for communicating hydrocephalus. Copyright (c) 2009 S. Karger AG, Basel.

  13. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  14. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    Science.gov (United States)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  15. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  16. Definition of containment failure

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1982-01-01

    Core meltdown accidents of the types considered in probabilistic risk assessments (PRA's) have been predicted to lead to pressures that will challenge the integrity of containment structures. Review of a number of PRA's indicates considerable variation in the predicted probability of containment failure as a function of pressure. Since the results of PRA's are sensitive to the prediction of the occurrence and the timing of containment failure, better understanding of realistic containment capabilities and a more consistent approach to the definition of containment failure pressures are required. Additionally, since the size and location of the failure can also significantly influence the prediction of reactor accident risk, further understanding of likely failure modes is required. The thresholds and modes of containment failure may not be independent

  17. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    Science.gov (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  18. Data Integration for the Generation of High Resolution Reservoir Models

    Energy Technology Data Exchange (ETDEWEB)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  19. Imaging CO2 reservoirs using muons borehole detectors

    Science.gov (United States)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  20. RIS and reservoirs in the NW and central Himalayan foothills

    International Nuclear Information System (INIS)

    Agrawal, R.C.

    1989-02-01

    There are nine (impounded) and three (under construction) tall (height exceeding 100 m) and large (capacity exceeding 1 km 3 ) reservoirs located in the northwestern and central Himalayan foothills. Natural earthquakes having magnitude greater than 7 have occurred in their vicinity in the past but there are no reports of reservoir associated seismic activity from a few of these sites which are under seismic surveillance following the guidelines of Indian Standard IS: 4967-1968. Case study of monitoring the seismicity around one site points to the need for rewriting the Standard. Reasons for non-occurrence of RIS in this seismically active environment are discussed. (author). 18 refs, 4 figs, 3 tabs

  1. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  2. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  3. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  4. Economic and social importance of dam reservoirs – a study of the Soła River cascade

    Directory of Open Access Journals (Sweden)

    Andrzej Jaguś

    2018-02-01

    Full Text Available The paper is devoted to the functions of dam reservoirs in terms of their socioeconomic usefulness. Three dam reservoirs of the Soła cascade were chosen (Tresna, Porąbka, Czaniec as the example that are located in the southern part of Silesian Provence. The cascade is an integrated retention system, but particular reservoirs have different functions. The role of reservoirs in flood protection (Tresna, Porąbka, drinking water supply (Czaniec, electricity production (Porąbka/Porąbka-Żar, recreation (Porąbka, Tresna, supply of rock aggregate (Tresna was depicted as well. The high importance of the cascade for economic development of the region was demonstrated. Finally, the controversies about the construction and utility of dam reservoirs were discussed.

  5. Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia)

    Science.gov (United States)

    Guérin, Frédéric; Leon, Juan

    2015-04-01

    Tropical hydroelectric reservoirs are considered as very significant source of methane (CH4) and carbon dioxide (CO2), especially when flooding dense forest. We report emissions from the Rio Grande II Reservoir located at 2000 m.a.s.l. in the Colombian Andes. The dam was built at the confluence of the Rio Grande and Rio Chico in 1990. The reservoir has a surface of 12 km2, a maximum depth of 40m and a residence time of 2.5 month. Water quality (temperature, oxygen, pH, conductivity), nitrate, ammonium, dissolved and particulate organic carbon (DOC and POC), CO2 and CH4 were monitored bi-monthly during 1.5 year at 9 stations in the reservoir. Diffusive fluxes of CO2 and CH4 and CH4 ebullition were measured at 5 stations. The Rio grande II Reservoir is weakly stratified thermally with surface temperature ranging from 20 to 24°C and a constant bottom temperature of 18°C. The reservoir water column is well oxygenated at the surface and usually anoxic below 10m depth. At the stations close to the tributaries water inputs, the water column is well mixed and oxygenated from the surface to the bottom. As reported for other reservoirs located in "clear water" watersheds, the concentrations of nutrients are low (NO3-10 mmol m-2 d-1) were observed during the dry season. Close to the tributaries water inputs where the water column is well mixed, the average diffusive flux is 8 mmol m-2 d-1. CH4 ebullition was 3.5 mmol m-2 d-1 and no ebullition was observed for a water depth higher than 5m. The zone under the influence of the water inputs from tributaries represents 25% of the surface of the reservoir but contributed half of total CH4 emissions from the reservoir (29MgC month-1). Ebullition contributed only to 12% of total CH4 emissions over a year but it contributed up to 60% during the dry season. CH4 emissions from the Rio Grande Reservoir contributed 30% of the total GHG emissions (38GgCO2eq y-1). Overall, this study show that the majority of CH4 emissions from this

  6. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  7. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    Science.gov (United States)

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  8. Metal pollution assessment in a Brazilian hydroelectric reservoir: Geophagus brasiliensis as a suitable bioindicator organism

    Directory of Open Access Journals (Sweden)

    Halina Binde Doria

    2017-08-01

    Full Text Available Vossoroca is a reservoir in the Brazilian state of Paraná. Although it is located near big cities and can be used as a human water supply, it has remained unstudied. Concentrations of toxic metals and arsenic in sediments, water, liver, gills, and muscle of Geophagus brasiliensis from the reservoir were analyzed using atomic absorption spectrometry. Histological analyses were performed on the gills and the livers using scanning electron microscopy and light microscopy, respectively. The results showed that Vossoroca sediments were moderately polluted by copper, chromium, nickel and arsenic. Cadmium was above legal limits in the water. Histopathological assessment revealed epithelial alterations in the secondary lamella to be the most common abnormality observed in the gills and necrosis, melanomacrophage centers in the livers. In conclusion, although the reservoir is located in an Environmental Protection Area, it is negatively affected by human activity. Further, Geophagus brasiliensis was a suitable bioindicator for metal pollution studies.

  9. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  10. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  11. Historical deposition and fluxes of mercury in Narraguinnep Reservoir, southwestern Colorado, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Fey, David L.; Holmes, Charles W.; Lasorsa, Brenda K.

    2005-01-01

    Narraguinnep Reservoir has been identified as containing fish with elevated Hg concentrations and has been posted with an advisory recommending against consumption of fish. There are presently no point sources of significant Hg contamination to this reservoir or its supply waters. To evaluate potential historical Hg sources and deposition of Hg to Narraguinnep Reservoir, the authors measured Hg concentrations in sediment cores collected from this reservoir. The cores were dated by the 137 Cs method and these dates were further refined by relating water supply basin hydrological records with core sedimentology. Rates of historical Hg flux were calculated (ng/cm 2 /a) based on the Hg concentrations in the cores, sediment bulk densities, and sedimentation rates. The flux of Hg found in Narraguinnep Reservoir increased by approximately a factor of 2 after about 1970. The 3 most likely sources of Hg to Narraguinnep Reservoir are surrounding bedrocks, upstream inactive Au-Ag mines, and several coal-fired electric power plants in the Four Corners region. Patterns of Hg flux do not support dominant Hg derivation from surrounding bedrocks or upstream mining sources. There are 14 coal-fired power plants within 320 km of Narraguinnep Reservoir that produce over 80 x 10 6 MWH of power and about 1640 kg-Hg/a are released through stack emissions, contributing significant Hg to the surrounding environment. Two of the largest power plants, located within 80 km of the reservoir, emit about 950 kg-Hg/a. Spatial and temporal patterns of Hg fluxes for sediment cores collected from Narraguinnep Reservoir suggest that the most likely source of Hg to this reservoir is from atmospheric emissions from the coal-fired electric power plants, the largest of which began operation in this region in the late-1960s and early 1970s

  12. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    Science.gov (United States)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  13. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  14. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    Science.gov (United States)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop

  15. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  16. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  17. Influence of limnological zones on the spatial distribution of fish assemblages in three Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Bárbara Becker

    2015-09-01

    Full Text Available Reservoirs can have both positive and negative effects on differing fish species depending on the species concerned and reservoir morphology, flow regime, and basin location.  We assessed the influence of limnological zones on the ichthyofauna of three large Neotropical reservoirs in two different river basins. We sampled fish through use of gill nets set at 40 systematically selected sites on each reservoir. We used satellite images, algae, and suspended solids concentrations to classify those sites as lacustrine or riverine. We observed significant differences in assemblage composition between riverine and lacustrine zones of each reservoir. We either tested if the same region (lacustrine or riverine showed the same patterns in different reservoirs. In São Simão, the riverine zone produced greater abundances of native species, long-distance migratory species, diversity, and richness, whereas the lacustrine zone supported greater total and non-native species abundances. Conversely, in Três Marias, the riverine zone supported greater total and non-native species abundances, whereas the others traits evaluated did not differ significantly between zones. Only lacustrine sites occurred in Volta Grande Reservoir. The same zones in the three reservoirs usually had significantly different patterns in the traits evaluated. The differences in spatial patterns observed between reservoirs could be explained partly by the differing morphologies (complex versus linear, the differential influence of tributaries of each reservoir and basin positions (presence or absence of upstream dams of the reservoirs.

  18. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    Science.gov (United States)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  19. Optimal reservoir operation policies using novel nested algorithms

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.

  20. Planning and Corrupting Water Resources Development: The Case of Small Reservoirs in Ghana

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Venot

    2011-10-01

    Full Text Available Agricultural (water development is once again at the fore of the development agenda of sub-Saharan Africa. Yet, corruption is seen as a major obstacle to the sustainability of future investments in the sector but there is still little empirical evidence on the ways corruption pervades development projects. This paper documents the planning and implementation processes of two specific small reservoir programmes in the north of Ghana. We specifically delve into the dynamics of corruption and interrogate the ways they add to the inherent unpredictability of development planning. We argue that operational limitations of small reservoirs such as poor infrastructure, lack of managerial and organisational capacity at the community level and weak market integration and public support are the symptoms – rather than inherent problems – of wider lapses in the planning processes that govern the development of small reservoirs in Ghana and plausibly worldwide. A suite of petty misconduct and corrupt practices during the planning, tendering, supervision, and administration of contracts for the rehabilitation and construction of small reservoirs results in delays in implementation, poor construction, escalating costs, and ultimately failures of small reservoirs vis-à-vis their intended goals and a widely shared frustration among donor agencies, civil servants, contractors, and communities. Such practices hang on and can only be addressed through a better understanding of the complex web of formal decisions and informal rules that shape the understanding and actions of the state.

  1. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.; Poe, Thomas P.

    1993-12-01

    Northern squawfish (Ptychocheilus oregonensis) predation on juvenile salmonids was characterized during 1992 at ten locations in the Columbia River below Bonneville Dam and at three locations in John Day Reservoir. During the spring and summer, 1,487 northern squawfish were collected in the lower Columbia River and 202 squawfish were sampled in John Day Reservoir. Gut content data, predator weight, and water temperature were used to compute a consumption index (CI) for northern squawfish, and overall diet was also described. In the Columbia River below Bonneville Dam, northern squawfish diet was primarily fish (spring 69%; summer 53%), most of which were salmonids. Salmonids were also the primary diet component in the Bonneville Dam tailrace, John Day Dam forebay, and the McNary Dam tailrace. Crustaceans were the dominant diet item at the John Day mid-reservoir location, although sample sizes were small. About half of the non-salmonid preyfish were sculpins. The consumption index (CI) of northern squawfish was generally higher during summer than during spring. The highest CI`s were observed during summer in the tailrace boat restricted zones of Bonneville Dam (CI = 7.8) and McNary Dam (CI = 4.6). At locations below Bonneville Dam, CI`s were relatively low near Covert`s Landing and Rooster Rock, higher at four locations between Blue Lake and St. Helens, and low again at three downriver sites (Kalama, Ranier, and Jones Beach). Northern squawfish catches and CI`s were noticeably higher throughout the lower Columbia compared to mid-reservoir sites further upriver sampled during 1990--92. Predation may be especially intense in the free-flowing section of the Columbia River below Bonneville Dam. Smallmouth bass (Micropterus dolomieui; N = 198) ate mostly fish -- 25% salmonids, 29% sculpins, and 46% other fish. Highest catches of smallmouth bass were in the John Day Dam forebay.

  2. Radiocarbon reservoir between charred seeds and fish bone in Neolithic sites, northeastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhou, A.; Dong, G.; Ren, L.

    2017-12-01

    Many efforts have been done to understand the reservoir effect of Qinghai Lake, yet no agreement has been reached. Five archaeological sites, located around the junction between the estuary of Rivers and Qinghai Lake, are the earliest Neolithic Age sites in the Qinghai- Tibetan Plateau (QTP), which is critical for understanding patterns of prehistoric human inhabitation in the high plateau extreme environments. This study compares radiocarbon dates of fish bones and terrestrial plant remains uncovered from the same archaeological strata to see whether there was reservoir effect reference to reliable data. Results demonstrate that there were reservoir effects ranging from 300 to 600 years back to 3600 years ago, nevertheless, no reservoir was observed of the modern fish. Besides, stable isotopic analysis illustrated that modern fish consumed similar food to those of millennias ago.

  3. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    Science.gov (United States)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  4. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Méndez-García, C.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.; García-Tenorio, R.

    2014-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232 Th-series, 238 U-series, 40 K and 137 Cs activity concentrations (AC, Bq kg −1 ) were determined by gamma spectrometry with a high purity Ge detector. 238 U and 234 U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210 Pb activities. Results were verified by 137 Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238 U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234 U/ 238 U and 238 U/ 226 Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232 Th/ 238 U, 228 Ra/ 226 Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs

  5. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  6. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  7. Integrated 3D Reservoir/Fault Property Modelling Aided Well Planning and Improved Hydrocarbon Recovery in a Niger Delta Field

    International Nuclear Information System (INIS)

    Onyeagoro, U. O.; Ebong, U. E.; Nworie, E. A.

    2002-01-01

    The large and varied portfolio of assets managed by oil companies requires quick decision-making and the deployment of best in class technologies in asset management. Timely decision making and the application of the best technologies in reservoir management are however sometimes in conflict due to large time requirements of the latter.Optimizing the location of development wells is critical to account for variable fluid contact movements and pressure interference effects between wells, which can be significant because of the high permeability (Darcy range) of Niger Delta reservoirs. With relatively high drilling costs, the optimization of well locations necessitates a good realistic static and dynamic 3D reservoir description, especially in the recovery of remaining oil and oil rim type of reservoirs.A detailed 3D reservoir model with fault properties was constructed for a Niger delta producing field. This involved the integration of high quality 3D seismic, core, petrophysics, reservoir engineering, production and structural geology data to construct a realistic 3D reservoir/fault property model for the field. The key parameters considered during the construction of the internal architecture of the model were the vertical and horizontal reservoir heterogeneities-this controls the fluid flow within the reservoir. In the production realm, the fault thickness and fault permeabilities are factors that control the impedance of fluid flow across the fault-fault transmissibility. These key internal and external reservoir/structural variables were explicitly modeled in a 3D modeling software to produce different realizations and manage the uncertainties.The resulting 3D reservoir/fault property model was upscaled for simulation purpose such that grid blocks along the fault planes have realistic transmissibility multipliers of 0 to 1 attached to them. The model was also used in the well planner to optimize the positioning of a high angle deviated well that penetrated

  8. Marine controlled source electromagnetic (mCSEM) detects hydrocarbon reservoirs in the Santos Basin - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Buonora, Marco Polo Pereira; Rodrigues, Luiz Felipe [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zerilli, Andrea; Labruzzo, Tiziano [WesternGeco, Houston, TX (United States)

    2008-07-01

    In recent years marine Controlled Source Electromagnetic (mCSEM) has driven the attention of an increasing number of operators due to its sensitivity to map resistive structures, such as hydrocarbon reservoirs beneath the ocean floor and successful case histories have been reported. The Santos basin mCSEM survey was performed as part of a technical co-operation project between PETROBRAS and Schlumberger to assess the integration of selected deep reading electromagnetic technologies into the full cycle of oil field exploration and development. The survey design was based on an in-depth sensitivity study, built on known reservoirs parameters, such as thickness, lateral extent, overburden and resistivities derived from seismic and well data. In this context, the mCSEM data were acquired to calibrate the technology over the area's known reservoirs, quantify the resistivity anomalies associated with those reservoirs, with the expectation that new prospective locations could be found. We show that the mCSEM response of the known reservoirs yields signatures that can be clearly imaged and accurately quantified and there are evident correlations between the mCSEM anomalies and the reservoirs. (author)

  9. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    International Nuclear Information System (INIS)

    Jiang, Meijuan; Spikes, Kyle T

    2016-01-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V _P/V _S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization. (paper)

  10. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  11. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  12. Overspill avalanching in a dense reservoir network

    Science.gov (United States)

    Mamede, George L.; Araújo, Nuno A. M.; Schneider, Christian M.; de Araújo, José Carlos; Herrmann, Hans J.

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand that can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world’s largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning. PMID:22529343

  13. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    Science.gov (United States)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage

  14. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    Science.gov (United States)

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  15. A Bivariate return period for levee failure monitoring

    Science.gov (United States)

    Isola, M.; Caporali, E.

    2017-12-01

    Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA

  16. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  17. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  18. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  19. Simulation-optimization model of reservoir operation based on target storage curves

    Directory of Open Access Journals (Sweden)

    Hong-bin Fang

    2014-10-01

    Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.

