WorldWideScience

Sample records for reservoir engineering vapour-dominated

  1. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  2. Geothermal reservoir engineering research

    Science.gov (United States)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  3. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  4. Reservoir geochemistry. A reservoir engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    England, W.A. [BP Exploration, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7LN (United Kingdom)

    2007-09-15

    This paper reviews the applications of reservoir geochemistry from a reservoir engineering point of view. Some of the main tasks of reservoir engineering are discussed with an emphasis on the importance of appraising reservoirs in the pre-development stage. A brief review of the principal methods and applications of reservoir geochemistry are given, in the context of applications to reservoir engineering problems. The importance of compositional differences in fluid samples from different depths or spatial locations is discussed in connection with the identification of internal flow barriers. The importance of understanding the magnitude and origin of vertical compositional gradients is emphasised because of possible confusion with purely lateral changes. The geochemical origin and rate of dissipation of compositional differences over geological time is discussed. Geochemical techniques suitable for bulk petroleum fluid samples include GC fingerprinting, GCMS, isotopic and PVT measurements. Core sample petroleum extracts may also be studied by standard geochemical methods but with the added complication of possible contamination by drilling mud. Aqueous phase residual salt extracts can be studied by strontium isotope analysis from core samples. Petroleum fluid inclusions allow the possibility of establishing the composition of paleo-accumulations. The problems in predicting flow barriers from geochemical measurements are discussed in terms of 'false positives' and 'false negatives'. Suggestions are made for areas that need further development in order to encourage the wider acceptance and application of reservoir geochemistry by the reservoir engineering community. The importance of integrating all available data is emphasised. Reservoir geochemistry may be applied to a range of practical engineering problems including production allocation, reservoir compartmentalisation, and the prediction of gravitational gradients. In this review

  5. Quantum reservoir engineering

    CERN Document Server

    Poyatos, J F; Zoller, P

    1996-01-01

    We show how to design different couplings between a single ion trapped in a harmonic potential and an environment. This will provide the basis for the experimental study of the process of decoherence in a quantum system. The coupling is due to the absorption of a laser photon and subsequent spontaneous emission. The variation of the laser frequencies and intensities allows one to ``engineer'' the coupling and select the master equation describing the motion of the ion.

  6. Quantum Reservoir Engineering

    OpenAIRE

    Poyatos, J. F.; Cirac, J. I.; Zoller, P.

    1996-01-01

    We show how to design different couplings between a single ion trapped in a harmonic potential and an environment. This will provide the basis for the experimental study of the process of decoherence in a quantum system. The coupling is due to the absorption of a laser photon and subsequent spontaneous emission. The variation of the laser frequencies and intensities allows one to ``engineer'' the coupling and select the master equation describing the motion of the ion.

  7. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  8. Reservoir geochemistry: A link between reservoir geology and engineering?

    Energy Technology Data Exchange (ETDEWEB)

    Larter, S.R.; Aplin, A.C. [Univ. of Newcastle upon Tyne (United Kingdom); Corbett, P.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1994-12-31

    Geochemistry provides a natural but poorly exploited link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the PVT properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a sub-meter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  9. Reservoir geochemistry: A link between reservoir geology and engineering?

    Energy Technology Data Exchange (ETDEWEB)

    Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-02-01

    Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  10. Reservoir geomechanics: new approach to reservoir engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Settari, A.; Walters, D.A.; Behie, G.A. [Duke Engineering and Services Inc., Calgary, AB (Canada)

    1999-07-01

    The rock mechanics aspects of reservoir behavior are reviewed, and a description is included of some recent trends in coupled reservoir and strata mechanics modelling. Case histories are summarized which are field applications of these new trends and tools. These case histories include: (1) high rate injection into an oil sand reservoir; (2) compaction modelling of a North Sea reservoir; and (3) brine disposal at a fracturing pressure. Coupled geomechanical modelling is feasible on a full field scale, and it provides flexibility in the degree of coupling and calculational efficiency. The scope of interest in data gathering and characterization must be extended beyond reservoir boundaries because of the coupled modelling approach. This modelling provides results that can be employed in integrated reservoir management that includes reservoir engineering, drilling and completions. Considering the three case histories, coupled modelling can be used for predicting fracture initiation and re-orientation, reservoir compaction and deformations, and enhancement of injectivity due to stress dependent formation properties. Coupled modelling has brought reservoir modelling to a new realistic level and produces significant economic gains. 15 refs., 8 figs.

  11. Petroleum reservoir engineering - a personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Archer, J.S. [Imperial Coll. of Science and Technology, London (United Kingdom)

    1996-12-31

    This paper was invited as part of the Ad 1995 - NW Europe`s Hydrocarbon Industry Symposium to mark Aberdeen University`s 500th Anniversay. The author has been taken the opportunity to recall, from a highly personal and selective perspective, some of the events of the last 25 years in reservoir engineering, through his own experiences of North Sea fields. The first part of the paper sets the background to reservoir engineering through some of the key contributions to the literature. The second part recalls the early North Sea reservoir planning and the emergence of multidisciplinary approaches to reservoir characterization and asset management. The third part of the paper focuses on reservoir engineering research at Imperial College, and the final part poses a number of questions on the future of reservoir engineering in a UK North Sea context. The author does not intend to provide a critical appraisal of the reservoir engineering literature that has emerged in the last 25 years, therefore, the reservoir engineering with which the author has been most closely associated naturally receives the greatest prominence in a paper of this type. In no way should this be construed as a claim to invention. (author)

  12. Finite temperature reservoir engineering and entanglement dynamics

    OpenAIRE

    Fedortchenko, S.; Keller, A.; Coudreau, T.; Milman, P.

    2014-01-01

    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with tempera...

  13. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  14. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  15. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  16. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  17. Acid gas injection : reservoir engineering considerations

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Calgary Univ., AB (Canada)

    2009-07-01

    This study discussed reservoir engineering considerations related to acid gas injection, including the effects of pressure. A map of acid gas injection sites in Alberta was presented. The WASP Nisku acid gas project is a carbon dioxide (CO{sub 2}) sequestration project located in a dolomitized aquifer close to coal-fired power plants. Analytical solutions developed at the site include a multi-well injectivity procedure for infinite reservoirs. Analytical considerations at the site included low water compressibility, strong interference, and a lack of flow boundaries. Chromatographic separation techniques were used to address the compositional effects of the reservoir in relation to the injection wells. Techniques developed at the CO{sub 2} sequestration sites are being used to develop procedures for acid gas storage in depleted gas pools and beneath the ocean floor. tabs., figs.

  18. Enhanced output entanglement with reservoir engineering

    OpenAIRE

    Yan, Xiao-Bo

    2017-01-01

    We study the output entanglement in a three-mode optomechanical system via reservoir engineering by shifting the center frequency of filter function away from resonant frequency. We find the bandwidth of the filter function can suppress the entanglement in the vicinity of resonant frequency of the system, while the entanglement will become prosperous if the center frequency departs from the resonant frequency. We obtain the approximate analytical expressions of the output entanglement, and fr...

  19. Reservoir engineering with ultracold Rydberg atoms

    OpenAIRE

    Schönleber, David W.; Bentley, Christopher D. B.; Eisfeld, Alexander

    2016-01-01

    We apply reservoir engineering to construct a thermal environment with controllable temperature in an ultracold atomic Rydberg system. A Boltzmann distribution of the system's eigenstates is produced by optically driving a small environment of ultracold atoms, which is coupled to a photonic continuum through spontaneous emission. This technique provides a useful tool for quantum simulation of dynamics coupled to a thermal environment. Additionally, we demonstrate that pure eigenstates, such a...

  20. Geothermal reservoir engineering. Part 1. Reservoir assessment; Chinetsu choryuso kogaku. 1. Choryuso hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1997-03-15

    This paper is the introduction entitled `Reservoir Assessment` of a lecture on geothermal reservoir engineering. Geothermal resources are described first. The amount of heat released from the inner part of the earth to the surface is 4.2 billion watts. The present technology is able to develop up to 2 to 3 km from the surface. In the section of Geothermal Reservoirs, the concept models of geothermal systems are explained. The development of geothermal reservoirs is essentially to collect heat from the reservoirs. Basically, 2 processes are considered, viz. Cold Sweep and In Situ Boiling. The technical field that is closely related to the reservoir assessment is the geothermal reservoir engineering and this was born in 1970`s. The reservoir modeling is dealt with dividing into 3 headings, viz. Mathematical model and reservoir simulator, Making reservoir model and History of reservoir model at Wairakei. The production forecast and the post-production behavior are also described. 12 refs., 15 figs., 2 tabs.

  1. Optimized recovery through cooperative geology and reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Craig, F.F. Jr.; Willcox, P.J.; Ballard, J.R.; Nation, W.R.

    1976-01-01

    Reservoir engineers have always used geological descriptions in their performance calculations. At first, the only information that could be utilized consisted of gross factors such as structure, thickness, fault and boundary locations, and the like, and average values for permeability, porosity, and fluid saturations. The advent of easy-to-use, relatively inexpensive mathematical models provided a new and powerful tool to the reservoir engineer for predicting performance. However, this tool required for its optimum use a more detailed reservoir description than geologists were accustomed to providing. Today's reservoir engineer utilizes the most detailed geological information along with a reservoir performance simulator to synthesize a detailed reservoir description capable of matching actual field performance data. Use of such a reservoir description permits the design of operating programs to obtain optimized recovery from hydrocarbon reservoirs. Two examples of the use of this combined geology-reservoir engineering technique are taken from the international arena of operations.

  2. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  3. Third workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third

  4. The role of petroleum engineering on geothermal reservoir assessments

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, H. [ISTec, Koeln (Germany)

    2008-02-15

    Reservoir assessment is the most critical issue of the risk analysis on the use of a geothermal energy source and requires a multi disciplinary survey of the underground objective. Petroleum reservoir engineering with its methodology and its actual technology level fits well with the needs of geothermal reservoir assessments. In this study similarities and differences of the hydrocarbon and geothermal reservoirs are discussed briefly in terms of exploration and production. Furthermore the petroleum reservoir engineering techniques which are currently used and which can be used in geothermal reservoir assessments are summarized. (orig.)

  5. A finite element simulation system in reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiaozhong [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-03-01

    Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.

  6. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  7. Sixth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of

  8. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Christopher R [ORNL

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  9. Petroleum geochemical proxies for reservoir engineering parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, B. [Petroleum Reservoir Group (PRG), Department of Geology and Geophysics, University of Calgary, 2500 University Drive NW, Calgary, Alberta (Canada); Lager, A. [NRG: School of Civil Engineering and Geosciences, Drummond Building, The University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Potter, D.K.; Buckman, J.O. [Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS (United Kingdom); Larter, S.R. [Petroleum Reservoir Group (PRG), Department of Geology and Geophysics, University of Calgary, 2500 University Drive NW, Calgary, Alberta (Canada); NRG: School of Civil Engineering and Geosciences, Drummond Building, The University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2007-09-15

    The prediction of fluid flow behaviour in petroleum reservoirs is influenced by the physical and chemical processes active in interacting crude oil/brine/rock systems. It is usually not possible to assess these complex systems directly so proxies for molecular scale behaviour are needed. By their very nature, polar non-hydrocarbons are sensitive to fluid-rock interactions, and if properly exploited they may be utilised as proxies for describing reservoir engineering properties (e.g. wettability) that are also sensitive to fluid-rock interactions. We have identified a group of aromatic oxygen (alkylphenols and alkylfluorenones) and aromatic nitrogen (alkylcarbazoles) compounds present in petroleum that appear to respond to variations in fluid-rock properties. Here we describe the chemical and physical changes in a series of core samples obtained from North Sea reservoirs. A number of petrophysical parameters displayed strong correlations with polar non-hydrocarbon occurrence. For example, deflections in gamma ray logs in response to clay content in a coarsening upwards sandstone unit also showed similar deflections from a number of geochemical logs. A core-flood experiment was designed to monitor the chemical and physical changes during oil migration in a siltstone core. Following completion of the core-flood experiment, Environmental Scanning Electron Microscopy (ESEM) analysis of core samples indicated hydrophilic and hydrophobic surface tendencies grading throughout the core. The distributions of polar non-hydrocarbons (e.g. C{sub 0}-C{sub 3}-phenols) appear to correspond closely to the observed wettability alteration. The results confirm the potential for developing proxies for fluid-rock interactions through monitoring the surface active compounds present in the polar non-hydrocarbon fraction of petroleum. (author)

  10. Reservoir engineering. 1995 SPE annual technical conference and exhibition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains the proceedings of the Annual Technical Conference and Exhibition of the Society of Petroleum Engineers which was held on October 22-25, 1995 in Dallas, Texas. This volume contains the presentations regarding Reservoir Engineering. The topics covered in these presentations include: resource management and reservoir engineering of oil, natural gas and gas condensate fields, mathematical models and computerized simulation of fluid flow in reservoir rock, geochemistry of reservoir fluids, and enhanced recovery of oil and natural gas using waterflooding and other secondary recovery methods.

  11. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  12. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  13. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  14. Sixth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of

  15. 1996 SPE annual technical conference and exhibition: Reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document contains the Proceedings of the 1996 Society of Petroleum Engineers Annual Technical Conference and Exhibition, Reservoir Engineering section. Topics covered in this section include the evaluation of reservoir engineering and resource management techniques for oil and natural gas fields, description of problems and maintenance techniques for fluid flow in oil wells and pipelines, and technology assessment of enhanced recovery techniques for increasing production from oil and gas fields.

  16. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who

  17. Reservoir engineering technology used for geothermal reservoir assessment studies in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, H. [ISTec, Inst. fuer Sicherheitstechnologie, Koeln (Germany); Pusch, G. [Inst. fuer Erdoel- und Erdgastechnik, TU Clausthal (Germany)

    2006-07-01

    The development of the geothermal reservoirs needs and uses the know-how and technology of petroleum reservoir engineering. The interaction of both disciplines is due to the similarities of underground geothermal systems to the oil and gas reservoirs. Because of the its earlier development, petroleum engineering concepts and technologies play an important role in geothermal field developments worldwide since many years. In Germany good examples of this interaction is also seen in the last years especially in exploration and development stages. The assessment of the defined heat reserves needs also to profit from the reservoir assessment and management techniques and technologies of petroleum engineering. Especially modelling of all production stages, from the near wellbore in the reservoir, to the surface could be examined based on the know-how and developed tools of the petroleum industry.

  18. Petrophysical simulation in petroleum geology and reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Buryakovsky, L.; Chilingar, G. [Russian Academy of Natural Sciences, USA Branch, Los Angeles, CA (United States)

    2005-10-21

    The simulation of multivariate petrophysical relationships between core and well-log derived parameters on the example of the South Caspian Basin is discussed. For developing the petrophysical relationships, a number of deterministic and stochastic calculating procedures are used by the authors. These relationships are widely used in petroleum geology and reservoir engineering for hydrocarbon reserves estimation, reservoir description and simulation, field development planning, and reservoir production management. (author)

  19. Optimized recovery through cooperative geology and reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Craig, F.F. Jr.; Willcox, P.J.; Ballard, J.R.; Nation, W.R.

    1976-01-01

    Two examples of the use of this combined geology-reservoir engineering technique are taken from the international arena of operations. The first involves a gas reservoir in the U.K.-North Sea waters and the second an oil reservoir in the Gulf of Suez, Egypt. The improved reservoir description obtained for each of these reservoirs is permitting a better assessment of future performance as influenced by various operating alternatives. Waterflooding is relatively tolerant of reservoir nonuniformities. However, the need for additional reserves leads to increased utilization of improved recovery techniques, beyond waterflooding, for secondary as well as tertiary application. The development of better reservoir descriptions will provide guidance on the need for special sweep improvement techniques and ultimately lead to both maximum oil production and reduced risk in application of improved recovery processes.

  20. Time-lapse seismic within reservoir engineering

    OpenAIRE

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves different disciplines, of which the main three are: reservoir management, rock physics, and seismics. The main challenge is expressed as "How to optimally benefit from time-lapse seismic". The chall...

  1. Multiscale ensemble filtering for reservoir engineering applications

    OpenAIRE

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; Mclaughlin, D.

    2009-01-01

    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo a...

  2. Reservoir and production engineering aspects of slim-hole wells

    Energy Technology Data Exchange (ETDEWEB)

    Azari, Mehdi; Soliman, Mohamed; Pacheco, Eduardo [Halliburton Energy Services (United States)

    1994-12-31

    The purpose of this article is to provide insight into the reservoir and production engineering aspects of reservoirs with well bore and completion string diameters less than conventionally drilled and completed wells. In addition it will provide an answer to the question: `when should you hydraulically fracture a slim-hole well?` (author) 10 refs., 8 figs., 18 tabs.

  3. Time-lapse seismic within reservoir engineering

    NARCIS (Netherlands)

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d

  4. Time-lapse seismic within reservoir engineering

    NARCIS (Netherlands)

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d

  5. Time-lapse seismic within reservoir engineering

    NARCIS (Netherlands)

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves

  6. Multiscale ensemble filtering for reservoir engineering applications

    NARCIS (Netherlands)

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.

    2009-01-01

    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique

  7. Eleventh workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  8. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  9. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  10. A micrometre-sized heat engine operating between bacterial reservoirs

    Science.gov (United States)

    Krishnamurthy, Sudeesh; Ghosh, Subho; Chatterji, Dipankar; Ganapathy, Rajesh; Sood, A. K.

    2016-12-01

    Artificial microscale heat engines are prototypical models to explore the mechanisms of energy transduction in a fluctuation-dominated regime. The heat engines realized so far on this scale have operated between thermal reservoirs, such that stochastic thermodynamics provides a precise framework for quantifying their performance. It remains to be seen whether these concepts readily carry over to situations where the reservoirs are out of equilibrium, a scenario of particular importance to the functioning of synthetic and biological microscale engines and motors. Here, we experimentally realize a micrometre-sized active Stirling engine by periodically cycling a colloidal particle in a time-varying optical potential across bacterial baths characterized by different degrees of activity. We find that the displacement statistics of the trapped particle becomes increasingly non-Gaussian with activity and contributes substantially to the overall power output and the efficiency. Remarkably, even for engines with the same energy input, differences in non-Gaussianity of reservoir noise results in distinct performances. At high activities, the efficiency of our engines surpasses the equilibrium saturation limit of Stirling efficiency, the maximum efficiency of a Stirling engine where the ratio of cold to hot reservoir temperatures is vanishingly small. Our experiments provide fundamental insights into the functioning of micromotors and engines operating out of equilibrium.

  11. Carbonate reservoir characterization. A geologic-engineering analysis. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, G.V. [School of Engineering, University of Southern California, Los Angeles (United States); Mazzullo, S.J. [Geology Department, Wichita State University, Wichita (United States); Rieke, H.H. [Petroleum Engineering Department, University of Southwestern Louisiana, Lafayette (United States); Dominguez, G.C.; Samaniego, F. [eds.

    1996-12-31

    This second volume on carbonate reservoirs completes the two-volume treatise on this important topic to petroleum engineers and geologists. The two volumes form a complete and modern reference work to the properties and production behavior of carbonate petroleum reservoirs. This volume contains valuable glossaries to geologic and petroleum engineering terms providing exact definitions for writers and speakers. Professors will find a useful appendix devoted to questions and problems that can be used for teaching assignments as well as a guide for lecture development. In addition, there is a chapter devoted to core analysis of carbonate rocks which is ideal for laboratory instruction. Managers and production engineers will find a review of the latest laboratory technology for carbonate formation evaluation in the chapter on core analysis. The modern classification of carbonate rocks is presented with petroleum production performance and overall characterization using seismic and well test analyses. Separate chapters are devoted to the important naturally fractured and chalk reservoirs. Throughout the book, the emphasis is on formation evaluation and performance. The importance of carbonate reservoirs lies in the fact that they contain as much as 50% of the total petroleum reserves of the world. This is sometimes masked by the uniquely different properties and production performance characteristics of carbonate reservoirs because of their heterogeneity and the immense diversity that exists among them. This two-volume treatise brings together the wide variety of approaches to the study of carbonate reservoirs and, therefore, will fit the needs of managers, engineers, geologists and teachers. figs., tabs., refs.

  12. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  13. Issues in geothermal reservoir engineering, modeling, and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.W. (S-Cubed, La Jolla, CA (United States))

    1996-01-01

    The theoretical basis of geothermal reservoir engineering owes much of its origins to the oil and gas industries, but important differences in resource character and geological setting have resulted in substantial divergences from reservoir simulation as practiced in the petroleum industry. Geothermal reservoirs are hotter, contain different fluids, and are usually found within fractured volcanic formations with little or no intergranular permeability. Fluid flow takes place through an intricate fracture network which penetrates the otherwise impermeable rock. By their very nature, oil and gas fields prior to production are usually static (little or no natural fluid circulation) whereas, by contrast, the presence of a dynamic active natural convective circulation system is an essential prerequisite to the formation of a geo-thermal reservoir-otherwise, the earth's heat cannot penetrate upward to drillable depths. Geothermal reservoirs usually lack the regular sub-horizontal stratification pattern typical of oilfields. The resource sought (heat) is mainly contained within the mass of the rock, so that the geothermal brines serve as working fluids to redistribute this heat within the reservoir and carry it upward. During exploitation, flow rates are necessarily high (the economic value per unit mass of hot brine is vastly less than that of oil), and the objective is to create an artificial circulation system using production and injection wells to mine energy from the reservoir by cooling the rock. These phenomenological differences have resulted in development of new techniques of reservoir modeling and simulation for geothermal applications.

  14. Issues in geothermal reservoir engineering, modeling, and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.W. [S-Cubed, La Jolla, CA (United States)

    1996-12-31

    The theoretical basis of geothermal reservoir engineering owes much of its origins to the oil and gas industries, but important differences in resource character and geological setting have resulted in substantial divergences from reservoir simulation as practiced in the petroleum industry. Geothermal reservoirs are hotter, contain different fluids, and are usually found within fractured volcanic formations with little or no intergranular permeability. Fluid flow takes place through an intricate fracture network which penetrates the otherwise impermeable rock. By their very nature, oil and gas fields prior to production are usually static (little or no natural fluid circulation) whereas, by contrast, the presence of a dynamic active natural convective circulation system is an essential prerequisite to the formation of a geo-thermal reservoir-otherwise, the earth`s heat cannot penetrate upward to drillable depths. Geothermal reservoirs usually lack the regular sub-horizontal stratification pattern typical of oilfields. The resource sought (heat) is mainly contained within the mass of the rock, so that the geothermal brines serve as working fluids to redistribute this heat within the reservoir and carry it upward. During exploitation, flow rates are necessarily high (the economic value per unit mass of hot brine is vastly less than that of oil), and the objective is to create an artificial circulation system using production and injection wells to mine energy from the reservoir by cooling the rock. These phenomenological differences have resulted in development of new techniques of reservoir modeling and simulation for geothermal applications.

  15. Standardized surface engineering design of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Guangchuan Liang

    2016-01-01

    Full Text Available Due to the special physical properties of shale gas reservoirs, it is necessary to adopt unconventional and standardized technologies for its surface engineering construction. In addition, the surface engineering design of shale gas reservoirs in China faces many difficulties, such as high uncertainty of the gathering and transportation scale, poor adaptability of pipe network and station layout, difficult matching of the process equipments, and boosting production at the late stage. In view of these problems, the surface engineering construction of shale gas reservoirs should follow the principles of “standardized design, modularized construction and skid mounted equipment”. In this paper, standardized surface engineering design technologies for shale gas reservoirs were developed with the “standardized well station layout, universal process, modular function zoning, skid mounted equipment selection, intensive site design, digitized production management” as the core, after literature analysis and technology exploration were carried out. Then its application background and surface technology route were discussed with a typical shale gas field in Sichuan–Chongqing area as an example. Its surface gathering system was designed in a standardized way, including standardized process, the modularized gathering and transportation station, serialized dehydration unit and intensive layout, and remarkable effects were achieved. A flexible, practical and reliable ground production system was built, and a series of standardized technology and modularized design were completed, including cluster well platform, set station, supporting projects. In this way, a system applicable to domestic shale gas surface engineering construction is developed.

  16. Reservoir-engineered entanglement in optomechanical systems.

    Science.gov (United States)

    Wang, Ying-Dan; Clerk, Aashish A

    2013-06-21

    We show how strong steady-state entanglement can be achieved in a three-mode optomechanical system (or other parametrically coupled bosonic system) by effectively laser cooling a delocalized Bogoliubov mode. This approach allows one to surpass the bound on the maximum stationary intracavity entanglement possible with a coherent two-mode squeezing interaction. In particular, we find that optimizing the relative ratio of optomechanical couplings, rather than simply increasing their magnitudes, is essential for achieving strong entanglement. Unlike typical dissipative entanglement schemes, our results cannot be described by treating the effects of the entangling reservoir via a Linblad master equation.

  17. Reservoir engineering studies of the Cerro Prieto geothermal field

    Science.gov (United States)

    Goyal, K. P.; Lippmann, M. J.; Tsang, C. F.

    1982-09-01

    Reservoir engineering studies of the Cerro Prieto geothermal field began in 1978 under a five-year cooperative agreement between the US Department of Energy and the Comision Federal de Electricidad de Mexico, with the ultimate objective of simulating the reservoir to forecast its production capacity, energy longevity, and recharge capability under various production and injection scenarios. During the fiscal year 1981, attempts were made to collect information on the evolution history of the field since exploitation began; the information is to be used later to validate the reservoir model. To this end, wellhead production data were analyzed for heat and mass flow and also for changes in reservoir pressures, temperatures, and saturations for the period from March 1973 to November 1980.

  18. Ninth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

    1983-12-15

    (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  19. Maximum work configurations of finite potential capacity reservoir chemical engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An isothermal endoreversible chemical engine operating between the finite potential capacity high-chemical-potential reservoir and the infinite potential capacity low-chemical-potential reservoir has been studied in this work.Optimal control theory was applied to determine the optimal cycle configurations corresponding to the maximum work output per cycle for the fixed total cycle time and a universal mass transfer law.Analyses of special examples showed that the optimal cycle configuration with the mass transfer law g∝△μ,where△μis the chemical potential difference,is an isothermal endoreversible chemical engine cycle,in which the chemical potential(or the concentration) of the key component in the working substance of low-chemical-potential side is a constant,while the chemical potentials(or the concentrations) of the key component in the finite potential capacity high-chemical-potential reservoir and the corresponding side working substance change nonlinearly with time,and the difference of the chemical potentials(or the ratio of the concentrations) of the key component between the high-chemical-potential reservoir and the working substance is a constant.While the optimal cycle configuration with the mass transfer law g∝△μc,where △μc is the concentration difference,is different from that with the mass transfer law g∝△μ significantly.When the high-chemical-potential reservoir is also an infinite potential capacity chemical potential reservoir,the optimal cycle configuration of the isothermal endoreversible chemical engine consists of two constant chemical potential branches and two instantaneous constant mass-flux branches,which is independent of the mass transfer law.The object studied in this paper is general,and the results can provide some guidelines for optimal design and operation of real chemical engines.

  20. Robust entanglement generation by reservoir engineering

    OpenAIRE

    Muschik, Christine A.; Krauter, Hanna; Jensen, Kasper; Petersen, Jonas M.; Cirac, J. Ignacio; Polzik, Eugene S.

    2012-01-01

    Following a recent proposal [C. Muschik et. al., Phys. Rev. A 83, 052312 (2011)], engineered dissipative processes have been used for the generation of stable entanglement between two macroscopic atomic ensembles at room temperature [H. Krauter et. al., Phys. Rev. Lett. 107, 080503 (2011)]. This experiment included the preparation of entangled states which are continuously available during a time interval of one hour. Here, we present additional material, further-reaching data and an extensio...

  1. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  2. Protecting entangled states of two ions by engineering reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dong; Zou Jian; Yang Linguang; Li Jungang; Shao Bin, E-mail: zoujian@bit.edu.cn [Department of Physics, School of Science, Beijing Institute of Technology, Beijing 100081 (China)

    2011-09-14

    We present a proposal for realizing local decoherence-free evolution of given entangled states of two two-level (TL) ions. For two TL ions coupled to a single heavily damped cavity, we can use an engineering reservoir scheme to obtain a decoherence-free subspace which can be nonadiabatically controlled by the system and reservoir parameters. Then the local decoherence-free evolution of the entangled states is achieved. And we also discuss the relation between the geometric phases and the entanglement of the two ions under the nonadiabatic coherent evolution.