  20. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome

    International Nuclear Information System (INIS)

    Ometto, Jean P.; Cimbleris, André C.P.; Santos, Marco A. dos; Rosa, Luiz P.; Abe, Donato; Tundisi, José G.; Stech, José L.; Barros, Nathan; Roland, Fábio

    2013-01-01

    Most energy generation globally is fueled by coal and oil, raising concerns about greenhouse gas emissions. Hydroelectric reservoirs are anthropogenic aquatic systems that occur across a wide geographical extent, and, in addition to their importance for energy production, they have the potential to release two important greenhouse gases (GHGs), carbon dioxide and methane. We report results from an extensive study of eight hydroelectric reservoirs located in central and southeastern tropical Brazil. In the Brazilian dry tropical biome reservoirs, emissions (in tons of CO 2 Eq. per MW h) varied from 0.01 to 0.55, and decreased with reservoir age. Total emissions were higher in the reservoir lake when compared to the river downstream the dam; however, emissions per unit area, in the first kilometer of the river after the dam, were higher than that in the reservoir. The results showed, despite higher carbon emissions per energy production in the youngest reservoirs, lower emission from hydroelectric reservoirs from the studied region in relation to thermo electrical supply, fueled by coal or fossil fuel. The ratio emission of GHG per MWh produced is an important parameter in evaluating the service provided by hydroelectric reservoir and for energy planning policies. - Highlights: ► Hydroelectric reservoirs construction is growing worldwide. ► The effect of hydropower reservoir in the carbon cycle is dependent on environment characteristics. ► Carbon emissions per energy production are higher in the youngest tropical savannah reservoirs. ► Methane emissions decrease with reservoir age in tropical savannah reservoirs. ► In general, the effect of hydropower in the carbon cycle is lower than other energy sources

  1. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  2. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  3. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  4. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  5. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  6. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  7. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir

    OpenAIRE

    Rzymski, Piotr; Niedzielski, Przemysław; Klimaszyk, Piotr; Poniedziałek, Barbara

    2014-01-01

    Urbanization can considerably affect water reservoirs by, inter alia, input, and accumulation of contaminants including metals. Located in the course of River Cybina, Maltański Reservoir (Western Poland) is an artificial shallow water body built for recreation and sport purposes which undergoes restoration treatment (drainage) every 4 years. In the present study, we demonstrate an accumulation of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in water, sediment, three bivalve species (Anodo...

  8. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A. [Chevron Petroleum Technology Company, LaHabra, CA (United States)

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  9. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  10. MeProRisk - a toolbox for evaluating risks in exploration, development, and operation of geothermal reservoirs

    Science.gov (United States)

    Clauser, C.

    2009-04-01

    When developing geothermal resources, the risk of failure is still high when compared to hydrocarbon exploration. The MeProRisk projects aims at the improvement of strategies in all phases of the reservoir life cycle. It is a joint enterprise of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH, (Aachen), and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The key idea followed in this project is that the development of the understanding of a given reservoir is an iterative process. Starting from geological base knowledge and geophysical exploration one or more conceptual models will emerge, which will be incorporated in first numerical models. The use of inverse techniques in a broad sense will not only lead to an optimal model, but will produce uncertainty and resolution estimates for this model. This information may be used for further setup of optimal experiments, including the choice of exploration well locations. In later stages of reservoir development, the numerical models will be continuously updated based on the most recent models. Once wells have been drilled, the character of experiments shifts from static methods to dynamic interaction with the reservoir, e.g. by injection experiments and their monitoring. The use of all the methods with one simulation tool poses large challenges. Inverse problems require orders of magnitude larger computer resources, and the development of appropriate theoretical and numerical methods for this is on of the primary aims of this project. Due to the less obvious signatures of geothermally relevant targets, it is also necessary to improve the experimental base for model setup and update by developing new and better methods for some of the key problems in the case of geothermal targets. Among these are the development of methods to estimate

  11. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  12. Low-Q structure related to partially saturated pores within the reservoir beneath The Geysers area in the northern California

    Science.gov (United States)

    Matsubara, M.

    2011-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) owing to withdrawal of steam from the reservoir. I perform attenuation tomography in this region to investigate the state of vapor and liquid within the reservoir. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismograms of 1,231 events whose focal mechanism are determined among 65,810 events recorded by the Northern California Earthquake Data Center from 2002 to 2008 in the target region. The band-pass filtered seismograms are analyzed for collecting the maximum amplitude data. There are 26 stations that have a three-component seismometer among 47 seismic stations. I use the P- and S-wave maximum amplitudes during the two seconds after the arrival of those waves in order to avoid coda effects. A total of 8,545 P- and 1,168 S-wave amplitude data for 949 earthquakes recorded at 47 stations are available for the analysis using the attenuation tomographic method derived from the velocity tomographic method (Matsubara et al., 2005, 2008) in which spatial velocity correlation and station corrections are introduced to the original code of Zhao et al. (1992). I use 3-D velocity structure obtained by Thurber et al. (2009). The initial Q value is set to 150, corresponding to the average Q of the northern California (Ford et al., 2010). At sea level, low-Q zones are found extending from the middle of the steam reservoir within the main greywacke to the south part of the reservoir. At a depth of 1 km below sea level, a low-Q zone is located solely in the southern part of the reservoir. However, at a depth of 2 km a low-Q zone is located beneath the northern part of the reservoir. At depths of 1 to 3 km a felsite batholith in the deeper portions of the reservoir, and it corresponds

  13. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    Science.gov (United States)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth

  14. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  15. Integrating desalination to reservoir operation to increase redundancy for more secure water supply

    Science.gov (United States)

    Bhushan, Rashi; Ng, Tze Ling

    2016-08-01

    We investigate the potential of integrating desalination to existing reservoir systems to mitigate supply uncertainty. Desalinated seawater and wastewater are relatively reliable but expensive. Water from natural resources like reservoirs is generally cheaper but climate sensitive. We propose combining the operation of a reservoir and seawater and wastewater desalination plants for an overall system that is less vulnerable to scarcity and uncertainty, while constraining total cost. The joint system is modeled as a multiobjective optimization problem with the double objectives of minimizing risk and vulnerability, subject to a minimum limit on resilience. The joint model is applied to two cases, one based on the climate and demands of a location in India and the other of a location in California. The results for the Indian case indicate that it is possible for the joint system to reduce risk and vulnerability to zero given a budget increase of 20-120% under current climate conditions and 30-150% under projected future conditions. For the Californian case, this would require budget increases of 20-80% and 30-140% under current and future conditions, respectively. Further, our analysis shows a two-way interaction between the reservoir and desalination plants where the optimal operation of the former is just as much affected by the latter as the latter by the former. This highlights the importance of an integrated management approach. This study contributes to a greater quantitative understanding of desalination as a redundancy measure for adapting water supply infrastructures for a future of greater scarcity and uncertainty.

  16. A procedure to identify and to assess risk parameters in a SCR (Steel Catenary Riser) due to the fatigue failure

    Energy Technology Data Exchange (ETDEWEB)

    Stefane, Wania [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Dept. de Engenharia de Petroleo. Centro de Estudos de Petroleo; Pezzi Filho, Mario [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). E and P. ENGP/IPMI/ES; Matt, Cyntia G.C.; Franciss, Ricardo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2009-12-19

    The discovery of offshore fields in ultra deep water and the presence of reservoirs located in great depths below the seabed requires innovative solutions for offshore oil production systems. Many riser configurations have emerged as economically viable technological solutions for these scenarios. Therefore the study and the development of methodologies applied to riser design and procedures to calculate and to dimension production risers, taken into account the effects of mete ocean conditions, such as waves, current and platform motion in the fatigue failure is fundamental. The random nature of these conditions as well as the mechanical characteristics of the riser components are critical to a probabilistic treatment to ensure the greatest reliability for risers and minimum risks associated to different aspects of the operation like the safety of the installation, economical concerns and the environment. The current work presents a procedure of the identification and the assessment of main parameters of risk when considering fatigue failure. Static and dynamic behavior of Steel Catenary Riser (SCR) under the effects of mete ocean conditions and uncertainties related to total cumulative damage (Miner-Palmgren's rule) are taken into account. The methodology adopted is probabilistic and the approach is analytical. The procedure is based on the First Order Reliability Method (FORM) which usually presents low computational effort and acceptable accuracy. The procedure suggested is applied for two practical cases, one using data available from the literature and the second with data collected from an actual Brazilian offshore field operation. For both cases, results of the probability of failure due to fatigue were obtained for different locations along the SCR length connected to a semi-submersible platform. From these results, the sensitivity of the probability of failure due to fatigue for a SCR could be verified, and the most effective parameter could also be

  17. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    Science.gov (United States)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  18. Performance modeling of an integral, self-regulating cesium reservoir for the ATI-TFE

    International Nuclear Information System (INIS)

    Thayer, K.L.; Ramalingam, M.L.; Young, T.J.

    1993-01-01

    This work covers the performance modeling of an integral metal-matrix cesium-graphite reservoir for operation in the Advanced Thermionic Initiative-Thermionic Fuel Element (ATI-TFE) converter configuration. The objectives of this task were to incorporate an intercalated cesium-graphite reservoir for the 3C 24 Cs→2C 36 Cs+Cs (g) two phase equilibrium reaction into the emitter lead region of the ATI-TFE. A semi two-dimensional, cylindrical TFE computer model was used to obtain thermal and electrical converter output characteristics for various reservoir locations. The results of this study are distributions for the interelectrode voltage, output current density, and output power density as a function of axial position along the TFE emitter. This analysis was accomplished by identifying an optimum cesium pressure for three representative pins in the ATI ''driverless'' reactor core and determining the corresponding position of the graphite reservoir in the ATI-TFE lead region. The position for placement of the graphite reservoir was determined by performing a first-order heat transfer analysis of the TFE lead region to determine its temperature distribution. The results of this analysis indicate that for the graphite reservoirs investigated the 3C 24 Cs→2C 36 Cs+Cs (g) equilibrium reaction reservoir is ideal for placement in the TFE emitter lead region. This reservoir can be directly coupled to the emitter, through conduction, to provide the desired cesium pressure for optimum performance. The cesium pressure corresponding to the optimum converter output performance was found to be 2.18 torr for the ATI core least power TFE, 2.92 torr for the average power TFE, and 4.93 torr for the maximum power TFE

  19. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  20. A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh Reservoir as an Iranian Gas Field, Persian Gulf Basin

    Directory of Open Access Journals (Sweden)

    Reza Mohebian

    2017-10-01

    Full Text Available Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover an optimum relationship between well logs and seismic data. For this purpose, three intelligent systems, including probabilistic neural network (PNN,fuzzy logic (FL, and adaptive neuro-fuzzy inference systems (ANFISwere usedto predict flow zone index (FZI. Well derived FZI logs from three wells were employed to estimate intelligent models in the Arab (Surmeh reservoir. The validation of the produced models was examined by another well. Optimal seismic attributes for the estimation of FZI include acoustic impedance, integrated absolute amplitude, and average frequency. The results revealed that the ANFIS method performed better than the other systems and showed a remarkable reduction in the measured errors. In the second part of the study, the FZI 3D model was created by using the ANFIS system.The integrated approach introduced in the current survey illustrated that the extracted flow units from intelligent models compromise well with well-logs. Based on the results obtained, the intelligent systems are powerful techniques to predict flow units from seismic data (seismic attributes for distant well location. Finally, it was shown that ANFIS method was efficient in highlighting high and low-quality flow units in the Arab (Surmeh reservoir, the Iranian offshore gas field.

  1. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  2. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  3. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria

    Directory of Open Access Journals (Sweden)

    Bahroun Sofia

    2017-09-01

    Full Text Available In this work, we have conducted a physicochemical study that assesses the impact of agricultural activities and urban domestic wastewater on the surface water quality of the dam reservoir Mexa in the area of El-Taref, which is located in the eastern coastal basin of Constantine. 36 samplings have been conducted for three years (2010, 2011 and 2012, at the rate of one sampling per month on the dam reservoir water; 36 samples have been analysed. The samples taken have been subjected to an in situ measurement of physicochemical parameters (temperature, hydrogen potential, electric conductivity and dissolved oxygen and laboratory analysis (anions, cations, biological oxygen demand, chemical oxygen demand, organic matter, phosphate, nitrate, nitrite and ammonium. Concentrations of various organic and inorganic pollutants varied from one month to another and from one year to another. From a temporal point of view, the contamination of water of the dam reservoir Mexa varies according to climatic conditions, being generally low during the winter period and high during the low-flow periods. The results obtained reveal that water of the dam reservoir Mexa is fairly contaminated. It is certain that the dam reservoir is subject to pollution of agricultural and urban origin.

  4. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  5. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  6. Phenotypic plasticity in fish life-history traits in two neotropical reservoirs: Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    Full Text Available Fish species are known for their large phenotypic plasticity in life-history traits in relation to environmental characteristics. Plasticity allows species to increase their fitness in a given environment. Here we examined the life-history response of fish species after an abrupt change in their environment caused by the damming of rivers. Two reservoirs of different age, both situated on the Guiana Shield, were investigated: the young Petit-Saut Reservoir in French Guiana (14 years and the much older Brokopondo Reservoir in Suriname (44 years. Six life-history traits in 14 fish species were studied and compared to their value in the Sinnamary River prior to the completion of Petit-Saut Reservoir. The traits analyzed were maximum length, absolute and relative length at first maturation, proportion of mature oocytes in ripe gonad, batch fecundity and mean size of mature oocytes. The results revealed a general increase of reproductive effort. All species showed a decrease in maximum length. Compared to the values observed before the dam constructions, eight species had larger oocytes and three species showed an increased batch fecundity. These observed changes suggest a trend towards a pioneer strategy. The changes observed in Petit-Saut Reservoir also seemed to apply to the 30 years older Brokopondo Reservoir suggesting that these reservoirs remain in a state of immaturity for a long time.

  7. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2014

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2016-09-08

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2014, diversions of about 216,000 acre-feet from the Virgin River to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir stage and nearby pumping from production wells. Between 2004 and 2014, about 29,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, about 31,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2014, about 127,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer.Water quality continued to be monitored at various wells in Sand Hollow during 2013–14 to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Changing geochemical conditions at monitoring wells WD 4 and WD 12 indicate rising groundwater levels and mobilization of vadose-zone salts, which could be a precursor to the arrival of reservoir recharge.

  8. Assessment of managed aquifer recharge from Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2010

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas M.

    2011-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2009, total surface-water diversions of about 154,000 acre-feet to Sand Hollow Reservoir have allowed it to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir water-level altitude and nearby pumping from production wells. Between 2004 and 2009, a total of about 13,000 acre-feet of groundwater has been withdrawn by these wells for municipal supply. In addition, a total of about 14,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir.From 2002 through 2009, about 86,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water-quality sampling was conducted at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge moving through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2010, this recharge arrived at monitoring wells within about 1,000 feet of the reservoir.

  9. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  10. Geo textiles and related products used in the waterproofing of reservoirs. Situation in Morocco

    International Nuclear Information System (INIS)

    Leiro Lopez, A.; Mateo Sanz, B.

    2015-01-01

    The aim of this paper is to describe the geo textiles, and products related to geo textiles, used for the building of water-storage reservoirs, which can be applicable to the construction of this kind of structures in Morocco. It presents different types of geo textiles and related products most commonly used in reservoirs, such as geo nets, geo grids, geo mats and geo composites, describing their characteristics and experimental methodology. Furthermore, and drawing on the Spanish Manual for Design, Construction, Operation and Maintenance of Reservoirs, emphasis is placed on the functions that geo synthetics can perform, such as protection and filter in the case of geo textiles, and drainage in the case of geo nets and draining composites. Finally, several works of this sort of structures located in Morocco are cited. (Author)

  11. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, 31109, Chihuahua, Chihuahua (Mexico); Renteria-Villalobos, M. [Facultad de Zootecnia y Ecología Universidad Autónoma de Chihuahua, Periferico Francisco R. Almada Km 1, 31410, Chihuahua (Mexico); García-Tenorio, R. [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2008-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  12. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  13. Analysis on the spatiotemporal characteristics of water quality and trophic states in Tiegang Reservoir: A public drinking water supply reservoir in South China

    Science.gov (United States)

    Song, Yun-long; Zhu, Jia; Li, Wang; Tao, Yi; Zhang, Jin-song

    2017-08-01

    Shenzhen is the most densely populated city in China and with a severe shortage of water. The per capita water resource is less than 200 m3, which is approximately 1/12 of the national average level. In 2016, nearly 90% of Shenzhen’s drinking water needed to be imported from the Pearl River. After arrived at Shenzhen, overseas water was firstly stockpiled in local reservoirs and then was supplied to nearby water works. Tiegang Reservoir is the largest drinking water supply reservoir and its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Tiegang Reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. One-way ANOVA showed that significant difference was found in water quality factors on month (p latter rainy period > high temperature and rain free period > temperature jump period > winter drought period, while SD showed the contrary. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession. Tiegang reservoir was seriously polluted by TN, as a result WQI were at IV∼V level. If TN was not taken into account, WQI were atI∼III level. TLI (Σ) were about 35∼60, suggesting Tiegang reservoir was in mesotrophic and light-eutrophic trophic states. The WQI and TLI (Σ) in sampling sites 9 and 10 were poorer than that of other sites. The 14 water quality factors were divided into 5 groups by factor analysis (FA). The total interpretation rate was 73.54%. F1 represents the climatic change represented by water temperature. F2 and F4 represent the concentration of nutrients. F3 and F5 represent the sensory indexes of water body, such as turbidity, transparency. The FA results indicated that water quality potential risk factors was total nitrogen (TN), and potential risk factors also include chlorophyll-a and

  14. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    Vigerstad, T.J.

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species

  15. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  16. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    Science.gov (United States)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  17. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    Science.gov (United States)

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  18. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  19. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  20. Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir

    NARCIS (Netherlands)

    Bosman, K. J.; Nijhuis, M.; van Ham, P. M.; Wensing, A. M. J.; Vervisch, K.; Vandekerckhove, L.; De Spiegelaere, W.

    2015-01-01

    HIV persists in latently infected cells of patients on antiretroviral therapy (ART). This persistent proviral DNA reservoir is an important predictor of viral rebound upon therapy failure or interruption and forms a major obstacle towards cure. Accurate quantification of the low levels of persisting

  1. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  2. Geochemical and geological control on filling history of Eocene reservoirs, Maracaibo Basin, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, M.; Maguregui, J.; Toro, C.; Marquina, M. [Intevep S.A., Caracas (Venezuela)

    1996-08-01

    Crude oils of Eocene fluvio-deltaic reservoirs in {open_quotes}Bloque V{close_quotes} and {open_quotes}Centro Lago{close_quotes} fields in the center of the Maracaibo Lake show many differences in composition, which are due to stratigraphically and structurally controlled reservoir geometry and a low rate of in-reservoir mixing of at least two successive petroleum charges. Oils produced from the top of structural highs contain 18(H) oleanane, higher Pr/Ph and C{sub 23-3}/C{sub 24-4} ratios, a lower proportion of DBT/P compounds, and clearly different fingerprint patterns in the C{sub 6}-C{sub 15} range, than those observed in oils produced from the lower parts of the structures. These compositional differences suggest that two source rocks, or two distinctive organic facies within the same Cretaceous La Luna Formation, generated and filled vertically poorly connected Eocene reservoirs. On the other hand, saturate-biomarkers ratios, triaromatics (C{sub 21}/C{sub 21}+C{sub 28}), n-paraffins (n-C{sub 20}/n-C{sub 29}) and n-heptane index suggest that oils in upper reservoirs are slightly less mature than oils in lower reservoirs and, consequently filled the structure first. Additional evidence from formation water analysis and tectonic basin evolution allow us to interpret at least two petroleum pulses from Cretaceous source rocks during Upper Miocene to present day kitchens located in the Andes foredeep at the southeast of the study area.