  3. Reservoir-on-a-chip (ROC): a new paradigm in reservoir engineering.

    Science.gov (United States)

    Gunda, Naga Siva Kumar; Bera, Bijoyendra; Karadimitriou, Nikolaos K; Mitra, Sushanta K; Hassanizadeh, S Majid

    2011-11-21

    In this study, we design a microfluidic chip, which represents the pore structure of a naturally occurring oil-bearing reservoir rock. The pore-network has been etched in a silicon substrate and bonded with a glass covering layer to make a complete microfluidic chip, which is termed as 'Reservoir-on-a-chip' (ROC). Here we report, for the first time, the ability to perform traditional waterflooding experiments in a ROC. Oil is kept as the resident phase in the ROC, and waterflooding is performed to displace the oil phase from the network. The flow visualization provides specific information about the presence of the trapped oil phase and the movement of the oil/water interface/meniscus in the network. The recovery curve is extracted based on the measured volume of oil at the outlet of the ROC. We also provide the first indication that this oil-recovery trend realized at chip-level can be correlated to the flooding experiments related to actual reservoir cores. Hence, we have successfully demonstrated that the conceptualized 'Reservoir-on-a-Chip' has the features of a realistic pore-network and in principle is able to perform the necessary flooding experiments that are routinely done in reservoir engineering.

  4. The integration of geology, geophysics, petrophysics and petroleum engineering in reservoir delineation, description and management

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This book covers the proceedings of the first Archie Conference. Topics covered include: reservoir characterization: petrophysical formation evaluation; reservoir properties prediction; origin, description and evaluation of fractured reservoirs; 2-D and 3-D in seismic reservoir delineation and development, and the utilization of geoscience and engineering technology to increase hydrocarbon recovery.

  5. Protecting coherence by reservoir engineering: intense bath disturbance

    Science.gov (United States)

    Zhou, Zixian; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We put forward a scheme based on reservoir engineering to protect quantum coherence from leaking to bath, in which we intensely disturb the Lorentzian bath by N harmonic oscillators. We show that the intense disturbance changes the spectrum of the bath and reduces the qubit-bath interaction. Furthermore, we give the exact time evolution with the Lorentzian spectrum by a master equation and calculate the concurrence and survival probability of the qubits to demonstrate the effect of the intense bath disturbance on the protection of coherence. Meanwhile, we reveal the dynamic effects of counter-rotating interaction on the qubits as compared to the results of the rotating-wave approximation.

  6. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    Science.gov (United States)

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-02

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. Copyright © 2015, American Association for the Advancement of Science.

  7. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  8. Using reservoir engineering data to solve geological ambiguities : a case study of one of the Iranian carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kord, S. [National Iranian South Oil Co. (Iran, Islamic Republic of)

    2006-07-01

    A fractured carbonate reservoir in southwest Iran was studied with reference to reserve estimation, risk analysis, material balance and recovery factor. The 40 km long and 4 km wide reservoir consists of 2 parts with crest depths of 3780 and 3749 mss respectively. The eastern part is smaller and more productive than the western part which has high water saturation and absolutely no production. Economic production from the reservoir began in 1977. By 2004, the cumulative production had reached 12.064 MMSTB. Of the 6 wells drilled, only 2 wells in the eastern part are productive. This study addressed the main uncertainty of whether the 2 parts of the reservoir are sealed or not. The reservoir is under-saturated but the current pressure is near saturation pressure. The reservoir is divided into the following 4 zones: zones 1 and 2 are productive and consist mainly of carbonate rocks; zone 3 has thin beds of sand and shale; and, zone 4 consists of layers of carbonate, shale, marn, and dolomite. Although there are no faults, mud loss suggests that the reservoir has hairline fractures. Oil in place and reserves were estimated for both parts based on calculated reservoir engineering parameters. Material balance calculations were then performed to analyze and simulate the reservoir. The communication between the 2 parts of the reservoir were examined according to core analysis, rock type, fluid characterization, pressure analysis, water-oil contacts, production history and petrophysical evaluations. The porosity was found to be the same in both parts, but the water saturation and net to gross ratios were different between the eastern and western parts. The petrophysical evaluation revealed that there is no communication between the two parts of the reservoir. 4 refs., 2 figs., 2 appendices.

  9. Recent developments in reservoir engineering and their impact on oil and gas field development

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R.H.; Niko, H. [Shell Internationale Petroleum Maatschappij BV, Den Haag (Netherlands)

    1996-12-31

    With much of the reservoir engineering development activities prior to 1986 being directed to new processes such as EOR, reservoir engineering of today has, like the other petroleum engineering disciplines, become part of an integrated effort to extract the maximum amount of oil from a reservoir. We will discuss some of the new developments in reservoir engineering which had a real impact on oil field operations in Shell and on the working practices of the individual reservoir engineers. Examples of recent advances in reservoir engineering are: (1) progress in the field of measuring residual oil saturations to water under representative conditions which will enable a more realistic assessment of trapped/bypassed oil in water floods such as those in large North Sea fields; (2) improved understanding of the production behaviour of horizontal wells based on analytical and numerical modelling which led to successful applications in Gabon and Oman; (3) advances in our understanding of production in naturally fractured reservoirs which provided the basis for a unique field experiment in the Natih Field in Oman; (4) understanding of the mechanism of fracturing in water injection wells, a process which has large cost-saving potential. The one factor largely responsible for the change in working practices of individual reservoir engineers is the availability of modern integrated IT technology. (author)

  10. Authorized and Operating Purposes of Corps of Engineers Reservoirs

    Science.gov (United States)

    1992-07-01

    Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida

  11. On the physical fundamentals of te petroleum reservoir engineering and its history; Ueber physikalische Grundlagen des Petroleum Reservoir Engineerings und deren Geschichte

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Friedrich P.

    2012-07-15

    Basic principles behind petroleum reservoir engineering such as porosity, permeability and phase behavior are viewed from the development of physical sciences and their state available at the beginning of scientific petroleum engineering. During the third and forth decade of the twentieth century this knowledge was adapted and largely broadened according the needs of the petroleum industry. (orig.)

  12. A Comparison of Flood Control Standards for Reservoir Engineering for Different Countries

    Directory of Open Access Journals (Sweden)

    Minglei Ren

    2017-02-01

    Full Text Available Across the globe, flood control standards for reservoir engineering appear different due to various deciding factors such as flood features, society, economy, culture, morality, politics, and technology resources, etc. This study introduces an in-depth comparison of flood control standards for reservoir engineering for different countries. After the comparison and analysis, it is concluded that the determination of flood control standards is related to engineering grade, dam type, dam height, and the hazard to downstream after dam-breaking, etc. Each country should adopt practical flood control standards according to the characteristics of local reservoir engineering. The constitutive flood control standards should retain certain flexibility in the basis of constraint force. This review could offer a reference for developing countries in the enactment of flood control standards for reservoir engineering.

  13. Reservoir Engineering Studies of Geopressured Geothermal Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Sang [Kyonggi University, Suwon (Korea)

    1998-04-30

    Transient pressure analysis techniques were used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir which has been monitored and tested under U.S. Department of Energy geopressured -geothermal research program. Analysis of transient pressure data furnished a reservoir description such as the formation parameters, pore volume and shape of the reservoir, and average reservoir pressure. Results of pressure tests suggest that the Gladys McCall reservoir probably has a long narrow shape with the well located off-center. During both production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. An aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir. Results of analyses provided a quantitative evaluation of the reservoir and a better understanding of the reservoir energy drive mechanism. (author). 14 refs., 1 tab., 4 figs.

  14. Non-parametric Bayesian networks for parameter estimation in reservoir engineering

    NARCIS (Netherlands)

    Zilko, A.A.; Hanea, A.M.; Hanea, R.G.

    2013-01-01

    The ultimate goal in reservoir engineering is to optimize hydrocarbon recovery from a reservoir. To achieve the goal, good knowledge of the subsurface properties is crucial. One of these properties is the permeability. Ensemble Kalman Filter (EnKF) is the most common tool used to deal with this

  15. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  16. Evaluation of Planning for Fish and Wildlife at Corps of Engineers Reservoirs, Allegheny Reservoir Project, Pennsylvania.

    Science.gov (United States)

    1982-09-01

    I *~ -* .t4 000 Uin.~, P~n 0* .5 0 05 ~ @ftft’~% MO 0.u I- a * - j *SSES -~ M -- - * 𔃺 0 .1 I A S 4% * Ag U .2 - ~SMU cnn ftS44% -o -. 𔃺ft 4%0𔃺 M0M...Longnead darter , A Pearl dace, A Blackside darter, A Slenderkeed dartw. A Catostomidae Malley*, A, R Qutll ck, A, R White sucker, A, 4 Cettid...reservoirs and incorporating data such as morpho- metry, water chemistry, and reservoir age , the Alle- gheny Reservoir should now have an annual sport fishing

  17. Geothermal reservoir engineering management program plan (GREMP Plan)

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    A plan was formulated for development of the geothermal resources of the United States. Six major elements were identified to make up the research program structure. These are: properties of materials; definition of reservoir characteristics; description of example reservoirs; modeling the behavior of geothermal systems; exploitation strategies; and economics. The six elements yield twelve research categories and fifty research projects. These are discussed in detail in Appendix A and summarized in a table. (JGB)

  18. Assessment of leakage from an engineered reservoir using hydrogeological tools

    Energy Technology Data Exchange (ETDEWEB)

    Smerdon, B.D.; Mendoza, C.A. [Alberta Univ., Edmonton, AB (Canada); McCann, A.; Kraushar, C. [Omni-McCann Consultants Ltd., Edmonton, AB (Canada); Nilson, A. [Alberta Infrastructure, Edmonton, AB (Canada)

    2003-07-01

    Seepage from earth-filled dams can be determined using steady-state, cross sectional, flow net analysis or transient response to fluid pressure within dam construction materials. This paper described the methods used to quantify leakage from a surface-water reservoir (Pine Coulee) located in southern Alberta. The methods included buried valley aquifer tests, three-dimensional groundwater flow simulations and stable isotope water samples. The aquifer tests were conducted when the reservoir was maintained at leaking elevation as well as when it was at non-leaking elevation. When the reservoir was leaking, the results showed a recharge boundary condition in the aquifer. When the reservoir was not leaking, a barrier boundary was present. To verify field-measured parameters and to determine the hydraulic properties and location of the leakage zone, three-dimensional groundwater flow simulations were calibrated to the datasets. Stable isotopes confirmed the seepage of reservoir water to the aquifer. Seepage rates and the required aquifer pumping rates to control aquifer water levels were predicted by the model. The results were in good agreement with field observations since relief well installation. The use of hydrogeological tools proved to be diagnostic and predictive in assessing the subsurface dynamics associated with man-made reservoirs. 15 refs., 2 tabs., 6 figs.

  19. Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1982-09-01

    Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

  20. Geothermal reservoir engineering research at Stanford University. Third annual report for the period October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1983-09-01

    Progress is reported in the following areas: heat extraction from hydrothermal reservoirs; radon reservoir engineering; well test analysis and bench scale experiments; field applications; workshop, seminars, and technical information; reinjection technology; and seismic monitoring of vapor/liquid interfaces. (MHR)

  1. Geothermal reservoir engineering. 7. Reservoir simulator; Chinetsu choryuso kogaku. 7. Choryuso simulator

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba (Japan)

    1998-09-15

    In modeling for actual geothermal reservoirs, the following basic functions are required for general-purpose numerical reservoir simulators: (1) Applicability to all hydrothermal single phase flow, steam single phase flow and hydrothermal-steam two phase flow, (2) Consideration of the effect of temperature and pressure on fluid physical properties such as coefficient of viscosity, (3) Assumption of Darcy`s law for flow every phase, (4) Assumption of heterogeneous properties of rocks, (5) Applicability to both transfer and convection of heat flow, and (6) Consideration of both mass and energy conservation laws. On the reservoir simulators, this paper outlines a dominant equation and its digitizing method and digitized solution, evaluation of the simulators, optional functions, and others. Numerical dispersion unavoidable for an advection diffusion problem is also explained. In addition, the basic equation and applications of a bore hole two-phase flow simulator are presented. 21 refs., 9 figs.

  2. Integration of geology and reservoir engineering to produce reservoir simulation model at Cabin Creek Field, Cedar Creek Anticline, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Pieterson, R.; DiMarco, M.J.; Sodersten, S.S. [Shell Western E& P Inc., Houston, TX (United States)

    1996-12-31

    Because of its mature stage of development, a key aspect of continued economic development of the Cedar Creek Anticline (CCA), Montana (STOOIP > 2 billion barrels with over 360 MMstb produced) is the Identification of remaining pods of high S{sub o} within the original field boundaries. Present economic conditions make it essential to select drillsites with high probabilities of success and high prognoses flow rates in these remaking high S. area. Integration of a well-constrained geologic model and reservoir simulation pinpointed remaining pods of oil in a 3-m thick, subvertically fractured, dolomitic limestone reservoir of the Carboniferous Mission Canyon Formation in the Cabin Creek Field of the CCA This resulted in a successful high-flow-rate horizontal well (initial rate >800 BOPD) whose oil production was accurately predicted by a 3-D reservoir simulation. The model has 53,750 gridblocks each of which Is 60 by 60 m. The effect of the natural-fracture network was constrained with the k{sub v}/k{sub h} (vertical to horizontal permeability ratio). The simulation covered a 40-yr. production period. Gross production was Input as a constraint; oil and water rates were matched. Adjustments to absolute permeability, aquifer volume and relative water permeability were required to obtain a match between observed and simulated production rates. The model was fine tuned by matching the production of individual wells in areas with a high remaining S{sub o}. This project demonstrated that (1) interplay of geology and reservoir engineering provided a better reservoir model than could have been done individually, (2) simulation work identified horizontal drilling and recompletion candidates, with one successful horizontal well completed to date, and (3) use of the reservoir simulator for field-scale modeling In conjunction with a well-refined geologic synthesis can successfully pinpoint undeveloped reserves at CCA.

  3. Integration of geology and reservoir engineering to produce reservoir simulation model at Cabin Creek Field, Cedar Creek Anticline, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Pieterson, R.; DiMarco, M.J.; Sodersten, S.S. (Shell Western E P Inc., Houston, TX (United States))

    1996-01-01

    Because of its mature stage of development, a key aspect of continued economic development of the Cedar Creek Anticline (CCA), Montana (STOOIP > 2 billion barrels with over 360 MMstb produced) is the Identification of remaining pods of high S[sub o] within the original field boundaries. Present economic conditions make it essential to select drillsites with high probabilities of success and high prognoses flow rates in these remaking high S. area. Integration of a well-constrained geologic model and reservoir simulation pinpointed remaining pods of oil in a 3-m thick, subvertically fractured, dolomitic limestone reservoir of the Carboniferous Mission Canyon Formation in the Cabin Creek Field of the CCA This resulted in a successful high-flow-rate horizontal well (initial rate >800 BOPD) whose oil production was accurately predicted by a 3-D reservoir simulation. The model has 53,750 gridblocks each of which Is 60 by 60 m. The effect of the natural-fracture network was constrained with the k[sub v]/k[sub h] (vertical to horizontal permeability ratio). The simulation covered a 40-yr. production period. Gross production was Input as a constraint; oil and water rates were matched. Adjustments to absolute permeability, aquifer volume and relative water permeability were required to obtain a match between observed and simulated production rates. The model was fine tuned by matching the production of individual wells in areas with a high remaining S[sub o]. This project demonstrated that (1) interplay of geology and reservoir engineering provided a better reservoir model than could have been done individually, (2) simulation work identified horizontal drilling and recompletion candidates, with one successful horizontal well completed to date, and (3) use of the reservoir simulator for field-scale modeling In conjunction with a well-refined geologic synthesis can successfully pinpoint undeveloped reserves at CCA.

  4. Geothermal engineering integrating mitigation of induced seismicity in reservoirs - The European GEISER project

    NARCIS (Netherlands)

    Bruhn, D.; Huenges, E.; Áǵustsson, K.; Zang, A.; Kwiatek, G.; Rachez, X.; Wiemer, S.; Wees, J.D.A.M. van; Calcagno, P.; Kohl, T.; Dorbath, C.; Natale, G. de; Oye, V.

    2011-01-01

    The GEISER (Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs) project is co-funded by the European Commission to address the mitigation and understanding of induced seismicity (IS) in geothermal engineering. The aim of the project is to contribute to the improvement

  5. Geothermal engineering integrating mitigation of induced seismicity in reservoirs - The European GEISER project

    NARCIS (Netherlands)

    Bruhn, D.; Huenges, E.; Áǵustsson, K.; Zang, A.; Kwiatek, G.; Rachez, X.; Wiemer, S.; Wees, J.D.A.M. van; Calcagno, P.; Kohl, T.; Dorbath, C.; Natale, G. de; Oye, V.

    2011-01-01

    The GEISER (Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs) project is co-funded by the European Commission to address the mitigation and understanding of induced seismicity (IS) in geothermal engineering. The aim of the project is to contribute to the improvement

  6. Engineering analysis and development of the spheroid reservoir bioartificial liver.

    Science.gov (United States)

    McIntosh, Malcolm B; Corner, Stephen M; Amiot, Bruce P; Nyberg, Scott L

    2009-01-01

    A significant demand exists for a liver support device such as a Bioartifical Liver (BAL) to treat patients experiencing acute liver failure. This descriptive paper outlines the design and development of two of the key components of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) system. One of the components is the multifunctional Spheroid Reservoir and the other is Multi-shelf Rocker. The Spheroid Reservoir provides an environment to support the viability and functionality of the hepatocyte spheroids at very high cell densities. The Spheroid Reservoir is the biologically active component of this extracorporeal liver support device. Since the Spheroid Reservoir is designed to support 200-400 grams of hepatocyte spheroids, a method to quickly produce large quantities of spheroids is required. The Multi-Shelf Rocker fulfills the production requirement by allowing the culturing of up to six liters of hepatocyte suspension in a conventional laboratory incubator. The SRBAL is designed to provide life sustaining liver-like function to patients in acute liver failure.

  7. Challenges in reservoir engineering from prospects for horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Fayers, F.J.; Arbabi, S.; Aziz, K. [Stanford Univ., CA (United States). Dept. of Petroleum Engineering

    1995-01-01

    In this review paper, a variety of reservoir applications are illustrated where horizontal wells can have advantages over the use of conventional vertical wells. It is stressed that one of the key advantages relates to the opportunities to optimize the orientation and position of horizontal wells with respect to the principal directions for the reservoir depositional environment, but this may interact with natural fracture or fault directions, and the principal stress direction if hydraulic fracturing is to be considered. Analytical methods for calculating critical coning rates in homogeneous reservoirs are reviewed, and shown to give a very large range of results for horizontal wells. The potential significance of two-phase pressure drop within the wellbore on GOR performance is discussed, and a range of uncertainty by a factor of six is indicated between the use of various correlations for calculating the well pressure drop. In the final section studies are summarized for a gas coning application using ECLIPSE, a commercial simulator. The simulation results indicated an apparently invariant behaviour on GOR history with respect to the effects of wellbore two-phase pressure drop when the horizontal well was produced at constant rate in a homogeneous reservoir. However, when the controlling conditions on the horizontal well were made more representative, and reservoir non-uniformity was introduced, it was then found that the two-phase pressure drop became very significant. Some areas for further research are indicated. (Author)

  8. Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering

    NARCIS (Netherlands)

    Kumar Gunda, N.S.; Bera, B.; Karadimitriou, N.K.; Mitra, S.K.; Hassanizadeh, S.M.

    2011-01-01

    In this study, we design a microfluidic chip, which represents the pore structure of a naturally occurring oil-bearing reservoir rock. The pore-network has been etched in a silicon substrate and bonded with a glass covering layer to make a complete microfluidic chip, which is termed as

  9. Oil exploration. Oil reservoir engineering; Sekiyu no kaihatsu. Choryuso kogaku

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H. [Teikoku Oil Co. Ltd., Tokyo (Japan)

    1998-09-01

    This study is to estimate the amount of oil/gas economically producible and to discuss the increase of the amount. The reservoir rock is stuffed with rock particles, and there are impermeable and dense rocks called cap rock on the side wall and top board. Since the size of void of the reservoir is very small, the volume which oil can actually occupy largely decreases because of the existence of surface tension and water film (20-40% of the volume is occupied by water). The rate of the fluid occupying in reservoir space is called the fluid saturation rate. The primitive reserve is a static volume, but the minable reserve, which is related to economical efficiency, is a dynamic volume which changes according to conditions such as the technical progress. To predict a minable reserve is to predict a production amount under a developmental plan, estimate an income, and find out the time of disposal of the oil/gas field (economical limit). To ask for a certain level of accuracy, it is indispensable to simulate the reservoir. To add an element of time to the material balance, the equation of flow including the permeability rate is solved. The paper also described measures to increase minable reserves

  10. Proceedings of the twenty-first workshop on geothermal reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document contains the Proceedings of the Twenty-first Workshop in Geothermal Reservoir Engineering, held at Stanford University, Stanford, California, USA, January 22-24, 1996. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions including: reservoir assessment, modeling, geology/geochemistry, fracture modeling/hot-dry-rock, low enthalpy, fluid injection, well testing, drilling, adsorption, and well stimulation.

  11. Reservoir engineering analysis of Pincher Creek gas field performance

    Energy Technology Data Exchange (ETDEWEB)

    Ambastha, A. K.; Chornet, M.; Beliveau, D. A. [Shell Canada Limited, Calgary, AB (Canada)

    1998-12-31

    Shortened producing life of wells in the Pincher Creek Gas Field in Alberta, a low-permeability, naturally-fractured carbonate reservoir, are attributed to water-related problems. Forty years of production data have been analyzed using conventional material balance, decline curve analysis, and communicating reservoir model to verify initial gas-in-place and reserve estimates. Efforts have also been made to understand the water production mechanisms in this field. Results of various analyses show that the water production behaviour is not related to permeability distribution. Water problems are also unrelated to distance from the bottom of perforation to gas-water contact. It is expected that it will be possible to infer water production mechanisms from diagnostic plots of the water-gas ratio and Cartesian derivative of water-gas ratio versus time, using available production data. 15 refs., 4 tabs., 24 figs.

  12. Getting a feel for the reservoir : production data analysis tool combines engineering and geology

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2006-04-15

    Calgary-based Rapid Solutions Corporation monitors the trends in oilpatch and supplies a wide range of well life-cycle software tools to the petroleum industry. The company has developed a software tool to update traditional reservoir engineering methods. The Prodesy can do a complete well analysis in 5 to 10 minutes. The tool creates well production profiles, as well as reserves, permeability and drainage information. Most gas wells begin at a high rate of production then decline rapidly until production stabilizes into a long, slow decline rate. The Prodesy analyzes production rate and wellhead pressure data using traditional engineering equations. The software program can create multiple cases to respond to a range of scenarios, such as the addition of compression, stimulation and infill drilling. Reservoir physics models are used to quantify what happens in the case of fractured reservoirs or compression. Supporting graphs, reports and export data are also created by Prodesy for economic analysis. The tool is also programmed to deal with unconventional sources such as tight gas, shales and coalbed methane (CBM). Users can also import data from Accumap, SCADA systems and most databases. The reasonably priced tool brings engineering and geology together by helping reservoir engineers understand what geologists think is in a reservoir and tie in pressure and volumetrics, and drainage and rock properties. Ten Calgary-based companies are currently using the software tool. 2 refs.

  13. PDVSA Petrolera Sinovensa reservoir engineering project and optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Campos, O. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). Petrolera Sinovensa; Patino, J. [Kizer Energy Inc., Katy, TX (United States); Chalifoux, G.V. [Petrospec Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    This paper presented a development plan for an extra-heavy oil field in Venezuela's Orinoco belt involving cold heavy oil production (CHOP) as well as a thermal follow-up process to increase the ultimate recovery factor. A reservoir simulation model was used to model various reservoir formations in order to assess their oil recovery potential. Several thermal recovery processes were considered, such as steam assisted gravity drainage (SAGD), horizontal alternate steam drive (HASD), cyclic steam stimulation (CSS), horizontal continuous steam drive, and combined drive drainage (CDD). A geological static model and dynamic reservoir model were coupled for the well optimization evaluation. Production data were used to identify trends related to specific geological conditions. The study also examined methods of improving slotted liner designs and evaluated the use of electric heating as a means of improving CHOP performance. Results of the study showed that CDD offered the highest recovery rates as a follow-up to CHOP. The CDD process allowed for the use of existing wells drilled in the field. New horizontal wells will be placed between the existing wells. It was concluded that a CDD pilot should be implemented in order to prepare for a commercial implementation plan. 8 refs., 2 tabs., 14 figs.

  14. Reservoir

    Directory of Open Access Journals (Sweden)

    M. Mokhtar

    2016-12-01

    Full Text Available Scarab field is an analog for the deep marine slope channels in Nile Delta of Egypt. It is one of the Pliocene reservoirs in West delta deep marine concession. Channel-1 and channel-2 are considered as main channels of Scarab field. FMI log is used for facies classification and description of the channel subsequences. Core data analysis is integrated with FMI to confirm the lithologic response and used as well for describing the reservoir with high resolution. A detailed description of four wells penetrated through both channels lead to define channel sequences. Some of these sequences are widely extended within the field under study exhibiting a good correlation between the wells. Other sequences were of local distribution. Lithologic sequences are characterized mainly by fining upward in Vshale logs. The repetition of these sequences reflects the stacking pattern and high heterogeneity of the sandstone reservoir. It also refers to the sea level fluctuation which has a direct influence to the facies change. In terms of integration of the previously described sequences with a high resolution seismic data a depositional model has been established. The model defines different stages of the channel using Scarab-2 well as an ideal analog.

  15. Role of geothermal reservoir engineering in reducing costs per kilowatt-hour

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.W. [Maxwell Technologies, San Diego, CA (United States)

    1997-12-31

    Reservoir characterization and monitoring constitute small but finite components of the total cost of geothermal power, and also have substantial implications for overall cost reduction. There are at least three roles which reservoir engineering can play in improving the competitive position of the geothermal power industry. First, techniques are now being developed which will reduce the costs associated with the early part of field characterization--after the resource has been tentatively identified, but prior to exploitation. For example, the use of slimholes for exploration and preliminary assessment offers major cost savings compared to conventional drilling practice. Slim holes drilled originally for exploration may also serve as monitor wells during production. Second, using unconventional measurements (usually associated with exploration) for reservoir monitoring will substantially improve the reliability of reservoir models by providing more data for history-matching as the reservoir is exploited. Although not yet in routine use, surface microgravity changes have long been known to provide insights into quantity and character of reservoir recharge. Changes in electrical measurements (including self-potential and resistivity) and possibly even seismic techniques also appear promising. Improving the understanding of events which are actually taking place under-ground during field production will permit the development of improved exploitation strategies, reducing the need for makeup drilling, postponing or avoiding cold-water invasion of production wells, and prolonging reservoir life.

  16. Integrated geologic and engineering reservoir characterization of the Hutton Sandstone, Jackson region, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.S.; Holtz, M.H.; Yeh, J. [Univ. of Texas, Austin, TX (United States)] [and others

    1996-08-01

    An integrated geologic and engineering reservoir characterization study of the Hutton Sandstone was completed for the Jackson region, Eromanga Basin, Australia. Our approach involves four principal steps: (1) determine reservoir architecture within a high-resolution sequence stratigraphic framework, (2) investigate trends in reservoir fluid flow, (3) integrate fluid flow trends with reservoir architecture to identify fundamental reservoir heterogeneities, and (4) identify opportunities for reserve growth. Contrary to the existing perception, the Hutton Sandstone, a continental-scale bed-load fluvial system, does not behave as a large, homogeneous tank in which pistonlike displacement of produced oil occurs unimpeded by vertical migration of the aquifer. The sequence stratigraphic analysis identified numerous thin but widespread shale units, deposited during lacustrine flooding events that periodically interrupted episodes of coarse clastic Hutton deposition. These shales represent chronostratigraphically significant surfaces. More importantly, the trends established in reservoir fluid flow from monitoring aquifer encroachment, production response to water shut-off workovers, and differential depletion in Repeat Formation Tests indicate that these shale units act as efficient barriers to vertical fluid flow. Erosion of the upper part of the Hutton reservoir by the younger Birkhead mixed-load fluvial system caused further stratigraphic complexity and introduced additional barriers to vertical and lateral migration of mobile oil and aquifer encroachment. This integrated characterization targeted strategic infill and step-out drilling and recompletion candidates.

  17. Reservoir engineering to accelerate the dissolution of CO2 stored in aquifers.

    Science.gov (United States)

    Leonenko, Yuri; Keith, David W

    2008-04-15

    It is possible to accelerate the dissolution of CO2 injected into deep aquifers by pumping brine from regions where it is undersaturated into regions occupied by CO2. For a horizontally confined reservoir geometry, we find that it is possible to dissolve most of the injected CO2 within a few hundred years at an energy cost that is less than 20% of the cost of compressing the CO2 to reservoir conditions. We anticipate that use of reservoir engineering to accelerate dissolution can reduce the risks of CO2 storage by reducing the duration over which buoyant free-phase CO2 is present underground. Such techniques could simplify risk assessment by reducing uncertainty about the long-term fate of injected CO2, and could expand the range of reservoirs which are acceptable for storage.

  18. Sediment-Water Interactions and Contaminants in Corps of Engineers Reservoir Projects

    Science.gov (United States)

    1989-07-01

    processes involve reaction kinetics and mass transfer (Bird, Stewart, and Lightfoot 1960; Thibodeaux 1979; Geankoplis 1983). Consequently, it may be...Reservoirs," Technical Report in preparation, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Geankoplis , C. J. 1983. Transport Processes

  19. The reservoir engineering report in financial transactions: `a useful tool - neither panacea nor placebo`; CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, T.W.

    1996-03-01

    The important role that independent reservoir engineering reports play in the oil and gas industry, was discussed. Among other things, such reports often form the basis upon which oil and gas properties are valued, bought and sold, and of course, they are necessary for the industry to gain access to sources of capital. However, interpretation plays a critical role in the process, and very different conclusions can be drawn by equally reputable and qualified engineers. Because of this, financial investors insist upon independent reservoir engineering reports (and then frequently ignore the limitations and qualifications which are stated in the report). Some of the important limitations stated in reservoir engineering reports were discussed, along with the risks inherent in reservoir engineering reports, and the strategies for minimizing those risks. The engineer`s professional responsibilities and potential liabilities in the matter of reserves estimates, were re-stated.

  20. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    Science.gov (United States)

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, G.C.; Carr, T.R.

    1998-01-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences

  1. Two-phase relative permeability models in reservoir engineering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.

    1999-01-15

    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  2. Reservoir engineering issues in the geological disposal of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ennis-King, J.; Paterson, L. [CSIRO Petroleum, Glen Waverley, Vic. (Australia). Australian Petroleum Cooperative Research Centre

    2001-07-01

    Injection into geological formations is one of the leading options for disposing of the large amounts of carbon dioxide generated in operations such as natural gas processing. A variety of factors influences the effectiveness of this form of storage in particular geological formations. The phase behaviour of carbon dioxide as a function of temperature and pressure is the most basic of these. Depending on the mineralogy, dissolution of the reservoir rock may lead to local changes in permeability in the short term, while precipitation reactions may influence the capacity for long term sequestration. The spread of the injected gas will also depend on the combined effect of viscous fingering, gravity override, the heterogeneity of the formation and the possibility of preferentially leaching out high permeability paths. The purpose of this work (as part of the Australian Petroleum Cooperative Research Centre's GEODISC program) is to review the interaction between these factors and their integration in a coupled flow models with a particular emphasis on the role of heterogeneity. 14 refs., 2 figs.

  3. Quantum Reservoir Engineering with Laser Cooled Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Poyatos, J.; Cirac, J.I.; Zoller, P. [Institut fuer Theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    1996-12-01

    We show how to design different couplings between a single ion trapped in a harmonic potential and an environment. The coupling is due to the absorption of a laser photon and subsequent spontaneous emission. The variation of the laser frequencies and intensities allows one to {open_quote}{open_quote}engineer{close_quote}{close_quote} the coupling and select the master equation describing the motion of the ion. {copyright} {ital 1996 The American Physical Society.}

  4. Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr.

    1976-12-01

    Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

  5. Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr.

    1976-12-01

    Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

  6. Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering.

    Science.gov (United States)

    Sarlette, A; Raimond, J M; Brune, M; Rouchon, P

    2011-07-01

    We propose an engineered reservoir inducing the relaxation of a cavity field towards nonclassical states. It is made up of two-level atoms crossing the cavity one at a time. Each atom-cavity interaction is first dispersive, then resonant, then dispersive again. The reservoir pointer states are those produced by an effective Kerr Hamiltonian acting on a coherent field. We thereby stabilize squeezed states and quantum superpositions of multiple coherent components in a cavity having a finite damping time. This robust decoherence protection method could be implemented in state-of-the-art experiments.

  7. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

    1997-08-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  8. Quantum Simulation of Dissipative Processes without Reservoir Engineering.

    Science.gov (United States)

    Di Candia, R; Pedernales, J S; del Campo, A; Solano, E; Casanova, J

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  9. Implementation of the boundary element method in a practical reservoir engineering software application

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, S.; Sanger, S.; Barden, R. [Vertex Petroleum Systems, Englewood, CO (United States)

    2001-06-01

    The mathematical basis of a newly developed reservoir modeling software based on the Boundary Element Method (BEM) was presented. The software includes a fully graphical interface which provides accurate and fast solutions for most engineering problems. The model capabilities include modeling of arbitrary shaped heterogenous oil and gas reservoirs with fractured, radial and horizontal wells. In addition, the software can be used to model water injection and edge water drive. The model is suitable for managing small and midsize oil and gas fields, and is particularly useful for performing case studies at each field in real time. A comparison was also conducted between the BEM model and other well known analytical solutions such as steady state and transient solutions for standard reservoirs. Results showed good agreement between the two modeling methods. for vertical, fractured and horizontal wells. 24 refs., 8 figs.

  10. Reservoir engineering assessment of low-temperature geothermal resources in the Skierniewice municipality (Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, Alfredo [Aquater SpA, ENI Group, S. Lorenzo in Campo (Italy); Nagy, Stanislaw [Univ. of Mining and Metallurgy, Drilling and Petroleum Engineering Dept., Krakow (Poland)

    2000-12-01

    Low temperature geothermal resources and their production potential in the Skierniewice area of Poland were evaluated assuming conventional well doublet arrays. The reservoir engineering assessment was carried out, within the framework of a World Bank project, to study the feasibility of providing heat to the local district heating system, using data from two existing wells and from geophysical surveys, and by evaluating results of production, injection and interference well tests. Two options were simulated mathematically, using both semianalytical and numerical codes, considering a simplified reservoir model: one based on the two existing wells, the other considering four wells, two to be drilled. The injection of spent brines into a different reservoir was also studied. (Author)

  11. Geothermal reservoir engineering research at Stanford University. First annual report, October 1, 1980-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, W.E.; Horne, R.N.; Kruger, P.; Miller, F.G.; Ramey, H.J. Jr.

    1981-09-01

    The work on energy extraction experiments concerns the efficiency with which the in-place heat and fluids can be produced. The work on noncondensable gas reservoir engineering covers both the completed and continuing work in these two interrelated research areas: radon emanation from the rock matrix of geothermal reservoirs, and radon and ammonia variations with time and space over geothermal reservoirs. Cooperative research programs with Italy and Mexico are described. The bench-scale experiments and well test analysis section covers both experimental and theoretical studies. The small core model continues to be used for the study of temperature effects on absolute permeability. The unconsolidated sand study was completed at the beginning of this contract period. The Appendices describe some of the Stanford Geothermal program activities that results in interactions with the geothermal community. These occur in the form of SGP Technical Reports, presentations at technical meetings and publications in the open literature.

  12. Integral transform methodology for convection-diffusion problems in petroleum reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Cotta, R.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil)

    1995-12-01

    The convection-diffusion equation is present in the formulation of many petroleum reservoir engineering problems. A representative example, the tracer injection problem, is solved analytically here, through the generalised integral transform technique so as to illustrate the usefulness of this approach, for this class of problems. Classical assumptions, such as steady-state single phase flow and unit mobility ratio, are adopted. Comparisons with alternative analytical (when available) or numerical (finite difference) solutions are performed and benchmark results are established. (author)

  13. Dynamic bayesian networks as a possible alternative to the ensemble kalman filter for parameter estimation in reservoir engineering

    NARCIS (Netherlands)

    Hanea, A.; Hanea, R.; Zilko, A.

    2012-01-01

    The objective of reservoir engineering is to optimize hydrocarbon recovery. One of the most common and efficient recovery processes is water injection. The water is pumped into the reservoir in injection wells in order to push the oil trapped in the porous media towards the production wells. The

  14. Dynamic bayesian networks as a possible alternative to the ensemble kalman filter for parameter estimation in reservoir engineering

    NARCIS (Netherlands)

    Hanea, A.; Hanea, R.; Zilko, A.

    2012-01-01

    The objective of reservoir engineering is to optimize hydrocarbon recovery. One of the most common and efficient recovery processes is water injection. The water is pumped into the reservoir in injection wells in order to push the oil trapped in the porous media towards the production wells. The mov

  15. A knowledge engineering approach for improving secondary recovery in offshore reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Milton P.; Tovar, Felipe T.R.; Guerra, Fabio A. [Parana Institute of Technology (TECPAR), Curitiba, PR (Brazil). Artificial Intelligence Div.; Andrade, Cynthia; Baptista, Walmar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Tecnologia de Materiais, Equipamentos e Corrosao

    2004-07-01

    Secondary recovery in offshore petroleum reservoirs by seawater injection is a technique traditionally applied in oil and gas industry. However, the injected water quality must be compatible with the reservoir characteristics in order to prevent corrosion, formation plugging and reservoir souring. So, the seawater must be treated before injection in the reservoirs and on-line monitoring equipment are employed to check the treatments efficacy. Nevertheless, the amount of data to analyze is quite big and involves many different experts, which make their evaluation and the establishment of correlations very difficult. For these cases, where it's crucial to detect the contaminants presence as soon as they occur to indicate corrective procedures, the application of knowledge engineering techniques and the development of expert systems are a good solution proposal. This paper presents the expert system InjeX (heuristic approach), developed for seawater injection treatment plants to maintain the water quality in offshore platforms. The description and the analysis of the problem, a proposed solution and some preliminary results are detailed and discussed along the paper. (author)

  16. Nurturing the geology-reservoir engineering team: Vital for efficient oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sessions, K.P.; Lehman, D.H. (Exxon Co., Houston, TX (USA))

    1990-05-01

    Of an estimated 482 billion bbl (76.6 Gm{sup 3}) of in-place oil discovered in the US, 158 billion (25.1 Gm{sup 3}) can be recovered with existing technology and economic conditions. The cost-effective recovery through infill drilling and enhanced oil recovery methods to recover any portion of the remaining 323 billion bbl (51.4 Gm3) will require a thorough understanding of reservoirs and the close cooperation of production geologists and reservoir engineers. This paper presents the concept of increased interaction between geologists and reservoir engineers through multifunctional teams and cross-training between the disciplines. A discussion of several factors supporting this concept is covered, including educational background, technical manpower trends, employee development, and job satisfaction. There are several ways from an organizational standpoint to achieve this cross-training, with or without a formal change in job assignment. This paper outlines three approaches, including case histories where each of the approaches has been implemented and the resulting benefits.

  17. Discrete-time reservoir engineering with entangled bath and stabilising squeezed states

    Science.gov (United States)

    Miao, Zibo; Sarlette, Alain

    2017-09-01

    This theoretical proposal investigates how resonant interactions occurring when a harmonic oscillator is fed with a stream of entangled qubits allow us to stabilise squeezed states of the harmonic oscillator. We show that the properties of the squeezed state stabilised by this engineered reservoir, including the squeezing strength, can be tuned at will through the parameters of the ‘input’ qubits, albeit in tradeoff with the convergence rate. We also discuss the influence of the type of entanglement in the input from a pairwise case to a more widely distributed case. This paper can be read either as a proposal to stabilise squeezed states or as a step toward treating quantum systems with time-entangled reservoir inputs.

  18. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  19. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  20. Development of a General Package for Resolution of Uncertainty-Related Issues in Reservoir Engineering

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2017-02-01

    Full Text Available Reservoir simulations always involve a large number of parameters to characterize the properties of formation and fluid, many of which are subject to uncertainties owing to spatial heterogeneity and insufficient measurements. To provide solutions to uncertainty-related issues in reservoir simulations, a general package called GenPack has been developed. GenPack includes three main functions required for full stochastic analysis in petroleum engineering, generation of random parameter fields, predictive uncertainty quantifications and automatic history matching. GenPack, which was developed in a modularized manner, is a non-intrusive package which can be integrated with any existing commercial simulator in petroleum engineering to facilitate its application. Computational efficiency can be improved both theoretically by introducing a surrogate model-based probabilistic collocation method, and technically by using parallel computing. A series of synthetic cases are designed to demonstrate the capability of GenPack. The test results show that the random parameter field can be flexibly generated in a customized manner for petroleum engineering applications. The predictive uncertainty can be reasonably quantified and the computational efficiency is significantly improved. The ensemble Kalman filter (EnKF-based automatic history matching method can improve predictive accuracy and reduce the corresponding predictive uncertainty by accounting for observations.

  1. Quantum Decoherence of a Single Trapped Ion due to Engineered Reservoir

    Institute of Scientific and Technical Information of China (English)

    YI Xue-Xi

    2002-01-01

    Known as an engineered reservoir due to fluctuations in trap parameter,a classical source of quantum decoherence is considered for a single trapped ion theoretically.For simplicity it is assumed that the fluctuations involved are white noise processes,which enables us to give a simple master equation description of this source of decoherence.Our results show that the decoherence rate depends on the vibrational quantum number in different ways corresponding to the vibrational excitation sideband used there.Besides,this source of decoherence also leads to occurrence of dissipation in the ion system.

  2. Heat Extraction Project, geothermal reservoir engineering research at Stanford. Fourth annual report, January 1, 1988--December 1, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  3. Conforming power diagrams for reservoir engineering; Diagrammes de puissance conformes pour l'ingenierie de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Flandrin, N.; Bennis, Ch. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Borouchaki, H. [Universite de Technologie de Troyes, 10 (France)

    2005-06-01

    This paper presents a new frontal approach to generate a 3D hybrid mesh in reservoir flow simulation. The mesh follows the flow directions around each well and allows to increase the accuracy in numerical simulations. In the hexahedral structured reservoir mesh, a local radial structured mesh is inserted around each well. Unstructured polyhedral meshes based on power diagrams are used to connect the structured meshes together. (authors)

  4. Redevelopment of the Cardium Formation using fractured horizontal wells : reservoir engineering perspectives and early case histories

    Energy Technology Data Exchange (ETDEWEB)

    Omatsone, E.N.; Bagheri, M.A.; Galas, C.M.F. [Sproule Associates Ltd., Calgary, AB (Canada); Curtis, B. [Bonterra Energy, Calgary, AB (Canada); Frankiw, K. [Midway Energy, Calgary, AB (Canada)

    2010-07-01

    The Cardium Formation holds approximately 25 percent of Alberta's total discovered conventional oil resource, which totals over 10 billion barrels of oil-in-place. However, the achieved recovery factor is only 17 percent, from a combination of primary, secondary and tertiary recovery schemes with predominantly vertical drilling in different parts of the formation. However, operators have demonstrated that redeveloping the Cardium Formation with multi-stage hydraulically fractured horizontal wells has the possibility to significantly increase production by increasing reservoir contact in the undeveloped and under-developed areas. This paper presented a short review of the historical performance of vertical wells in the low reservoir quality areas of the Cardium and described the impact of placing multi-stage fractured horizontal producers in these areas. The paper dealt with the redevelopment of the Cardium Formation from a primary recovery perspective only. It focused on the fringe areas around the super-giant Pembina field as well as the development of a mainly untapped resource in the A lobe of the Cardium in the Garrington/Caroline areas. The paper discussed the performance of the over 120 multi-stage fractured horizontals that have been placed on production from the perspective of geologic, reservoir engineering, development modeling, and economic analyses. Some proposals for typical Cardium horizontal well performance profiles for reserves assignment purposes were presented and some data-gathering and forward-modeling recommendations for Cardium operators/stakeholders were identified in order to assist them in maximizing the near- and long-term values of their assets. It was concluded that in both the Pembina fringe areas and the Garrington/Caroline area, wells with longer horizontal lengths appeared to consistently outperform those with shorter horizontal lengths. 9 refs., 2 appendices.

  5. Geothermal reservoir engineering. 5. Reservoir simulation (natural state modeling); Chinetsu choryuso kogaku. 5. Choryuso simulation (shizen jotai modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba (Japan)

    1998-03-15

    This paper explains natural state modeling in reservoir simulation. A geothermal reservoir is composed of a mixture of two phases of liquid or liquid and steam, where the geothermal system is characterized by rising flow of fluid from deeper portions. The two-phase system is created by depressurization of the fluid due to the rising flow, followed by boiling at a certain depth. The steam phase continues rising in the vertical direction to form a steam zone, while the liquid phase flow in the horizontal direction and flows out as springs in remote distances. To quantify the description of such conception model, simulation in natural condition is important. The natural state simulation is a means to integrate different data and structure a mathematical model for the reservoir. The derived mathematical model results in quantification of the conception model, and reproduction of dynamics in the natural condition. The mathematical model may be used as a base when the estimating calculations are carried out on reservoir behavior after having started production and reduction. 9 refs., 16 figs., 8 tabs.

  6. Integrated, multidisciplinary reservoir characterization, modeling and engineering leading to enhanced oil recovery from the Midway-Sunset field, California

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, S.; Forster, C.; Deo, M. (Univ. of Utah, Salt Lake City, UT (United States)) (and others)

    1996-01-01

    The Pru Fee property is developed in a heavy oil, Class III (slope and basin clastic sand), reservoir of the Midway-Sunset field, San Joaquin Basin, California. Wells on the property were shut-in with an estimated 85% of the original oil remaining in place because the reservoir failed to respond to conventional cyclic steaming. Producibility problems are attributed to the close proximity of the property to the margin of the field. Specific problems include complex reservoir geometry, thinning pay, bottom water, and dipping beds. These problems are likely common at the margins of the Midway-Sunset and other Class III reservoirs. This project forms the first step in returning the property to production and explores strategies that might be applied elsewhere. Reservoir characterization, modeling, and engineering methods are integrated to design, simulate, and implement a pilot steam flood. A new drillhole provides good quality, core through the pay zone and a full suite of geophysical logs. Correlations between geological and petrophysical data are used to extrapolate reservoir conditions from older logs and yield a 3-dimensional petrophysical model. Numerical results illustrate how each producibility problem might influence production and provide a framework for designing the pilot steam flood. This first phase illustrates how a multidisciplinary team can use established technologies in developing the detailed petrophysical, geological, and numerical models needed to enhance oil recovery from marginal areas of Class III reservoirs.

  7. Integrated, multidisciplinary reservoir characterization, modeling and engineering leading to enhanced oil recovery from the Midway-Sunset field, California

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, S.; Forster, C.; Deo, M. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1996-12-31

    The Pru Fee property is developed in a heavy oil, Class III (slope and basin clastic sand), reservoir of the Midway-Sunset field, San Joaquin Basin, California. Wells on the property were shut-in with an estimated 85% of the original oil remaining in place because the reservoir failed to respond to conventional cyclic steaming. Producibility problems are attributed to the close proximity of the property to the margin of the field. Specific problems include complex reservoir geometry, thinning pay, bottom water, and dipping beds. These problems are likely common at the margins of the Midway-Sunset and other Class III reservoirs. This project forms the first step in returning the property to production and explores strategies that might be applied elsewhere. Reservoir characterization, modeling, and engineering methods are integrated to design, simulate, and implement a pilot steam flood. A new drillhole provides good quality, core through the pay zone and a full suite of geophysical logs. Correlations between geological and petrophysical data are used to extrapolate reservoir conditions from older logs and yield a 3-dimensional petrophysical model. Numerical results illustrate how each producibility problem might influence production and provide a framework for designing the pilot steam flood. This first phase illustrates how a multidisciplinary team can use established technologies in developing the detailed petrophysical, geological, and numerical models needed to enhance oil recovery from marginal areas of Class III reservoirs.

  8. Using reservoir-engineering to convert a coherent signal in optomechanics with small optomechanical cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao, E-mail: suiyueqiaoqiao@163.com [Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, and College of Physics, Jilin University, Changchun 130012 (China); College of Physics, Tonghua Normal University, Tonghua 134000 (China); Wang, Tie [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Fu, Changbao [College of Physics, Tonghua Normal University, Tonghua 134000 (China); Su, Xuemei, E-mail: suxm@jlu.edu.cn [Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, and College of Physics, Jilin University, Changchun 130012 (China)

    2017-05-10

    Optomechanical dark mode plays a central role in effective mechanically-mediated conversion of two different cavity fields. In this paper, we present a more efficient method to utilize the dark mode to transfer a coherent signal. When an auxiliary cavity mode is exploited, two approaches are proposed to effectively eliminate the optomechanical bright mode, and only the optomechanical dark mode is left to facilitate state transfer. Even with small cooperativity and different losses for the two target modes, the internal cavity mode-conversion efficiency can also reach unity. - Highlights: • Reservoir-engineering is used for state conversion. • The optomechanical bright mode can be absolutely eliminated. • Small cooperativity and different losses are feasible for ideal conversion efficiency.

  9. Reservoir engineering to accelerate dissolution of stored CO{sub 2} in brines

    Energy Technology Data Exchange (ETDEWEB)

    Keith, D.W.; Hassanzadeh, H.; Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2005-07-01

    injection. Some of the key uncertainties in the results were identified and their implications were investigated. It was noted that active reservoir engineering can reduce the actual risk of CO{sub 2} leakage, facilitate risk analysis and reduce regulatory and other uncertainties related to long-term storage of mobile CO{sub 2} underground. 3 refs., 5 figs.

  10. A History of Geothermal Energy Research and Development in the United States. Reservoir Engineering 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippmann, Marcelo J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Majer, Ernest L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rose, Peter E. [Univ. of Utah, Salt Lake City, UT (United States); Adams, Michael [Univ. of Utah, Salt Lake City, UT (United States); Roberston-Tait, Ann [GeothermEx Inc., San Pablo, CA (United States); Moller, Nancy [Univ. of California, San Diego, CA (United States); Weare, John [Univ. of California, San Diego, CA (United States); Clutter, Ted [ArtComPhoto (United States); Brown, Donald W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-01

    This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

  11. Tools for closed modelling of flow processes in geothermal reservoir engineering; Tools fuer die geschlossene Modellierung der Fliessprozesse im geothermischen Reservoir Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, H.; Lorenz, S.; Mueller, W. [Inst. fuer Sicherheitstechnologie (ISTec) GmbH, Koeln (Germany)

    2002-07-01

    Three programs are presented for numeric modelling of a geothermal reservoir. An analytical lumped-parameter model TUI-GRS 1 based on the mass and energy balance in the presence of a supporting aquifer for the liquid systems H{sub 2}O-CO{sub 2} is recommended for a global and initial assessment of the future performance of a geothermal reservoir. For a more detailed performance study, an adapted 3D simulator for temperature-dependent multphase-multicomponent flow in porous media, TOUGH2, is available. Thirdly, a numeric borehole simulator TUI-GWS was developed for calculating pressure profiles and calcite precipitation during geothermal production. [German] Fuer die numerische Modellierung eines geothermischen Reservoirs werden drei Programme vorgestellt, mit denen die relevanten Prozesse im Bohrloch und im Reservoir modelliert werden koennen. Fuer eine globale und initiale Ausgangsschaetzung der zukuenftigen Leistung, eines geothermischen Reservoirs kann ein analytisches 'lumped-parameter-Modell' TUI-GRS 1, das auf Massen- und Energiebilanz in Anwesenheit eines unterstuetzenden Aquifers fuer fluessige Systeme H{sub 2}O-CO{sub 2} basiert, benutzt werden. Fuer eine ausfuehrliche Leistungsstudie des Reservoirs ist ein fuer geothermische Systeme angepasster 3-D-Simulator fuer temperaturabhaengige Mehrphasen-Mehrkomponenten-Stroemungen in poroesen Medien, TOUGH2, geeignet. Ein numerischer Bohrloch-Simulator TUI-GWS wurde entwickelt, um die Druckprofile sowie Kalzitausfaellung waehrend der geothermischen Produktion zu berechnen. (orig.)

  12. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. First annual report, September 29, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-05-01

    The goal of this project is to provide a more quantitative definition of reservoir heterogeneity. This objective will be accomplished through the integration of geologic, geophysical, and engineering databases into a multidisciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. The intent is to obtain a quantitative reservoir description incorporating outcrop, field, well-to-well, and laboratory core and fluid data of widely varying scales. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. A more accurate reservoir description will allow greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, is available for the field research activities that will be conducted.

  13. Adaptation of reservoir engineering software to a DOS/Linux PC

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, A.S.; Jones, R.C.; McWilliams, R.S.; Tsaio, J.C.

    1996-04-01

    Recent publications have described the implementation of state-of-the-art reservoir engineering applications based on integrated networks of mainframe, workstation, and desktop computers. These facilities provide excellent resources for geologic and engineering applications, but at the cost of substantial investment in computer hardware, network installation, and systems staffing. This paper describes an adaptation of similar state-of-the-art applications to a desktop platform that minimizes the required hardware and system investment. The platform is an Intel 486 or Pentium-based PC with two hard drives and 32 to 64 MB of memory. One disk is partitioned to a standard DOS/Windows environment. The other disk is partitioned to the Linux operating system. Linux is a freely available clone of Unix for the 80386/80486 CPU, which is supported by a worldwide volunteer effort. A machine of this type can be constructed from components for $4,000 to $8,000, depending on CPU and memory. A number of proprietary modeling codes have been ported over so that the PC can provide much of the capability of the network systems.

  14. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, C.E.; Koo, J. [Texaco Inc., Houston, TX (United States). Exploration and Production Technology Dept.

    1995-06-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC`s and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco`s E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC`s connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software.

  15. Google Earth Engine derived areal extents to infer elevation variation of lakes and reservoirs

    Science.gov (United States)

    Nguy-Robertson, Anthony; May, Jack; Dartevelle, Sebastien; Griffin, Sean; Miller, Justin; Tetrault, Robert; Birkett, Charon; Lucero, Eileen; Russo, Tess; Zentner, Matthew

    2017-04-01

    Monitoring water supplies is important for identifying potential national security issues before they begin. As a means to estimate lake and reservoir storage for sites without reliable water stage data, this study defines correlations between water body levels from hypsometry curves based on in situ gauge station and altimeter data (i.e. TOPEX/Poseidon, Jason series) and sensor areal extents observed in historic multispectral (i.e. MODIS and Landsat TM/ETM+/OLI) imagery. Water levels measured using in situ observations and altimeters, when in situ data were unavailable, were used to estimate the relationship between water elevation and surface area for 18 sites globally. Altimeters were generally more accurate (RMSE: 0.40 - 0.49 m) for estimating in situ lake elevations from Iraq and Afghanistan than the modeled elevation data using multispectral sensor areal extents: Landsat (RMSE: 0.25 - 1.5 m) and MODIS (RMSE 0.53 - 3.0 m). Correlations between altimeter data and Landsat imagery processed with Google Earth Engine confirmed similar relationships exists for a broader range of lakes without reported in situ data across the globe (RMSE: 0.24 - 1.6 m). Thus, while altimetry is still preferred to an areal extent model, lake surface area derived with Google Earth Engine can be used as a reasonable proxy for lake storage, expanding the number of observable lakes beyond the current constellation of altimeters and in situ gauges.

  16. Geothermal reservoir engineering. 6. Reservoir simulation (2) performance prediction; Chinetsu choryuso kogaku. 6. Choryuso simulation (2) seisan yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba (Japan)

    1998-06-15

    A production estimating simulation is conducted when determining a power generation scale, by using a reservoir model in natural state as an initial condition. In order to establish plans for production and injection and estimate additional well drilling in the future, an estimating simulation by each well is effective, where different scenarios are compared and discussed by using sensitivity analysis. The production estimating simulation calculates reservoir behavior after liquid production using the natural state model as an initial condition. Suppose a case of continuing necessary steam production for 30 years assuming the power generation amount as 20 MWe. Three production wells may be used, a casing program and production indexes are given to each well, and the relationship between flow rate and pressure at well opening is derived by varying pressure and enthalpy of the feed point in a conceivable range prior to performing the estimating calculation. In determining a production scale, the production estimating simulation is performed on each well regarding different production and injection scenarios in addition to the sensitivity analysis on uncertain parameters. 4 refs., 14 figs., 2 tabs.