  3. A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs

    Directory of Open Access Journals (Sweden)

    Heidari Sureshjani M.

    2013-02-01

    Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production

  4. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  5. Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks

    International Nuclear Information System (INIS)

    Ouyang, Min

    2016-01-01

    Infrastructure systems are usually spatially distributed in a wide area and are subject to many types of hazards. For each type of hazards, modeling their direct impact on infrastructure components and analyzing their induced system-level vulnerability are important for identifying mitigation strategies. This paper mainly studies spatially localized attacks that a set of infrastructure components located within or crossing a circle shaped spatially localized area is subject to damage while other components do not directly fail. For this type of attacks, taking interdependent power and gas systems in Harris County, Texas, USA as an example, this paper proposes an approach to exactly identify critical locations in interdependent infrastructure systems and make pertinent vulnerability analysis. Results show that (a) infrastructure interdependencies and attack radius largely affect the position of critical locations; (b) spatially localized attacks cause less vulnerability than equivalent random failures; (c) in most values of attack radius critical locations identified by considering only node failures do not change when considering both node and edge failures in the attack area; (d) for many values of attack radius critical locations identified by topology-based model are also critical from the flow-based perspective. - Highlights: • We propose a method to identify critical locations in interdependent infrastructures. • Geographical interdependencies and attack radius largely affect critical locations. • Localized attacks cause less vulnerability than equivalent random failures. • Whether considering both node and edge failures affects critical locations. • Topology-based critical locations are also critical from flow-based perspective.

  6. CRISPR-Cas Systems Features and the Gene-Reservoir Role of Coagulase-Negative Staphylococci

    Directory of Open Access Journals (Sweden)

    Ciro C. Rossi

    2017-08-01

    Full Text Available The claimed role of gene reservoir of coagulase-negative staphylococci (CoNS could be contradicted by estimates that CRISPR/Cas systems are found in the genomes of 40–50% of bacteria, as these systems interfere with plasmid uptake in staphylococci. To further correlate this role with presence of CRISPR, we analyzed, by computational methods, 122 genomes from 15 species of CoNS. Only 15% of them harbored CRISPR/Cas systems, and this proportion was much lower for S. epidermidis and S. haemolyticus, the CoNS most frequently associated with opportunistic infections in humans. These systems are of type II or III, and at least two of them are located within SCCmec, a mobile genetic element of Staphylococcus bacterial species. An analysis of the spacers of these CRISPRs, which come from exogenous origin, allowed us to track the transference of the SCCmec, which was exchanged between different strains, species and hosts. Some of the spacers are derived from plasmids described in Staphylococcus species that are different from those in which the CRISPR are found, evidencing the attempt (and failure of plasmid transference between them. Based on the polymorphisms of the cas1 gene in CRISPRs of types II and III, we developed a multiplex polymerase chain reaction (PCR suitable to screen and type CRISPR systems in CoNS. The PCR was tested in 59 S. haemolyticus strains, of which only two contained a type III cas1. This gene was shown to be expressed in the exponential growth, stationary phase and during biofilm formation. The low abundance of CRISPRs in CoNS is in accordance with their role as gene reservoirs, but when present, their spacers sequence evidence and give an insight on the dynamics of horizontal genetic transfer among staphylococci.

  7. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  8. A new method for pressure test analysis of a vertically fractured well producing commingled zones in bounded square reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1997-07-15

    Although hydraulically or naturally fractured wells located in stratified bounded reservoirs are common, reliable techniques available to analyze the pressure test data for such reservoirs are lacking. This paper presents a mathematical model that describes the pressure behavior of a vertically fractured well located in a stratified, bounded, square reservoir. The fracture can be either a uniform flux or an infinite conductivity fracture. It was found that the dimensionless pressure function and its derivative and the fractional production rate from the different layers are mainly controlled by the fracture penetration into the formation, and that transmissibility and storativity affect the fractional production rate and the pressure derivative but have little effect on the dimensionless pressure function. Type curves of dimensionless pressure and dimensionless pressure derivative can be used to evaluate the reservoir characteristics. The selection of the appropriate type curve is guided by the behavior of the layer fractional production rate obtained from flow rate survey carried out during well testing. Type curves for uniform flux and infinite conductivity fractures exhibit similar features. Two examples are presented to demonstrate the application of the new method of analysis presented in this paper

  9. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    Science.gov (United States)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  10. Limnological characteristics and trophic state of a newly created site: the Pareja Limno-reservoir

    Science.gov (United States)

    Molina-Navarro, E.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The creation of dams in the riverine zone of large reservoirs is an innovative action whose primary goal is to generate water bodies that ensure a stable level of water there. We have termed these bodies of water "limno-reservoirs" because their water level becomes constant and independent of the fluctuations occurring in the main reservoir. In addition, limno-reservoirs represent environmental initiatives with corrective and/or compensatory effects. Pareja Limno-reservoir, located near the left side of Entrepeñas Reservoir (Guadalajara province, central Spain), is one of the first initiatives of this type in Spain. We are investigating the hydrology, limnology, microbiology, siltation risk and other aspects of this site. This research has a special interest since the building of limno-reservoirs is rising in Spain. To acquire knowledge about their behavior may be helpful for further constructions. In fact, every new reservoir building project usually includes a limno-reservoir. Moreover, there are many initiatives related with the construction of this kind of hydraulic infrastructures in the reservoirs under exploitation. This work focuses on the limnological study of the Pareja Limno-reservoir. To conduct this research, twelve seasonal sample collections at two sampling points (the dam and inflow zones) have been made in Pareja Limno-reservoir, from spring 2008 to winter 2011. The primary goal of this study is to describe the limnological characteristics of the limno-reservoir. Special interest is placed in the study of the trophic state through different indicators (nutrients, transparency, phytoplankton and zooplankton populations), as the European Water Framework Directive objective is to achieve a "good ecological status" in every aquatic ecosystem by 2015. The results of the study show that the Pareja Limno-reservoir follows a warm monomictic water stratification pattern. Water was slightly alkaline and conductivity values were mostly over 1000 μS cm-1 due

  11. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    Science.gov (United States)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  12. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    Science.gov (United States)

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  13. Integrating geologic and engineering data into 3-D reservoir models: an example from norman wells field, NWT, Canada

    International Nuclear Information System (INIS)

    Yose, L.A.

    2004-01-01

    A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)

  14. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  15. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  16. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  17. PHOSPHORUS CONTAMINATION AS A BARRIER TO WATER QUALITY OF SMALL RETENTION RESERVOIRS IN PODLASIE REGION

    Directory of Open Access Journals (Sweden)

    Joanna Ewa Szczykowska

    2016-06-01

    Full Text Available Dam retention reservoirs created on the rivers play a special role as an environmentally friendly forms of stopping and slowing of water runoff. The aim of this study was to evaluate the quality of water flowing into small retention reservoirs in terms of the concentration of total phosphorus and phosphates. The study involved three small retention reservoirs located in the municipalities of: Bransk, Dubicze Cerkiewne and Kleszczele in Podlasie region. Selection of the research facilities was made due to the similarity in the soil management type within catchment of the flowing watercourse, retained water utilization ways, and a small surface of reservoirs. Watercourse reaching the reservoir provides biogens along with water, which directly affect the water quality resulting in high concentrations in water, either indirectly by initiating or accelerating the process of degradation of the reservoir and the loss of its usability. Given the concentration of total phosphorus, it can be said that only in the case of 20.8% of water samples from Nurzec river feeding the Otapy-Kiersnówek reservoir, about 25% of water samples of Orlanka river feeding Bachmaty reservoir, and 17% of samples taken from the watercourse supplying Repczyce reservoir, corresponded to values specified for the second class in the current Regulation of the Minister of the Environment [Regulation 2014]. It can be assumed that this situation is caused by a long-term fertilization using manure, which in consequence led to the oversaturation of soils and phosphorus compounds penetration into the river waters in areas used for agricultural purposes. Especially in the early spring periods, rising temperature together with rainfall caused soil thawing resulting in increasing concentrations of contaminants carried along with the washed soil particles during the surface and subsurface runoff. Values of TSI(TP calculated for Otapy-Kiersnówek reservoir amounted to 112.4 in hydrological

  18. Assessment of temporal dynamics of evaporation in the Itumbiara reservoir, GO, using remote sensing data

    Directory of Open Access Journals (Sweden)

    João Antônio Lorenzzetti

    2013-04-01

    Full Text Available The object of this work was to study the dynamics of evaporation in the Itumbiara reservoir, located in Central Brazil, using MODIS-derived water surface temperature (product MOD11A1 and meteorological data acquired over the water surface. The evaporation rates were derived from latent heat flux, estimated through a mass transfer model. The estimates were carried out for the period between 1/1/2010 and 31/12/2010. The results showed that evaporation rate tends to increase from January to September and then decrease from September to December. The evaporation rate reached values near 20 mm day-1 in Itumbiara reservoir during the dry season in 2010. The mean evaporation rate for the wet season was 3.66 mm day-1 and 8.25 mm day-1 for the dry season. The total water volume evaporated from Itumbiara reservoir during 2010 was estimated at about 1.7 billion m³ (2,300 mm which represents 10% of total reservoir volume. The results suggest that advection is the main transport mechanism which drives the evaporation in Itumbiara. The convective processes contribute secondarily to evaporation in Itumbiara reservoir.

  19. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  20. The impact of anthropogenic pollution on limnological characteristics of a subtropical highland reservoir “Lago de Guadalupe”, Mexico

    Directory of Open Access Journals (Sweden)

    Sepulveda-Jauregui A.

    2013-08-01

    Full Text Available “Lago de Guadalupe” is an important freshwater ecosystem located in the northern part of the metropolitan area surrounding Mexico City, under high demographic pressure. It receives approximately 15 hm3·y-1 of untreated municipal wastewater from the surrounding municipalities. In order to develop a comparative assessment of the pollution effect over the limnological characteristics of Lago de Guadalupe, this lake was characterised from February 2006 to July 2009, and the results were compared with those obtained from a non-polluted lake “Lago el Llano” located in the same drainage area. Lago de Guadalupe was hypereutrophic with anoxic conditions throughout most of the water column. In contrast, Lago el Llano was mesotrophic with high dissolved oxygen concentrations throughout the entire water column with a clinograde profile. Both reservoirs had a monomictic mixing regime. The longitudinal zonation of physicochemical and biological variables were investigated in order to better understand the processes controlling the water quality across the reservoir during its residence time. This study shows the impact of anthropogenic pollution on the limnological characteristics of a subtropical reservoir and confirms that under adequate management schemes, namely avoiding pollution and wastewater discharges, subtropical reservoirs can be prevented from developing eutrophic conditions.

  1. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  2. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  3. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  4. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Metal and trace element assessment of sediments from Guarapiranga reservoir, Sao Paulo State, by neutron activation analysis

    International Nuclear Information System (INIS)

    Guimaraes, Guilherme M.; Favaro, Deborah I.T.; Franklin, Robson L.; Ferreira, Francisco J.; Bevilacqua, Jose E.

    2009-01-01

    Guarapiranga Reservoir is extremely important due to the fact that it is one of the main water reservoirs for South America's largest city, Sao Paulo, Brazil. Guarapiranga Basin is located within the Metropolitan Region of Sao Paulo - RMSP, and occupies an area of approximately 630 km 2 , and the reservoir itself is located in the northern part of the basin occupying approximately 26 km 2 . This reservoir is characterized by environmental impacts from urban invasion, industrial and sewage wastes, all of which seriously affect its water quality. Due to its vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) regularly monitors the contamination levels of waters and once a year sediment samples. In order to better understand geochemical and environmental processes and their possible changes due to anthropogenic activities trace metals analyses and their distribution in sediments are commonly undertaken. The present study reports results concerning the distribution of some major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Hg, Rb, Sb, Sc, Ta, Tb, Th, U and Zn) and rare earth (Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) elements in sediments from the Guarapiranga Reservoir. Multielementar analysis was carried out by instrumental neutron activation analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cr and Zn in the sediment samples were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and adopted by CETESB. (author)

  6. Topological representation of the porous structure and its evolution of reservoir sandstone under excavation-induced loads

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2017-01-01

    Full Text Available The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.

  7. Geophysical and geological investigations of subsurface reservoirs : case studies of Spitsbergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Baelum, Karoline

    2011-07-01

    and carbonate reservoirs of the basin. Of special interest as a reservoir play analogue are the paleokarst features on Wordiekammen, a mountain close to the BFZ within the Billefjorden Trough. Similar plays have been and are explored on the Loppa High in the Barents Shelf The target of the investigation was series of infilled karst pipes located on top of (under a layer of sediment) and along the edges of the plateau that caps half of the mountain. The methods employed were Ground Penetration Radar (GPR) and geoelectric measurements. The porosity and chaotic geophysical reflection pattern of the collapse breccia infill in the pipes in contrast to the surrounding allowed for an well-constrained identification of the geometry and location of the pipes via closely sampled 2D and 3D GPR surveys. More than 20 breccia pipes were identified in the data with diameters of 10-80 m, showing geometries very similar to the pipes outcropping along the mountain edge. The geoelectric investigations revealed a strong link between resistivity anomalies and the position of the Karst pipes, although this is likely linked to the presence and composition of pore water. However, the exact relationship is yet to be determined. The high porosity and possible subsurface physical linkage of the collapse breccias confirm their value as interesting reservoirs analogues. The second topic concerns the subsurface geology around Longyearbyen in connection with the identification and quantification of a possible reservoir for future CO{sub 2}-storage. Results from this work are obtained via a combination of seismic data, drill cores and electrical logs from four drill holes with a maximum depth of 980 m, and in addition Lidar scans in connection with investigations of outcrops. The targeted Kapp Toscana Group reservoir, found below a cap rock section of Jurassic shales and mudstone, offers the c. 270 m thick De Geerdalen Formation topped by the 22 m thick Wilhelmoeya Subgroup. The reservoir section

  8. Conversion of a tailing impoundment to a freshwater reservoir, the Eagle Park Reservoir project, Climax Mine, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Romig, B.R.; Cupp, J.L.; Ford, R.C.

    1999-07-01

    The Climax Molybdenum Mine, located near Leadville, Colorado, is the site of a lengthy mining history spanning more than 80 years. In the 1960's, extraction of molybdenum from oxide ore located adjacent to the massive molybdenite sulfide deposit resulted in the construction of an earthen core dam to impound fine-grained oxide tailing in the Eagle River Valley. Through recognized value of water storage and reclamation opportunities, a tailing removal project was initiated in 1993 to convert the impoundment facilities to a post-mining beneficial land use of developed water resources. An evaluation of the effect residual materials and lake dynamics would have on in-stream water quality was performed. Eagle Park Reservoir stands as a model for future reclamation efforts that involve water delivery to highly sensitive receiving waters. This paper provides a case study on project development, the evolution of water quality assessment, and the regulatory framework that contributed to this project's success.

  9. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  10. Determination of production biology of Cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    Vigerstad, T.J.

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were examined. The design of the study was to compare rates of cladoceran population production at two stations in the winter and summer of 1976 on Par Pond, the cooling reservoir located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS), and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). The statistical properties of the Edmondson egg ratio model (Edmondson, 1960) were examined to determine if it would be a suitable method for calculating cladoceran production rates for comparison between stations. Based on an examination of the variance associated with standing stock and fecundity measurements and other consideratios, the use of the egg ratio model was abandoned. Instead, a non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, were used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in species composition but with some statistically significant differences in various aspects of the biology of the species

  11. GIS-based rapid-assessment of bighead carp Hypophthalmichthys nobilis (Richardson, 1845) suitability in reservoirs

    Science.gov (United States)

    Long, James M.; Liang, Yu; Shoup, Daniel E.; Dzialowski, Andrew R.; Bidwell, Joseph R.

    2014-01-01

    Broad-scale niche models are good for examining the potential for invasive species occurrences, but can fall short in providing managers with site-specific locations for monitoring. Using Oklahoma as an example, where invasive bighead carp (Hypophthalmichthys nobilis) are established in certain reservoirs, but predicted to be widely distributed based on broad-scale niche models, we cast bighead carp reproductive ecology in a site-specific geospatial framework to determine their potential establishment in additional reservoirs. Because bighead carp require large, long free-flowing rivers with suitable hydrology for reproduction but can persist in reservoirs, we considered reservoir tributaries with mean annual daily discharge ≥8.5 cubic meters per second (m3 /s) and quantified the length of their unimpeded portions. In contrast to published broad-scale niche models that identified nearly the entire state as susceptible to invasion, our site-specific models showed that few reservoirs in Oklahoma (N = 9) were suitable for bighead carp establishment. Moreover, this method was rapid and identified sites that could be prioritized for increased study or scrutiny. Our results highlight the importance of considering the environmental characteristics of individual sites, which is often the level at which management efforts are implemented when assessing susceptibility to invasion.

  12. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  13. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  14. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    In future, research within exploration and reservoir characterization will play an even more important role for Norway since resources are decreasing and new challenges like deep sea, harsh environment and last but not least environmental issues have to be considered. There are two major fields which have to be addressed within exploration and reservoir characterization: First, replacement of reserves by new discoveries and ultimate field recoveries in mature basins at the Norwegian Continental shelf, e.g. at the Halten Terrace has to be addressed. A wealth of data exists in the more mature areas. Interdisciplinary integration is a key feature of reservoir characterization, where available data and specialist knowledge need to be combined into a consistent reservoir description. A systematic approach for handling both uncertainties in data sources and uncertainties in basic models is needed. Fast simulation techniques are necessary to generate models spanning the event space, covering both underground based and model-based uncertainties. Second, exploration in frontier areas like the Barents Sea region and the deeper Voering Basin has to be addressed. The scarcity of wells in these frontier areas leads to uncertainties in the geological understanding. Basin- and depositional modelling are essential for predicting where source rocks and reservoir rocks are deposited, and if, when and which hydrocarbons are generated and trapped. Predictive models and improved process understanding is therefore crucial to meet these issues. Especially the challenges related to the salt deposits e.g. sub-salt/sub-basalt reservoir definitions in the Nordkapp Basin demands up-front research and technology developments. TTA2 stresses the need to focus on the development of new talents. We also see a strong need to push cooperation as far as possible in the present competitive environment. Projects that may require a substantial financial commitment have been identified. The following

  15. Processing of reservoir data for diagenesis simulation; Traitement des donnees de reservoir en vue d`une simulation de la diagenese

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, I.