  17. Statistical analysis and experiment planning in reservoir engineering; Analyse statistique et planification d'experience en ingenierie de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza-Mezghani, I.

    2000-05-24

    The aim of this thesis first part is the prediction of simulated production responses, when controlled or uncontrolled parameters act on them. The specificity of our work was to study an uncontrolled parameter: the geostatistical seed, which leads to an hetero-scedastic response behavior. In this context, a joint modelling of both mean and variance of the response was essential to get an efficient prediction. We have proposed two prediction intervals of the response, which either resorted to bootstrap re-sampling or not, and which were very efficient to predict the response accounting for the hetero-scedastic framework. Another aim of this part was to use the available information on gradient response to improve prediction. We have suggested a Bayesian prediction, that involves both response and gradients, in order to highlight the significance of gradient information to reach safe predictions. In the second part, which deals. with history matching problem, the originality of our work was the resort to experimental designs. This problem, which consists in calibrating a reservoir model with respect to dynamic data, fits the description of an objective function minimization. As the objective function behavior is non-linear and therefore cannot fit a polynomial function, we suggest to combine the simplex method, which permits to select a domain where the objective function reveals simple behavior, and experimental design theory, which allows to build an analytical model of the objective function. A minimization of this analytical model makes it possible to reach the parameter values that ensure dynamic data respect. In this way, this methodology highlights the efficiency of experimental designs for history matching, particularly when optimization methods are inadequate because of non-differentiability, as for the calibration of geostatistical facies models. Several reservoir application cases illustrate the efficiency of the approaches we have proposed in this thesis

  18. Model-Based Control and Optimization of Large Scale Physical Systems - Challenges in Reservoir Engineering

    NARCIS (Netherlands)

    Van den Hof, P.M.J.; Jansen, J.D.; Van Essen, G.M.; Bosgra, O.H.

    2009-01-01

    Due to urgent needs to increase efficiency in oil recovery from subsurface reservoirs new technology is developed that allows more detailed sensing and actuation of multiphase flow properties in oil reservoirs. One of the examples is the controlled injection of water through injection wells with the

  19. Warning on use of composition-independent K-value correlations for reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrufet, Maria A.; Habiballah, Walid A.; Liu, Kai; Startzman, Richard A. [Petroleum Engineering Department, Texas A and M University, College Station, TX (United States)

    1995-12-01

    It is well-known that one should be cautious with the use of composition-independent K-value correlations for phase equilibria at high pressures. The first limitation is the correlation`s inability to predict convergence of the dew and bubble curves at the mixture`s critical point or at a closed phase envelope. Rather, these two curves extend indefinitely beyond the critical temperatures and pressures of all the species in the mixture. However, even at low pressures, where these correlations are usually applied, results can be misleading. This paper presents some practical examples where correlations fail. In the calculation of three-phase flash equilibria one cannot use the same correlation for the K-values between the vapor phase and the liquid, hydrocarbon-rich phase, and the K-values between the vapor phase and aqueous phase. Use of the same correlation provides two linearly dependent equations, making it impossible to obtain a unique solution. The solution of this three-phase flash problem by bisection provides trivial roots, indicating different values of the aqueous and hydrocarbon-rich phase fractions but a unique value for the vapor fraction. The compositions of both liquid phases are clearly identical. A physically sound assumption for the solution of this three-phase flash equilibria problem is that hydrocarbons are insoluble in the aqueous phase. However, the solution of this case for a test ternary of n-heptane, n-decane and water (C{sub 7}/C{sub 1}0/H{sub 2}O) led to distinct multiple roots that satisfy the material balance constraints. Up to 67 roots were found for a system of 40% n-heptane, 20% n-decane and 40% water at 70 psia and 350F (a fairly low pressure). Physical properties of the phases evaluated using these roots can be substantially different; therefore, this assumption could lead to serious problems in reservoir engineering calculations. (Abstract Truncated)

  20. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  1. Focusing stochastic simulation for effective problem-solving in reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Norris, R.J. [Elf Aquitaine Production, Pau (France)

    1996-08-01

    The use of stochastic simulation techniques in modern reservoir description has produced {open_quote}faithful believers{close_quote} and {open_quote}ardent non-believers{close_quote}. The polarity of views usually acts to the detriment of the ultimate effectiveness of stochastic reservoir modelling techniques. On the one hand, if the non-believers hold sway, heterogeneities or uncertainties may be ignored in cases where their impact is, in fact, important. Conversely, if the believers hold sway, complex solutions may be used for less-than-worthy problems; alternatively, one may finish with results well below the promised level of complexity due to mundane time/budget constraints. Whichever direction {open_quote}wins{close_quote} within a given company or department, it is the reservoir management that loses. Stochastic simulation of reservoir heterogeneities is a very powerful set of tools which can often aid in reservoir description, and hence in reservoir simulation and management. To be credible, it is important that the tools are used in a manner which maximizes their benefits, whilst minimizes the costly {open_quote}over-kill{close_quote} potential. This paper presents a simple definition of the three main strengths of the stochastic simulation approach to reservoir description: integration of data; detailed modelling of heterogeneities; and quantification of uncertainties. Through an understanding of how these three elements can be combined in different ratios, realistic solutions to specific problems can be developed. Through careful analysis of the reservoir problems and careful construction of appropriate solutions, stochastic reservoir modelling can better fulfill its promise. We might eventually escape from being believers/non-believers, into being objective users of a powerful tool.

  2. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    Science.gov (United States)

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  4. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  5. New scale of turbulent flow characteristics and its use in aspects of reservoir and production engineering

    Energy Technology Data Exchange (ETDEWEB)

    Deghmoum, A.H.; Hamaz, H. [Sonatrach/AMT/CRD, Alger (Algeria)

    2004-07-01

    Fluid flow through a porous medium in turbulent flow regime was examined through laboratory experiments and numerical analysis. The study presented production and core data from thousands of core samples from six reservoirs in Algeria. The core samples were analyzed under unsteady state flow conditions. New concepts of non-Darcian flow characteristics for reservoir characterization and well performance were presented. A universal scale of turbulent factor versus permeability was developed to classify reservoirs in terms of homogeneity and heterogeneity. The new scale also established an isoturbulence map for enhancing reservoir development in terms of localization of good zones to drill new wells and to improve well productivity. This paper also presented a methodology for choosing the best perforation characteristics. 9 refs., 11 figs.

  6. U.S. Army Corps of Engineers (USACE) Owned and Operated Reservoirs

    Data.gov (United States)

    Department of Homeland Security — This dataset shows maximum conservation pool or is a reasonable representation of the boundaries for reservoirs and lakes owned and operated by USACE. Data is from...

  7. A reservoir engineering assessment of the San Jacinto-Tizate geothermal field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M. [INTERGEOTERM, Managua (Nicaragua)

    1996-12-31

    More than twenty years have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua. The well known Momotombo Geothermal Field (70 MWe) has been generating electricity since 1983, and now a new geothermal field is under exploration, the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270{degrees}C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of them are water dominated reservoirs although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminary conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  8. Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1984-09-01

    Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

  9. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  10. How to revitalize a mature reservoir: New development stategy-an integrated study in petroleum engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rondon, L.; Coll, C.; Cordova, P.; Gamero, H. [Maraven, Caracas (Venezuela)] [and others

    1996-08-01

    The results from a 3-D, 3-Phase numerical simulation model of Lower Lagunillas reservoir in Block IV Lake Maracaibo indicate the possibility of additional recovery from this mature field by drilling infill horizontal wells. The simulation model was the final outcome of an integrated work effort by a team of specialists. The field has produced approximately 920 MMSTB or 43% of OOIP to date and the remaining reserves are estimated to be 270 MMSTB. The reservoir pressure has declined from 4200 psi to 1400 psi, well below the bubble point pressure of 4000 psi. The objectives of an integrated reservoir study were to understand the reservoir heterogeneity and dynamics, evaluate the efficiency of the gas injection started in 1966 and the strength of the active aquifer as pressure support mechanisms. The new model shows the presence of layers with bypassed oil and higher pressures between layers that show greater pressure depletion and high GOR. This situation demonstrates the need to formulate a new development strategy for efficiently recovering the remaining reserves. The study indicates that the drilling of horizontal wells or infill deviated wells in some of these layers offers the best solution for maximizing recovery from this reservoir taking full advantage of the reservoir heterogeneity, aquifer support and secondary gas cap to optimize well locations.

  11. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  12. Geothermal reservoir engineering. 3. Pressure transient tests; Chinetsu choryuso kogaku. 3. Atsuryoku sen`i test

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba (Japan)

    1997-09-15

    This paper explains pressure transient tests to estimate hydraulic properties of geothermal reservoirs. The tests include a test on pressure increase and pressure drop after shutdown associated with water injection into geothermal wells, and a test on pressure drop and pressure restoration after shutdown in association with geothermal water production. Performing a data analysis of change in reservoir pressures may provide findings on transmissivity, strativity and boundaries. The pressure transient tests are the most important and direct means to measure these properties and their distribution. A geothermal well often intersects with a water permeable bed such as a fracture only in localized portion in a section of hole drilled pipes, and penetrates non-permeable rocks in other sections. In addition, a large number of geothermal wells cause fluid to boil in a reservoir bed near the wells during production, by which a two-phase flow in the reservoir bed makes analysis of the pressure transient data extremely complex. A pressure interference test uses a static well separated from an active well by a certain distance as a pressure observation well, by which continuity of the reservoir beds can be elucidated. 28 refs., 29 figs.

  13. Reservoir engineering aspects of CO{sub 2} sequestration in coals

    Energy Technology Data Exchange (ETDEWEB)

    Seidle, J. P. [Sproule Associates (Canada)

    2000-07-01

    Various concepts utilized in conventional natural gas storage reservoirs and primary coalbed methane production have been examined and are shown to be adaptable for sequestration of carbon dioxide in coals. The main concepts discussed here include the gas storage concepts of Katz and Tek (1981) and the reservoir screening criteria developed by Stevens et al (1998). The p/Z* plots used to describe gas recovery and the delta pressure concept of Katz and Tek have been found to be useful for describing the behaviour of a coal deposit when carbon dioxide is injected. It was also shown that gas injectivity and mass balance equations can be coupled to investigate fillup behaviour of a given coal reservoir. Sample calculations for fillup behaviour are presented for the San Juan Basin and the Powder River Basin.13 refs., 5 tabs., 6 figs.

  14. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  15. Topics from the 20th annual workshop on geothermal reservoir engineering, Stanford University; Stanford Daigaku chinetsu choryuso kogaku waku shoppu ni sanka shite

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, C. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1995-03-15

    The 20th Stanford University geothermal reservoir engineering workshop was held in the Stanford University in the suburbs of San Francisco, State of California, United States, for 3 days from January 24th to 26th in 1995. This workshop has started in 1975, and is held once a year, and has a long history, which is an only workshop named the geothermal reservoir engineering in the world. In the petroleum engineering section of the Stanford University, there is an organization regarding to the geothermal reservoir engineering named the Stanford Geothermal Program, which centering around this workshop manages and operates. Its purpose is a development of an effective utilization technology of geothermal resources, inheritance of technology, and rearing men of ability. Through participating this workshop, in the geothermal reservoir engineering as an interdiscipline part between the earth science and engineering, that there is a plenty of room to be elucidated still left was recognized over again. There are many things to be learned from an abundant experiences and knowledges of the geothermally advanced country. 8 refs., 6 figs.

  16. A fully-coupled geomechanics and flow model for hydraulic fracturing and reservoir engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Charoenwongsa, S.; Kazemi, H.; Miskimins, J.; Fakcharoenphol [Colorado School of Mines, Golden, CO (United States)

    2010-07-01

    A fully coupled geomechanics flow model was used to assess how the changes in pore pressure and temperature influence rock stresses in tight gas reservoirs. The finite difference method was used to develop simulations for phases, components, and thermal stresses. A wave component was used to model the propagation of the strain displacement front as well as changes in stress with time. Fluid and heat flow volumes were modelled separately from rock formation properties. The influence of hydraulic fracturing on stress distributions surrounding the fracture was investigated as well as the effect of filter cake and filtrate. Results of the study showed that significant changes in shear stresses near hydraulic fractures occur as a result of hydraulic fracture face displacement perpendicular to the fracture face. While temperature effects also caused changes in stress distributions, changes in pore pressure did not significantly impact shear stresses as the filtrate did not travel very far into the reservoir. 17 refs., 17 figs.

  17. Army Corps of Engineers, Southwestern Division, Reservoir Control Center Annual Report 1988

    Science.gov (United States)

    1989-01-01

    transferred from Cochiti to the flood control pool in Caballo Reservoir, which is administered by VI-3 IBWC, while the channel work was being completed...The Bureau of Reclamation, who is the project owner of Caballo , began noticing increased seepage and small sand boils below the dam in early March. They...requested a delay in the Cochiti evacuation concurrent with the emergency evacuation of 48,000 acre-feet of Caballo storage. The remaining Cochiti

  18. Geothermal reservoir engineering. 10. reservoir management (2) geophysical monitoring; Chonetsu choryuso kogaku. Dai10kai choryuso kanri (2) chikyu butsurigakuteki monitaringu

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuab (Japan)

    1999-12-15

    When fluid production from a geothermal reservoir is started, fluid inflow from the reservoir surroundings and reduction zones starts following a pressure decrease in the production zone. For grasping the conditions of a reservoir after the start of production, a geophysical monitoring technique attracts attention. It is an indirect technique compared with drilling observation, but it will be more widely used in the future in grasping macroscopic variation in relation with thermal energy production. This paper describes a monitoring technique on the basis of gravity and natural electric potential as well as an analytical technique on the basis of a reservoir mathematical model. NEDO is presently engaging in reservoir variation exploration technology> by the schedule of 1997-2004. As the results of this project, it is expected that analytical techniques to apply various monitoring techniques and obtained data to history matching are developed as practical techniques. (NEDO)

  19. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Annual report, September 29, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1996-04-01

    The purpose of this project is to conduct a variety of laboratory and field tests and utilize all the geological, geophysical, and engineering information to develop a mathematical model of the reservoir by the use of global optimization methods. This interdisciplinary effort will integrate advanced geoscience and reservoir engineering concepts to quantify interwell reservoir heterogeneity and the dynamics of fluid-rock and fluid-fluid interactions. The reservoir characterization includes geological methods (outcrop and reservoir rock studies), geophysical methods (interwell acoustic techniques), and other reservoir/hydrologic methodologies including analyses of pressure transient data, core studies, and tracer tests. The field testing is being conducted at the Sulimar Queen Unit with related laboratory testing at the PRRC on samples from the Sulimar site and Queen sandstone outcrops. The aim is to (1) characterize and quantify lithologic heterogeneity, (2) mathematically quantify changes in the heterogeneity at various scales, (3) integrate the wide variety of data into a model that is jointly constrained by the interdisciplinary interpretive effort, and (4) help optimize petroleum recovery efficiencies.

  20. Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mclntire, Blayde; McPherson, Brian

    2013-09-30

    The purpose of this report is to outline a methodology for calculating the optimum number of injection wells for geologic CCS. The methodology is intended primarily for reservoir pressure management, and factors in cost as well. Efficiency may come in many forms depending on project goals; therefore, various results are presented simultaneously. The developed methodology is illustrated via application in a case study of the Rocky Mountain Carbon Capture and Storage (RMCCS) project, including a CCS candidate site near Craig, Colorado, USA. The forecasting method provided reasonable estimates of cost and injection volume when compared to simulated results.

  1. Inflow performance relationships in geothermal and petroleum reservoir engineering. A review of the state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Alfonso; Garcia-Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Centro Nacional de Investigacion y Desarrollo Tecnologico, Av. Palmira, Esq. con Calle Apatzingan, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Moya, Sara L. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Av. Palmira, Esq. con Calle Apatzingan, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico)

    2008-12-15

    The different inflow performance relationships (IPRs) that have been proposed in geothermal and petroleum reservoir engineering are reviewed. The applicability of these relationships to well production tests is analyzed, and the geothermal IPRs for pure water, for the binary H{sub 2}O-CO{sub 2} and ternary H{sub 2}O-CO{sub 2}-NaCl mixtures (with different salinities) are presented. The method to determine the maximum flow rate for a well is described. Two representative IPRs for petroleum systems and two for geothermal systems that consider the fluid as a ternary mixture H{sub 2}O-CO{sub 2}-NaCl (for salinities less than 5%, and between 5% and 20%) are compared. It is concluded that IPRs may be used to determine the maximum flowrate of a well at any time during its productive life. (author)

  2. Geothermal reservoir engineering. 2. Mathematical foundations; Chinetsu choryuso kogaku. 2. Sugakuteki kiso

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, t. [Geological Survey of Japan, Tsukuba (Japan)

    1997-06-15

    This paper describes the dominant equation and its formation rules of fluid and thermal flow in geothermal reservoirs as the basis of reservoir simulation. The following equations are used to describe properties of fluid: a state equation for properties of pure water, a Clapeyron- Clausius`s equation derived from chemical potential for phase transition, a pressure equation of non-condensable gas derived from Henry`s law, and a boiling pressure equation for aqueous solution including dissolved salt. The following equations are used to describe flow in porous media: a Navier-Stokes` equation for poiseuille flow, and an equation for permeability in capillary flow passage. The dominant equation to describe the transport phenomenon of fluid and heat is the conservative law of momentum, mass and energy. Problems are solved using the above equations and other formation conditions of fluid, rock and fluid systems (relative permeability of two-phase flow, capillary pressure between liquid and gas phase water, adsorption of water to rock, dispersion of chemical composition concentration in porous media, porosity of rock, thermal conductivity of mixtures of fluid and rock). 9 refs., 25 figs., 1 tab.

  3. Some reservoir engineering calculations for the vapor-dominated system at Larderello, Italy

    Science.gov (United States)

    Nathenson, Manuel

    1975-01-01

    Various reservoir properties are calculated for the Larderello vapor-dominated system using available published data. Bottom-hole flowing properties are calculated from measured wellhead data. Whereas wellhead temperatures measured at a particular time tend to change systematically with changes in flow and pressure, calculated bottom-hole temperatures tend to be constant for two sample wells; while for a third, bottom-hole temperatures decrease with increasing flow. Bottom-hole temperatures calculated from wellhead data taken over several years can be constant, increase, or decrease for particular wells. A steady-state model for steam flow to a well is used with calculated bottom-hole data to show that the effect of non-Darcy flow is important. The initial mass of fluid in place for the northeast zone of Larderello (56 km2) is estimated, using data on shut-in pressures and total mass production. Reservoir thickness needed to store this mass of fluid is calculated as a function of porosity and initial fraction of water in pores. Representative values are 19 km of thickness, assuming 5% porosity with steam alone, and 832 m, assuming 20% porosity and 10% of pore volume as liquid water.

  4. Reservoir engineering aspects of the Captain extended well test appraisal program

    Energy Technology Data Exchange (ETDEWEB)

    Pallant, M.; Cohen, D.J.; Lach, J.R.

    1995-12-31

    Texaco UK North Sea is operator and 100% license holder of the Captain Field which contains a greater than 1.5 billion barrel, viscous oil accumulation. Oil production from the Captain reservoir will be dominated by the water/oil mobility ratio of 30, resulting in severe water coning from an aquifer underlying a large section of the field. For this reason the field will be developed with pumped horizontal wells with completion intervals of up to 6000 ft. Key elements which will affect reservoir and well performance are horizontal to vertical permeability ratio, critical water saturation, mobile transition zone height, and horizontal well inflow profile. To evaluate these parameters a 30 day vertical water coning test and a separate 90 day extended production test in a prototype horizontal development well, were performed and the measured water cut performance and bottom hole pressures matched with simulation models. Additionally inflow performance in the horizontal well was assessed by production logs which demonstrated that inflow occurred along the majority of the well length. These two tests were conducted in close proximity to each other in a reasonably homogeneous sand, providing the opportunity for simultaneous and consistent interpretation of the observed data. This integration of the results from two tests of different types has resulted in interpretations which have greater levels of confidence attached to them than would have been possible if the two tests had been performed in isolation.

  5. Geothermal energy development activities. Report of the 22nd Stanford Geothermal Reservoir Engineering Workshop; Dai 22 kai sutanfuodo chinetsu choryuso kogaku waku syoppu ni sanka shite

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, S. [Geological Survey of Japan Ibaragi (Japan)

    1997-06-01

    The 22nd Stanford Geothermal Reservoir Engineering Workshop was held in the Holiday Inn Hotel located in front of the Stanford University from January 27 to 29, the same time as usual. There were 159 participators in total coming from 13 countries and 70 reports were published. 23 persons participated in the short course about reservoir engineering held after the workshop and 19 persons participated in the field trip to the Geysers geothermal zone. On the first day of the workshop, Mr. Reed from the Department of Energy of America (DOE) reported a review on the development and research on geothermal energy in the DOE. This program is characterized in the case study. Two sessions concerning Dixie Valley were organized and 7 reports concerning structures of a normal fault forming reservoir zone, alignment of permeable fracture, slope analysis and imaging of underground structure by earthquake wave detection, etc. were published. 4 refs., 1 tab.

  6. Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond

    Science.gov (United States)

    Kepesidis, K. V.; Lemonde, M.-A.; Norambuena, A.; Maze, J. R.; Rabl, P.

    2016-12-01

    We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.

  7. Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state and monitoring its decoherence

    Science.gov (United States)

    Asjad, Muhammad; Vitali, David

    2014-02-01

    A deterministic scheme for generating a macroscopic superposition state of a nanomechanical resonator is proposed. The nonclassical state is generated through a suitably engineered dissipative dynamics exploiting the optomechanical quadratic interaction with a bichromatically driven optical cavity mode. The resulting driven dissipative dynamics can be employed for monitoring and testing the decoherence processes affecting the nanomechanical resonator under controlled conditions.

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  9. Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

    1983-12-15

    This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

  10. Integrated geological and engineering characterization of an Upper Permian, carbonate reservoir, South Cowden unit, Ector County Texas -- a work in progress

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, M.G.; Johnson, J.V.; Snow, S.C. [Phillips Petroleum Company, Odessa, TX (United States)] [and others

    1995-09-01

    South Cowden Unit, located on the eastern margin of the Central Basin Platform, has produced 35 million barrels of oil since initial development in the late 1940`s. The Unit, under waterflood since 1965, has been proposed for a CO{sub 2} flood using horizontal injection wells. A team of geologists and engineers was formed to characterize the reservoir. The early and complete integration of geologic and engineering work has resulted in a detailed reservoir description to be used in reservoir simulation. Regional mapping and 3D seismic data indicate that sediments within the reservoir interval were draped over a paleohigh resulting in an unfaulted, anticlinal-like structure. A field-wide stratigraphic framework was developed using two to four-foot thick, gamma-ray log markers which correspond to low permeability, sandy dolomite layers recognized in core. These log correlations indicate fairly simple and uniform structure and stratigraphy. The gamma-ray markers delineate four zones within the 150 foot reservoir interval. Rocks composing these zones are extensively dolomitized and display a complex color mottling. This mottling is related most likely to bioturbation of carbonate sediments in a shallow, subtidal marine environment. Extensive and interconnected bioturbated areas have core analysis porosities averaging approximately 20% and permeabilities generally ranging from 2 to 350 md. The intervening, nonburrowed and unstained areas have porosities averaging 5% and permeabilities typically ranging form 0.01 to 2 md. Variations in the quality and thickness of the mottled facies are major parameters controlling oil recovery. A belt of better reservoir-quality rock runs roughly parallel to structure and results in an area of higher cumulative oil production. Good waterflood response and uniform pressure distribution indicate continuity of the pay zones within this belt.

  11. An integrated geologic and engineering reservoir characterization of the North Robertson (Clearfork) unit: A case study, part 1

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, L.E.; Blasingame, T.A. [Texas A and M Univ., College Station, TX (United States); Pande, P.K.; Clark, M.B.; Nevans, J.W.

    1995-12-31

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability carbonate reservoirs. New and emerging technologies such as cross-borehole tomography, geostatistical modeling, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can be used to develop a 3-D simulation model for prediction of infill locations. In this work, the authors will demonstrate the application of reservoir surveillance techniques to identify additional reservoir ``pay`` zones, and to monitor pressure and preferential fluid movement in the reservoir. These techniques are: long-term production and injection data analysis, pressure transient analysis, and advanced open and cased hole well log analysis. The major contribution of this paper is the summary of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  12. Selected papers from the 21th annual workshop on geothermal reservoir engineering, Stanford Univ.; Dai 21 kai Sutanfodo Daigaku chinetsu choryuso kogaku waku shppu no ronbun shokai

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1996-06-15

    Workshop on geothermal reservoir engineering of Stanford is carried out at the end of January every year and this time is the 21st workshop. The sessions of workshop are geothermal-in general. reservoir evaluation, modeling, geology/geochemistry, fracture modeling, hot dry rock (HDR), earth chemistry, low enthalpy, reduction, adsorption well stimulation, well test, drilling and so forth, however, the contents of lectures are diverse and cannot be grasped with the session title only. There were a few of presentations from Japan, however this time they were not introduced. In this report, some papers attended with interest by authors such as DOE`s Geothermal Division: A period of transition, Laboratory studies of injection into horizontal fractures, A study of electrical generating capacities of self-discharging slim holes, injection plume behavior in fractured, vapor-dominated reservoirs, simulating the effects of adsorption and capillary forces in geothermal reservoirs, Reinjected water return at Miravalles geothermal reservoir, Costa Rica and so forth are introduced. 8 refs., 5 figs.

  13. [Ribosome engineering of streptomyces sp. FJ3 from Three Gorges reservoir area and metabolic product of the selected mutant strain].

    Science.gov (United States)

    Hai, Le; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2011-07-01

    To explore new resource from inactive actinomycete strains, we screened resistant mutant strains by ribosome engineering, and analyzed the products derived from the selected mutant strains. Three Gorges reservoir area-derived actinomycete strains including BD20, FJ3, WZ20 and FJ5 were used as initial strains, which showed no-antibacterial activities. The streptomycin-resistant (str(R)) mutants and rifampicin-resistant (rif(R)) mutants were screened by single colony isolation on streptomycin-containing plates and rifampicin-containing plates according to the method for obtaining drug-resistant mutants in ribosome engineering. The four initial strains and their str(R)-mutants and rif(R)-mutants were fermented in a liquid medium with the same composition. Mutants with anti-Staphylococcus aureus activity were obtained by paper chromatography. The components of fermentation broth were analyzed by high performance liquid chromatography (HPLC) and high performance liquid chromatography-mass spectrometry (LC-MS). Furthermore, FJ3 strain was identified by 16S rDNA and morphology. The minimal inhibitory concentration (MIC) of streptomycin and rifampicin for FJ3 was: 0.5 microg/mL and 110 microg/mL, respectively. Twenty-four strR-mutant strains and 20 rif(R)-mutant strains of FJ3 mutant strains were selected for bioassay. The result of the antibacterial activity screening demonstrated that six strains inhibited bacteria. Two strains (FJ3-2 and FJ3-6) were screened from the streptomycin-resistance mutants of inactive strain FJ3. The result of bioassay showed that the fermentation broth of FJ3-2 and FJ3-6 exhibited obvious anti-Staphylococcus aureus activity. The assay of paper chromatography showed that the active substance may be nucleic acid class antibiotic via using solvent system Doskochilova. Moreover, the results of HPLC and LC-MS exhibited that this substance may be thiolutin. Ribosome engineering for changing the secondary metabolic function of the inactive wild

  14. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  15. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J.W. Jr.

    1997-05-01

    A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.

  16. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  17. Integrated reservoir interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Caamano, Ed; Dickerman, Ken; Thornton, Mick (Conoco Indonesia Inc., Jakarta (Indonesia)); Corbett, Chip; Douglas, David; Schultz, Phil (GeoQuest, Houston, TX (United States)); Gir, Roopa; Nicholson, Barry (GeoQuest, Jakarta (Indonesia)); Martono, Dwi; Padmono, Joko; Novias; Kiagus; Suroso, Sigit (Pertamina Sumbagut, Brandan, North Sumatra (Indonesia)); Mathieu, Gilles (Etudes et Productions Schlumberger, Clamart (France)); Yan, Zhao (China National Petroleum Company, Beijing (China))

    1994-07-01

    Improved reservoir management often relies on linking a variety of application software that helps geoscientists handle, visualize and interpret massive amounts of diverse data. The goal is to obtain the best possible reservoir model so its behavior can be understood and optimized. But diverse application software creates specialty niches and discourages integrated interpretation. A description is given of a new reservoir management package that covers all required functionalities and encourages the geologist, geophysicist, petrophysicist and reservoir engineer to embrace the integrated approach. Case studies are included in the article. 21 figs., 13 refs.

  18. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  19. Reservoir management cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, M.S.

    1996-12-31

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  20. Effect of Heat Leak and Finite Thermal Capacity on the Optimal Configuration of a Two-Heat-Reservoir Heat Engine for Another Linear Heat Transfer Law

    Directory of Open Access Journals (Sweden)

    Chih Wu

    2003-12-01

    Full Text Available Abstract: Based on a model of a two-heat-reservoir heat engine with a finite high-temperature source and bypass heat leak, the optimal configuration of the cycle is found for the fixed cycle period with another linear heat transfer law . The finite thermal capacity source without heat leak makes the configuration of the cycle to a class of generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal capacity source is different from others.

  1. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico - petrophysical characterization of the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, F.J.

    1997-06-01

    Reservoir performance of the South Cowden Grayburg field suggests that only 21 percent of the original oil in place has been recovered. The purpose of this study is to construct a realistic reservoir model to be used to predict the location of the remaining mobile oil. Construction of reservoir models for fluid-flow simulation of carbonate reservoirs is difficult because they typically have complicated and unpredictable permeability patterns. Much of the difficulty results from the degree to which diagenetic overprinting masks depositional textures and patterns. For example, the task of constructing a reservoir model of a limestone reservoir that has undergone only cementation and compaction is easier than constructing a model of a karsted reservoir that has undergone cavern formation and collapse as well as cementation and compaction. The Permian-age carbonate-ramp reservoirs in the Permian Basin, West Texas and New Mexico, are typically anhydritic dolomitized limestone. Because the dolomitization occurred soon after deposition, depositional fabrics and patterns are often retained, and a reservoir model can be constructed using depositional concepts. Recent studies of the San Andres outcrop in the Guadalupe Mountains and the Seminole San Andres reservoir in the Permian Basin illustrate how depositional fabrics and patterns can be used to construct a reservoir model when depositional features are retained.

  2. Engineering a segmented dual-reservoir polyurethane intravaginal ring for simultaneous prevention of HIV transmission and unwanted pregnancy.

    Directory of Open Access Journals (Sweden)

    Justin T Clark

    Full Text Available The HIV/AIDS pandemic and its impact on women prompt the investigation of prevention strategies to interrupt sexual transmission of HIV. Long-acting drug delivery systems that simultaneously protect womenfrom sexual transmission of HIV and unwanted pregnancy could be important tools in combating the pandemic. We describe the design, in silico, in vitro and in vivo evaluation of a dual-reservoir intravaginal ring that delivers the HIV-1 reverse transcriptase inhibitor tenofovir and the contraceptive levonorgestrel for 90 days. Two polyether urethanes with two different hard segment volume fractions were used to make coaxial extruded reservoir segments with a 100 µm thick rate controlling membrane and a diameter of 5.5 mm that contain 1.3 wt% levonorgestrel. A new mechanistic diffusion model accurately described the levonorgestrel burst release in early time points and pseudo-steady state behavior at later time points. As previously described, tenofovir was formulated as a glycerol paste and filled into a hydrophilic polyurethane, hollow tube reservoir that was melt-sealed by induction welding. These tenofovir-eluting segments and 2 cm long coaxially extruded levonorgestrel eluting segments were joined by induction welding to form rings that released an average of 7.5 mg tenofovir and 21 µg levonorgestrel per day in vitro for 90 days. Levonorgestrel segments placed intravaginally in rabbits resulted in sustained, dose-dependent levels of levonorgestrel in plasma and cervical tissue for 90 days. Polyurethane caps placed between segments successfully prevented diffusion of levonorgestrel into the tenofovir-releasing segment during storage.Hydrated rings endured between 152 N and 354 N tensile load before failure during uniaxial extension testing. In summary, this system represents a significant advance in vaginal drug delivery technology, and is the first in a new class of long-acting multipurpose prevention drug delivery systems.

  3. CARE - computer aided reservoir engineering. An integrated approach for a computer assisted underground gas storage management system

    Energy Technology Data Exchange (ETDEWEB)

    Zemke, J.; Boor, C.; Lenk, G. [UGS GmbH, Mittenwald (Germany); Schmidt, H.W. [Elpro AG (Germany)

    2006-09-15

    The CARE software is an effective assistant for optimal management of an underground gas storage facility that is customized to the specific characteristics of each reservoir and customer's requirements. Developed from many years of practical experience of the storage operation, reservoir determination and well parameters, CARE ensures an optimal operation mode, which increases the storage performance and permit a longer durability of each well completion. Apart from cost saving effects the operation risk can be reduced by early recognition of failures. The program is modular developed and can be arranged according to customer's specifications. The most comprehensive tool is the process control module, which enables the evaluation and analysis of all relevant data, determination of target and limiting values as well as advanced prognosis function. Therefore with the assistance of CARE the underground storage facility could be operated almost automatically. All relevant technical and geological data as well as available historical measured values are stored in a module-spreading data base, which is currently updated. The report generator creates templates in accordance with the customer's requirements, which can be converted into standard documents or diagrams for the use of management reports or authorities. Moreover there is a package of further high-capacity applications. Interactive coupling with 3-D reservoir simulation is also possible. In this report exemplary of the realisation of well pass and well test are performed. The well pass module provides quick access to all specific geological and well data. The survey over the entire well is just as possible as the zoom in to a special section. (orig.)

  4. Engineering a segmented dual-reservoir polyurethane intravaginal ring for simultaneous prevention of HIV transmission and unwanted pregnancy.

    Science.gov (United States)

    Clark, Justin T; Clark, Meredith R; Shelke, Namdev B; Johnson, Todd J; Smith, Eric M; Andreasen, Andrew K; Nebeker, Joel S; Fabian, Judit; Friend, David R; Kiser, Patrick F

    2014-01-01

    The HIV/AIDS pandemic and its impact on women prompt the investigation of prevention strategies to interrupt sexual transmission of HIV. Long-acting drug delivery systems that simultaneously protect womenfrom sexual transmission of HIV and unwanted pregnancy could be important tools in combating the pandemic. We describe the design, in silico, in vitro and in vivo evaluation of a dual-reservoir intravaginal ring that delivers the HIV-1 reverse transcriptase inhibitor tenofovir and the contraceptive levonorgestrel for 90 days. Two polyether urethanes with two different hard segment volume fractions were used to make coaxial extruded reservoir segments with a 100 µm thick rate controlling membrane and a diameter of 5.5 mm that contain 1.3 wt% levonorgestrel. A new mechanistic diffusion model accurately described the levonorgestrel burst release in early time points and pseudo-steady state behavior at later time points. As previously described, tenofovir was formulated as a glycerol paste and filled into a hydrophilic polyurethane, hollow tube reservoir that was melt-sealed by induction welding. These tenofovir-eluting segments and 2 cm long coaxially extruded levonorgestrel eluting segments were joined by induction welding to form rings that released an average of 7.5 mg tenofovir and 21 µg levonorgestrel per day in vitro for 90 days. Levonorgestrel segments placed intravaginally in rabbits resulted in sustained, dose-dependent levels of levonorgestrel in plasma and cervical tissue for 90 days. Polyurethane caps placed between segments successfully prevented diffusion of levonorgestrel into the tenofovir-releasing segment during storage.Hydrated rings endured between 152 N and 354 N tensile load before failure during uniaxial extension testing. In summary, this system represents a significant advance in vaginal drug delivery technology, and is the first in a new class of long-acting multipurpose prevention drug delivery systems.

  5. Selected papers from the twenty-third annual workshop on geothermal reservoir engineering, Stanford University; Dai 23 kai Stanford daigaku chinetsu choryuso kogaku workshop ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T. [Geological Survey of Japan, Tsukuba (Japan)

    1998-06-15

    The annual workshop on geothermal reservoir engineering at Stanford University which is now the twenty-third meeting was held for three days starting January 26, 1998. Contents of the lectures included topics as various as 12 cases of field studies, 12 modelings, 8 cases of geochemistry, 8 cases of earth science, 4 cases of physical exploration, 6 high-temperature rocks, 2 cases of deep geothermal research, 5 cases related to wells, and three others. By countries, the United States presented about half of the total number of papers, the Philippines presented about ten papers, and Japan five papers. This paper introduces the summary of four papers said to have drawn interest of the participants. The thesis No. 1 describes utilization in field scale of mass-flow measuring chemical tracers in geothermal areas in the Philippines. The thesis No. 2 is about hydraulic properties of the Dixie Valley (Nevada) geothermal area as seen from well test analysis. The thesis No. 3 is about fracture permeability of reservoir scale in the Dixie Valley (Nevada) geothermal area. The thesis No. 4 mentions high-order differential for a phase front propagation problem in geothermal systems. 4 refs., 5 figs., 2 tabs.

  6. Geology of the Lower Cretaceous Travis Peak Formation, East Texas. Depositional history, diagenesis, structure, and reservoir-engineering implications. Topical report, November 1982-February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Laubach, S.E.; Tye, R.S.; Baumgardner, R.W.; Herrington, K.L.

    1990-06-01

    The report summarizes stratigraphic, petrographic, and structural studies of the Lower Cretaceous Travis Peak Formation, a low-permeability gas sandstone in East Texas, and presents reservoir engineering implications. Depositional systems in this region were interpreted from logs and cores and include (1) a braided- to meandering-fluvial system that forms the majority of the Travis Peak section; (2) deltaic deposits interbedded with the distal part of the fluvial system; (3) paralic deposits that overlie and interfinger with the deltaic and fluvial deposits near the top of the Travis Peak; and (4) shelf deposits present at the downdip extent of the formation. Petrographic studies indicate the sandstones are quartzarenites and subarkoses. Cementation by quartz, dolomite, ankerite, illite, chlorite, and reservoir bitumen have reduced porosity to less than 8 percent and permeability to less than 0.1 md throughout most of the formation. Structurally deeper sandstones are more intensely quartz cemented than are shallower sandstones and contain abundant, open natural fractures. Borehole breakouts and drilling-induced fractures in core can be used to predict horizontal stress directions and the direction of hydraulic fracture propagation. Hydraulic fractures propagate in directions subparallel to the east-northeast strike of the natural fractures; thus, hydraulically induced fractures may not intersect many natural fractures.

  7. Geothermal resources in the Asal Region, Republic of Djibouti: An update with emphasis on reservoir engineering studies

    Energy Technology Data Exchange (ETDEWEB)

    Houssein, Daher E. [Centre d' Etudes et de Recherche de Djibouti, CERD, Earth Science, B.P. 486 Djibouti (Djibouti); Axelsson, Gudni [Slenskar Orkurannsoknir (ISOR), 9 Grensasvegi, Reykjavik, 108 (Iceland)

    2010-09-15

    Three independent geothermal systems have been identified, so far, in the Asal region of the Republic of Djibouti (i.e. Gale le Goma, Fiale and South of Lake). Six deep wells have been drilled in the region, the first two in 1975 and the others in 1987-88. Well A2 was damaged and wells A4 and A5 encountered impermeable yet very hot (340-365 C) rocks. Wells A1, A2, A3 and A6 produce highly saline (120 g/L TDS) fluids leading to mineral scaling. Well test data indicate that the reservoir might be producing from fractured and porous zones. The estimated permeability-thickness of the deep Gale le Goma reservoir is in the 3-9 darcy-meter range. Lumped-parameter modeling results indicate that well A3 should be operated at about 20 kg/s total flow rate and that injection should be considered to reduce pressure drawdown. The estimated power generation potential of well A3 is 2.5 MWe, and that of all Asal high-temperature hydrothermal systems is between 115 and 329 MWe for a 25-year exploitation period. (author)

  8. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on mathematic

  9. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on mathematic

  10. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  11. STUDY ON GIS DEVELOPMENT TECHNOLOGY FOR RESERVOIR AREA IN DAPING COALMINE BASED ON ARCGIS ENGINE%基于ArcGIS Engine的大平矿库区GIS开发技术研究

    Institute of Scientific and Technical Information of China (English)

    孙臣良; 张峰

    2013-01-01

    To solve the problem of safety coal mining in Daping coalmine under the reservoir, in this paper we put forward a high efficient GIS application solution which is based on ArcGIS Engine and Microsoft visual C ++ 2005. Based on ArcGIS Engine application development technology, we construct the Geodatabase of the reservoir area with spatial information of discrete measuring points in reservoir area, establish digital elevation model of reservoir surface with high precision triangulated irregular network, and develop and implement powerful three-dimension analysis capabilities covering the generation and display of 3-D reservoir surface, dynamical query of 3-D spatial attributes, drawing the contour of reservoir surface, calculation of reservoir capacity and water area, and drawing the cross section map of the reservoir region, etc. These establish a basic platform for the reservoir region in geographic information management, the evaluation of threat degree on the stope by the reservoir water, the simulation of reservoir water movement and the optimal coordinated mining planning, which has important realistic significance to safety, high productive and efficient mining.%针对大平矿水库下煤炭安全开采问题,在GIS理论的基础上,提出基于ArcGIS Engine和Microsoft visual C++2005的高效GIS应用解决方案.基于ArcGIS Engine的应用开发技术,利用库区离散测点空间信息构建库区地理信息数据库,采用高精度的不规则三角网建模方法建立库区地表数字高程模型,开发实现库区三维地表生成与显示、三维空间属性动态查询、库区地表等高线生成、库容与水域面积计算和库区剖面图绘制等强大的三维分析功能,为库区地理信息管理、回采工作面库水威胁程度评价、库水运移模拟和最优协调开采方案编制建立了基础平台,对水库下安全、高产、高效开采具有重要的现实意义.

  12. Monitoring of endangered Roanoke logperch (Percina rex) in Smith River upstream from the Philpott Reservoir on U.S. Army Corps of Engineers property near Martinsville, Virginia

    Science.gov (United States)

    Roberts, James H.; Angermeier, Paul L.

    2012-01-01

    The purpose of this study was to continue annual monitoring of Roanoke logperch (Percina rex), an endangered fish, in the Smith River immediately upstream from Philpott Reservoir. This river reach is owned by the U.S. Army Corps of Engineers (USACE), which must ensure that appropriate actions are undertaken to aid in recovery of logperch. Monitoring of fish abundance and habitat conditions provides a means for assessing the species’ status and its responses to USACE management actions. The Roanoke logperch is a large darter (Percidae: Etheostomatinae) endemic to the Roanoke, Dan, and Nottoway River basins of Virginia and North Carolina, where it occupies third- to sixth-order streams containing relatively silt-free substrate (Jenkins and Burkhead, 1994). Because of its rarity, small range, and vulnerability to siltation, the Roanoke logperch was listed in 1989 as endangered under the U.S. Endangered Species Act (ESA) (U.S. Federal Register 54:34468-34472). Within the Dan basin, Roanoke logperch have long been known to occupy the Smith River and one of its largest tributaries, Town Creek (Jenkins and Burkhead, 1994). Logperch also recently were discovered in other tributaries of the Dan River, including North Carolina segments of the Mayo River, Cascade Creek, Big Beaver Island Creek, Wolf Island Creek (William Hester, U.S. Fish and Wildlife Service, personal commun., 2012). Within the Smith River, Roanoke logperch are present both upstream and downstream from Philpott Reservoir, a hydroelectric and water storage project owned and operated by the USACE. Although logperch have not been observed in the reservoir itself, the species is relatively abundant in a free-flowing, ≈ 2.5-km-long segment of Smith River upstream from the reservoir on USACE property (Lahey and Angermeier, 2006). This segment is bounded on the downstream end by the lentic conditions of the reservoir and on the upstream end by White Falls, a natural waterfall that presumably allows fish passage

  13. Reservoir and civil engineering geophysics (CD-Rom); Geophysique de gisement et de genie civil (CD-Rom)

    Energy Technology Data Exchange (ETDEWEB)

    Mari, J.L.; Chapellier, D.

    1999-07-01

    This CD-Rom is a pedagogical tool developed from the book 'field and civil engineering geophysics' (Technip ed., 1998). It presents the geophysical methods (surface and well geophysical surveys, radar surveys and well logging) and their application in the study of oil fields and also in civil engineering. Several cartoons illustrate the principle of methods, their domain of use and their limitations. It covers the following topics: surface seismic surveys (waves propagation, equipments, reflexion and refraction seismic surveys, surface waves); well seismic surveys (operation, data processing, imaging); well logging (acoustic, nuclear,electrical and others, methods of interpretation); radar surveys (principle, surface, wells, possibilities and limitations). (J.S.)

  14. Reservoir engineering and computer model analyses of flow tests on the Miogypsinoides sandstone: Sweet Lake geothermal-geopressured prospect

    Energy Technology Data Exchange (ETDEWEB)

    Gould, T.L.; Kenner, C.B.; Clark, J.D.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    Engineering analysis and interpretation of two flow tests on the fifth sand of MG-T/DOE Amoco Fee No. 1 well have been completed. The gas-water ratio of the fifth sand was reported to be about 10.7 scf/bbl, which is very undersaturated. Testing of a single zone is inconclusive as to the commercial viability of the well. Testing of other zones for both productive capacity and solution gas-water ratio is continuing at this time.

  15. Reservoir Operation to Minimize Sedimentation

    Directory of Open Access Journals (Sweden)

    Dyah Ari Wulandari

    2013-10-01

    Full Text Available The Wonogiri Reservoir capacity decreases rapidly, caused by serious sedimentation problems. In 2007, JICA was proposed a sediment storage reservoir with a new spillway for the purpose of sediment flushing / sluicing from The Keduang River. Due to the change of reservoir storage and change of reservoir system, it requires a sustainable reservoir operation technique. This technique is aimed to minimize the deviation between the input and output of sediments. The main objective of this study is to explore the optimal Wonogiri reservoir operation by minimizing the sediment trap. The CSUDP incremental dynamic programming procedure is used for the model optimization.  This new operating rules will also simulate a five years operation period, to show the effect of the implemented techniques. The result of the study are the newly developed reservoir operation system has many advantages when compared to the actual operation system and the disadvantage of this developed system is that the use is mainly designed for a wet hydrologic year, since its performance for the water supply is lower than the actual reservoir operations.Doi: 10.12777/ijse.6.1.16-23 [How to cite this article:  Wulandari, D.A., Legono, D., and Darsono, S., 2014. Reservoir Operation to Minimize Sedimentation. International Journal of Science and Engineering, 5(2,61-65. Doi: 10.12777/ijse.6.1.16-23] Normal 0 false false false EN-US X-NONE X-NONE

  16. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  17. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  18. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  19. Dam-Site Selection of Huayuan Reservoir Hydraulic Engineering Complex in Longjiang County%花园水库枢纽工程坝址选择

    Institute of Scientific and Technical Information of China (English)

    付彦

    2011-01-01

    In accordance with Planning for 100 Billion jin Grain Production Capability Construction in Heilongjiang Province compiled in 2008,Comprehensive Planning of Songhua River Watershed compiled in April,2010,Brief Introduction of Important Projects in Heilongjiang Province Water Conservancy Development "Twelve Five-year Plans" Planning compiled in July,2010 and Planning for Construction of 10 Million mu Paddy Fields Added Newly in Heilongjiang Province compiled in 2010,the Huayuan Reservoir was recommended as the important hydraulic engineering complex in the comprehensive regulation of Yalu River watershed in the near term.The total storage of Huayuan Reservoir is 0.372 billion m3 and irrigation area is 0.1313 million hm2.The curves of cost and submerge loss were used to estimate the project costs and investment for submerge compensation for the two dam sites located on the river section in light of the same task of flood control and irrigation.The cost of upper dam site is 311.23million Yuan more than the lower dam site,meanwhile,there exists the problems of partial submerged lands in Inner Mongolia,it is difficult to cooperate the submerge compensation problems over the different provinces,and the lower dam site will be selected at the stage of project proposal.%根据2008年编制的《黑龙江省千亿斤粮食生产能力建设规划》、2010年4月编制的《松花江流域综合规划》、2010年7月编制的《黑龙江省水利发展"十二五"规划重点工程项目简介》以及2010年编制的《黑龙江省新增1000万亩水田建设规划》,花园水库均被推荐为近期雅鲁河流域综合治理的重点枢纽工程。花园水库总库容3.72亿m3,灌溉面积13.13万hm2,在河段内两坝址按相同的防洪、灌溉任务,按造价曲线和淹没损失曲线估算工程造价和淹没补偿投资,上坝址比下坝址多31123万元,且存在淹没内蒙部分土地的问题,跨省区协调淹没赔偿问题难度大,项目建议书阶段选定下坝址。

  20. Problems of geology and reservoir engineering of the objects suitable or adapted for underground gas storage; Problemy z zakresu geologii i inzynierii zlozowej obiektow przydatnych i adaptowanych na podziemne magazyny gazu

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, R. [Polskie Gornictwo Naftowe i Gazownictwo, Warsaw (Poland)

    1996-07-01

    The problems of geology of deposits and reservoir engineering essential for selection or adaptation of object for use as underground gas store as well as objects themselves-worked out reservoirs, are discussed. The zones of the objects and separation of the optimum zones of the deposit taking into account the differences between the I and II accumulation zone are described. The sandy porous and fractured carbonate horizons are the potential store horizons. Numerous examples different gas-bearing horizons used as gas stores are given. The attention has been turned to differences and specific features of sand and carbonate horizons as well as the possibility of their adaptation for underground gas storing. (author). 2 refs., 2 figs.

  1. The integration of geochemical, geological and engineering data to determine reservoir continuity in the Iagifu-Hedinia field, Papua New Guinea

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, R.L. [Chevron Overseas Petroleum, San Ramon, CA (United States); Eisenberg, L.I.; Fitzmorris, R.E. [South Pacific Chevron, Brisbane (Australia)

    1995-08-01

    A series of oil and gas fields, including Iagifu-Hedinia, occur along the leading edge of the Papuan fold and thrust belt. Formed during Pliocene to Recent compression, they are structurally complex, and typically broken into multiple reservoir compartments. The presence of the karstic Darai Limestone at the surface over most of the fold belt prevents acquisition of useful seismic data. Reservoir mapping, and establishment of reservoir continuity, is therefore based soley on (1) surface geologic data, (2) drilling data; initially dipmeter and RFT pressure data, and subsequently well production histories, and (3) geochemical correlation of reservoir fluids. During appraisal of the Iagifu-Hedinia discovery, these complimentary data sets demonstrated that (1) a single hydrocarbon column existed above a flowing aquifer in the main block of Iagifu-Hedinia field, (2) a separate acuumulation existed in the Usano area. Geochemical data have suggested the presence of reservoir compartments where other data were missing or inconclusive. Subsequently-acquired production history data have confirmed the geochemically-based interpretations. Geochemical data suggest that oils at Iagifu-Hedinia have a common source. The slight differences in oil composition between reservoirs are likely due to multiple phases of expulsion from the same source rock and/or migration-fractionation.

  2. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  3. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Science.gov (United States)

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  4. Reservoir engineering optimized techniques and applications research in initial development stage of a super shallow sea marginal oil field : Development case of Chengdao Oil Field in Bohai Bay, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.; Ren, Y.; Zhou, Y.; Wang, D. [Shengli Oil field Inc. (China). SINOPEC Corp.

    2002-06-01

    One of the greatest Chinese neritic marginal oil fields is the Chengdao oil field, located north of Dongying City, Shandong Province, China in the southern part of Bohai Bay. The depth of the seawater is less than 15 metres, even though the field lies 5 kilometres from shore. It falls in the category of super shallow sea marginal oil field, due to a number of reasons: peculiar geographical location, abominable environment and climate, complex reservoir characteristics and high economic risk of exploration and development. The major oil-bearing series of the Chengdao oil field is upper Guantao sandstones. The establishment of a three-dimensional conceptual model and static model in initial development stage were completed using Log-Constrained Seismic Inversion technique combined with three-dimensional visual geological model establishment technique. The optimization and determination of reservoir engineering technical limits, namely development scheme, well pattern and spacing, timing of water injection, water injection scheme and injection-to-production ratio was accomplished with the application of geostatistics, numerical simulation and economic evaluation techniques. For the period 1996-2001, the cumulative oil productivity of upper Guantao reservoir in pure natural energy development increased substantially. The results were presented in this paper. 3 refs., 6 tabs., 13 figs.

  5. Geothermal reservoir engineering 4. Heat and mass transfer in hydrothermal systems; Chinetsu choryuso kogaku. Dai 4 kai nessui tairyukei no netsu/shitsuryo yuso

    Energy Technology Data Exchange (ETDEWEB)

    Ishido, T. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1997-12-01

    The underground geothermal reservoir is a part of the hydrothermal systems, its openness is strong and its shape is irregular, hence it is necessary to obtain sufficiently such various data as pressure transition tests in order to construct a model, in particular a mathematical model, of a geothermal reservoir. In order to prepare a quantitative reservoir model by numerical simulation, the basic understanding is indispensable on the flow of heat and fluid in the hydrothermal system. In this article, explanations are made on the following items based on the above recognition. They are the flow of earth crust fluid (the flow driven hydraulically and the flow driven by heat), generation of unstability (Rayleigh-Darcy instability, and double advection-diffusion instability), circulation and heat convection associated with terrain corrugation (convection pattern, Nusselt number and transition time of convection development) and modelization of geothermal system (hydrothermal system of a big scale associated with cooling of intrusive rock, development of reservoir controlled by fault, and hydrothermal convection system associated with magma activity). 26 refs., 26 figs.

  6. Engineering geological characteristics and the hydraulic fracture propagation mechanism of the sand-shale interbedded formation in the Xu5 reservoir

    Science.gov (United States)

    Lu, Cong; Li, Mei; Guo, Jian-Chun; Tang, Xu-Hai; Zhu, Hai-Yan; Yong-Hui, Wang; Liang, Hao

    2015-06-01

    In the Xu5 formation the sandstone reservoir and the shale reservoir are interbedded with each other. The average thickness of each formation is about 8 m, which increases the difficulty of the hydraulic fracturing treatment. The shale thickness ratio (the ratio of shale thickness to formation thickness) is 55-62.5%. The reservoir is characterized by ultra-low porosity and permeability. The brittleness index of sandstone is 0.5-0.8, and the brittleness index of shale is 0.3-0.8. Natural fractures are poorly developed and are mainly horizontal and at a low angle. The formation strength is medium and the reservoir is of the hybrid strike-slip fault and reverse fault stress regime. The difference between the minimum principal stress and the vertical stress is small, and the maximum horizontal principal stress is 20 MPa higher than the minimum horizontal principal stress and vertical stress. A mechanical model of a hydraulic fracture encountering natural fractures is built according to geological characteristics. Fracture mechanics theory is then used to establish a hydraulic fracturing model coupling the seepage-stress-damage model to simulate the initiation and propagation of a fracture. The hydraulic fracture geometry is mainly I-shaped and T-shaped, horizontal propagation dominates the extension, and vertical propagation is limited. There is a two to three meter stress diversion area around a single hydraulic fracture. The stress diversion between a hydraulic fracture and a natural fracture is advantageous in forming a complex fracture. The research results can provide theoretical guidance for tight reservoir fracturing design.

  7. Dynamic dam-reservoir interaction analysis including effect of reservoir boundary absorption

    Institute of Scientific and Technical Information of China (English)

    LIN; Gao; DU; JianGuo; HU; ZhiQiang

    2007-01-01

    Based on the scaled boundary finite-element method,the governing equations for the analysis of dam-reservoir interaction including the reservoir boundary absorption are developed.Coupling with the equation of dam-unbounded foundation interaction,it can effectively carry out the earthquake response analysis of dam-reservoir-foundation system.The proposed approach has the advantages that the effect of compressibility of reservoir water as well as the energy absorption of reservoir boundary on the earthquake response of arch dams and gravity dams can be efficiently evaluated and higher accuracy can be achieved.In comparison with the methods available in the literature,the computational cost can be reduced to a great extent.It facilitates the application of earthquake response analysis of dam-reservoir-foundation system including reservoir boundary absorption to the engineering practice.

  8. Sedimentation and sustainability of western American reservoirs

    Science.gov (United States)

    Graf, William L.; Wohl, Ellen; Sinha, Tushar; Sabo, John L.