    1997-12-18

    Diagenetic minerals frequently damage reservoir permeability. A numerical model which couples chemical reactions and transport of dissolved elements can help to predict both location and magnitude of cementations. The present Ph.D. examines how can be applied such a modelling approach to a complex heterogeneous reservoir. Petrographical data from core samples are used as input data, or alternatively as controls for validating the modelling results. The measurements, acquired with dm-to-m spacing are too numerous to be integrated in a reactions-transport code. The usual up-scaling methods, called Homogenization, conserve only the fluid flow properties. A new method, called `Gathering` takes into account material transport balance. It is proposed in the first part of the dissertation. In the second part, an application of Gathering is done simulating illitization in the sub-arkosic sandstones of the Ness formation (Brent Group) in a North Sea field, Dunbar.. As a prerequisite, data accuracy is examined for a set of `routine measurements` (100 points counting on thin section, XR-diffractometry and gas porosity/permeability). (author) 60 refs.

  16. Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico).

    Science.gov (United States)

    Nevárez, Myrna; Moreno, Myriam Verónica; Sosa, Manuel; Bundschuh, Jochen

    2011-01-01

    Water reservoirs in Chihuahua County, Mexico, are affected by some punctual and non-punctual geogenic and anthropogenic pollution sources; fish are located at the top of the food chain and are good indicators for the ecosystems pollution. The study goal was to: (i) determine arsenic concentration in fish collected from the Chuviscar, Chihuahua, San Marcos and El Rejon water reservoirs; (ii) to assess if the fishes are suitable for human consumption and (iii) link the arsenic contents in fish with those in sediment and water reported in studies made the same year for these water reservoirs. Sampling was done in summer, fall and winter. The highest arsenic concentration in the species varied through the sampling periods: Channel catfish (Ictalurus punctatus) with 0.22 ± 0.15 mg/kg dw in winter and Green sunfish (Lepomis cyanellus) with 2.00 ± 0.15 mg/kg dw in summer in El Rejon water reservoir. A positive correlation of arsenic contents was found through all sampling seasons in fish samples and the samples of sediment and water. The contribution of the weekly intake of inorganic arsenic, based on the consumption of 0.245 kg fish muscles/body weight/week was found lower than the acceptable weekly intake of 0.015 mg/kg/body weight for inorganic arsenic suggested by FAO/WHO.

  17. Ensemble seasonal forecast of extreme water inflow into a large reservoir

    Directory of Open Access Journals (Sweden)

    A. N. Gelfan

    2015-06-01

    Full Text Available An approach to seasonal ensemble forecast of unregulated water inflow into a large reservoir was developed. The approach is founded on a physically-based semi-distributed hydrological model ECOMAG driven by Monte-Carlo generated ensembles of weather scenarios for a specified lead-time of the forecast (3 months ahead in this study. Case study was carried out for the Cheboksary reservoir (catchment area is 374 000 km2 located on the middle Volga River. Initial watershed conditions on the forecast date (1 March for spring freshet and 1 June for summer low-water period were simulated by the hydrological model forced by daily meteorological observations several months prior to the forecast date. A spatially distributed stochastic weather generator was used to produce time-series of daily weather scenarios for the forecast lead-time. Ensemble of daily water inflow into the reservoir was obtained by driving the ECOMAG model with the generated weather time-series. The proposed ensemble forecast technique was verified on the basis of the hindcast simulations for 29 spring and summer seasons beginning from 1982 (the year of the reservoir filling to capacity to 2010. The verification criteria were used in order to evaluate an ability of the proposed technique to forecast freshet/low-water events of the pre-assigned severity categories.

  18. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Hof, Van den P.M.J.; Jansen, J.D.

    2015-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  19. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Van den Hof, P.; Jansen, J.D.

    2016-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  20. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  1. Modeling the Influence of Variable Tributary Inflow on Circulation and Contaminant Transport in a Water Supply Reservoir

    Science.gov (United States)

    Nguyen, L. H.; Wildman, R.

    2012-12-01

    This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with

  2. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    Science.gov (United States)

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  3. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  4. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-19

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  5. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    Science.gov (United States)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  6. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  7. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  8. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  9. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays.

    Science.gov (United States)

    Lin, Cheng-Horng

    2016-12-23

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km 3 . The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.

  10. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  11. Impact of location on outcome after penetrating colon injuries.

    Science.gov (United States)

    Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Zarzaur, Ben L; Shahan, Charles P; Parks, Nancy A; Fabian, Timothy C; Croce, Martin A

    2012-12-01

    Most studies examining suture line failure after penetrating colon injuries have focused on right- versus left-sided injuries. In our institution, operative decisions (resection plus anastomosis vs. diversion) are based on a defined management algorithm regardless of injury location. The purpose of this study was to evaluate the effect of injury location on outcomes after penetrating colon injuries. Consecutive patients with full thickness penetrating colon injuries for 13 years were stratified by age, injury location and mechanism, and severity of shock. According to the algorithm, patients with nondestructive injuries underwent primary repair. Destructive wounds underwent resection plus anastomosis in the absence of comorbidities or large preoperative or intraoperative transfusion requirements (>6 U of packed red blood cells); otherwise, they were diverted. Injury location was defined as ascending, transverse, descending (including splenic flexure), and sigmoid. Multivariable logistic regression was performed to determine whether injury location was an independent predictor of either morbidity or mortality. Four hundred sixty-nine patients were identified: 314 (67%) underwent primary repair and 155 (33%) underwent resection. Most injuries involved the transverse colon (39%), followed by the ascending colon (26%), the descending colon (21%), and the sigmoid colon (14%). Overall, there were 13 suture line failures (3%) and 72 abscesses (15%). Most suture line failures involved injuries to the descending colon (p = 0.06), whereas most abscesses followed injuries to the ascending colon (p = 0.37). Multivariable logistic regression failed to identify injury location as an independent predictor of either morbidity or mortality after adjusting for 24-hour transfusions, base excess, shock index, injury mechanism, and operative management. Injury location did not affect morbidity or mortality after penetrating colon injuries. Nondestructive injuries should be primarily

  12. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  13. Flood moderation by large reservoirs in the humid tropics of Western ghat region of Kerala, India

    Energy Technology Data Exchange (ETDEWEB)

    Abe, George [Centre for Water Resources Development and Management, Sub Centre, Kottayam South P.O, Kottayam-686 039, Kerala (India); James, E.J. [Water Institute and Dean (Research), Karunya University, Coimbatore-641 114, Tamil Nadu (India)

    2013-07-01

    Kerala State located in the humid tropics receives an average rainfall of 2810 mm. On an average 85% of this rainfall is received during the two monsoons spread from June to November. Midland and lowland regions of several of the river basins of Kerala experience severe flood events during the monsoons. Idamalayar hydro-electric project (1987) in Periyar River basin envisages flood control apart from power generation. This paper analyzes the flood moderation by Idamalayar reservoir considering the storage regime (inflow and outflow) which is subjected to a strong inter annual variability. The role of Idamalayar reservoir in controlling the monsoon floods is analyzed using daily data (1987-2010). The results of analysis show that the flood moderation by the reservoir is 92% when water storage is less than 50%. The reduction is 87% when reservoir storage is between 50 to 90% and moderation reduces to 62% when the reservoir storage is above 90%. Non-parametric trend analysis of fifty years of hydrologic data shows a reducing trend in inflow and storage during south-west monsoon which reduced spill and subsequent flood events during north-east monsoon.

  14. Contamination of semiarid potiguar reservoirs by harmful bacteria

    Directory of Open Access Journals (Sweden)

    Ermeton Duarte do Nascimento

    2016-04-01

    Full Text Available Water contamination in the semi-arid section of Northeast Brazil is a current concern for the country’s researchers, since this region is considered one of the poorest in Brazil and the water in these locations is a primary vehicle for disease transmission. We collected physical and chemical data as well as water samples from four semiarid potiguar reservoirs during the dry and rainy seasons of 2013 and 2014. These samples were prepared in a laboratory at the Federal University of Rio Grande do Norte (UFRN and their physical, chemical and microbiological characteristics were evaluated. The procedures of microbial isolation and identification followed the Standard Methods for Examinations of Water and Wastewater. Then Vitek II system (Bio-Merieux® was used to identify the microbial specimens and we calculated the frequency of specimens’ occurrence. Altogether, 168 bacteria were isolated and identified; 97% were Gram-negative and only 3% were Gram-positive. Within the Gram negatives, 73.2% were identified as belonging to the Enterobacteriaceae family and, in general terms, the most constant genera in the water reservoirs were Vibrio and Aeromonas. Among the Enterobacteriaceae family, the species Escherichia coli, Enterobacter cloacae complex and Klebsiella pneumoniae were the most frequent. There was no statistical difference between the number or morphotype groups found in the periods, p=0.255 and p=0.237, respectively. The analyzed data indicate possible contamination of these water reservoirs by human and/or animal fecal material.

  15. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  16. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  17. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yueping Yin

    2016-10-01

    Full Text Available The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR. After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL, and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m3 in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m3 in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the

  18. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  19. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  20. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  1. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  2. Wastewater injection and slip triggering: Results from a 3D coupled reservoir/rate-and-state model

    Science.gov (United States)

    Babazadeh, M.; Olson, J. E.; Schultz, R.

    2017-12-01

    Seismicity induced by fluid injection is controlled by parameters related to injection conditions, reservoir properties, and fault frictional behavior. We present results from a combined model that brings together injection physics, reservoir dynamics, and fault physics to better explain the primary controls on induced seismicity. We created a 3D fluid flow simulator using the embedded discrete fracture technique and then coupled it with a 3D displacement discontinuity model that uses rate and state friction to model slip events. The model is composed of three layers, including the top-seal, the injection reservoir, and the basement. Permeability is anisotropic (vertical vs horizontal) and along with porosity varies by layer. Injection control can be either rate or pressure. Fault properties include size, 2D permeability, and frictional properties. Several suites of simulations were run to evaluate the relative importance of each of the factors from all three parameter groups. We find that the injection parameters interact with the reservoir parameters in the context of the fault physics and these relations change for different reservoir and fault characteristics, leading to the need to examine the injection parameters only within the context of a particular faulted reservoir. For a reservoir with no flow boundaries, low permeability (5 md), and a fault with high fault-parallel permeability and critical stress, injection rate exerts the strongest control on magnitude and frequency of earthquakes. However, for a higher permeability reservoir (80 md), injection volume becomes the more important factor. Fault permeability structure is a key factor in inducing earthquakes in basement rocks below the injection reservoir. The initial failure state of the fault, which is challenging to assess, can have a big effect on the size and timing of events. For a fault 2 MPa below critical state, we were able to induce a slip event, but it occurred late in the injection history

  3. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1995-03-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  4. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  5. Freshwater fish Fauna and Restock Fish Activities of Reservoir in the Dardanelles (Canakkale-Turkey

    Directory of Open Access Journals (Sweden)

    Hüseyin SASI

    2012-06-01

    Full Text Available Turkey has, with geographic location including Istanbul and Çanakkale straits the system, 178,000 km in length streams, 906,000 ha of natural lakes, and 411,800 ha of dam lakes, and 28,000 ha of ponds due to richness inland waters which include freshwater fish. The fingerling fish (fry were restocked approximately 250,000,000 in natural lakes, dam lakes and ponds for fisheries between years of 1979 and 2005. Canakkale has rich freshwater potential with 7 major rivers (Büyükdere, Karamenderes stream, Kavak brook, Kocacay stream, Sarıcay stream, Tuzla brook, Umurbey brook, 7 Dam Lakes (Atikhisar, Zeytinlikoy, Bayramic, Bakacak, Tayfur, Umurbey and Yenice-Gönen Dam lakes. In the studies, it has been determined that 15 fish species belonging to 6 families (Anguillidae, Atherinidae, Salmonidae, Cobitidae, Cyprinidae and Poecilidae can be found in reservoirs. Fish restocking of the activities of the reservoir until today approximately 1,120,000 (Cyprinus carpio L., 1758 is introduced. In this study, the activity of Canakkale province in the fish restocking and reservoir exploiting possibilities were discussed in view of reservoir fisheries potential which is used insufficiently today.

  6. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge

  7. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Directory of Open Access Journals (Sweden)

    S. Kurian

    2012-07-01

    Full Text Available Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS in two freshwater reservoirs (Tillari Dam and Selaulim Dam, which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer, bacteriochlorophyll (BChl e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m−2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m−2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light. This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2

  8. Bull trout (Salvelinus confluentus) movement in relation to water temperature, season, and habitat features in Arrowrock Reservoir, Idaho, 2012

    Science.gov (United States)

    Maret, Terry R.; Schultz, Justin E.

    2013-01-01

    Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was

  9. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    Science.gov (United States)

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  10. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    Science.gov (United States)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti

  11. Paragenetic evolution of reservoir facies, Middle Triassic Halfway Formation, PeeJay Field, northeastern British Columbia: controls on reservoir quality

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. L. [Alberta Univ., Dept. of Earth and Atmospheric Sciences, Edmonton, AB (Canada); Moslow, T. F. [Ulster Petroleum Ltd., Calgary, AB (Canada)

    1998-09-01

    Because of the obvious importance of reservoir quality to reservoir performance, diagenetic controls on reservoir quality of Middle Triassic reservoir facies are investigated by comparing two reservoir lithofacies. The implications of porosity structure on the efficiency of primary and secondary hydrocarbon recovery are also assessed. Halfway reservoir facies are composed of bioclastic grainstones (lithofacies G) and litharenites/sublitharenites (lithofacies H), both of which are interpreted as tidal inlet fills. Although paragenetic evolution was similar for the two reservoir facies, subtle differences in reservoir quality are discernible. These are controlled by sedimentary structures, porosity type, grain constituents, and degree of cementation. Reservoir quality in lithofacies G is a function of connectivity of the pore network. In lithofacies H, secondary granular porosity creates a more homogeneous interconnected pore system, wide pore throats and low aspect ratios. The high porosity and low permeability values of the bioclastic grainstones are suspected to cause inefficient flushing of hydrocarbons during waterflooding. However, it is suggested that recovery may be enhanced by induced hydraulic fracturing and acidization of lower permeability calcareous cemented zones. 52 refs., 15 figs.

  12. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  13. Radionuclides distribution in artificial reservoir V-17 (old swamp)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenkova, N. [Vernadsky Institute of geochemistry and analytical chemistry RAS (Russian Federation); Vlasova, I.; Sapozhnikov, Y.; Kalmykov, S. [Lomonosov MSU, Chemistry Dep. (Russian Federation); Pryakhin, E. [Urals Research center for radiation medicine (Russian Federation); Ivanov, I. [FSUE Mayak PA (Russian Federation)

    2014-07-01

    Reservoir V-17 (Old Swamp) was formed as a result of the construction of dams in 1952 and 1954 (MAYAK Production Association),located in a natural depression relief. Intermediate level liquid radioactive wastes (ILLW) have been discharged to this reservoir since 1949. The water surface area of the lake is 0.13 km{sup 2} with the volume of 0.36 Mm{sup 3}. The maximum depth is 6.5 m with the average value of 2.8 m. Among 74 PBq deposited to the reservoir, the major portion is concentrated in the bottom sediments (as determined in 2007). The aim of this study is to determine radionuclide distribution among abiotic and biotic aquatic components, that includes study of various radionuclides distribution between water and bottom sediments, their speciation and evaluation of condition of zooplankton community. As a result of field research at the reservoir, 4 sampling locations were chosen from which bottom sediments, water samples and some hydrobionts were collected. Pore waters were separated from the wet sediments by high-speed centrifugation. All samples were analyzed by gamma spectrometry using HPGe detector Canberra GR 3818.The radioactivity of tritium in the pore and lake waters was determined by liquid-scintillation spectrometry. The strontium-90 was detected by Cherenkov counting of the daughter {sup 90}Y. The preliminary data show for sediments samples: for {sup 137}Cs amount varies from 75,5 KBq/g to 232 KBq/g, {sup 154}Eu - from 460 to 990 Bq/g, {sup 241}Am - from 1 to 4 KBq/g, {sup 134}Cs - from 50 to 220 Bq/g; for water samples: large contribution from strontium-90 and tritium (varies from 2 to 25 Bq/g). Pore water contains medium amount of radionuclides between sediments and water samples. For {sup 137}Cs varies between 160 to 1100 Bq/g, {sup 154}Eu - from 0,1 to 0,3 Bq/g, {sup 241}Am - from 0,3 to 11 Bq/g, {sup 134}Cs - from 0,1 to 1,7 Bq/g. Variation depends on the sampling place. Activity distribution among hydrobionts was studied by digital Radiography

  14. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  15. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants

    International Nuclear Information System (INIS)

    Santos, Marco Aurelio dos; Pinguelli Rosa, Luiz; Sikar, Bohdan; Sikar, Elizabeth; Santos, Ednaldo Oliveira dos

    2006-01-01

    This paper presents the findings of gross carbon dioxide and methane emissions measurements in several Brazilian hydro-reservoirs, compared to thermo power generation. The term 'gross emissions' means gas flux measurements from the reservoir surface without natural pre-impoundment emissions by natural bodies such as the river channel, seasonal flooding and terrestrial ecosystems. The net emissions result from deducting pre-existing emissions by the reservoir. A power dam emits biogenic gases such as CO 2 and CH 4 . However, studies comparing gas emissions (gross emissions) from the reservoir surface with emissions by thermo-power generation technologies show that the hydro-based option presents better results in most cases analyzed. In this study, measurements were carried in the Miranda, Barra Bonita, Segredo, Tres Marias, Xingo, and Samuel and Tucurui reservoirs, located in two different climatological regimes. Additional data were used here from measurements taken at the Itaipu and Serra da Mesa reservoirs. Comparisons were also made between emissions from hydro-power plants and their thermo-based equivalents. Bearing in mind that the estimated values for hydro-power plants include emissions that are not totally anthropogenic, the hydro-power plants studied generally posted lower emissions than their equivalent thermo-based counterparts. Hydro-power complexes with greater power densities (capacity/area flooded-W/m 2 ), such as Itaipu, Xingo, Segredo and Miranda, have the best performance, well above thermo-power plants using state-of-the-art technology: combined cycle fueled by natural gas, with 50% efficiency. On the other hand, some hydro-power complexes with low-power density perform only slightly better or even worse than their thermo-power counterparts

  16. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  17. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    Science.gov (United States)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  18. Estimation of Oil Production Rates in Reservoirs Exposed to Focused Vibrational Energy

    KAUST Repository

    Jeong, Chanseok

    2014-01-01

    when combined with another EOR method, such as wettability alteration by low-concentration surfactant injection. The extension of this research into a more realistic three-dimensional reservoir model would help determine the optimal locations and frequencies of wave sources that could maximize the volume of mobilized oil.

  19. Predicting petrophysical properties by simultaneous inversion of seismic and reservoir engineering data

    Science.gov (United States)

    Mantilla, Andres Eduardo

    Porosity and permeability are the most difficult properties to determine in subsurface reservoir characterization, yet usually they have the largest impact on reserves and production forecasts, and consequently on the economy of a project. The difficulty of estimating them comes from the fact that porosity and permeability may vary significantly over the reservoir volume, but can only be sampled at well locations, often using different technologies at different scales of observation. An accurate estimation of the spatial distribution of porosity and permeability is of key importance, because it translates into higher success rates in infill drilling, and fewer wells required for draining the reservoir. The purpose of this thesis is to enhance the characterization of subsurface reservoirs by improving the prediction of petrophysical properties through the combination of reservoir geophysics and reservoir engineering observations and models. To fulfill this goal, I take advantage of the influence that petrophysical properties have on seismic and production data, and formulate, implement, and demonstrate the applicability of an inversion approach that integrates seismic and production-related observations with a-priori information about porosity and permeability. Being constrained by physical models and observations, the resulting estimates are appropriate for making reservoir management decisions. I use synthetic models to test the proposed inversion approach. Results from these tests show that, because of the excellent spatial coverage of seismic data, incorporating seismic-derived attributes related to petrophysical properties can significantly improve the estimates of porosity and permeability. The results also highlight the importance of using a-priori information about the relationship between porosity and permeability. The last chapters of this thesis describe a practical application of the proposed joint inversion approach. This application includes a rock

  20. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    Science.gov (United States)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  1. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  2. Economics of Developing Hot Stratigraphic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  3. Estimating Western U.S. Reservoir Sedimentation

    Science.gov (United States)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  4. Climate Change Impacts on Sediment Quality of Subalpine Reservoirs: Implications on Management

    Directory of Open Access Journals (Sweden)

    Marziali Laura

    2017-09-01

    Full Text Available Reservoirs are characterized by accumulation of sediments where micropollutants may concentrate, with potential toxic effects on downstream river ecosystems. However, sediment management such as flushing is needed to maintain storage capacity. Climate change is expected to increase sediment loads, but potential effects on their quality are scarcely known. In this context, sediment contamination by trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and organics (Polycyclic Aromatic Hydrocarbons PAHs, Polychlorinated Biphenyls PCBs and C > 12 hydrocarbons was analyzed in 20 reservoirs located in Italian Central Alps. A strong As and a moderate Cd, Hg and Pb enrichment was emphasized by Igeo, with potential ecotoxicological risk according to Probable Effect Concentration quotients. Sedimentation rate, granulometry, total organic carbon (TOC and altitude resulted as the main drivers governing pollutant concentrations in sediments. According to climate change models, expected increase of rainfall erosivity will enhance soil erosion and consequently the sediment flow to reservoirs, potentially increasing coarse grain fractions and thus potentially diluting pollutants. Conversely, increased weathering may enhance metal fluxes to reservoirs. Increased vegetation cover will potentially result in higher TOC concentrations, which may contrast contaminant bioavailability and thus toxicity. Our results may provide elements for a proper management of contaminated sediments in a climate change scenario aiming at preserving water quality and ecosystem functioning.

  5. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    2017-01-01

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... that some degree of pore filling cementation occurred in Kraka (Alam, 2010). Lack of correlation between Biot’s coefficient and Gamma Ray (GR) indicates that the small amount of clay present is generally located in the pore space, thus not contributing to frame stiffness. While there was no compositional...... control on cementation via clay, we could infer that stratigraphy impacts on the diagenetic process....

  6. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  7. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    Science.gov (United States)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Massachusetts reservoir simulation tool—User’s manual

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  9. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  10. Constraints on Water Reservoir Lifetimes From Catchment-Wide 10Be Erosion Rates—A Case Study From Western Turkey

    Science.gov (United States)

    Heineke, Caroline; Hetzel, Ralf; Akal, Cüneyt; Christl, Marcus

    2017-11-01

    The functionality and retention capacity of water reservoirs is generally impaired by upstream erosion and reservoir sedimentation, making a reliable assessment of erosion indispensable to estimate reservoir lifetimes. Widely used river gauging methods may underestimate sediment yield, because they do not record rare, high-magnitude events and may underestimate bed load transport. Hence, reservoir lifetimes calculated from short-term erosion rates should be regarded as maximum values. We propose that erosion rates from cosmogenic 10Be, which commonly integrate over hundreds to thousands of years, are useful to complement short-term sediment yield estimates and should be employed to estimate minimum reservoir lifetimes. Here we present 10Be erosion rates for the drainage basins of six water reservoirs in Western Turkey, which are located in a tectonically active region with easily erodible bedrock. Our 10Be erosion rates for these catchments are high, ranging from ˜170 to ˜1,040 t/km2/yr. When linked to reservoir volumes, they yield minimum reservoir lifetimes between 25 ± 5 and 1,650 ± 360 years until complete filling, with four reservoirs having minimum lifespans of ≤110 years. In a neighboring region with more resistant bedrock and less tectonic activity, we obtain much lower catchment-wide 10Be erosion rates of ˜33 to ˜95 t/km2/yr, illustrating that differences in lithology and tectonic boundary conditions can cause substantial variations in erosion even at a spatial scale of only ˜50 km. In conclusion, we suggest that both short-term sediment yield estimates and 10Be erosion rates should be employed to predict the lifetimes of reservoirs.

  11. Using reservoir engineering data to solve geological ambiguities : a case study of one of the Iranian carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kord, S. [National Iranian South Oil Co. (Iran, Islamic Republic of)

    2006-07-01

    A fractured carbonate reservoir in southwest Iran was studied with reference to reserve estimation, risk analysis, material balance and recovery factor. The 40 km long and 4 km wide reservoir consists of 2 parts with crest depths of 3780 and 3749 mss respectively. The eastern part is smaller and more productive than the western part which has high water saturation and absolutely no production. Economic production from the reservoir began in 1977. By 2004, the cumulative production had reached 12.064 MMSTB. Of the 6 wells drilled, only 2 wells in the eastern part are productive. This study addressed the main uncertainty of whether the 2 parts of the reservoir are sealed or not. The reservoir is under-saturated but the current pressure is near saturation pressure. The reservoir is divided into the following 4 zones: zones 1 and 2 are productive and consist mainly of carbonate rocks; zone 3 has thin beds of sand and shale; and, zone 4 consists of layers of carbonate, shale, marn, and dolomite. Although there are no faults, mud loss suggests that the reservoir has hairline fractures. Oil in place and reserves were estimated for both parts based on calculated reservoir engineering parameters. Material balance calculations were then performed to analyze and simulate the reservoir. The communication between the 2 parts of the reservoir were examined according to core analysis, rock type, fluid characterization, pressure analysis, water-oil contacts, production history and petrophysical evaluations. The porosity was found to be the same in both parts, but the water saturation and net to gross ratios were different between the eastern and western parts. The petrophysical evaluation revealed that there is no communication between the two parts of the reservoir. 4 refs., 2 figs., 2 appendices.

  12. Dharmic projects, imperial reservoirs, and new temples of India: An historical perspective on dams in India

    Directory of Open Access Journals (Sweden)

    Morrison Kathleen

    2010-01-01

    Full Text Available As international attention continues to focus on large dam projects across Asia, it is worth noting that conflicts over the politics of and environmental changes caused by dams in India are not new. Population dislocation, siltation, disease, floods caused by catastrophic dam failure, raised water tables, high costs and low returns-all of these concerns, and others, can be discussed in the context of reservoir projects ten, one hundred, or even one thousand years old. In this paper, I identify some of the major issues in the political ecology of contemporary dam projects and show how these same issues have played out in southern India over the last thousand years, suggesting that historical attention to the cultural and political context of reservoir construction might help us to understand some aspects of contemporary conflicts.

  13. Design of fuel failure detection system for multipurpose reactor GA. Siwabessy

    International Nuclear Information System (INIS)

    Sujalmo Saiful; Kuntoro Iman; Sato, Mitsugu; Isshiki, Masahiko.

    1992-01-01

    A fuel failure detection system (FFDS) has been designed for the Reactor GA. Siwabessy. The FFDS is aimed to detect fuel failure by observing delayed neutron released by fission products such as N-17, I-137, Br-87 and Br-88 in the primary cooling system. The delayed neutrons will be detected by using four neutron detectors, type BF-3, which are located inside a Sampling Tank. The detector location has been determined and the location is associated with the transit time from the reactor core outlet to the Sampling Tank, which is approximately 60 seconds. The neutron detection efficiency was calculated by using a computer code named MORSE. The FFDS has the capability to detect as quickly as possible, even a small failure of a fuel element occurring in the reactor core. Therefore the presence of FFDS in a reactor must be considered, in order to prevent further progress if the fuel failure occurs. (author)

  14. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  15. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  16. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  17. On the effect of operation of the hydropower plant on the water quality of Rapel reservoir, central Chile

    Science.gov (United States)

    Rossel, V.; De La Fuente, A.

    2013-12-01

    Eutrophication of lakes and reservoirs is a common problem in systems with high incoming loads of nutrients. The consequent algae bloom related to the eutrophication alters the water quality and generates an incompatibility with the tourist and recreational activities. This study is focused on Rapel reservoir: an old, dentritic and monomictic reservoir, located in central Chile (34°S, 71.6°W), that has experienced numerous algae bloom events in the past years produced by high loads of nutrients, sediments and metals. This reservoir was originally constructed in 1968 for hydropower generation without environmental restrictions on its operation. Rapel is part of Chile's Central Interconnected System (SIC), and is controlled by an independent system operator (ISO) that decides the optimal allocation of water by minimizing the SIC's operation cost. As a result of this framework, Rapel reservoir operates based on a hydropeaking scheme, thus producing energy few hours a day while zero outflows are observed the remaining hours, impacting on Rapel river located downstream the reservoir. However, previous research showed that this hydropeaking has important effects on the hydrodynamic of the reservoir as well. Particularly, it enhances vertical mixing nears the dam, and reduces horizontal dispersion. Furthermore, hydropeaking defines the outflows water temperature, and the temperature profile near the dam. As a consequence of this role of hydropeaking on the hydrodynamics and mixing of Rapel reservoir, it is expected to be a link between hydropeaking and water quality. The aim of the study is to evaluate the impact of the operation of hydropower plant on the water quality of Rapel reservoir, for which the reservoir system is modeled using the three dimensional hydrodynamic and water quality model ELCOM-CAEDYM. Field data to validate the results and to define boundary and initial conditions are available for the austral summer period of 2009-2010. Different scenarios of

  18. Stress evolution during caldera collapse

    Science.gov (United States)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  19. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  20. Phytoplankton succession from 1968 to 1990 in the subarctic Lokka reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Lepistoe, L.

    1995-12-31

    The phytoplankton community in the Lokka reservoir, constructed in 1967 in the Finnish Lapland, has been monitored from 1968 to 1990. It is the biggest man-made lake area-wise in western Europe. Due to its northern location the reservoir has a thick ice cover from the end of October to the end of May. The reservoir is filled during autumn as well as by floods during spring and lies at minimum holding in winter due to water level regulation. The retention time is thus relatively short. Water level manipulation does not necessarily mean only allowing the level to fluctuate between its established maximum and minimum levels, but very much depends on the requirements for hydroelectric power. The biomass, cell density and the number of taxa were during the first year reflecting oligotrophic conditions, but increased rapidly during the period from 1968 to 1971. Maximum values were observed at the beginning of the 1980s at which time the biomass values already reflected eutrophy. At the end of the decade biomasses and cell densities, but not the number of taxa, decreased once again. Chlorophyll {alpha} concentrations have been showing an increasing trend throughout the study period. The first development stage typical for reservoir was observed, the second erosion phase is still processing. Today the colour of the water and the nutrient concentrations have decreased, although they can still be considered high. According both to water quality variables, and to phytoplankton quantity and composition, the water continues to be meso-eutrophic. No clear signs of the last stage in the history of a reservoir, the oligotrophication, is yet observable. However should the uniform water level manipulations continue, this will ultimately lead to stabilization of the biological system. (author)

  1. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    Science.gov (United States)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  2. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    Science.gov (United States)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  3. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  4. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    Science.gov (United States)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    diameter may be drilled into the sample while at reservoir conditions. This allows for simulation of borehole damage as well as injector-producer schemes. Dual 70 MPa syringe pumps set to flow rates between 10 nL/min and 60 mL/min injecting into a partially cased borehole allow for fully contained fracturing treatments. A six sensor acoustic emission (AE) array is used for geometric fracture location estimation during intercept borehole drilling operations. Hydraulic sensors and a thermocouple array allow for additional monitoring and data collection as relevant to computer model validation as well as field test comparisons. The results from preliminary tests inside and outside of the cell demonstrate the functionality of the equipment while also providing some novel data on the propagation and flow characteristics of hydraulic fractures themselves.

  5. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  6. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  7. 2004 assessment of habitat improvements in Dinosaur Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, B.G.; Cowie, D.M.

    2005-01-15

    Formed in 1979 after the completion of the Peace Canyon Dam, Dinosaur Reservoir is 21 km long and backs water up to the tailrace of W.A.C. Bennett Dam. BC Hydro has funded studies to evaluate fish stocking programs and assess habitat limitations and potential enhancements as part of a water licence agreement. The Peace/Williston Fish and Wildlife Compensation Programs (PWFWCP) have undertaken a number of projects to address fish habitat limitations, entrainment and stocking assessments as a result of recommendations stemming from these studies. It was determined that existing baseline fish data was needed in order to evaluate the effectiveness of these activities. A preliminary boat electro-fishing program which was started in October 2001, noted that a propensity for rainbow trout to concentrate near woody debris. In response, a program was started in 2002 to add woody debris to embayment areas throughout the reservoir. These enhanced woody debris structures are located in small sheltered bays and consist of a series of large trees cabled together and anchored to the shore. The area between the cabled trees and the shoreline is filled with woody debris and root wads collected from along the shoreline. The 2004 assessment of habitat improvements in Dinosaur Reservoir presents the findings from a study that compares the number of fish captured using trap nets, angling, and minnow traps, at the woody debris structures to sites with similar physical characteristics where woody debris had not been added. 17 refs., 5 tabs., 4 figs.

  8. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.

    Science.gov (United States)

    Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping

    2018-08-15

    This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue

  9. External dacryocystorhinostomy in consultants and fellows - a comparison of the causes of failure.

    Science.gov (United States)

    Sullivan, L; Fearnley, T; Al-Maskari, A; El-Hindy, N; Kalantzis, G; Chang, B Y

    2015-01-01

    Failure of primary dacryocystorhinostomy (DCR) often requires revision surgery to inspect the cause of failure and re-establish anatomic patency. This study aims to specifcally compare the anatomical causes of failure noted during revision DCR of primary external DCR (EX-DCR) and compare the difference between consultants and fellows. A retrospective review of 37 patients who underwent revision of a primary external approach DCR over a 7-year-period in a University Hospital. All primary surgery was performed by either a consultant surgeon or senior oculoplastic fellow. Details of the initial pathology prior to primary DCR and grade of operating surgeon were collected along with perioperative surgical findings. The cause of failure of the initial surgery was classified according to perioperative findings. Failure was classified as either inappropriately sized/located ostium or fibrous/membranous soft tissue obstruction of the newly created ostium. The cause of failure of the initial surgery was soft tissue obstruction in 43.3% and an inappropriately sized/located ostium in 56.7%. In those patients whose primary surgery was performed by a consultant, 73.3% were found to have a soft tissue obstruction and 26.7% were found to have an inappropriately sized/ located ostium. In contrast, if initial surgery was performed by a fellow, 22.7% were found to have a soft tissue obstruction and 77.3% an inappropriately sized/ located ostium (p =0.002). Where the primary surgeon has been a trainee there is a trend toward inadequately sized or located ostium being the most likely causative factor in failure of primary EX-DCR.  Hippokratia 2015; 19 (3): 216-218.

  10. Understanding the fracture role on hydrocarbon accumulation and distribution using seismic data: A case study on a carbonate reservoir from Iran

    Science.gov (United States)

    Karimpouli, Sadegh; Hassani, Hossein; Malehmir, Alireza; Nabi-Bidhendi, Majid; Khoshdel, Hossein

    2013-09-01

    The South Pars, the largest gas field in the world, is located in the Persian Gulf. Structurally, the field is part of the Qatar-South Pars arch which is a regional anticline considered as a basement-cored structure with long lasting passive folding induced by salt withdrawal. The gas-bearing reservoir belongs to Kangan and Dalan formations dominated by carbonate rocks. The fracture role is still unknown in gas accumulation and distribution in this reservoir. In this paper, the Scattering Index (SI) and the semblance methods based on scattered waves and diffraction signal studies, respectively, were used to delineate the fracture locations. To find the relation between fractures and gas distribution, desired facies containing the gas, were defined and predicted using a method based on Bayesian facies estimation. The analysis and combination of these results suggest that preference of fractures and/or fractured zones are negligible (about 1% of the total volume studied in this paper) and, therefore, it is hard to conceive that they play an important role in this reservoir. Moreover, fractures have no considerable role in gas distribution (less than 30%). It can be concluded from this study that sedimentary processes such as digenetic, primary porosities and secondary porosities are responsible for the gas accumulation and distribution in this reservoir.