    2010-12-01

    Reservoirs are sustainable only as long as they offer sufficient water storage space to achieve their design objectives. Life expectancy related to sedimentation is a measure of reservoir sustainability. We used data from the Army Corps of Engineers, U.S. Bureau of Reclamation, and U.S. Geological Survey (Reservoir Sedimentation Survey Information System II (RESIS II)) to explore the sustainability of American reservoirs. Sustainability varied by region, with the longest life expectancies in New England and the Tennessee Valley and the shortest in the interior west. In the Missouri and Colorado River basins, sedimentation and rates of loss of reservoir storage capacity were highly variable in time and space. In the Missouri River Basin, the larger reservoirs had the longest life expectancies, with some exceeding 1000 years, while smaller reservoirs in the basin had the shortest life expectancies. In the Colorado River Basin at the site of Glen Canyon Dam, sediment inflow varied with time, declining by half beginning in 1942 because of hydroclimate and upstream geomorphic changes. Because of these changes, the estimated life expectancy of Lake Powell increased from 300 to 700 years. Future surprise changes in sedimentation delivery and reservoir filling area are expected. Even though large western reservoirs were built within a limited period, their demise will not be synchronous because of varying sedimentation rates. Popular literature has incorrectly emphasized the possibility of rapid, synchronous loss of reservoir storage capacity and underestimated the sustainability of the water control infrastructure.

  9. Analysis of Seismic Risk at an Engineering Site from Site Effect Seismic Intensity Data Using the Seismotectonic Method-Taking Six Reservoir Dam Sites in Western Anhui as an Example

    Institute of Scientific and Technical Information of China (English)

    Zhang Jie; Wang Xingzhou; Shen Xiaoqi

    2003-01-01

    The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo-geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥ i) = 10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.

  10. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  11. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  12. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  13. Estimation of the fluctuating water surface area of the Three Gorges Reservoir in China[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.R. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Chongqing Pharmaceutical Industry Designing Inst., Chongqing (China); Li, S.S. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2009-07-01

    The Three Gorges Reservoir (TGR) in China is the largest river-type reservoir in the world. This paper presented a simple methodology to assess the reservoir project impacts. In particular, it determined the variations in the submersion of the TGR's water storage on an annual discharge-storage cycle. A good understanding of the variations is important to investigate channel morphology, sediment transport, ecological changes, geological hazards and relocation of local residents. The surface area of the TGR was calculated from output of HEC-RAS, a 1-D hydrodynamics model developed by the United States Army Corps of Engineers. Mass transfer-based methods were used to estimate evaporation, which required wind and vapour pressure as input. The flow velocities and water levels in the TGR were numerically predicted. The predictions of cross-sectional mean flow velocities and the slope of the water surface were in good agreement with field data. The calibrated model was then run for the design water levels and inflows for each month of the year. The total area of the water surface that fluctuates in time was calculated from model results. The amount of water evaporation loss from the water surface was estimated using the calculated area and climatologic statistics of water and air temperatures, humidity and winds. 15 refs., 1 tab., 8 figs.

  14. Newfoundland and Labrador hydro dam safety management system : case study Long Pond Reservoir dam safety review[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Poole, G. [Newfoundland and Labrador Hydro, St. John' s, NL (Canada); Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada)

    2009-07-01

    Newfoundland and Labrador Hydro (Hydro) has an active Dam Safety Management (DSM) as part of its overall commitment to safety. The DSM is managed through Hydro's Engineering Department to ensure that all dams and hydraulic structures are operated and maintained in a safe manner to minimize risk to the public. Key elements of the program include employing a Dyke Board of Consultants to inspect structures annually, maintaining a dam inventory record, and surveillance, maintenance, and monitoring plans. The DSM program has recently been updated to include Dam Safety Reviews (DSR) in accordance with the Canadian Dam Association (CDA) Dam Safety Guidelines. A DSR is a systematic review and evaluation of all aspects of design, construction, operation, maintenance, processes, and other systems affecting a dam's safety. A DSR evaluates all components of the dams and hydraulic structures such dams, spillways, foundations, abutments, reservoir, and tailraces. In 2008, Hydro employed Hatch to conduct a DSR for Long Pond Reservoir that will form the basis of additional reviews to be completed in the future on other systems. The DSR showed that Hydro has an excellent DSM and the dams on Long Pond Reservoir are in compliance with the 2007 CDA Guidelines. 1 fig.

  15. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  16. Improved reservoir exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, P.R. [IKU Petroleumsforskning A/S, Trondheim (Norway)

    1996-12-31

    This paper deals with reservoir exploitation and it highlights some ideas on how to improve exploitive skills to optimise the recovery of a field. The author looks closer at what needs to be done to optimise the reservoir data and the exploitation tools, and what are the needs of the reservoir production management. 2 refs., 3 figs.

  17. Work producing reservoirs: Stochastic thermodynamics with generalized Gibbs ensembles

    Science.gov (United States)

    Horowitz, Jordan M.; Esposito, Massimiliano

    2016-08-01

    We develop a consistent stochastic thermodynamics for environments composed of thermodynamic reservoirs in an external conservative force field, that is, environments described by the generalized or Gibbs canonical ensemble. We demonstrate that small systems weakly coupled to such reservoirs exchange both heat and work by verifying a local detailed balance relation for the induced stochastic dynamics. Based on this analysis, we help to rationalize the observation that nonthermal reservoirs can increase the efficiency of thermodynamic heat engines.

  18. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  19. Status of Cherokee Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  20. Status of Cherokee Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  1. 新疆中小型水库除险加固中存在的工程地质问题%Engineering-geological Issue about the Small and Medium-sized Reservoirs' Reinforcement in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    曹玉勤

    2011-01-01

    我国的中小水库占有很大的比例,针对新疆中小型水库存在的问题,统计了水库溃坝的诸多原因,得出由于渗透原因造成的溃坝占有很大的比重,而渗透现象的产生与堤坝所处的地质环境有着直接的联系.通过对典型的工程实例的地质情况的分析,提出了防止渗透的相应防治方案.%The article analyses the problems existing in Xinjiang small and medium-sized reservoirs, counts many other reasons about the dams' ruin, and shows that the dams break caused of penetration accounts for a large proportion, and the penetration is directly related to the geological environment of the dam.Through the analysis of some typical engineering geological questions, we present some effective measures to prevent infiltration.

  2. Development of a framework for optimization of reservoir simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Delshad, Mojdeh; Sepehrnoori, Kamy [The University of Texas at Austin, Austin, TX (United States)

    2007-10-15

    We have developed a framework that distributes multiple reservoir simulations on a cluster of CPUs for fast and efficient process optimization studies. This platform utilizes several commercial reservoir simulators for flow simulations, an experimental design and a Monte Carlo algorithm with a global optimization search engine to identify the optimum combination of reservoir decision factors under uncertainty. This approach is applied to a well placement design for a field-scale development exercise. The uncertainties considered are in the fault structure, porosity and permeability, PVT, and relative permeabilities. The results indicate that the approach is practical and efficient for performing reservoir optimization studies. (author)

  3. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  4. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  5. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  6. RESERVOIR CAPACITY DEPLETION ON ACCOUNT OF SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE

    2001-01-01

    Capacity depletion is an important information required for planning of multipurpose reservoirs. It is a complex phenomenon involving diverse fields like surface hydrology, sediment transport, varied flow hydraulics and soil consolidation. Proper assessment of capacity reduction is helpful in ascertaining the life of the reservoir and the project benefits for cost/benefit analysis. In this study dimensionally consistent equations for deposition volume and the trap efficiency have been obtained. Methods of obtaining the parameters involved these equations have also been indicated. It was found that there is good agreement with the field data. It is hoped that the equations are useful to design engineer.

  7. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady s

  8. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  9. A MATHEMATICAL MODEL OF RESERVOIR SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinchi

    2001-01-01

    Reliable quantitative estimation of bed aggradation or degradation is important for river-training and water management projects. With the development of water resources, sediment problems associated with a dam are becoming more severe. This paper describes some special problems in mathematical model for calculation of degradation and aggradation in a reservoir. The main efforts of this study are on the treatment of some physical processes of fine sediment transport (<0.05 mm). Problems in a reservoir are obviously different from a natural stream, such as the turbid current flow, orifice sediment flushing;and the initiation and consolidation of cohesive sediment deposition. The case of Liujiaxia Reservoir,which is located in the upper reaches of the Yellow River, is employed to verify the model. The results show that the model is applicable in the evaluation of an engineering planing with plenty of fine sediment movement.

  10. Hydrography, HydroBndy-The data set is a line feature containing representing the outline ponds and small reservoirs. It consists of more than 150 lines representing natural and engineered surface water bodies., Published in 2005, Davis County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Hydrography dataset current as of 2005. HydroBndy-The data set is a line feature containing representing the outline ponds and small reservoirs. It consists of more...

  11. Annotated research bibliography for geothermal reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sudol, G.A.; Harrison, R.F.; Ramey, H.J. Jr.

    1979-08-01

    This bibliography is divided into the following subject areas: formation evaluation, modeling, exploitation strategies, and interpretation of production trends. A subject/author index is included. (MHR)

  12. Neural networks techniques applied to reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M. [Gerencia de Proyectos Geotermoelectricos, Morelia (Mexico); Barragan, C. [RockoHill de Mexico, Indiana (Mexico)

    1995-12-31

    Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.

  13. Quantum-limited amplification via reservoir engineering.

    Science.gov (United States)

    Metelmann, A; Clerk, A A

    2014-04-04

    We describe a new kind of phase-preserving quantum amplifier which utilizes dissipative interactions in a parametrically coupled three-mode bosonic system. The use of dissipative interactions provides a fundamental advantage over standard cavity-based parametric amplifiers: large photon number gains are possible with quantum-limited added noise, with no limitation on the gain-bandwidth product. We show that the scheme is simple enough to be implemented both in optomechanical systems and in superconducting microwave circuits.

  14. Quantum-Limited Amplification via Reservoir Engineering

    OpenAIRE

    Metelmann, A.; Clerk, A. A.

    2013-01-01

    We describe a new kind of phase-preserving quantum amplifier which utilizes dissipative interactions in a parametrically-coupled three-mode bosonic system. The use of dissipative interactions provides a fundamental advantage over standard cavity-based parametric amplifiers: large photon number gains are possible with quantum-limited added noise, with no limitation on the gain-bandwidth product. We show that the scheme is simple enough to be implemented both in optomechanical systems and in su...

  15. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  16. 青草沙水库围堤龙口截流工程水文监测系统的研制%Development of hydrological monitoring system for closure gap engineering of Qingcaosha Reservoir

    Institute of Scientific and Technical Information of China (English)

    杜亚南; 吴敬文; 李保

    2013-01-01

    为确保青草沙水库围堤龙口截流工程的顺利进行,设计并研制了专用于高流速、高落差水域进行水位、流速及流向测量的水文监测系统.系统将GPS移动台置于密封的浮球内,浮球内安置姿态传感器、数字罗经以及数据存储设备,利用GPS实测数据,结合浮球姿态参数、GPS天线在船体坐标系下的坐标、船体坐标系到水面的垂直距离,通过PPK解算、姿态改正等处理,联合确定水面的高程和流速.实际监测结果表明,系统性能稳定,测量结果与实际情况一致,有效地解决了高流速、高落差龙口水域流速、流向和水位难以确定的问题.%To ensure the running smoothly of closure gap engineering of Qingcaosha Reservoir,a hydrological monitoring system was designed for measuring water levels and flow velocity and direction of water surface with high speed and high Drop.In this system,a mobile GPS station,attitude sensors,digital compass,and storage devices are all installed in a sealed float.Based on the GPS observed data,attitude parameters of the sealed float,coordinates of GPS antenna in the hull coordinate system,and the vertical distance from the hull coordinate system to water surface,the water surfface elevation and velocity were obtained using PPK calculating and correcting methods.The results show that the monitoring data of the system is in good agreement with the actual situation,indicating that the system is reliable,and can solve the problems of measuring water levels and surface velocity of closure gap water area with high speed and high drop.

  17. Entropy production and thermodynamic power of the squeezed thermal reservoir

    Science.gov (United States)

    Manzano, Gonzalo; Galve, Fernando; Zambrini, Roberta; Parrondo, Juan M. R.

    2016-05-01

    We analyze the entropy production and the maximal extractable work from a squeezed thermal reservoir. The nonequilibrium quantum nature of the reservoir induces an entropy transfer with a coherent contribution while modifying its thermal part, allowing work extraction from a single reservoir, as well as great improvements in power and efficiency for quantum heat engines. Introducing a modified quantum Otto cycle, our approach fully characterizes operational regimes forbidden in the standard case, such as refrigeration and work extraction at the same time, accompanied by efficiencies equal to unity.

  18. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  19. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  20. Monitoring Earth's reservoir and lake dynamics from space

    Science.gov (United States)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  1. Connectivity of channelized reservoirs: a modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Larue, David K. [ChevronTexaco, Bakersfield, CA (United States); Hovadik, Joseph [ChevronTexaco, San Ramon, CA (United States)

    2006-07-01

    Connectivity represents one of the fundamental properties of a reservoir that directly affects recovery. If a portion of the reservoir is not connected to a well, it cannot be drained. Geobody or sandbody connectivity is defined as the percentage of the reservoir that is connected, and reservoir connectivity is defined as the percentage of the reservoir that is connected to wells. Previous studies have mostly considered mathematical, physical and engineering aspects of connectivity. In the current study, the stratigraphy of connectivity is characterized using simple, 3D geostatistical models. Based on these modelling studies, stratigraphic connectivity is good, usually greater than 90%, if the net: gross ratio, or sand fraction, is greater than about 30%. At net: gross values less than 30%, there is a rapid diminishment of connectivity as a function of net: gross. This behaviour between net: gross and connectivity defines a characteristic 'S-curve', in which the connectivity is high for net: gross values above 30%, then diminishes rapidly and approaches 0. Well configuration factors that can influence reservoir connectivity are well density, well orientation (vertical or horizontal; horizontal parallel to channels or perpendicular) and length of completion zones. Reservoir connectivity as a function of net: gross can be improved by several factors: presence of overbank sandy facies, deposition of channels in a channel belt, deposition of channels with high width/thickness ratios, and deposition of channels during variable floodplain aggradation rates. Connectivity can be reduced substantially in two-dimensional reservoirs, in map view or in cross-section, by volume support effects and by stratigraphic heterogeneities. It is well known that in two dimensions, the cascade zone for the 'S-curve' of net: gross plotted against connectivity occurs at about 60% net: gross. Generalizing this knowledge, any time that a reservoir can be regarded as &apos

  2. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  3. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  4. 低渗致密气藏、凝析气藏开发难点与对策%Difficulties and Measures for Development of Low Permeability Tight Gas Reservoirs and Condensate Gas Reservoirs

    Institute of Scientific and Technical Information of China (English)

    李士伦; 孙雷; 杜建芬

    2004-01-01

    Low permeability tight gas reservoirs and condensate gas reservoirs account for a rather high proportion ofdomestic gas reserves, but many of them have low productivity. So it is significant to develop these reservoirs effi-ciently for continuous and stable development of China′s petroleum industry. Around the problems of the developmentof deep low permeability tight gas reservoirs and condensate gas reservoirs, this paper makes an analysis on the geo-logic and development characteristics of these reservoirs and presents ten proper technologies. Finally, five technicalmeasures for the development of such gas reservoirs are proposed in detail. These are deep fracturing technology,treatment technology of accumulated liquids in condensate gas well and near well bore, gas injection technology whenthe formation pressure is lower than the maximum condensate pressure, phase behavior analysis technology in porousmedia of low permeability tight condensate gas reservoir and other gas reservoir engineering technologies.

  5. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    human resources. It is also intended to make known to the general public that ... port processes were not properly taken into account. ... Studies carried out on 19 reservoirs in Cen- tral Europe with storage capacity ranging be- tween 1.48 x ...

  6. A simple quantum heat engine

    CERN Document Server

    Arnaud, J; Philippe, F; Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2002-01-01

    A simple urn model is presented that may describe heat engines employing as working agents spin-1/2 particles (e.g., electrons) or two-level atoms. In this model the cold reservoir is an urn located at altitude $\\epsilon_{c}$ that contains $N$ balls of total weight $n_{c}$. Likewise, the hot reservoir at altitude $\\epsilon_{h}$ contains $N$ balls of total weight $n_{h}$. A cycle consists of exchanging two randomly selected balls between the reservoirs. Elementary considerations show that the heat-engine efficiency (ratio of the average work performed divided by the average hot-reservoir energy consumption) is $\\eta=1-\\epsilon_{c}/\\epsilon_{h}$. The case where the two reservoirs have negative temperatures is symmetrical to the case where the two reservoirs have positive temperatures in the sense that heat engines become heat pumps and conversely. When the cold reservoir has positive temperature while the hot reservoir has negative temperature the maximum efficiency is unity. When many cold and hot sub-reservoi...

  7. Integrated reservoir assessment and characterization: Final report, October 1, 1985--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M.; Szpakiewicz, M.; Sharma, B.; Chang, Ming-Ming; Schatzinger, R.; Jackson, S.; Tomutsa, L.; Maerefat, N.

    1989-05-01

    This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.

  8. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    Science.gov (United States)

    Cho, Jae Kyoung

    investigated. Especially, water density, viscosity and rock heat capacity play a significant role in reservoir performance. The Permian Lyons formation in the Denver Basin is selected for this preliminary study. Well log data around the area of interest are collected and borehole temperature data are analyzed to estimate the geothermal potential of the target area and it follows that the target formation has a geothermal gradient as high as 72 °C/km. Based on the well log data, hypothetical reservoir simulation models are build and tested to access the hydraulic and thermal performance. It turns out that the target formation is marginally or sub-marginally commercial in terms of its formation conductivity. Therefore, the target formation may require reservoir stimulation for commercially viable power generation. Lastly, reservoir simulation models with average petrophysical properties obtained from the well log analysis of the target formation are built. In order to account for overburden and underburden heat transfer for confined reservoirs, low permeability layers representing shale cap/bed rocks are attached to the top and bottom of the reservoir layers. The dual permeability concept is applied to the reservoir layers to model induced fracture networks by reservoir stimulation. The simulation models are tested by changing fracture conductivity and shape factor. The results show that a balance between hydraulic and thermal performance should be achieved to meet the target flow rate and sustainability of 30 years' uninterrupted operation of geothermal electricity power generation. Ineffective reservoir stimulation could result in failing to create a producing reservoir with appropriate productivity index or causing premature thermal breakthrough or short-circuiting which advances the end of geothermal systems. Therefore, Enhanced Geothermal Systems (EGS) should be engineered to secure producing performance and operational sustainability simultaneously.

  9. Status of Blue Ridge Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  10. Development of a segmentation method for analysis of Campos basin typical reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Eneida Arendt; Bueno, Andre Duarte [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao de Petroleo (LENEP)]. E-mails: eneida@lenep.uenf.br; bueno@lenep.uenf.br

    2008-07-01

    This paper represents a master thesis proposal in Exploration and Reservoir Engineering that have the objective to development a specific segmentation method for digital images of reservoir rocks, which produce better results than the global methods available in the bibliography for the determination of rocks physical properties as porosity and permeability. (author)

  11. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    Energy Technology Data Exchange (ETDEWEB)

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  12. Elements of Poro-Elasticity for Reservoir Engineering Éléments de poro-élasticité pour l'ingénierie de réservoirs

    Directory of Open Access Journals (Sweden)

    Bouteca M.

    2006-11-01

    Full Text Available Poro-elasticity is introduced by establishing the parallel between the equations of elastic solid mechanics and the equations describing the single-phase flow of a fluid in a porous medium. We then develop a number of practical applications of poro-elasticity for reservoir engineering. In conclusion, we demonstrate that poro-elasticity helps to define rigorously the total compressibility factor of the diffusivity equation, and we quantify the contribution of the elastic deformation of the rock to production. Dans la première partie de ce document nous élaborons progressivement les équations de la poro-élasticité. On établit tout d'abord le parallèle entre les équations de la mécanique du solide déformable et l'équation décrivant l'écoulement d'un fluide incompressible dans un milieu poreux. La démarche adoptée pour établir ces équations (définition d'un potentiel, de son gradient, du flux associé et de la divergence du flux sera conservée tout au long de la première partie. Le parallèle étant établi on montre les modifications apportées par la prise en compte de la compressibilité du fluide. La poro-élasticité n'est introduite qu'après cette étape, et l'on souligne les modifications introduites par le couplage entre l'écoulement du fluide et la déformation du milieu poreux. A ce stade, l'équation de diffusivité hydraulique contient un terme de couplage qui décrit la contribution de la déformation du solide à l'écoulement du fluide. L'ensemble de la démarche est illustré par trois tableaux synthétiques (tableaux 1 à 3. Les bases de la poro-mécaniques ont été définies par M. A. Biot dont les travaux demeurent la référence indispensable. Nous avons également eu recours aux travaux de 0. Coussy, en particulier nous avons utilisé la masse fluide comme variable au lieu d'utiliser le volume fluide. Dans la deuxième partie de ce document, nous montrons quelques applications de la poro

  13. Reservoir Characterization of Upper Devonian Gordon Sandstone, Jacksonburg, Stringtown Oil Field, Northwestern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Avary, K.L.; Bilgesu, H.I.; Hohn, M.E.; McDowell, R.R.; Patchen, D.L.

    2002-05-21

    The purpose of this work was to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production.

  14. Proceedings of the U.S. Army Corps of Engineers Workshop on Reservoir Shoreline Erosion: A National Problem, Held in McAlester, Oklahoma on 26-30 October 1992

    Science.gov (United States)

    1993-08-01

    INC 303 BEAR HILL ROAD WALTHAM, MA CRAIG HEFLEBOWER USDI FISH & WILDI)FE SERVICE ROUTE 1, BOX 18A VIAN, OK 74962-0000 (918) 773-5251 RONALD W. HOLMBERG ...that have extra water seepage from springs or summer irrigation water that drains underground from the fields above the reservoir. The last major...specific areas. Quarries have been found on the west side of the lake where well-graded material from 6 in. to 5 ft plus is blasted out of the basalt

  15. Mittelplate A23/A23M1. Geological and reservoir engineering concept of a dual-lateral well; Mittelplate A23/A23M1. Geologisches und lagerstaettentechnisches Konzept einer Duolateralbohrung

    Energy Technology Data Exchange (ETDEWEB)

    Osivandi, K.; Racher, D. [RWE Dea AG, Hamburg (Germany)

    2011-07-15

    The Mittelplate Oil Field is situated in the German Wadden Sea in the West Holstein Trough in the concession Heide/Buesum, about 100 km northwest of Hamburg. Operator is RWE Dea AG (50%), and the partner is Wintershall Holding GmbH (50%). Besides the reservoir layers of the Dogger Gamma, Delta, Epsilon, and Zeta, the shallow-marine/deltaic sandstone-shale-succession of the Dogger Beta (with its five oil-bearing sandstones of 1-5 m thickness each) forms the laterally widespread reservoir which was the target for Germany's and RWE Dea AG's first pressure-tight multilateral well. So far the Dogger-Beta-Reservoir has been developed with wells from the artificial island Mittelplate A using a 5-spot pattern with a successive concentric concept. In order to reduce the costs and effectively make use of the limited amount of slots, the development concept should be improved by implementing the multilateral technology. By targeting three drainage areas in total, the multilateral well Mittelplate A23/A23M1 was planned to produce oil at an initial rate of ca. 400 m{sup 3}/d. In order to achieve a horizontal interval of ca. 2640 m length, several LWD measurements including Gamma Ray- and Density- Images and Deep-Directional-Resistivity logs were necessary. The long horizontal exposure of the oil-bearing sandstone layers as well as the tangent sections for placement of the electrical submersible pump (ESP) and junction above the reservoir represented the main challenges during geological planning and realtime geosteering. A total perforation length of 1360 m was achieved, taking into account the required distances to neighboring producer wells and the laterally varying pore pressures. According to the latest production history of the well, a cumulative production of about 10% more than initially planned are expected after an initial production rate of 735 m{sup 3}/d. Thanks to the successful application of the multilateral technology and geosteering within the thin

  16. Integrated methodology for constructing a quantified hydrodynamic model for application to clastic petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M. M.; Schatzinger, R. A.; Szpakiewicz, M. J.; Jackson, S. R.; Sharma, B.; Tomutsa, L.; Chang, M. M.

    1990-01-01

    A comprehensive, multidisciplinary, stepwise methodology is developed for constructing and integration geological and engineering information for predicting petroleum reservoir performance. This methodology is based on our experience in characterizing shallow marine reservoirs, but it should also apply to other deposystems. The methodology is presented as Part 1 of this report. Three major tasks that must be studied to facilitate a systematic approach for constructing a predictive hydrodynamic model for petroleum reservoirs are addressed: (1) data collection, organization, evaluation, and integration; (2) hydrodynamic model construction and verification; and (3) prediction and ranking of reservoir parameters by numerical simulation using data derived from the model. 39 refs., 62 figs., 13 tabs.

  17. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  18. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  19. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  20. Mechanical autonomous stochastic heat engines

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team

    Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.

  1. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  2. Reservoir geochemistry; Geoquimica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Joelma Pimentel; Rangel, Mario Duncan; Morais, Erica Tavares de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)], Emails: joelma.lopes@petrobras.com.br, mduncan@petrobras.com.br, ericat@petrobras.com.br; Aguiar, Helen G.M. de [Fundacao GORCEIX, Ouro Preto, MG (Brazil)], E-mail: helenaguiar.GORCEIX@petrobras.com.br

    2008-03-15

    Reservoir Geochemistry has many important practical applications during petroleum exploration, appraisal and development of oil fields. The most important uses are related to providing or disproving connectivity between reservoirs of a particular well or horizon. During exploration, reservoir geochemistry can indicate the direction of oil filling, suggesting the most appropriate places for drilling new wells. During production, studies of variations in composition with time and determination of proportions of commingled production from multiple zones, may also be carried out. The chemical constituents of petroleum in natural reservoirs frequently show measurable compositional variations, laterally and vertically. Due to the physical and chemical nature of petroleum changes with increasing maturity (or contribution of a second source during the filling process), lateral and vertical compositional variations exist in petroleum columns as reservoir filling is complete. Compositional variation can also be introduced by biodegradation or water washing. Once the reservoir is filled, density driven mixing and molecular diffusion tend to eliminate inherited compositional variations in an attempt to establish mechanical and chemical equilibrium in the petroleum column (England, 1990). Based on organic geochemical analysis it is possible to define these compositional variations among reservoirs, and use these data for developing of petroleum fields and for reservoir appraisal. Reservoir geochemistry offers rapid and low cost evaluation tools to aid in understanding development and production problems. Moreover, the applied methodology is relatively simple and gives reliable results, and can be performed routinely in any good geochemical laboratory at a relatively low cost. (author)

  3. An updated conceptual model of the Los Humeros geothermal reservoir (Mexico)

    Science.gov (United States)

    Arellano, V. M.; García, A.; Barragán, R. M.; Izquierdo, G.; Aragón, A.; Nieva, D.

    2003-05-01

    An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330°C boiling water column and a deeper low-liquid-saturation reservoir located between 850 and 100 m a.s.l. with temperatures between 300 and 400°C. Both reservoirs seem to be separated by a vitreous tuff lithological unit, but hydraulic connectivity occurs through faults and fractures of the system, allowing deep steam to ascend while condensate flows down (porous heat pipe). The geochemical and isotopic (δ 18O, δD) composition of the produced fluids can be explained as the result of a boiling process with reservoir steam separation and partial condensation, a fact that agrees with the proposed reservoir engineering model.

  4. Analysis of limited-entry well tests in layered reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, M.R.; Naismith, J.D.A.; Gunasekera, D.L.; Fitzpatrick, A.J.

    1994-12-31

    Vertical permeability, often a key parameter in reservoir engineering, can be calculated from the analysis of a limited entry pressure transient. Analytical solutions for limited entry welltests, where a fraction of the reservoir interval is perforated, have been available in the literature for some time. This paper considers the evaluation of limited entry welltests in heterogeneous layered formations. A number of field examples have been analyzed using both conventional analytical techniques and a new general purpose numerical welltest analysis application. The examples show that in layered formations vertical permeability can be significantly under estimated by conventional analytical analysis.

  5. Upscaling verticle permeability within a fluvio-aeolian reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-08-01

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  6. Reservoir zonation based on statistical analyses: A case study of the Nubian sandstone, Gulf of Suez, Egypt

    Science.gov (United States)

    El Sharawy, Mohamed S.; Gaafar, Gamal R.