  11. Analysis of an accident of local zone control system of 'pressure loss in the compartment water supply reservoir'

    International Nuclear Information System (INIS)

    Catana, A.

    2001-01-01

    This work presents the aftermath of a failure in the Zonal Control System caused by an accident of 'pressure loss in the compartment water supply reservoir' leading to an operational function fault of the liquid zonal control system. Causes for pressure drop may be several, as for instance: simultaneous mechanical fault of the three pumps, class IV total loss of power, a crack of reservoir, etc. Should this accident happens the reactor is shut down automatically by the digital control computer, on the 'ZONE CONTROL SYSTEM FAILURE' setback condition. The analyses were done hypothesizing that the covering gas system is functioning at design parameters and that the only possible accident is the one of pressure loss in supply reservoir. By making use of the software system developed at INR Pitesti, we could make the analysis of the phenomena which take place and thus we could obtain the evolution of the main parameters, namely, neutron and thermohydraulic parameters, as well as the actuating mode of the control and safety systems. Thus, by assuming a pressure drop under 8. 27 bar the 'SETBACK' system is triggered with a final value of the neutron power of 2% FP which can be reached with a power variation rate of 0.00086 decade/sec (- 0.1%/sec). In conclusion, the main parameters evolve as follows: 1. the water level in compartments is 'frozen' at a level at which the pressure in the supply reservoir is 7.3 bar; 2. the mechanical rods are gradually inserted, one bank first and a second one if necessary; 3. the shim rods are fully inserted; 4. the systems of SDS1 and SDS2 scram systems remain unactuated; 5. after 10 minutes from the 'SETBACK' triggering, the neutron power is reduced under 4%; 6. the thermohydraulic parameters of the primary circuit are maintained at normal values; 7. the thermohydraulic parameters of the secondary circuit are maintained at normal values

  12. Age-related location of manifest accessory pathway and clinical consequences.

    Science.gov (United States)

    Brembilla-Perrot, Béatrice; Huttin, Olivier; Olivier, Arnaud; Sellal, Jean Marc; Villemin, Thibaut; Manenti, Vladimir; Moulin-Zinsch, Anne; Marçon, François; Simon, Gauthier; Andronache, Marius; Beurrier, Daniel; de Chillou, Christian; Girerd, Nicolas

    2015-01-01

    Accessory pathway (AP) ablation is not always easy. Our purpose was to assess the age-related prevalence of AP location, electrophysiological and prognostic data according to this location. Electrophysiologic study (EPS) was performed in 994 patients for a pre-excitation syndrome. AP location was determined on a 12 lead ECG during atrial pacing at maximal preexcitation and confirmed at intracardiac EPS in 494 patients. AP location was classified as anteroseptal (AS)(96), right lateral (RL)(54), posteroseptal (PS)(459), left lateral (LL)(363), nodoventricular (NV)(22). Patients with ASAP or RLAP were younger than patients with another AP location. Poorly-tolerated arrhythmias were more frequent in patients with LLAP than in other patients (0.009 for ASAP, 0.0037 for RLAP, location was confirmed at intracardiac EPS. Among untreated patients, poorly-tolerated arrhythmia occurred in patients with LLAP (3) or PSAP (6). Failures of ablation were more frequent for AS or RL AP than for LL or PS AP. AS and RLAP location in pre-excitation syndrome was more frequent in young patients. Maximal rate conducted over AP was lower than in other locations. Absence of poorly-tolerated arrhythmias during follow-up and higher risk of ablation failure should be taken into account for indications of AP ablation in children with few symptoms.

  13. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-01-01

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems

  14. Spatial and temporal variation in proportional stock density and relative weight of smallmouth bass in a reservoir

    Science.gov (United States)

    Mesa, Matthew G.; Duke, S.D.; Ward, David L.

    1990-01-01

    Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.

  15. Deflection of jets discharged into a reservoir with a free surface

    International Nuclear Information System (INIS)

    Wada, Akihiro; Ishikawa, Keizo; Mizushima, Jiro; Akinaga, Takeshi

    2011-01-01

    Deflections of jets discharged into a reservoir with a free surface are investigated numerically. The jets are known to deflect towards either side of the free surface or the bottom, whose direction is not determined uniquely in some experimental conditions, i.e. there are multiple stable states realizable in the same condition. The origin of the multiple stable states is explored by utilizing homotopy transformations in which the top boundary of the reservoir is transformed from a rigid to a free boundary and also the location of the outlet throat is continuously moved from mid-height to the top. We depicted bifurcation diagrams of the flow compiling the data of numerical simulations, from which we identified the origin as an imperfect pitchfork bifurcation, and obtained an insight into the mechanism for the direction to be determined. The parameter region where such multiple stable states are possible is also delimited.

  16. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  17. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  18. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  19. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  20. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  1. Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (Northeastern Tunisia)

    Science.gov (United States)

    Houatmia, Faten; Khomsi, Sami; Bédir, Mourad

    2015-11-01

    The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4

  2. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  3. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  4. Avo analysis in the high impedance reservoir of Chuchupa Field

    International Nuclear Information System (INIS)

    Cediel Mauricio; Almanza Ovidio; Montes Luis

    2012-01-01

    The technique of bright spot as a direct indicator of hydrocarbons has been widely used since the work of Ostrander (1984), particularly in gas fields. Located at north of Colombia, the Chuchupa field has produced gas continuously during 30 years, but despite the coverage with 2D seismic, amplitude anomalies associated with gas accumulation have not been observed. In order to find the relationships between the amplitude information and the gas accumulation, an AVO analysis was performed to describe the seismic reservoir response. The raw data of a 2D seismic line that crosses the field from East to West and a well log data set were used. In a first approach the seismic response was modeled using well logs, so a comparative analysis between the furnished synthetic seismograms and the real CDP gathers was done. The results indicated that the reservoirs top is represented by a low amplitude peak which decreases when the offset increases but whose phase remains unchanged. In the well, where the reservoir has 100% gas saturation, a high correlation between the synthetic and real CDP gathers was observed. In a second approach, anomalous clustered points in the IV quadrant were discriminated through intercept versus gradient cross plot analysis. A weak Class-I anomaly was identified, which could not be observed in stacked sections and hence it should be analyzed using pre-stack data.

  5. Automatic patient respiration failure detection system with wireless transmission

    Science.gov (United States)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  6. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  7. Effect of boundary conditions on pressure behavior of finite-conductivity fractures in bounded stratified reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    In this study, a mathematical model was developed to model the pressure behavior of a well located in a bounded multilayer reservoir and crossed by a finite-conductivity vertical fracture. It was found that the dimensionless pressure function and its derivative strongly depend on fracture conductivity and fracture extension during early times. The effect of reservoir heterogeneity on the pressure function is negligible compared to that on the pressure derivative. Both functions exhibit four flow periods: bilinear, formation linear, pseudoradial and pseudosteady-state which are separated by transition periods. One or more of these flow periods may be missing. Data obtained from a long test and which are characterized by a unit slope line indicate that the well is intercepted by deeply extended fractures. It has been found that the fractional production rates of different layers are a good measure of reservoir and fracture characteristics. Flowmeter survey data can be used to eliminate the non-uniqueness problem when using the type curves presented in this study

  8. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  9. Distribution and concentration evaluation of trace and rare earth elements in sediment samples of the Billings and Guarapiranga reservoir systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa S.; Fávaro, Déborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (LAN-CRPq/IPEN/CNEN-SP), São Paulo(Brazil). Lab. de Análise por Ativação Neutrônica; Ferreira, Francisco J. [Companhia Ambiental do Estado de São Paulo (ELAI/CETESB), Sao Paulo, SP (Brazil). Setor de Química Inorgânica

    2017-07-01

    Concentration and distribution of trace and rare earth elements in bottom sediment samples collected in the Billings System (including Rio Grande and Guarapiranga Reservoirs) were assessed by using Instrumental Neutron Activation (INAA). To evaluate the sources of anthropogenic contamination the enrichment factor (FE) and the geoacumulation index (IGeo) were calculated using NASC and Guarapiranga Park Soil as Reference Values. Results were compared to the concentration guideline values established by CCME (Canadian Council of Ministers of the Environment) environmental agency for As, Cr and Zn, and values in other published studies. Most points exceeded TEL values and, in some points, PEL values for these elements, indicating poor sediment quality in these reservoirs. In general terms, the elements As, Cr, Sb and Zn through EF and IGeo calculations present enrichment at all points analyzed, in both collection campaigns, except for the Rio Grande Reservoir points. The region where the reservoirs are located receive untreated sewage as well as pollution from urban occupation, industrial and mining activities, making it difficult to accurately identify the pollution sources. This study found higher concentrations of the elements analyzed in the Billings Reservoir, indicating a greater contamination level in relation to the other reservoirs. (author)

  10. Distribution and concentration evaluation of trace and rare earth elements in sediment samples of the Billings and Guarapiranga reservoir systems

    International Nuclear Information System (INIS)

    Silva, Larissa S.; Fávaro, Déborah I.T.; Ferreira, Francisco J.

    2017-01-01

    Concentration and distribution of trace and rare earth elements in bottom sediment samples collected in the Billings System (including Rio Grande and Guarapiranga Reservoirs) were assessed by using Instrumental Neutron Activation (INAA). To evaluate the sources of anthropogenic contamination the enrichment factor (FE) and the geoacumulation index (IGeo) were calculated using NASC and Guarapiranga Park Soil as Reference Values. Results were compared to the concentration guideline values established by CCME (Canadian Council of Ministers of the Environment) environmental agency for As, Cr and Zn, and values in other published studies. Most points exceeded TEL values and, in some points, PEL values for these elements, indicating poor sediment quality in these reservoirs. In general terms, the elements As, Cr, Sb and Zn through EF and IGeo calculations present enrichment at all points analyzed, in both collection campaigns, except for the Rio Grande Reservoir points. The region where the reservoirs are located receive untreated sewage as well as pollution from urban occupation, industrial and mining activities, making it difficult to accurately identify the pollution sources. This study found higher concentrations of the elements analyzed in the Billings Reservoir, indicating a greater contamination level in relation to the other reservoirs. (author)

  11. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  12. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic.

    Science.gov (United States)

    Sedláček, Jan; Bábek, Ondřej; Nováková, Tereza

    2017-01-01

    While numerous studies of dam reservoirs contamination are reported world-wide, we present a missing link in the study of reservoirs sourced from multiple river catchments. In such reservoirs, different point sources of contaminants and variable composition of their sedimentary matrices add to extremely complex geochemical patterns. We studied a unique, step-wise filled Nové Mlýny dam reservoir, Czech Republic, which consists of three interconnected sub-basins. Their source areas are located in units with contrasting geology and different levels and sources of contamination. The aim of this study is to provide an insight into the provenance of the sediment, including lithogenic elements and anthropogenic pollutants, to investigate the sediment dispersal across the reservoir, and to assess the heavy metal pollution in each basin. The study is based on multi-proxy stratigraphic analysis and geochemistry of sediment cores. There is a considerable gradient in the sediment grain size, brightness, MS and geochemistry, which reflects changing hydrodynamic energy conditions and primary pelagic production of CaCO 3 . The thickness of sediments generally decreases from proximal to distal parts, but underwater currents can accumulate higher amounts of sediments in distal parts near the thalweg line. Average sedimentation rates vary over a wide range from 0.58cm/yr to 2.33cm/yr. In addition, the petrophysical patterns, concentrations of lithogenic elements and their ratios made it possible to identify two main provenance areas, the Dyje River catchment (upper basin) and the Svratka and Jihlava River catchments (middle and lower basin). Enrichment factors (EF) were used for distinguishing the anthropogenic element contribution from the local background levels. We found moderate Zn and Cu pollution (EF ~2 to 5) in the upper basin and Zn, Cu and Pb (EF ~2 to 4.5) in the middle basin with the peak contamination in the late 1980s, indicating that the two basins have different

  13. Sensitive quantification of the HIV-1 reservoir in gut-associated lymphoid tissue.

    Science.gov (United States)

    Morón-López, Sara; Puertas, Maria C; Gálvez, Cristina; Navarro, Jordi; Carrasco, Anna; Esteve, Maria; Manyé, Josep; Crespo, Manel; Salgado, Maria; Martinez-Picado, Javier

    2017-01-01

    The implementation of successful strategies to achieve an HIV cure has become a priority in HIV research. However, the current location and size of HIV reservoirs is still unknown since there are limited tools to evaluate HIV latency in viral sanctuaries such as gut-associated lymphoid tissue (GALT). As reported in the so called "Boston Patients", despite undetectable levels of proviral HIV-1 DNA in blood and GALT, viral rebound happens in just few months after ART interruption. This fact might imply that current methods are not sensitive enough to detect residual reservoirs. Showing that, it is imperative to improve the detection and quantification of HIV-1 reservoir in tissue samples. Herein, we propose a novel non-enzymatic protocol for purification of Lamina Propria Leukocytes (LPL) from gut biopsies combined to viral HIV DNA (vDNA) quantification by droplet digital PCR (ddPCR) to improve the sensitivity and accuracy of viral reservoir measurements (LPL-vDNA assay). Endoscopic ileum biopsies were sampled from 12 HIV-1-infected cART-suppressed subjects. We performed a DTT/EDTA-based treatment for epithelial layer removal followed by non-enzymatic disruption of the tissue to obtain lamina propria cell suspension (LP). CD45+ cells were subsequently purified by flow sorting and vDNA was determined by ddPCR. vDNA quantification levels were significantly higher in purified LPLs (CD45+) than in bulk LPs (pgut-associated viral sanctuaries, which might be used to evaluate any proposed eradication strategy.

  14. First record of Chara indica and Chara zeylanica (Charophyceae, Charales, Characeae in the semiarid reservoirs the state of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Norma Catarina Bueno

    2013-09-01

    Full Text Available In the present study we present the first record of the macroalgaes Chara indica and Chara zeylanica for the state of Rio Grande do Norte, Brazil, and the semiarid northeastern. Specimens of C. indica and C. zeylanica were collected in Santa Cruz and Umari reservoirs, respectively. Both reservoirs are located in the river basin Apodi-Mossoró (Western State in the Caatinga Biome.

  15. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  16. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    Science.gov (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  18. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  19. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  20. In-situ soil loss monitoring in a small Mediterranean catchment to assess the siltation risk of a limno-reservoir

    Science.gov (United States)

    Molina-Navarro, E.; Bienes-Allas, R.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The existence of large reservoirs under Mediterranean climate causes some negative impacts. The construction of small dams in the riverine zone of these reservoirs is an innovative idea designed to counteract some of those impacts, generating a body of water with a constant level which we have termed "limno-reservoirs". Pareja Limno-reservoir, located in the influence area of the Entrepeñas Reservoir (Guadalajara) is among the first limno-reservoirs built in Spain, and the first having a double function: environmental and recreational. The limno-reservoir basin (85.5 Km2) enjoys a Mediterranean climate, however, cold temperatures prevail in winter and maximum annual variation may be around 50 °C. Average annual precipitation is 600 mm, with high variability too. Most of the basin is dominated by a high limestone plateau, while a more erodible lithology surfaces in the hillsides of the Ompólveda River and its tributaries. These characteristics make the basin representative of central Spain. Despite the unquestionable interest of the initiative, it construction has raised some issues about its environmental viability. One of them is related to its siltation risk, as the area shows signs of high erosion rates that have been contrasted in previous empirical studies. An in-situ soil loss monitoring network has been installed in order to determine the soil loss and deposition rates in the limno-reservoir basin (85.5 km2). It includes 15 sampling plots for inter-rill erosion and 8 for sedimentation, each one containing 16 erosion sticks. Rill erosion was studied monitoring 8 rills with a needle micro-profiler, quantifying the sediment deposition in their terminal zone with sticks. These control points have been located in places where the soil type, land use and slope present are representative of the basin, in order to extrapolate the results to similar areas. In-situ monitoring has been performed for three years, starting in 2009 and carrying out sampling every 3

  1. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Science.gov (United States)

    Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  2. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens; Hoteit, Ibrahim

    2014-01-01

    process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase

  3. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  4. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    International Nuclear Information System (INIS)

    Shukri Mohd

    2013-01-01

    Full-text: Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed Wavelet Transform analysis and Modal Location (WTML) based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) technique and DeltaTlocation. The results of the study show that the WTML method produces more accurate location results compared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure. (author)

  5. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    International Nuclear Information System (INIS)

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-01-01

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure

  6. Ecological operation for Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian Guo

    2011-06-01

    Full Text Available The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.

  7. Functional age as an indicator of reservoir senescence

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  8. Spatial and temporal distribution of the zoobenthos community during the filling up period of Porto Primavera Reservoir (Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    A. Jorcin

    Full Text Available This study is part of the limnological monitoring undertaken by the Energy Company of the State of São Paulo (CESP during the filling up process of the Porto Primavera Reservoir (Hydroelectric Power Plant Engenheiro Sérgio Motta. This reservoir, located in the high Paraná River between the States of São Paulo and Mato Grosso do Sul, is the fourth largest in the country. The first filling up phase started in December 1998 and the second phase in March 2001. Samples for benthic community and sediment characteristics analysis were quarterly collected between August of 1999 and November 2001 and also in August of 2002 (11 sampling campaigns. Samplings were carried out at 13 stations distributed in the reservoir, and at one point located downstream of the dam. 128 invertebrate taxa were identified, being Mollusca, Annelida, Insecta and Nematoda the dominant groups during almost the whole study period. Insecta was the best represented class (9 different orders, and Diptera contributed with higher number of taxa, 63. The exotic species of bivalve Corbicula fluminea was recorded in all sampling stations showing its great capacity to colonize new habitats in the neotropical region. Noticeable variations in the fauna density were observed, considering both different periods and locations. The maximum density of organisms (mean value of 7812 ind.m-2 was recorded in the center of the reservoir, and the minimum (mean value 9 ind.m-2 in the more lacustrine area near the dam. The greatest species richness per sample (24 taxa was observed in the reservoir upstream (fluvial zone. The maximum diversity (Shannon-Wiener Index per station/period, 3.82 and 3.86 bits.ind-1, were calculated in the transitional river/reservoir zone during the beginning (August 1999 and in the reservoir central zones in the end (August 2002 of the filling up period, respectively. There was no clear relation between the distribution of the different faunistic groups and the sediment

  9. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  10. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    Science.gov (United States)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  11. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    International Nuclear Information System (INIS)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual

  12. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  13. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  14. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Nascimento da Rocha Junior

    2018-04-01

    Full Text Available Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB is dry and the Piancó River basin (SB is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS is a good predictor for total phosphorus (TP, total nitrogen (TN and chlorophyll-a (CHLA. In addition, a two factorial analysis of variance (two-way ANOVA was performed to test for period (dry, very dry and extremely dry, basin (SB and PB and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity

  15. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  16. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  17. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.

    Science.gov (United States)

    Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V

    2017-01-01

    The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2016-01-01

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels

  19. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  20. The Alphabet Soup of HIV Reservoir Markers.

    Science.gov (United States)

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  1. Failure Patterns After Hemithoracic Pleural Intensity Modulated Radiation Therapy for Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Rimner, Andreas, E-mail: rimnera@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Spratt, Daniel E. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zauderer, Marjorie G. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York (United States); Rosenzweig, Kenneth E. [Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York (United States); Wu, Abraham J.; Foster, Amanda [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Adusumilli, Prasad; Rusch, Valerie W. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Krug, Lee M. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York (United States)

    2014-10-01

    Purpose: We previously reported our technique for delivering intensity modulated radiation therapy (IMRT) to the entire pleura while attempting to spare the lung in patients with malignant pleural mesothelioma (MPM). Herein, we report a detailed pattern-of-failure analysis in patients with MPM who were unresectable or underwent pleurectomy/decortication (P/D), uniformly treated with hemithoracic pleural IMRT. Methods and Materials: Sixty-seven patients with MPM were treated with definitive or adjuvant hemithoracic pleural IMRT between November 2004 and May 2013. Pretreatment imaging, treatment plans, and posttreatment imaging were retrospectively reviewed to determine failure location(s). Failures were categorized as in-field (within the 90% isodose line), marginal (<90% and ≥50% isodose lines), out-of-field (outside the 50% isodose line), or distant. Results: The median follow-up was 24 months from diagnosis and the median time to in-field local failure from the end of RT was 10 months. Forty-three in-field local failures (64%) were found with a 1- and 2-year actuarial failure rate of 56% and 74%, respectively. For patients who underwent P/D versus those who received a partial pleurectomy or were deemed unresectable, the median time to in-field local failure was 14 months versus 6 months, respectively, with 1- and 2-year actuarial in-field local failure rates of 43% and 60% versus 66% and 83%, respectively (P=.03). There were 13 marginal failures (19%). Five of the marginal failures (38%) were located within the costomediastinal recess. Marginal failures decreased with increasing institutional experience (P=.04). Twenty-five patients (37%) had out-of-field failures. Distant failures occurred in 32 patients (48%). Conclusions: After hemithoracic pleural IMRT, local failure remains the dominant form of failure pattern. Patients treated with adjuvant hemithoracic pleural IMRT after P/D experience a significantly longer time to local and distant failure than

  2. Maqalika Reservoir: utilisation and sustainability of Maqalika Reservoir as a source of potable water supply for Maseru in Lesotho

    CSIR Research Space (South Africa)

    Letsie, M

    2008-07-01

    Full Text Available The storage of water in the Maqalika reservoir is gradually decreasing as sediment, carried by the natural catchment run-off, accumulates in the reservoir. Moreover, water pumped into the reservoir from the Caledon River (which is heavily sedimented...

  3. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Taylor, Archie R.

    1996-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  4. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  5. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  6. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  7. Impact of treated wastewater reuse and floods on water quality and fish health within a water reservoir in an arid climate.

    Science.gov (United States)

    Zaibel, Inbal; Zilberg, Dina; Groisman, Ludmila; Arnon, Shai

    2016-07-15

    Treated wastewater (TWW) reuse for agricultural irrigation is a well-established approach to coping with water shortages in semi-arid and arid environments. Recently, additional uses of TWW have emerged, including streamflow augmentation and aquatic ecosystem restoration. The purpose of the current study was to evaluate the water quality and fish health, in an artificial reservoir located in an arid climate (the Yeruham Reservoir, Israel), which regularly receives TWW and sporadic winter floods. The temporal distribution of water levels, nutrients and organic micropollutants (OMPs) were measured during the years 2013-2014. OMPs were also measured in sediment and fish tissues. Finally, the status of fish health was evaluated by histopathology. Water levels and quality were mainly influenced by seasonal processes such as floods and evaporation, and not by the discharge of TWW. Out of 16 tested OMPs, estrone, carbamazepine, diclofenac and bezafibrate were found in the reservoir water, but mostly at concentrations below the predicted no-effect concentration (PNEC) for fish. Concentrations of PCBs and dioxins in fish muscle and liver were much lower than the EU maximal permitted concentrations, and similar to concentrations that were found in food fish in Israel and Europe. In the histopathological analysis, there were no evident tissue abnormalities, and low to moderate infection levels of fish parasites were recorded. The results from the Yeruham Reservoir demonstrated a unique model for the mixture effect between TWW reuse and natural floods to support a unique stable and thriving ecosystem in a water reservoir located in an arid region. This type of reservoir can be widely used for recreation, education, and the social and economic development of a rural environment, such as has occurred in the Yeruham region. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.

    Science.gov (United States)

    Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang

    2017-06-01

    In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.

  9. Characterization of biocenosis in the storage-reservoirs of liquid radioactive wastes of 'Mayak' PA

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Tryapitsina, G.; Andreyev, S.; Akleyev, A. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Mokrov, Y.; Ivanov, I. [Mayak PA (Russian Federation)

    2014-07-01

    A number of storage-reservoirs of liquid radioactive wastes of 'Mayak' Production Association ('Mayak' PA) with different levels of radioactive contamination: reservoir R-17 ('Staroye Boloto'), reservoir R-9 (Lake Karachay), reservoirs of the Techa Cascade R-3 (Koksharov pond), R-4 (Metlinsky pond), R-10 and R-11 is located in Chelyabinsk Oblast (Russia). The operation of these reservoirs began in 1949-1964. Full-scale hydro-biological studies of these reservoirs were started in 2007. The research into the status of biocenosis of these storage reservoirs of liquid radioactive wastes of 'Mayak' PA was performed in 2007 - 2011. The status of biocenosis was evaluated in accordance with the status of following communities: bacterio-plankton, phytoplankton, zooplankton, zoo-benthos, macrophytes and ichthyofauna. The status of ecosystems was determined by radioactive and chemical contamination of water bodies. The results of hydro-biological investigations showed that no changes in the status of biota in reservoir R-11 were revealed as compared to the biological parameters of the water bodies of this geographical zone. In terms of biological parameters the status of the ecosystem of the reservoir R-11 is characterized by a sufficient biological diversity, and can be considered acceptable. The ecosystem of the reservoir R-10 maintains its functional integrity, although there were registered negative effects in the zoo-benthos community associated with the decrease in the parameters of the development of pelophylic mollusks that live at the bottom of the water body throughout the entire life cycle. In reservoir R-4 the parameters of the development of phytoplankton did not differ from those in Reservoirs R-11 and R-10; however, a significant reduction in the quantity of Cladocera and Copepoda was registered in the zooplankton community, while in the zoo-benthos there were no small mollusks that live aground throughout the entire life

  10. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  11. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  12. Implications of changing water cycle for the performance and yield characteristics of the multi-purpose Beas Reservoir in India

    Science.gov (United States)

    Adeloye, A. J.; Ojha, C. S.; Soundharajan, B.; Remesan, R.

    2013-12-01

    the future simulations adopt the future rule curves. This is, however, not the case with the resilience, with the future hydro-climate resulting in a less resilient system when compared with the baseline. The resilience is the ability of the system to recover from a hydrological failure; consequently, lower resilience for the future systems is an indication that longer, continuous failure periods are likely with implications for the two purposes of the reservoir. For example, extended periods of water scarcity that may result from a low resilient system will mean that crops are likely to experience longer periods of water stress with implications for crop yields. In such situations, better operational practices that manage the available water through hedging and irrigation water scheduling will be required. Other interventions may include the introduction of water from other sources, e.g. groundwater.

  13. Peculiarities of Particulate 137Cs transport and sedimentation in Kiev reservoir

    International Nuclear Information System (INIS)

    Voitsekhovitch, O.; Kanivets, V.; Biliy, I.; Laptev, G.; Sansone, U.; Riccardi, M.

    1996-01-01

    The paper presents the data on Chernobyl radiocesium bound to suspended matter and bottom sediments at different locations along the sampling rout from Rivers of Chernobyl zone to upper Reservoirs of Dnieper River. These data were collected as a result of joint Ukrainian-Italian field exercises in the frame of ECP-3 project. It was found out that total 137 Cs concentration in the water column decreases downstream the Chernobyl zone while K D in situ values substantially increase with approach to the Kiev HPS dam. Taking account of uniform hydro-chemical conditions in investigated area one can explain this phenomenon only by gradual elimination of coarse sandy component with low sorption capacity from the river flow by sedimentation. In contrary, radiocesium which is selectively sorbed and fixed on fine clay particles travels much longer distances and ensures observed higher K D in situ values. This conclusion is supported by the analyses of three sediment cores taken in upper, middle and lower parts of Kiev reservoir

  14. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  15. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  16. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  17. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    Science.gov (United States)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  18. Predicting the creep life and failure mode of low-alloy steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J M; Middleton, C J; Aplin, P F [ERA Technology Ltd., Leatherhead (United Kingdom)

    1999-12-31

    This presentation reviews and consolidates experience gained through a number of research projects and practical plant assessments in predicting both the life and the likely failure mode and location in low alloy steel weldments. The approach adopted begins with the recognition that the relative strength difference between the microstructural regions is a key factor controlling both life and failure location. Practical methods based on hardness measurement and adaptable to differing weld geometries are presented and evidence for correlations between hardness ratio, damage accumulation and strain development is discussed. Predictor diagrams relating weld life and failure location to the service conditions and the hardness of the individual microstructural constituents are suggested and comments are given on the implications for identifying the circumstances in which Type IV cracking is to be expected. (orig.) 6 refs.

  19. Predicting the creep life and failure mode of low-alloy steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Middleton, C.J.; Aplin, P.F. [ERA Technology Ltd., Leatherhead (United Kingdom)

    1998-12-31

    This presentation reviews and consolidates experience gained through a number of research projects and practical plant assessments in predicting both the life and the likely failure mode and location in low alloy steel weldments. The approach adopted begins with the recognition that the relative strength difference between the microstructural regions is a key factor controlling both life and failure location. Practical methods based on hardness measurement and adaptable to differing weld geometries are presented and evidence for correlations between hardness ratio, damage accumulation and strain development is discussed. Predictor diagrams relating weld life and failure location to the service conditions and the hardness of the individual microstructural constituents are suggested and comments are given on the implications for identifying the circumstances in which Type IV cracking is to be expected. (orig.) 6 refs.

  20. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  1. Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir, SP

    Directory of Open Access Journals (Sweden)

    Giovanna Moreti Buzelli

    2013-04-01

    Full Text Available As a consequence of the intensification of environmental degradation, we observed a decrease in water availability and a change in water quality. Therefore, the integrated management of watersheds is an issue of extreme importance. Limnological monitoring is an important tool for environmental management, providing information on the quality of inland waters and indicating the main factors responsible for the degradation of water resources. The Barra Bonita reservoir is located in the central region of São Paulo State, in the Superior Middle Tietê Basin, and the adjacent areas of the reservoir are subject to several human activities potentially impacting the environment. In this context, there is a need to determine the nature of negative human impacts on water resources. The present study aimed to analyze and diagnose the water quality of Barra Bonita reservoir using the water quality index (WQI and the trophic state index (TSI. To this end, measurements of specific limnological variables were made in situ and laboratory and an analysis of data from CETESB annual reports was conducted. The results found that the waters of the reservoir were relatively healthy, but hyper eutrophic for the period from2007 to 2012, indicating the importance of environmental management for the restoration and preservation of natural resources in this region. The estimated indices and the land use map of adjacent areas of the Barra Bonita reservoir showed that agriculture was the largest category of land use and that it contributes directly to the degradation of water quality due to contamination by run-off from fertilizers.

  2. Integrated petrophysical approach for determining reserves and reservoir characterization to optimize production of oil sands in northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A.; Koch, J. [Weatherford Canada Partnership, Bonneyville, AB (Canada)

    2008-10-15

    This study used logging data, borehole imaging data, dipole sonic and magnetic resonance data to study a set of 6 wells in the McMurray Formation of northeastern Alberta. The data sets were used to understand the geologic settings, fluid properties, and rock properties of the area's geology as well as to more accurately estimate its reservoir and production potential. The study also incorporated data from electric, nuclear and acoustic measurements. A shaly sand analysis was used to provide key reservoir petrophysical data. Image data in the study was used to characterize the heterogeneity and permeability of the reservoir in order to optimize production. Results of the shaly sand analysis were then combined with core data and nuclear resonance data in order to determine permeability and lithology-independent porosity. Data sets were used to iteratively refine an integrated petrophysical analysis. Results of the analysis indicated that the depositional environment in which the wells were located did not match a typical fluvial-estuarine sands environment. A further interpretation of all data indicated that the wells were located in a shoreface environment. It was concluded that the integration of petrophysical measurements can enable geoscientists to more accurately characterize sub-surface environments. 3 refs., 7 figs.

  3. Reliability testing of failed fuel location system

    International Nuclear Information System (INIS)

    Vieru, G.

    1996-01-01

    This paper presents the experimental reliability tests performed in order to prove the reliability parameters for Failed Fuel Location System (FFLS), equipment used to detect in which channel of a particular heat transport loop a fuel failure is located, and to find in which channel what particular bundle pair is failed. To do so, D20 samples from each reactor channel are sequentially monitored to detect a comparatively high level of delayed neutron activity. 15 refs, 8 figs, 2 tabs

  4. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Rebecca A. Weingarten

    2018-02-01

    Full Text Available The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs, suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings.

  5. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  6. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in

  7. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh

    Science.gov (United States)

    Aminul Islam, M.

    2009-06-01

    This study deals with the diagenesis and reservoir quality of sandstones of the Bhuban Formation located at the Titas Gas Field of Bengal Basin. Petrographic study including XRD, CL, SEM and BSE image analysis and quantitative determination of reservoir properties were carried out for this study. The sandstones are fine to medium-grained, moderately well to well sorted subfeldspathic arenites with subordinate feldspathic and lithic arenites. The diagenetic processes include clay infiltration, compaction and cementation (quartz overgrowth, chlorite, kaolinite, calcite and minor amount of pyrite, dolomite and K-feldspar overgrowth). Quartz is the dominant pore occluding cement and generally occurred as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Pressure solution derived from grain contact is the main contributor of quartz overgrowths. Chlorite occurs as pore-lining and pore filling cement. In some cases, chlorite helps to retain porosity by preventing quartz overgrowth. In some restricted depth interval, pore-occlusion by calcite cement is very much intense. Kaolinite locally developed as vermiform and accelerated the minor porosity loss due to pore-occlusion. Kaolinite/chlorite enhances ineffective microporosity. Kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene or deeper Oligocene source rocks. The relation between diagenesis and reservoir quality is as follows: the initial porosity was decreased by compaction and cementation and then increased by leaching of the metastable grains and dissolution of cement. Good quality reservoir rocks were deposited in fluvial environment and hence quality of reservoir rocks is also environment selective. Porosity and permeability data exhibit good inverse correlation with cement. However, some data points indicate multiple controls on permeability. Reservoir quality is thus controlled by

  8. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  9. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  10. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  11. Survivability Strategies for Epidemic Failures in Heterogeneous Networks

    DEFF Research Database (Denmark)

    Katsikas, Dimitrios; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    Nowadays, transport networks, carry extremely large amounts of network traffic, and are widely spread across multiple geographical locations. As a result, any possible connectivity failure could directly impact the service delivery of a vast amount of users. Therefore, the network should be able...... protection, path restoration) X[1]X. Hence, assuming sufficient resources, network resilience can be achieved when a single failure occur (e.g. fiber cut). However, when it comes to simultaneous failures such as cascading and epidemic failures, the available solutions are expensive X[2]X. For Generalized...... the network X[6]X[7]X. This paper evaluates the reliability of a GMPLS transport network under epidemic failure scenarios. Thus, the aim is to increase the fault tolerance of the GMPLS technology when simultaneous failures occur impacting a large number of network nodes across an optical transport network...

  12. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Ochałek Agnieszka

    2018-01-01

    Full Text Available The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements – an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  13. A High-Precision Time-Frequency Entropy Based on Synchrosqueezing Generalized S-Transform Applied in Reservoir Detection

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-06-01

    Full Text Available According to the fact that high frequency will be abnormally attenuated when seismic signals travel across reservoirs, a new method, which is named high-precision time-frequency entropy based on synchrosqueezing generalized S-transform, is proposed for hydrocarbon reservoir detection in this paper. First, the proposed method obtains the time-frequency spectra by synchrosqueezing generalized S-transform (SSGST, which are concentrated around the real instantaneous frequency of the signals. Then, considering the characteristics and effects of noises, we give a frequency constraint condition to calculate the entropy based on time-frequency spectra. The synthetic example verifies that the entropy will be abnormally high when seismic signals have an abnormal attenuation. Besides, comparing with the GST time-frequency entropy and the original SSGST time-frequency entropy in field data, the results of the proposed method show higher precision. Moreover, the proposed method can not only accurately detect and locate hydrocarbon reservoirs, but also effectively suppress the impact of random noises.

  14. The conservatism of the net-section stress procedure for predicting the failure of cracked piping systems: The effect of crack location on the degree of conservatism

    International Nuclear Information System (INIS)

    Smith, E.