    2016-12-01

    Both reservoir engineers and petrophysicists have been concerned about dividing a reservoir into zones for engineering and petrophysics purposes. Through decades, several techniques and approaches were introduced. Out of them, statistical reservoir zonation, stratigraphic modified Lorenz (SML) plot and the principal component and clustering analyses techniques were chosen to apply on the Nubian sandstone reservoir of Palaeozoic - Lower Cretaceous age, Gulf of Suez, Egypt, by using five adjacent wells. The studied reservoir consists mainly of sandstone with some intercalation of shale layers with varying thickness from one well to another. The permeability ranged from less than 1 md to more than 1000 md. The statistical reservoir zonation technique, depending on core permeability, indicated that the cored interval of the studied reservoir can be divided into two zones. Using reservoir properties such as porosity, bulk density, acoustic impedance and interval transit time indicated also two zones with an obvious variation in separation depth and zones continuity. The stratigraphic modified Lorenz (SML) plot indicated the presence of more than 9 flow units in the cored interval as well as a high degree of microscopic heterogeneity. On the other hand, principal component and cluster analyses, depending on well logging data (gamma ray, sonic, density and neutron), indicated that the whole reservoir can be divided at least into four electrofacies having a noticeable variation in reservoir quality, as correlated with the measured permeability. Furthermore, continuity or discontinuity of the reservoir zones can be determined using this analysis.

  7. An improved reservoir oxide cathode

    Science.gov (United States)

    Wang, Xiaoxia; Liao, Xianheng; Luo, Jirun; Zhao, Qinglan

    2005-09-01

    A new type of reservoir oxide cathode has been developed in IECAS. The emission characteristics of the cathode are tested. The results show the new cathode has higher emission current density and better resistance to poisoning at same operating condition compared with those of conventional reservoir oxide cathode.

  8. Reconstruction of Existing Reservoir Model for Its Calibration to Dynamic Data

    Science.gov (United States)

    Le Ravalec-Dupin, M.; Hu, L. Y.; Roggero, F.

    The increase in computer power and the recent developments in history-matching can motivate the reexamination of previously built reservoir models. To save the time of engineers and the CPU time, four distinct algorithms, which allow for rebuilding an existing reservoir model without restarting the reservoir study from scratch, were formulated. The algorithms involve techniques such as optimization, relaxation, Wiener filtering, or sequential reconstruction. They are used to identify a stochastic function and a set of random numbers. Given the stochastic function, the random numbers yield a realization that is close to the existing reservoir model. Once the random numbers are known, the existing reservoir model can be submitted to a new history-matching process to improve the data fit or to account for newly collected data. A practical implementation is presented within the context of facies reservoirs. This article focuses on a previously built facies reservoir model. Although the simulation procedure is unknown to the authors, a set of random numbers are identified so that when provided to a multiple-point statistics simulator, a realization very close to the existing reservoir model is obtained. A new history-matching procedure is then run to update the existing reservoir model and to integrate the fractional flow rates measured in two producing wells drilled after the building of the existing reservoir model.

  9. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    Science.gov (United States)

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  10. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  11. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    , and the best reservoir properties are typically found in mudstone intervals. Chalk mudstones vary a lot though. The best mudstones are purely calcitic, well sorted and may have been redeposited by traction currents. Other mudstones are rich in very fine grained silica, which takes up pore space and thus...... stabilizes chemically by recrystallization. This process requires energy and is promoted by temperature. This recrystallization in principle does not influence porosity, but only specific surface, which decreases during recrystallization, causing permeability to increase. The central North Sea is a warm...... intervals are to some extent cemented and cannot compact mechanically at realistic effective stresses and only deform elastically. All chalk intervals though, may react by fracturing to changes in shear stress. So where natural fractures are not prevalent, fractures may be generated hydraulically. Fractures...

  12. Reasons for reservoir effect variability

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    Freshwater reservoir effects can be large and highly variable. I will present my investigations into the short-term variability of the freshwater reservoir effect in two Northern German rivers. The samples analysed in this study were collected between 2007 and 2012. Reservoir ages of water samples......, aquatic plants and fish from the rivers Alster and Trave range between zero and about 3,000 radiocarbon years. The reservoir age of water DIC depends to a large extent on the origin of the water and is for example correlated with precipitation amounts. These short-term variations are smoothed out in water...... plants. Their carbon should represent an average value of the entire growth season. However, there are large reservoir age variations in aquatic plants and animals as well. These can best be explained by the multitude of carbon sources which can be utilized by aquatic organisms, and which have...

  13. Prediction of water temperature in stratified reservoir and effects on downstream irrigation area: A case study of Xiahushan reservoir

    Science.gov (United States)

    Yang, Mengfei; Li, Lan; Li, Juan

    With increasing concern in environmental and ecological protection, more studies have focused on solving the problems caused by dam. Large reservoirs often release low-temperature water in spring and summer, which have adverse effects on downstream ecosystem. The 3-D Environmental Fluid Dynamics Code (EFDC) and 1-D longitudinal stream temperature model were used in this paper, to predict the water temperature in reservoir and canal and analyze the effects on irrigation area. The results indicate that the affected area is within a 55 km distance mainly in the period between April and June. Some management and engineering measures should be adopted to reduce the impact.

  14. Gravity observations for hydrocarbon reservoir monitoring

    NARCIS (Netherlands)

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The

  15. Water resources review: Ocoee reservoirs, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  16. Data requirements and acquisition for reservoir characterization

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.; Chang, Ming Ming; Tham, Min.

    1993-03-01

    This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

  17. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  18. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  19. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  20. 26th Annual GCSSEPM Foundation Bob F.Perkins Research Conference on "Reservoir characterization:integrating technology and business practices"

    Institute of Scientific and Technical Information of China (English)

    Roger M. Slatt

    2007-01-01

    @@ The 2006 26th Annual GCSSEPM Foundation Bob F. Perkins Research Conference on "Reservoir characterization: Integrating technology and business practices" presented a solid testimonial to how far we have advanced in the technologies and practices of reservoir characterization since the 1990 AAPG-SEG-SPE-SPWLA 1st Archie Conference on "Integration of Geology, Geophysics, Petrophysics, and Petroleum Engineering in Reservoir Delineation, Description and Management".

  1. Electromagnetically induced transparency and quantum heat engines

    Science.gov (United States)

    Harris, S. E.

    2016-11-01

    We describe how electromagnetically induced transparency may be used to construct a nontraditional near-ideal quantum heat engine as constrained by the second law. The engine is pumped by a thermal reservoir that may be either hotter or colder than that of an exhaust reservoir, and also by a monochromatic laser. As output, it produces a bright narrow emission at line center of an otherwise absorbing transition.

  2. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  3. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    Science.gov (United States)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  4. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi

    2012-12-01

    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  5. THE SURDUC RESERVOIR (ROMANIA

    Directory of Open Access Journals (Sweden)

    Niculae Iulian TEODORESCU

    2008-06-01

    Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.

  6. Appalachian Basin Low-Permeability Sandstone Reservoir Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ray Boswell; Susan Pool; Skip Pratt; David Matchen

    1993-04-30

    A preliminary assessment of Appalachian basin natural gas reservoirs designated as 'tight sands' by the Federal Energy Regulatory Commission (FERC) suggests that greater than 90% of the 'tight sand' resource occurs within two groups of genetically-related units; (1) the Lower Silurian Medina interval, and (2) the Upper Devonian-Lower Mississippian Acadian clastic wedge. These intervals were targeted for detailed study with the goal of producing geologic reservoir characterization data sets compatible with the Tight Gas Analysis System (TGAS: ICF Resources, Inc.) reservoir simulator. The first phase of the study, completed in September, 1991, addressed the Medina reservoirs. The second phase, concerned with the Acadian clastic wedge, was completed in October, 1992. This report is a combined and updated version of the reports submitted in association with those efforts. The Medina interval consists of numerous interfingering fluvial/deltaic sandstones that produce oil and natural gas along an arcuate belt that stretches from eastern Kentucky to western New York. Geophysical well logs from 433 wells were examined in order to determine the geologic characteristics of six separate reservoir-bearing intervals. The Acadian clastic wedge is a thick, highly-lenticular package of interfingering fluvial-deltaic sandstones, siltstones, and shales. Geologic analyses of more than 800 wells resulted in a geologic/engineering characterization of seven separate stratigraphic intervals. For both study areas, well log and other data were analyzed to determine regional reservoir distribution, reservoir thickness, lithology, porosity, water saturation, pressure and temperature. These data were mapped, evaluated, and compiled into various TGAS data sets that reflect estimates of original gas-in-place, remaining reserves, and 'tight' reserves. The maps and data produced represent the first basin-wide geologic characterization for either interval. This report

  7. HDR reservoir flow impedance and potentials for impedance reduction

    Energy Technology Data Exchange (ETDEWEB)

    DuTeau, R.; Brown, D.

    1993-06-01

    The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

  8. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  9. 2010 Fresno Reservoir Sedimentation Survey

    Data.gov (United States)

    US Bureau of Reclamation, Department of the Interior — The Bureau of Reclamation (Reclamation) surveyed Fresno Reservoir in June of 2010 to develop a topographic map and compute a storage-elevation relationship...

  10. 2011 Groundhog Reservoir Bathymetric Contours

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey performed a bathymetric survey of Groundhog Reservoir using a man-operated boat-mounted multibeam echo sounder integrated with a global...

  11. Glendo Reservoir 2003 Sedimenation Survey

    Data.gov (United States)

    US Bureau of Reclamation, Department of the Interior — The Bureau of Reclamation (Reclamation) surveyed Glendo Reservoir in May and July of 2003 and January 2005 to develop a new topographic map and compute a present...

  12. Understanding the True Strimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  13. Geo-Engineering through Internet Informatics (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.; Bohling, Goeffrey C.; Bhattacharya, Saibal; Byers, Alan P.; Carr, Timothy R.; Dubois, Martin K.; Gagnon, Glen; Guy, Willard J.; Look, Kurt; Magnuson, Mike; Moore, Melissa; Olea, Ricardo; Pakalapadi, Jayprakash; Stalder, Ken; Collins, David R.

    2002-06-25

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and region (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.

  14. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  15. Capacity sharing of water reservoirs

    Science.gov (United States)

    Dudley, Norman J.; Musgrave, Warren F.

    1988-05-01

    The concept of a water use property right is developed which does not apply to water volumes as such but to a share of the capacity (not contents) of river storage reservoirs and their inflows. The shareholders can withdraw water from their share over time in accordance with their preferences for stability of water deliveries. The reservoir authority does not manage reservoir releases but keeps record of individual shareholder's withdrawals and net inflows to monitor the quantity of water in each shareholder's capacity share. A surplus of total reservoir contents over the sum of the contents of the individual shareholder's capacity shares will accrue over time. Two different criteria for its periodic distribution among shareholders are compared. A previous paper Dudley (this issue(b)) noted a loss of short-run economic efficiency as reservoir and farm management decision making become separated. This is largely overcome by capacity sharing which allows each user to integrate the management of their portion of the reservoir and their farming operations. The nonattenuated nature of the capacity sharing water rights also promotes long-run economic efficiency.

  16. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV Fracturing in Tight Oil Reservoirs.

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    Full Text Available Stimulated reservoir volume (SRV fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM, mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  17. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    Science.gov (United States)

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  18. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  19. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  20. Optimization of Multipurpose Reservoir Systems Using Power Market Models

    DEFF Research Database (Denmark)

    Pereira-Cardenal, S. J.; Mo, B.; Riegels, N.

    2015-01-01

    optimal operation rules that maximize current and expected future benefits as a function of reservoir level, week of the year, and inflow state. The method was tested on the Iberian Peninsula and performed better than traditional approaches that use exogenous prices: resulting operation rules were more...... realistic and sensitive to hydrological variability. Internally calculated hydropower prices provided better results than exogenous hydropower prices and can therefore improve the representation of hydropower benefits in hydroeconomic models. (C) 2014 American Society of Civil Engineers....

  1. Stabilization of bottom sediments from Rzeszowski Reservoir

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2015-06-01

    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  2. The role of snowpack, rainfall, and reservoirs in buffering California against drought effects

    Science.gov (United States)

    Johannis, Mary; Flint, Lorraine E.; Dettinger, Michael; Flint, Alan L.; Ochoa, Regina

    2016-08-29

    California’s vast reservoir system, fed by annual snow-and rainfall, plays an important part in providing water to the State’s human and wildlife population. There are almost 1,300 reservoirs throughout the State, but only approximately 200 of them are considered storage reservoirs, and many of the larger ones are critical components of the Federal Central Valley Project and California State Water Project. Storage reservoirs, such as the ones shown in figure 1, capture winter precipitation for use in California’s dry summer months. In addition to engineered reservoir storage, California also depends on water “stored” in the statewide snowpack, which slowly melts during the course of the summer, to augment the State’s water supply.

  3. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  4. Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, C.

    1998-01-01

    A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

  5. Carnot's theorem and Szil\\'ard engine

    CERN Document Server

    Shu, Liangsuo; Huang, Suyi; Jin, Shiping

    2016-01-01

    In this work, the relationship between Carnot engine and Szil\\'ard engine was discussed. By defining the available information about the temperature difference between two heat reservoirs, the Carnot engine was found to have a same physical essence with Szil\\'ard engine: lossless conversion of available information. Thus, a generalized Carnot's theorem for wider scope of application can be described as "all the available information is 100% coded into work".

  6. Measurement requirements and methods for geothermal reservoir system parameters: an appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, M.D.

    1979-08-01

    One of the key needs in the advancement of geothermal energy is the availability of adequate measurements to aid the reservoir and production engineer in the development and operation of geothermal reservoirs, wells and the overall process plant. This report documents the geothermal parameters and their measurement requirements and provides an appraisal of measurement methods and instruments capable of meeting the requirements together with recommendations on identified deficiencies.

  7. Research and Practice on the Crustal Deformation Mobile Monitoring Network Layout in the Hydropower Station Reservoir Area

    Institute of Scientific and Technical Information of China (English)

    Shang Hong; Liu Tianhai; Zhang Jincheng; Zhang Chengqiang; Yu Haisheng; Sun Baicheng; Yang Huaining; Du Xiaoxia

    2010-01-01

    According to the construction project of the crustal deformation mobile monitoring network in the cascade hydropower stations built in the lower reaches of Jinsha River,this paper analyzes the design ideas and layout principles of crustal deformation mobile monitoring used in the monitoring of reservoir induced earthquakes.This paper introduces three types of monitoring networks used in the Xiluodu reservoir and Xiangjiaba reservoir,as well as the work already undertaken,in order to provide a kind of reference for the reiated engineering construction and comprehensive monitoring of reservoir induced earthquakes.

  8. Developing Sand-Gravel Viscous Oil Reservoir in Le'an Oilfield

    Institute of Scientific and Technical Information of China (English)

    He Shenghou

    1995-01-01

    @@ The main oil-bearing series of Le'an Oilfield, Shengli Oil Province, which was discovered in 1970s are sand-gravel bodies on the base of the Eocene Guantao Formation. It is difficult to produce crude oil with conventional method from this thin reservoir due to its complicated lithology, extra viscous oil and edge water. We have conducted integrated study on geology, reservoir engineering, thermal production technology, horizontal drilling technology and comprehensive study. By five years' field experiment and operation, a prominent effect of development and good economic benefit have been achieved and an example has been set up for thermal recovery from extra viscous reservoir.

  9. basement reservoir geometry and properties

    Science.gov (United States)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  10. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  11. Reservoir Protection Technology in China: Research & Application

    Institute of Scientific and Technical Information of China (English)

    Li Qiangui; Wu Juan; Kang Yili

    2006-01-01

    @@ Great development of reservoir protection technology (RPT) has been achieved since 1996, including oil and gas reservoir protection for exploration wells, reservoir protection during underbalanced drilling, protection of fractured tight sandstone gas reservoir, and reservoir protection while increase production and reconstructing, development and enhanced oil recovery (EOR) etc. It has stepped into a new situation with special features and advantage. These technical advancements marked that China's RTP have realized leaps from porous reservoirs to fractured reservoirs,from conventional medium-to-low permeability reservoirs to unconventional reservoirs, from oil and gas producers to exploration wells, and from application mainly in drilling and completion processes to application in stimulation,development, production and EOR processes.

  12. Estimating Water Levels with Google Earth Engine

    Science.gov (United States)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any

  13. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    The subject of this thesis is the development, application and study of novel multilevel methods for the acceleration and improvement of reservoir simulation techniques. The motivation for addressing this topic is a need for more accurate predictions of porous media flow and the ability to carry...... Full Approximation Scheme) • Variational (Galerkin) upscaling • Linear solvers and preconditioners First, a nonlinear multigrid scheme in the form of the Full Approximation Scheme (FAS) is implemented and studied for a 3D three-phase compressible rock/fluids immiscible reservoir simulator...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...

  14. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Science.gov (United States)

    Nurhandoko, Bagus Endar B.; Susilowati

    2015-04-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir's layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir's character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  15. A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data

    KAUST Repository

    Katterbauer, Klemens

    2014-03-25

    The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill

  16. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  17. Multi-data reservoir history matching of crosswell seismic, electromagnetics and gravimetry data

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Reservoir engineering has become of prime importance for oil and gas field development projects. With rising complexity, reservoir simulations and history matching have become critical for fine-tuning reservoir production strategies, improved subsurface formation knowledge and forecasting remaining reserves. The sparse spatial sampling of production data has posed a significant challenge for reducing uncertainty of subsurface parameters. Seismic, electromagnetic and gravimetry techniques have found widespread application in enhancing exploration for oil and gas and monitor reservoirs, however these data have been interpreted and analyzed mostly separately rarely utilizing the synergy effects that may be attainable. With the incorporation of multiple data into the reservoir history matching process there has been the request knowing the impact each incorporated observation has on the estimation. We present multi-data ensemble-based history matching framework for the incorporation of multiple data such as seismic, electromagnetics, and gravimetry for improved reservoir history matching and provide an adjointfree ensemble sensitivity method to compute the impact of each observation on the estimated reservoir parameters. The incorporation of all data sets displays the advantages multiple data may provide for enhancing reservoir understanding and matching, with the impact of each data set on the matching improvement being determined by the ensemble sensitivity method.

  18. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...

  19. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  20. Unconventional Reservoirs: Ideas to Commercialization

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  1. Prevention of Reservoir Interior Discoloration

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, K.F.

    2001-04-03

    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  2. Indiana continent catheterizable urinary reservoir.

    Science.gov (United States)

    Castillo, O A; Aranguren, G; Campos-Juanatey, F

    2014-01-01

    Radical pelvic surgery requires continent or incontinent urinary diversion. There are many techniques, but the orthotopic neobladder is the most used. A continent catheterizable urinary reservoir is sometimes a good alternative when this derivation is not possible or not indicated. This paper has aimed to present our experience with the Indiana pouch continent urinary reservoir. The series is made up of 85 patients, 66 women and 19 men, with a mean age of 56 years (31-77 years). Variables analyzed were operating time, estimated blood loss, transfusion rate, hospital stay and peri-operatory complications. The main indication in 49 cases was resolution of complications related to the treatment of cervical cancer. Average operation time was 110.5 minutes (range 80-130 minutes). Mean blood loss was 450 cc (100-1000 cc). Immediate postoperative complications, all of which were treated medically, occurred in 16 patients (18.85%). One patient suffered anastomotic leakage. Hospital stay was 19 days (range 5-60 days) and there was no mortality in the series. Late complications occurred in 26 patients (32%), these being ureteral anastomotic stenosis in 11 cases, cutaneous stoma stenosis in 9 cases and reservoir stones in 6 cases. The Indiana continent catheterizable urinary reservoir is a valid option for the treatment of both urological and gynecological malignancies as well as for the management of pelvic morbidity related to the treatment of pelvic cancers. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  3. Data assimilation in reservoir management

    NARCIS (Netherlands)

    Rommelse, J.R.

    2009-01-01

    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  4. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  5. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  6. RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL ...

    African Journals Online (AJOL)

    Osondu

    2012-06-19

    Jun 19, 2012 ... Key words: Reservoir sand, Well log, Water saturation, Linear and Steiber. Introduction. Reservoir ... During analysis, seismic data can quantitatively predict ..... Wireline and Testing, Houston Texas, pp. 21 –. 89. Wan Qin ...

  7. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  8. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into

  9. High Energy Gas Fracturing in Deep Reservoir

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiangde; Zhao Wanxiang; Wang Faxuan

    1994-01-01

    @@ Introduction The HEGF technology has many merits such as low cost, simple work conditions, treating the thin reservoir without layer dividing tools, no contamination to the reservoirs and connections with more natural fractures. So it is suitable to treat thin reservoirs,water and acid senstive reservoirs and the reserviors with natural fissures and also suitable to evaluate the production test of new wells, blocking removing treatment, increasing injection treatment and the treatment for the hydrofracturing well with some productivity.

  10. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  11. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  12. 33 CFR 211.81 - Reservoir areas.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reservoir areas. 211.81 Section... Lands in Reservoir Areas Under Jurisdiction of Department of the Army for Cottage Site Development and Use § 211.81 Reservoir areas. Delegations, rules and regulations in §§ 211.71 to 211.80 are...

  13. Gravity observations for hydrocarbon reservoir monitoring

    NARCIS (Netherlands)

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The ad

  14. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  15. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  16. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Science.gov (United States)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, the timing and magnitude of natural streamflow have been altered significantly by reservoir operations. In addition, the hydrological cycle is also modified by land-use/land-cover change and by climate change. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers managed reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R2) was 0.85 and the Nash-Sutcliff Efficiency (NSE) was 0.75. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. With the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  17. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  18. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  19. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  20. Cased-hole log analysis and reservoir performance monitoring

    CERN Document Server

    Bateman, Richard M

    2015-01-01

    This book addresses vital issues, such as the evaluation of shale gas reservoirs and their production. Topics include the cased-hole logging environment, reservoir fluid properties; flow regimes; temperature, noise, cement bond, and pulsed neutron logging; and casing inspection. Production logging charts and tables are included in the appendices. The work serves as a comprehensive reference for production engineers with upstream E&P companies, well logging service company employees, university students, and petroleum industry training professionals. This book also: ·       Provides methods of conveying production logging tools along horizontal well segments as well as measurements of formation electrical resistivity through casing ·       Covers new information on fluid flow characteristics in inclined pipe and provides new and improved nuclear tool measurements in cased wells ·       Includes updates on cased-hole wireline formation testing  

  1. Effects of reservoir squeezing on quantum systems and work extraction

    Science.gov (United States)

    Huang, X. L.; Wang, Tao; Yi, X. X.

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when THreservoirs, respectively; (2) the efficiency can be higher than classical Carnot efficiency. These results do not violate the second law of thermodynamics and it can be understood as quantum fuel is more efficient than the classical one.

  2. On Site Conditions and Engineering Design of the Planting Fields in Citrus Orchards in Three Gorges Reservoir Area%三峡库区柑橘园种植田块立地条件及其改造工程设计

    Institute of Scientific and Technical Information of China (English)

    马杰; 刘涓; 魏朝富

    2013-01-01

    Through investigating the rock stratum, slope, soil thickness and distribution of citrus roots in Huaqiao Town, Zhongxian County, Chongqing, the authors of this paper propose a pattern layout of planting fields in citrus orchards and discuss the engineering design of citrus planting fields by Arc GIS software. In areas where the soil is less than 80 cm in depth and the slope is relatively great, blasting is recommended so as to increase the thickness of the soil layer of the field. The width of the planting field should be decided by the geomorphology and the slope, being 2. 5~11. 4 m for level terrace. According to the distribution of citrus roots, the optimal size of the planting hole is 1. 2 m in width and 0. 8 m in depth. Therefore, in engineering design of planting fields of citrus orchards in the Three Gorges Reservoir Area, the geology, geomorphology, soil, citrus roots should be taken into consideration so as to realize a standardization construction of citrus orchards in this area and promote the efficient use of land resources.%以重庆市忠县花桥镇师联等(2)个村柑橘园建设为例,通过实地调查岩层、坡度、土层及柑橘根系的分布状况,借助Arc GIS分析技术,提出了柑橘园种植田块的布局模式,进而探讨出适合柑橘园建设的种植田块工程设计方案.结果表明:坡度较大、土层厚度小于80 cm的区域,宜采用先爆破改土,以达到增加土层厚度的田块改造方式;田块宽度根据地形坡度确定,水平梯田以2.5~11.4 m为宜;以柑橘根系分布为依据,田块平整后开挖定植穴最佳规格为宽1.2m,深0.8m.因此,三峡库区柑橘园种植田决改造工程设计应兼顾园区地质地貌、土壤及柑橘根系等因素,以实现三峡库区柑橘园种植田块的标准化建设,促进土地资源的高效利用.

  3. A History of the Rock Island District Corps of Engineers, 1866-1975

    Science.gov (United States)

    1975-06-01

    on the upstream slope of the Red Rock Reservoir dam. FIG. 61 . Construction of the outlet works and spillway at Sayler - ville Reservoir. FIG. 62. An...Science degree in civil engineering. For two years after graduation he worked as a structural engineer for the American Bridge Company in Gary , Indiana

  4. Theory of an optomechanical quantum heat engine

    Science.gov (United States)

    2014-08-12

    generation of quantum interfaces between light and mechani - cal systems with broad potential for applications in quantum technology. One example is the... quantum heat engine. This heat engine is based on an Otto cycle between a cold photonic reservoirand a hot phononic reservoir [K. Zhang, F. Bariani, and...efficiency of the engine and (ii) perform an investigation of the quantum thermodynamics underlying this scheme. In particular, we analyze the

  5. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  6. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  7. The transformation of rivers’ temperature regime downstream of reservoirs

    Directory of Open Access Journals (Sweden)

    Kirvel Ivan

    2015-12-01

    Full Text Available The article is dedicated to the problem of the transformation of rivers’ temperature conditions influenced by artificial reservoirs. A quantitative estimation of average water temperatures over ten days, and maximum and average annual water temperatures of regulated rivers downstream of reservoirs was made on the basis of the data analysis of a complete period of instrumental observations of the Republican Hydrometeorological Centre of the Republic of Belarus. It is established that the character and the parameters of the transformation of temperature conditions of the regulated rivers along with morphometric features of the reservoirs are determined by the meteorological conditions of the year and the operating conditions of the water-engineering system. The length of the cooling period effect varies from 20 days downstream of small reservoirs to 50-70 days downstream of small and average size reservoirs. The warming effect is less significant by temperature, but lasts longer and is appreciable around 200-240 days in a year. An increase in the average annual water temperature up to 0.5°C and a decrease in maximum temperature down to 1.1°C are observed in the tail-water of average size storage pools. Small size storage pools demonstrate an annual increase in annual water temperature up to 0.3°C and a decrease in maximum temperature down to 0.3°C. Small size water pools show an increase both in annual water temperature up to 0.5°C and maximum water temperature up to 0.3°C. Typical changes in temperature conditions of rivers are observed for a distance of 130 kilometres below the dam of average size water pools, along 70 kilometres in small water pools and along 30 kilometres in tiny ones.

  8. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  9. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  10. The role of sequence stratigraphy in 3-D characterization of carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, S.W.; Brondos, M.D.; Brinton, L. [Marathon Oil Co., Littleton, CO (United States)

    1996-12-31

    The product of 3-D reservoir characterization is a 3-D reservoir model. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence- and seismic-stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. Depositional sequences are comprised of many petrophysically-distinct lithofacies regions. If each lithofacies region was uniform and homogeneous, it would be reasonable to use a lithofacies ({open_quote}layer-cake{close_quote}) framework interpretation to distribute data in a 3-D model. However, lithofacies are typically time- transgressive, and often internally heterogeneous because geologic processes such as siliciclastic sediment deposition, sediment bypass, hardground formation, variable diagenesis, and facies shifts occur along depositional time surfaces on carbonate platforms. Therefore, a sequence stratigraphic framework interpretation, in which stratal geometries are honored, is better for controlling the distribution of petrophysical data in 3-D. The role that sequence stratigraphy plays in the 3-D characterization of carbonate reservoirs will be presented using two outcrop and four subsurface studies from the Paleozoic. The outcrop examples illustrate the important distinction between lithostratigraphic and sequence stratigraphic correlation, and the subsurface examples illustrate the process of quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. The concepts and techniques can be applied to carbonate reservoirs of any age.