    1993-01-01

    Interest in the integrity of cracked piping systems fabricated from ductile materials has been motivated, in large part, by the technological problem of intergranular stress corrosion cracking of Type 304 stainless steel piping in boiling water nuclear reactor piping systems. The failure of cracked steel piping is often predicted by assuming that failure conforms to a net-section stress criterion using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stresses at the cracked section are usually calculated via a purely elastic analysis based on the piping being uncracked. However because the piping is built-in at the ends into a larger component, and since the onset of crack extension requires some plastic deformation, use of the net-section stress approach can give overly conservative failure predictions. An earlier paper has quantified the extent of this conservatism, and has shown how it depends on the material ductility and the elastic flexibility of a piping system. Using the results of analyses for simple model systems, the present paper shows that, for the same cracked section geometry, the degree of conservatism is markedly influenced by the location of the cracked section within the system

  15. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  16. Analysis of herbaceous vegetation diversity in a reservoir in the Brazilian semiarid region (Açude Itans – RN

    Directory of Open Access Journals (Sweden)

    Diógenes Félix da Silva Costa

    2016-02-01

    Full Text Available Herbaceous plants represent a significant portion of the biodiversity in the Caatinga and are also found around artificial reservoirs in different habitats. This work studied the diversity and the spatial distribution of herbaceous vegetation in the flood zone of Açude Itans, a reservoir located in Caicó (which has a semiarid climate in the state of Rio Grande do Norte. Using the spatial analysis results, the statistical data were stored and analyzed in a geographic information system (GIS and a series of thematic maps of the study area were generated. Nine points were sampled in the water/soil ecotone of the reservoir and 142 specimens were collected. Forty-four species were identified and there was a strong presence of weeds and/or ruderal species. The most significant family was Poaceae, with 37 individuals and seven species, followed by Fabaceae, with 31 individuals and ten species. Cucurbitaceae, Plantaginaceae and Portulacaceae were the least representative families. The least diverse sampling site was the transition zone upstream of the reservoir, while the area near the dam was the most diverse.

  17. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs

  18. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amistad Reservoir, Tex. 110.77... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That portion of the Amistad Reservoir enclosed by a line connecting the following points, excluding a 300-foot...

  19. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  20. Modelling the failure modes in geobag revetments.

    Science.gov (United States)

    Akter, A; Crapper, M; Pender, G; Wright, G; Wong, W S

    2012-01-01

    In recent years, sand filled geotextile bags (geobags) have been used as a means of long-term riverbank revetment stabilization. However, despite their deployment in a significant number of locations, the failure modes of such structures are not well understood. Three interactions influence the geobag performance, i.e. geobag-geobag, geobag-water flow and geobag-water flow-river bank. The aim of the research reported here is to develop a detailed understanding of the failure mechanisms in a geobag revetment using a discrete element model (DEM) validated by laboratory data. The laboratory measured velocity data were used for preparing a mapped velocity field for a coupled DEM simulation of geobag revetment failure. The validated DEM model could identify well the critical bag location in varying water depths. Toe scour, one of the major instability factors in revetments, and its influence on the bottom-most layer of the bags were also reasonably represented in this DEM model. It is envisaged that the use of a DEM model will provide more details on geobag revetment performance in riverbanks.

  1. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    Science.gov (United States)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  2. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  3. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  4. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  5. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  6. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  7. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Science.gov (United States)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  8. Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis

    Directory of Open Access Journals (Sweden)

    Michela Giustiniani

    2010-12-01

    Full Text Available A gas hydrate reservoir, identified by the presence of the bottom simulating reflector, is located offshore of the Antarctic Peninsula. The analysis of geophysical dataset acquired during three geophysical cruises allowed us to characterize this reservoir. 2D velocity fields were obtained by using the output of the pre-stack depth migration iteratively. Gas hydrate amount was estimated by seismic velocity, using the modified Biot-Geerstma-Smit theory. The total volume of gas hydrate estimated, in an area of about 600 km2, is in a range of 16 × 109–20 × 109 m3. Assuming that 1 m3 of gas hydrate corresponds to 140 m3 of free gas in standard conditions, the reservoir could contain a total volume that ranges from 1.68 to 2.8 × 1012 m3 of free gas. The interpretation of the pre-stack depth migrated sections and the high resolution morpho-bathymetry image allowed us to define a structural model of the area. Two main fault systems, characterized by left transtensive and compressive movement, are recognized, which interact with a minor transtensive fault system. The regional geothermal gradient (about 37.5 °C/km, increasing close to a mud volcano likely due to fluid-upwelling, was estimated through the depth of the bottom simulating reflector by seismic data.

  9. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  10. Early Limits on the Verbal Updating of an Object's Location

    Science.gov (United States)

    Ganea, Patricia A.; Harris, Paul L.

    2013-01-01

    Recent research has shown that by 30 months of age, children can successfully update their representation of an absent object's location on the basis of new verbal information, whereas 23-month-olds often return to the object's prior location. The current results show that this updating failure persisted even when (a) toddlers received visual and…

  11. 49 CFR 236.792 - Reservoir, equalizing.

    Science.gov (United States)

    2010-10-01

    ... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of the equalizing piston chamber of the automatic brake valve, to provide uniform service reductions in brake pipe...

  12. Gradients in Catostomid assemblages along a reservoir cascade

    Science.gov (United States)

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  13. Reservoir area of influence and implications for fisheries management

    Science.gov (United States)

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  14. Variation of sup 137 Cs levels between sexes, body sizes and collection localities of mosquitofish, Gambusia holbrooki (Girard 1859), inhabiting a reactor cooling reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M.C.; Brisbin, I.L. Jr. (Savannah River Ecology Lab., Aiken, SC (USA))

    1990-01-01

    Whole body concentrations of {sup 137}Cs were determined for 190 mosquitofish (Gambusia holbrooki) collected in April 1987 from three locations in a former cooling reservoir which had been contaminated with {sup 137}Cs from production reactor effluents between 1961 and 1964. Male fish collected near the point where the reactor effluent had entered the reservoir tended to have higher {sup 137}Cs concentrations than those from the other locations. Females did not differ in {sup 137}Cs concentrations between the three locations. Females at the site of contaminant entry tended to decrease in {sup 137}Cs concentration as body size increased. These results suggest that that radionuclide whole body concentrations may vary in unexpected ways between sex or size classes within a given species and that such differences may also vary within microgeographic scales. (author).

  15. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott

    2003-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Raj Kumar; Keith Brown; Hickman, T. Scott; Justice, James J.

    2000-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott; Justice, James J.

    2001-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Science.gov (United States)

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  1. Analytical Study of different types Of network failure detection and possible remedies

    Science.gov (United States)

    Saxena, Shikha; Chandra, Somnath

    2012-07-01

    Faults in a network have various causes,such as the failure of one or more routers, fiber-cuts, failure of physical elements at the optical layer, or extraneous causes like power outages. These faults are usually detected as failures of a set of dependent logical entities and the links affected by the failed components. A reliable control plane plays a crucial role in creating high-level services in the next-generation transport network based on the Generalized Multiprotocol Label Switching (GMPLS) or Automatically Switched Optical Networks (ASON) model. In this paper, approaches to control-plane survivability, based on protection and restoration mechanisms, are examined. Procedures for the control plane state recovery are also discussed, including link and node failure recovery and the concepts of monitoring paths (MPs) and monitoring cycles (MCs) for unique localization of shared risk linked group (SRLG) failures in all-optical networks. An SRLG failure is a failure of multiple links due to a failure of a common resource. MCs (MPs) start and end at same (distinct) monitoring location(s). They are constructed such that any SRLG failure results in the failure of a unique combination of paths and cycles. We derive necessary and sufficient conditions on the set of MCs and MPs needed for localizing an SRLG failure in an arbitrary graph. Procedure of Protection and Restoration of the SRLG failure by backup re-provisioning algorithm have also been discussed.

  2. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed

    2015-03-01

    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  3. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    Science.gov (United States)

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  4. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  5. Analysis and application of classification methods of complex carbonate reservoirs

    Science.gov (United States)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  6. Seismic response of concrete gravity dams with finite reservoir

    International Nuclear Information System (INIS)

    Baumber, T.; Ghobarah, A.

    1992-01-01

    In most previous analyses of dam responses to earthquake ground motion, the upstream reservoir is assumed to be infinite in length and completely straight. The meandering nature of the river system, however, results in the creation of a finite length reservoir upstream of the dam structure. A study was carried out to examine the effects of the finite length of the reservoir on the dynamic behavior of the monolith. The effect of excitation of the far end of the boundary on the monolith's response is also of interest. The dam-foundation-reservoir system is modelled using a sub-structuring approach. The analysis is conducted in the frequency domain and utilizes the finite element technique. The water in the reservoir is assumed to be compressible, inviscid, and irrotational. The upstream reservoir is assumed to have a rectangular cross-section. It was found that the finite length reservoir assumption results in supplementary response peaks in the monolith's response. The finite reservoir length allows the reservoir to resonate both in horizontal and vertical directions. The magnitude and spacing of these supplementary response peaks are dependent on the length of the reservoir. The phase of the ground motion which affects the far end boundary of the reservoir was also found to have a significant effect on the dam monolith's response. 8 refs., 5 figs

  7. The further environmental development of Polyphyto Hydroelectric Project reservoir in Kozani prefecture and its contribution to the life quality improvement

    Science.gov (United States)

    Saounatsou, Chara; Georgi, Julia

    2014-08-01

    The Polyphyto Hydroelectric Project was constructed in 1974 and it has been operating since on the Aliakmonas River, Kozani prefecture, by the Greek Public Power Corporation. The construction of the Ilarion Hydroelectric Project, upstream from the Polyphyto Reservoir, has been recently completed and will start operating in the near future. Apart from hydroelectric power production, the Polyphyto reservoir provides flood control to the areas below the Polyphyto dam. It is also used to manage water provision to the city of Thessaloniki and adjacent agricultural plain, providing at the same time cooling water to the Thermo Electric Projects in Ptolemaida. The Polyphyto reservoir has potential for further development as an economic fulcrum to the region in which is located. The Kozani and Servia-Velvendos Municipalities have proceeded to the construction of several touristic, nautical - athletic and fishing projects. In order to promote such developments, while preserving the artificial wetland, flora and fauna of the Polyphyto Reservoir, it is important to reduce the fluctuation of the reservoir elevation which according to its technical characteristics is 21m. The aim of this paper is to propose the combined operation of the two Hydroelectric Project reservoirs to satisfy all the present Polyphyto Hydroelectric Project functions and to reduce the annual fluctuation of the Polyphyto Reservoir. The HEC-5, Version 8 / 1998 computer model was used in our calculations, as developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers for reservoir operation simulation. Five possible operation scenarios are tested in this paper to show that the present fluctuation of the Polyphyto Reservoir can be reduced, with some limitations, except during dry weather periods.

  8. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    Science.gov (United States)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  9. Failure assessment diagrams for circular hollow section X- and K-joints

    International Nuclear Information System (INIS)

    Qian, Xudong

    2013-01-01

    This paper reports the failure assessment curves for semi-elliptical surface cracks located at hot-spot positions in the circular hollow section X- and K-joints. The failure assessment curves derive from the square root of the ratio between the linear–elastic and the elastic–plastic energy release rates, computed from the domain-integral approach. This study examines both the material and geometric dependence of the failure assessment curves. The area reduction factor, used in defining the strength of the cracked joints, imposes a significant effect on the computed failure assessment curve. The failure assessment curves indicate negligible variations with respect to the crack-front locations and the material yield strength. The crack depth ratio exerts a stronger effect on the computed failure assessment curve than does the crack aspect ratio. This study proposes a parametric expression for the failure assessment curves based on the geometric parameters for surface cracks in circular hollow section X- and K-joints. -- Highlights: ► This study proposes geometric dependent expressions of FADs for tubular joints. ► We examine the geometric and material dependence of the FADs for X- and K-joints. ► The proposed FAD is independent of yield strength and is a lower-bound for typical hardening

  10. Failure probability under parameter uncertainty.

    Science.gov (United States)

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  11. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Fabricio D., E-mail: fabricio.cid@gmail.com [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Anton, Rosa I. [Department of Analytical Chemistry, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Pardo, Rafael; Vega, Marisol [Department of Analytical Chemistry, Facultad de Ciencias, Universidad de Valladolid, Valladolid (Spain); Caviedes-Vidal, Enrique [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina)

    2011-10-31

    Highlights: {yields} Water quality of an Argentinean reservoir has been investigated by N-way PCA. {yields} PARAFAC mode modelled spatial and seasonal variations of water composition. {yields} Two factors related with organic and lead pollution have been identified. {yields} The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the

  12. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    International Nuclear Information System (INIS)

    Cid, Fabricio D.; Anton, Rosa I.; Pardo, Rafael; Vega, Marisol; Caviedes-Vidal, Enrique

    2011-01-01

    Highlights: → Water quality of an Argentinean reservoir has been investigated by N-way PCA. → PARAFAC mode modelled spatial and seasonal variations of water composition. → Two factors related with organic and lead pollution have been identified. → The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the spatial and

  13. Metal and trace element sediment assessment from Salto Grande reservoir, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A., E-mail: walace@usp.br [Setor de Analises Toxicologicas. CETESB, Sao Paulo, SP (Brazil); Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao com Neutrons

    2011-07-01

    The Salto Grande Reservoir is used for electric generation, irrigation, fish farming, recreation and water supply for the region's cities. The reservoir belongs to the city of Americana, located in on the eastern region of Sao Paulo State, Brazil. It belongs to the Piracicaba River Hydrographic Basin, the second most important economic and populated region and one of the most polluted areas in the State. This basin is located in a highly industrialized and agricultural region. Due to urban, industrial and agricultural activities as well as sewage wastes the water and sediments of this reservoir and surroundings are extremely contaminated, mainly by metals, according to CETESB (Environmental Control Agency of the Sao Paulo State). In order to obtain better information about its sediment contamination the present study reports results of the concentration of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Se, Ta, Th, U, Zn and rare earth (Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb)) elements in sediments and Cd, Cr, Cu, Ni and Pb concentration in sediments and water from the Salto Grande Reservoir. Multielementar analysis was carried out by Instrumental Neutron Activation Analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cd, Cr, Cu, Pb, Ni and Zn were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL) and adopted by CETESB, (author)

  14. Metal and trace element sediment assessment from Salto Grande reservoir, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Favaro, Deborah I.T.

    2011-01-01

    The Salto Grande Reservoir is used for electric generation, irrigation, fish farming, recreation and water supply for the region's cities. The reservoir belongs to the city of Americana, located in on the eastern region of Sao Paulo State, Brazil. It belongs to the Piracicaba River Hydrographic Basin, the second most important economic and populated region and one of the most polluted areas in the State. This basin is located in a highly industrialized and agricultural region. Due to urban, industrial and agricultural activities as well as sewage wastes the water and sediments of this reservoir and surroundings are extremely contaminated, mainly by metals, according to CETESB (Environmental Control Agency of the Sao Paulo State). In order to obtain better information about its sediment contamination the present study reports results of the concentration of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Se, Ta, Th, U, Zn and rare earth (Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb)) elements in sediments and Cd, Cr, Cu, Ni and Pb concentration in sediments and water from the Salto Grande Reservoir. Multielementar analysis was carried out by Instrumental Neutron Activation Analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cd, Cr, Cu, Pb, Ni and Zn were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL) and adopted by CETESB, (author)

  15. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reservoir shorelines : a methodology for evaluating operational impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, M.; Braund-Read, J.; Musgrave, B. [BC Hydro, Burnaby, BC (Canada)

    2009-07-01

    BC Hydro has been operating hydroelectric facilities for over a century in British Columbia. The integrity and stability of the shorelines and slopes bordering hydroelectric reservoirs is affected by changing water levels in the reservoir, natural processes of flooding, wind and wave action and modification of groundwater levels. Establishing setbacks landward of the shoreline are needed in order to protect useable shoreline property that may be at risk of flooding, erosion or instability due to reservoir operations. Many of the reservoirs in British Columbia are situated in steep, glaciated valleys with diverse geological, geomorphological and climatic conditions and a variety of eroding shorelines. As such, geotechnical studies are needed to determine the operational impacts on reservoir shorelines. Since the 1960s BC Hydro has been developing a methodology for evaluating reservoir impacts and determining the land around the reservoir perimeter that should remain as a right of way for operations while safeguarding waterfront development. The methodology was modified in the 1990s to include geomorphological and geological processes. However, uncertainties in the methodology still exist due to limited understanding of key issues such as rates of erosion and shoreline regression, immaturity of present day reservoir shorelines and impacts of climate change. 11 refs., 1 tab., 7 figs.

  17. Model of dispersion of a passive species in a reservoir with application to radionuclides discharged from the Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Almquist, C.W.; Harper, W.L.; Ungate, C.D.; Ferrick, M.G.

    1977-04-01

    An accidental release of a quantity of radioactive material took place from the Browns Ferry Nuclear Plant RHRS into Wheeler Reservoir from 1945 CST on January 4, 1977, until 0200 CST on January 5. The Water Systems Development Branch was requested to predict both the location of the effluent patch as it progressed down Wheeler Reservoir and the concentration distribution within the patch. Of particular interest were the time of arrival and concentrations expected at the nearest downstream public water supply, located on the left bank at TRM 282.2. Preliminary calculations indicated that a two-dimensional (horizontal plane), unsteady model was required to adequately model the diffusion and advection processes. A Gaussian Puff type model was developed for this purpose, employing the existing TVA Simulated Open Channel Hydraulic Model for the calculation of the unsteady reservoir flows. Major results from this model were as follows: (1) the effluent patch was predicted to reach the nearest downstream public water supply at 1800 CST on January 6, approximately 46 hours after the start of the release; (2) the maximum radionuclide concentration in the reservoir at this time was predicted to be approximately 10 -4 of the initial concentration; this would occur at the right bank; and because of the relatively slow transverse mixing, it was predicted that, for practical purposes, the effluent would not have reached the left bank by the time it reached TRM 282.2. In addition, hourly predictions for the location of the effluent patch were made. It was felt that the concentration predictions were somewhat conservative, but were realistic. The model presented in this report is applicable to any passive species and will be further refined to provide more accurate mixing estimates in future applications

  18. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  19. Phenotypic plasticity in fish life-history traits in two neotropical reservoirs : Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname

    OpenAIRE

    Merona de, Bernard; Mol, J.; Vigouroux, R.; Chaves, P. D.

    2009-01-01

    Fish species are known for their large phenotypic plasticity in life-history traits in relation to environmental characteristics. Plasticity allows species to increase their fitness in a given environment. Here we examined the life-history response of fish species after an abrupt change in their environment caused by the damming of rivers. Two reservoirs of different age, both situated on the Guiana Shield, were investigated: the young Petit-Saut Reservoir in French Guiana (14 years) and the ...

  20. Tracing fluid flow in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.