  11. The role of sequence stratigraphy in 3-D characterization of carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, S.W.; Brondos, M.D.; Brinton, L. (Marathon Oil Co., Littleton, CO (United States))

    1996-01-01

    The product of 3-D reservoir characterization is a 3-D reservoir model. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence- and seismic-stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. Depositional sequences are comprised of many petrophysically-distinct lithofacies regions. If each lithofacies region was uniform and homogeneous, it would be reasonable to use a lithofacies ([open quote]layer-cake[close quote]) framework interpretation to distribute data in a 3-D model. However, lithofacies are typically time- transgressive, and often internally heterogeneous because geologic processes such as siliciclastic sediment deposition, sediment bypass, hardground formation, variable diagenesis, and facies shifts occur along depositional time surfaces on carbonate platforms. Therefore, a sequence stratigraphic framework interpretation, in which stratal geometries are honored, is better for controlling the distribution of petrophysical data in 3-D. The role that sequence stratigraphy plays in the 3-D characterization of carbonate reservoirs will be presented using two outcrop and four subsurface studies from the Paleozoic. The outcrop examples illustrate the important distinction between lithostratigraphic and sequence stratigraphic correlation, and the subsurface examples illustrate the process of quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. The concepts and techniques can be applied to carbonate reservoirs of any age.

  12. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  13. Adjustment and prediction of primary behavior of some reservoirs in the Cinco Presidentes field (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, F.C.P.; Mendoza, J.S.

    1974-03-01

    The primary behavior of some reservoirs of the Cinco Presidentes field is analyzed. These are reservoirs in the final stage of exploitation, in which a great decline of pressure and of production has been observed. The principal aspect of the study consists in having carried out, in spite of the scarcity of information, an adjustment that permitted a prediction of behavior. Because of the small amount of bottom-hole pressure information available, the adjustment is basically made as a function of the production data, especially studying the variation of cumulative production of gas with respect to that of oil. This article shows that many times, because of the insufficiency of data, reservoir behavior is evaluated within a very small probability range, and sets out a foundation for insisting on obtaining information, short-and long-term, in reservoir engineering.

  14. Nonlinear Multigrid for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter

    2016-01-01

    A feasibility study is presented on the effectiveness of applying nonlinear multigrid methods for efficient reservoir simulation of subsurface flow in porous media. A conventional strategy modeled after global linearization by means of Newton’s method is compared with an alternative strategy...... modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  15. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2003-10-01

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity

  16. Coalbed methane reservoir boundaries and sealing mechanism

    Institute of Scientific and Technical Information of China (English)

    SU Xianbo; LIN Xiaoying; LIU Shaobo; SONG Yan

    2005-01-01

    It is important to investigate the coalbed methane reservoir boundaries for the classification, exploration, and development of the coalbed methane reservoir.Based on the investigation of the typical coalbed methane reservoirs in the world, the boundaries can be divided into four types: hydrodynamic boundary, air altered boundary,permeability boundary, and fault boundary. Hydrodynamic and air altered boundaries are ubiquitous boundaries for every coalbed methane reservoir. The four types of the fault sealing mechanism in the petroleum geological investigation (diagen- esis, clay smear, juxtaposition and cataclasis) are applied to the fault boundary of the coalbed methane reservoir. The sealing mechanism of the open fault boundary is the same with that of the hydrodynamic sealing boundary.The sealing mechanism of the permeability boundary is firstly classified into capillary pressure sealing and hydrocarbon concentration sealing. There are different controlling boundaries in coalbed methane reservoirs that are in different geological backgrounds. Therefore, the coalbed methane reservoir is diversiform.

  17. Reservoir compartmentalization assessment by using FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Permanyer, A. [Dept. Geoquimica, Petrologia i Prospeccio Geologica, Universitat de Barcelona, Marti i Franques, s/n, 08028 - Barcelona, Catalonia (Spain); Rebufa, C.; Kister, J. [Universite d' Aix - Marseille III, Faculte des Sciences et Techniques de St. Jerome, CNRS UMR 6171, Laboratoire de Geochimie Organique Analytique et Environnement (GOAE), Case 561, 13397 Marseille Cedex 20 (France)

    2007-09-15

    Reservoir geochemistry has traditionally used the gas chromatographic fingerprinting method and star diagrams to provide evidence of petroleum reservoir compartmentalization. Recently alternative techniques such as Fourier Transform Infra Red (FTIR) spectroscopy have been postulated to aid the evaluation of reservoir compartmentalization, and to characterize the geochemical evolution of oils from individual reservoirs. FTIR spectroscopy was applied successfully in the Tarragona Basin, Offshore N.E. Spain, validating the method to identify oils from different reservoirs. Moreover the method was successfully applied to provide evidence of compositional differences in oils from a faulted reservoir (El Furrial field, Venezuela), in which GC fingerprints failed to differentiate the oils. FTIR spectroscopy therefore, proves to be a complementary tool for reservoir compartmentalization studies. (author)

  18. Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hebein, Jeffrey J.

    1983-12-15

    MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

  19. MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2017-01-01

    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  1. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  2. Heat Engine With Finite Thermal Reservoirs and Nonideal Efficiency

    Science.gov (United States)

    2009-05-01

    sus temperaturas iniciales. La producción total de trabajo y el cambio de entropía de los depósitos se calcula y se relaciona con las eficiencias...el 10% de la temperatura del depósito caliente. Palabras clave: Motor térmico, eficiencia termodinámica, calor y trabajo . PACS: 07.20.Pe, 05.70

  3. determination of verticality of reservoir engineering structure from ...

    African Journals Online (AJOL)

    user

    station are setup onknown points and other target points are seen ... accuracy of conventional direct Total Station methods of ... From the four scan worlds, model space was created and ...... of the 2nd ISPRS International Workshop 3D-ARCH.

  4. Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering

    Directory of Open Access Journals (Sweden)

    A. Metelmann

    2015-06-01

    Full Text Available We discuss a general method for constructing nonreciprocal, cavity-based photonic devices, based on matching a given coherent interaction with its corresponding dissipative counterpart; our method generalizes the basic structure used in the theory of cascaded quantum systems and can render an extremely wide class of interactions directional. In contrast to standard interference-based schemes, our approach allows directional behavior over a wide bandwidth. We show how it can be used to devise isolators and directional, quantum-limited amplifiers. We discuss in detail how this general method allows the construction of a directional, noise-free phase-sensitive amplifier that is not limited by any fundamental gain-bandwidth constraint. Our approach is particularly well suited to implementations using superconducting microwave circuits and optomechanical systems.

  5. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the

  6. Applications of aerospace technology to petroleum extraction and reservoir engineering

    Science.gov (United States)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; hide

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  7. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distributi

  8. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Science.gov (United States)

    2010-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.22 Twin Buttes Dam..., shall operate the Twin Buttes Dam and Reservoir in the interest of flood control as follows: (a... elevation 1,969.1 (top of flood control pool) the flood control discharge facilities shall be operated...

  9. PREDICTION OF GAS INJECTION PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Martin J. Blunt; Franklin M. Orr Jr

    2000-06-01

    This final report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996--May 2000 under a three-year grant from the Department of Energy on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The advances from the research include: new tools for streamline-based simulation including the effects of gravity, changing well conditions, and compositional displacements; analytical solutions to 1D compositional displacements which can speed-up gas injection simulation still further; and modeling and experiments that delineate the physics that is unique to three-phase flow.

  10. Alien fish species in reservoir systems in Turkey: a review

    Directory of Open Access Journals (Sweden)

    Deniz Innal

    2012-12-01

    Full Text Available Turkey’s natural river systems have been anthropogenically altered in the past century. Native fish communities of river systems have comeunder increasing pressure from water engineering projects, pollution, overfishing and the movements of alien fish species. Introduction ofalien fishes is one of the main threats to the survival and genetic integrity of native fishes around the world. In Turkey, alien freshwater fish are continuing to increase in number of species, abundance, and distribution. The present paper reviews fish stocking studies in Turkey’s reservoirs.

  11. Seismic Imaging of Reservoir Structure at The Geysers Geothermal Reservoir

    Science.gov (United States)

    Gritto, R.; Yoo, S.; Jarpe, S.

    2013-12-01

    Three-dimensional Vp/Vs-ratio structure is presented for The Geysers geothermal field using seismic travel-time data. The data were recorded by the Lawrence Berkeley National Laboratory (LBNL) using a 34-station seismic network. The results are based on 32,000 events recorded in 2011 and represent the highest resolution seismic imaging campaign at The Geysers to date. The results indicate low Vp/Vs-ratios in the central section of The Geysers within and below the current reservoir. The extent of the Vp/Vs anomaly deceases with increasing depth. Spatial correlation with micro-seismicity, used as a proxy for subsurface water flow, indicates the following. Swarms of seismicity correlate well with areas of high and intermediate Vp/Vs estimates, while regions of low Vp/Vs estimates appear almost aseismic. This result supports past observations that high and low Vp/Vs-ratios are related to water and gas saturated zones, respectively. In addition, the correlation of seismicity to intermediate Vp/Vs-ratios is supportive of the fact that the process of water flashing to steam requires four times more energy than the initial heating of the injected water to the flashing point. Because this energy is dawn from the reservoir rock, the associated cooling of the rock generates more contraction and thus seismic events than water being heated towards the flashing point. The consequences are the presence of some events in regions saturated with water, most events in regions of water flashing to steam (low steam saturation) and the absence of seismicity in regions of high steam concentrations where the water has already been converted to steam. Furthermore, it is observed that Vp/Vs is inversely correlated to Vs but uncorrelated to Vp, leading support to laboratory measurements on rock samples from The Geysers that observe an increase in shear modulus while the core samples are dried out. As a consequence, traditional poroelastic theory is no applicable at The Geysers geothermal

  12. Longitudinal gradients along a reservoir cascade

    Science.gov (United States)

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  13. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  14. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications...... for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany. The surprisingly old ages of the earliest pottery most probably are caused by a freshwater reservoir effect. In a sediment core from the Limfjord, northern Denmark, the impact of the freshwater reservoir...... effect on radiocarbon dating in an estuarine environment is examined. Here, freshwater influence causes reservoir ages to vary between 250 and 700 14C years during the period 5400 BC - AD 700. The examples in this study show clearly that the freshwater reservoir effect can seriously corrupt radiocarbon...

  15. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  16. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  17. Gas reservoir evaluation for underbalanced horizontal drilling

    Directory of Open Access Journals (Sweden)

    Li Gao

    2014-01-01

    Full Text Available A set of surface equipment for monitoring the parameters of fluid and pressure while drilling was developed, and mathematical models for gas reservoir seepage and wellbore two-phase flow were established. Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling. Based on the monitored gas production along the well depth, the gas reservoir type could be identified.

  18. Ecological assessment of a southeastern Brazil reservoir

    OpenAIRE

    Martins,Isabela; Sanches,Barbara; Kaufmann,Philip Robert; Hughes,Robert M.; Santos,Gilmar Bastos; Molozzi,Joseline; Callisto, Marcos

    2015-01-01

    Reservoirs are artificial ecosystems with multiple functions having direct and indirect benefits to humans; however, they also cause ecological changes and influence the composition and structure of aquatic biota. Our objectives were to: (1) assess the environmental condition of Nova Ponte Reservoir, Minas Gerais state, southeastern Brazil; and (2) determine how the aquatic biota respond to disturbances. A total of 40 sites in the littoral zone of the reservoir were sampled to characterize ph...

  19. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  20. Slimholes for geothermal reservoir evaluation - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.

    1996-08-01

    The topics covered in this session include: slimhole testing and data acquisition, theoretical and numerical models for slimholes, and an overview of the analysis of slimhole data acquired by the Japanese. The fundamental issues discussed are concerned with assessing the efficacy of slimhole testing for the evaluation of geothermal reservoirs. the term reservoir evaluation is here taken to mean the assessment of the potential of the geothermal reservoir for the profitable production of electrical power. As an introduction to the subsequent presentations and discussions, a brief summary of the more important aspects of the use of slimholes in reservoir evaluation is given.

  1. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  2. Freshwater reservoir effect variability in Northern Germany

    DEFF Research Database (Denmark)

    Philippsen, B.; Heinemeier, J.

    2013-01-01

    The freshwater reservoir effect is a potential problem when radiocarbon dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. The reservoir age in hardwater rivers can be up to several thousand years and may be highly variable. Accurate 14C dating...... of freshwater-based samples requires knowing the order of magnitude of the reservoir effect and its degree of variability. Measurements on modern riverine materials may not give a single reservoir age correction that can be applied to archaeological samples, but they show the order of magnitude and variability...

  3. Petroleum Characterisation and Reservoir Dynamics - The Froey Field and the Rind Discovery, Norwegian Continental Shelf

    Energy Technology Data Exchange (ETDEWEB)

    Bhullar, Abid G.

    1999-07-01

    The objective of this thesis is to apply the fundamental principles of petroleum geochemistry integrated with petroleum/reservoir engineering and geological concepts to the dynamics and characterisation of petroleum reservoirs. The study is based on 600 core samples and 9 DST oils from 11 wells in the Froey Field and the Rind Discovery. The work is presented in five papers. Paper 1 is a detailed characterisation of the reservoirs using a petroleum geochemical approach. Paper 2 describes the application of a single reservoir geochemical screening technique to exploration, appraisal and production geology and reservoir/petroleum engineering. Paper 3 compares the Iatroscan TLC-FID screening technique and the extraction efficiency of micro-extraction used in this work with the well-established Rock-Eval geochemical screening method and with the Soxtec extraction method. Paper 4 refines the migration and filling models of Paper 1, and Paper 5 presents a comparison of models of petroleum generation, migration and accumulation based on geochemical data with 1D burial history, a ''pseudo well'' based on actual well data and regional seismic analysis representing the hydrocarbon generative basin conditions.

  4. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  5. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.

    1996-01-01

    The purpose of this research project is to collect data to model resident fish requirements for Lake Roosevelt as part of the Bonneville Power Administration (BPA), Bureau of Reclamation (BoR), and U.S. Army Corps of Engineer`s (ACE) System Operation Review. The System Operation Review (SOR) is a tri-agency team functioning to review the use and partitioning of Columbia Basin waters. User groups of the Columbia have been defined as power, irrigation, flood control, anadromous fish, resident fish, wildlife, recreation, water quality, navigation, and cultural resources. Once completed the model will predict biological responses to different reservoir operation strategies. The model being developed for resident fish is based on Montana Department of Fish, Wildlife, and Parks model for resident fish requirements within Hungry Horse and Libby Reservoirs. While the Montana model predicts fish growth based on the impacts of reservoir operation and flow conditions on primary and secondary production levels, the Lake Roosevelt model will also factor in the affects of water retention time on zooplankton production levels and fish entrainment. Major components of the Lake Roosevelt model include: (1) quantification of impacts to zooplankton, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; (2) quantification of number, distribution, and use of fish food organisms in the reservoir by season; (3) determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and (4) quantification of entrainment levels of fish as related to reservoir operations and water retention times. This report contains the results of the resident fish system operation review program for Lake Roosevelt from January through December 1992.

  6. New geomechanical developments for reservoir management; Desenvolvimentos experimentais e computacionais para analises geomecanicas de reservatorio

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Antonio C.; Menezes Filho, Armando Prestes; Silvestre, Jose R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The common assumption that oil is produced under a constant rate only considering reservoir depletion has been questioned for some time. An usual hypothesis is that the physical properties of a reservoir are not constants during time, but they vary according to the properties of reservoir rock and the characteristics of the external loads. More precisely, as soon as a reservoir is explored, the volume of fluid diminishes, decreasing the static pressure and increasing the effective stress over the rock skeleton, which, depending on the nature of rock, can lead to a gradual deformation and alteration of reservoir's porosity and permeability, and oil productivity as well. This paper aims at showing numerical and experimental achievements, developed by the Well bore Engineering Technology Department of CENPES, devoted to the characterization of the influence of stress-strain states on the permeability and production of reservoir rocks. It is believed that these developments can possibly bring some light to the understanding of this complex phenomenon, besides allowing the establishment of more realistic relations involving stress-strain-permeability in coupled fluid dynamic problems. (author)

  7. Impact of environmental factors on maintaining water quality of Bakreswar reservoir, India

    Directory of Open Access Journals (Sweden)

    Moitreyee Banerjee

    2015-09-01

    Full Text Available Reservoirs and dams are engineered systems designed to serve purposes like supply of drinking water as well as other commercial and industrial use. A thorough assessment of water quality for these systems is thus necessary. The present study is carried out at Bakreswar reservoir, in Birbhum district, which was created by the dam, built on Bakreswar River. The major purpose of the reservoir is the supply of drinking water to the surrounding villages and Bakreswar Thermal Power Station. Water samples were collected fortnightly from three different stations of the reservoir. Physical and chemical factors like dissolved oxygen, atmospheric temperature, pH, conductivity, salinity, solar radiation, water temperature, alkalinity, hardness, chloride, productivity etc. were analysed using standard procedure. Abundance data is calculated for four major groups of zooplanktons (Cladocera, Copepoda, Ostracoda, and Rotifera with the software PAST 2.1. Multivariate statistical analysis like PCA, hierarchical cluster and CCA are performed in order to predict the temporal variation in the water quality factors using SPSS 20. Distinct seasonal variation was found for environmental factors and zooplankton groups. Bakreswar reservoir has good assemblage of zooplankton and distinct temporal variation of environmental factors and its association with zooplankton predicts water quality condition. These results could help in formulating proper strategies for advanced water quality management and conservation of reservoir ecosystem. Key elements for growth and sustenance of the system can then be evaluated and this knowledge can be further applied for management purposes.

  8. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  9. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  10. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  11. Worldwide Experience of Sediment Flushing Through Reservoirs

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Chaudhry

    2012-07-01

    Full Text Available Globally there are about 25,500 storage reservoirs with total storage volume of about 6,464 Bcm. The maximum number of reservoirs are in North America, i.e. 7205 with the total storage volume of about 1,844 Bcm, whereas minimum number of reservoirs are in Central Asia, i.e. 44, with the total storage volume of about 148 Bcm. Over the globe, average annual reservoir storage loss due to sedimentation varies from 0.1-2.3%, however, average annual world storage loss is about 1.0%. In order to combat the storage loss, the techniques used globally are: watershed management, dredging of deposited sediments, sediment routing/sluicing, sediment bypassing, density current venting and sediment flushing through reservoir, separately and also in combination. Each approach has its own limitations, depending on the site conditions. Sediment flushing technique is used by two ways i.e. Drawdown flushing and Emptying and Flushing. In Emptying and Flushing, the reservoir is emptied before the flood season, resulting in the creation of river-like flow conditions in the reservoir. The flow velocities in the reservoir are increased to such an extent that deposited sediments are remobilized and transported through the low level outlets provided slightly above the original riverbed level with sufficient flow capacity. Flushing is not a new technique and has been experienced for the last 6 decades on several reservoirs of the world. The results of the study reveal that there are about 50 reservoirs which are flushed, out of which flushing data is available for about 22 reservoirs only. However 6 reservoirs have been found with successful application of flushing operation and all other are flushed with low flushing efficiency. Flushing has been successfully implemented at Baira-India, Gebidem-Switzerland, Gmund-Austria, Hengshan-China, Palagnedraswitzerland, Santo-Domingo-Venezuela Reservoirs, while the unsuccessfully flushed reservoirs are: Chinese reservoirs, Gaunting

  12. Exploration on ecological regulation of the reservoirs

    Institute of Scientific and Technical Information of China (English)

    Cai Qihua

    2009-01-01

    Reservoir regulation process in the Yangtze River basin is mainly divided into two types of flood regulation and initiating benefit regulation. The present reservoir management system and operation mode are mainly for dealing with or coordinating of flood control and benefit initiation as well as benefit distribution among various beneficial functions. From the view point of river ecosystem protection, the current regulation mode has two kinds of problems: firstly, most of the reservoir regulation plans do not consider ecosystem protection at downstream of dams and needs of environment protection in reservoir areas; secondly, integrated regulation or management of water resources is ignored. It is very necessary to improve reservoir regulation mode, bearing problems faced by regulation of the Three Gorges reservoir and issues related to cascade development and regulation in Tuojiang and Minjiang River basins in mind. In accordance with the concept of scientific development, and the philosophy of "ensuring a healthy Yangtze River and promoting the har-mony between human and water", taking flood control, benefit initiation and eco-system as a whole, this paper put for-ward the basic consideration to improve reservoir regulation as follows : on the basis of requirements of ecosystem protec-tion at downstream of dams and needs of environment protection in reservoir areas, we should bring the functions of res-ervoir such as flood control and benefit initiation into full play, control the negative influence to the ecosystem at down-stream of dams and the environment in reservoir areas in an endurable scope, and restore the ecosystem and the environ-ment step by step. This paper put forward the relevant regulation process aiming at the idiographic problems such as pro-tection of ecosystem at downstream of dams and environment in reservoir areas, protection of aquatic wildlife species and fish species, regulation of sediment and protection of wetland.

  13. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  14. Target reservoirs for CO/sub 2/ miscible flooding. Task two: summary of available reservoir and geological data. Vol. II: Rocky Mountain states geological and reservoir data. Part 4: Paradox, Uinta, eastern Utah overthrust, Big Horn, Wind River, Powder River, Red Desert, and Great Divide basins; CACHE-Ismay through WERTZ-Madison fields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, L.B.; Marlow, R.

    1981-10-01

    This report describes work performed by Gruy Federal, Inc., as the second of six tasks under contract with the US Department of Energy. The stated objective of this study is to build a solid engineering foundation to serve as the basis for field mini- and pilot tests in both high and low oil saturation carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. The six tasks in this study are: (1) summary of available CO/sub 2/ field test data; (2) summary of existing reservoir and geological data; (3) selection of target reservoirs; (4) selection of specific reservoirs for CO/sub 2/ injection tests; (5) selection of specific sites for test wells in carbonate reservoirs; and (6) drilling and coring activities. The report for Task Two consists of a summary of existing reservoir and geological data on carbonate reservoirs located in west Texas, southeast New Mexico, and the Rocky Mountain states. It is contained in two volumes, each with several parts. The present volume, in four parts, is a summary of reservoir data for fields in the Rocky Mountain states. Volume One contains data for Permian basin fields in west Texas and southeast New Mexico. While a serious effort was made to obtain all publicly available data for the fields considered, sufficiently reliable data on important reservoir parameters were not always available for every field. The data in Volume II show 143 carbonate reservoirs in the study area may be suitable for CO/sub 2/ miscible flooding. Using a general estimate of enhanced oils recovery by CO/sub 2/ flooding of 10% of original oil in place, some 619 million barrels of oil could be recovered by widespread application of CO/sub 2/ flooding in the study area. Mississippian and Ordovician reservoirs appear to be the most promising targets for the process.

  15. Thermal noise engines

    CERN Document Server

    Kish, Laszlo B

    2010-01-01

    Electrical heat engines driven by the Johnson-Nyquist noise of resistors are introduced. They utilize Coulomb's law and the fluctuation-dissipation theorem of statistical physics that is the reverse phenomenon of heat dissipation in a resistor. No steams, gases, liquids, photons, fuel, combustion, phase transition, or exhaust/pollution are present here. In these engines, instead of heat reservoirs, cylinders, pistons and valves, resistors, capacitors and switches are the building elements. For the best performance, a large number of parallel engines must be integrated and the characteristic size of the elementary engine must be at the 10 nanometers scale. At room temperature, in the most idealistic case, a two-dimensional ensemble of engines of 25 nanometer characteristic size integrated on a 2.5x2.5 cm silicon wafer with 12 Celsius degree temperature difference between the warm-source and the cold-sink would produce a specific power of about 0.8 Watt. Regular and coherent (correlated-cylinder states) version...

  16. Development and evaluation of a reservoir model for the Chain of Lakes in Illinois

    Science.gov (United States)

    Domanski, Marian M.

    2017-01-27

    Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was

  17. Engineer Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-15

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  18. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.; Thompson, L.; Shenoi, S.

    1996-01-01

    The basis of this research is to apply novel techniques from Artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available soft and hard data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. The overall project plan to design the system to create integrated reservoir descriptions begins by initially developing an AI-based methodology for producing large-scale reservoir descriptions generated interactively from geology and well test data. Parallel to this task is a second task that develops an AI-based methodology that uses facies-biased information to generate small-scale descriptions of reservoir properties such as permeability and porosity. The third task involves consolidation and integration of the large-scale and small-scale methodologies to produce reservoir descriptions honoring all the available data. The final task will be technology transfer. With this plan, the authors have carefully allocated and sequenced the activities involved in each of the tasks to promote concurrent progress towards the research objectives. Moreover, the project duties are divided among the faculty member participants. Graduate students will work in terms with faculty members.

  19. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    Science.gov (United States)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  20. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  1. Economics of Developing Hot Stratigraphic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  2. Seismic determination of saturation in fractured reservoirs

    Science.gov (United States)

    Brown, R.L.; Wiggins, M.L.; Gupta, A.

    2002-01-01

    Detecting the saturation of a fractured reservoir using shear waves is possible when the fractures have a geometry that induces a component of movement perpendicular to the fractures. When such geometry is present, vertically traveling shear waves can be used to examine the saturation of the fractured reservoir. Tilted, corrugated, and saw-tooth fracture models are potential examples.

  3. Geothermal reservoir insurance study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-09

    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  4. Identifying and Evaluating of Oil Reservoir

    Institute of Scientific and Technical Information of China (English)

    Yang Haixia

    2002-01-01

    The identification and evaluation of oil reservoir with logging data are one of most important ways in geologic logging services. For the last decades, with the further development of the oil & gas exploration, great advances have been achieved in techniques on the acquisition, processing and interpretative evaluation of logging data. How to identify fluid characteristics and evaluate the productivity in light oil reservoir (the crude density being between 0.74g/cm3 and 0.82g/cm3)has become one of the difficulties.With the establishment of the regional interpretation criterion of the study blocks, the optimized logging parameters that reflect the reservoir characteristics have been used to establish the chart for the interpretation of oil-water reservoir combining with well logging parameters. Then, to begin with geologic reserves of crude in single well, we establish evaluation criterion for productivity in oil reservoir with determining lower limit value of the reservoir and applying the relationship between chart parameters. The techniques are verified in production and get better effect.On the basis of the reservoir characteristics analysis of both basin A and B, We established the evaluation method of static productivity on light oil reservoir with getting quantitative evaluation parameters after quantitatively evaluating the date of core, pyrolysis chromatogram and gas chromatogram. It provides new technique 7 for new well interpretation and old well review, as well as evidence for project.design of well testing.

  5. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.E.; Laubach, S.E.; Whidden, K.J.

    2012-01-01

    Carbonate reservoirs contain an increasingly important percentage of the world’s hydrocarbon reserves. This volume presents key recent advances in carbonate exploration and reservoir analysis. As well as a comprehensive overview of the trends in carbonate over the years, the volume focuses on four key areas:

  6. Zooplankton of the Zaporiz’ke Reservoir

    Directory of Open Access Journals (Sweden)

    T. V. Mykolaichuk

    2006-01-01

    Full Text Available The paper is devoted to zooplankton species composition in the Zaporiz’ke Reservoir. The greatest species diversity was found in the macrophyte communities of the upper reservoir’s littoral, but the least zooplankton diversity – in the pelagic zone of the lower reservoir.

  7. Ichthyofauna of the reservoirs of Central Vietnam

    Directory of Open Access Journals (Sweden)

    I. A. Stolbunov

    2012-01-01

    Full Text Available Species composition, distribution and abundance of fish in the pelagic and littoral zone of four reservoirs of Central Vietnam (Suoi Chau, Kam Lam, Da Ban and Suoi Dau were studied first. According to the research data the fish community of the reservoirs is represented by 43 species of 19 fish families.

  8. Reservoir optimization for the synthetic brugge field

    NARCIS (Netherlands)

    Peters, E.; Leeuwenburgh, O.; Egberts, P.J.P.

    2009-01-01

    Increasing availability of data and tools for history matching and optimisation brings the long-term goal of closed loop reservoir management closer. However, still many issues are not solved. An example is the interaction between the history match of the reservoir model and the optimisation. How im

  9. Advances in China's Oil Reservoir Description Technique

    Institute of Scientific and Technical Information of China (English)

    Mu Longxin; Huang Shiyan; Jia Ailin; Rong Jiashu

    1997-01-01

    @@ Oil reservoir description in China has undergone rapid development in recent years. Extensive research carried out at various oilfields and petroleum universities has resulted in the formulation of comprehensive oil reservoir description techniques and methods uniquely suited to the various development phases of China's continental facies. The new techniques have the following characteristics:

  10. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  11. A single-atom heat engine

    Science.gov (United States)

    Roßnagel, Johannes; Dawkins, Samuel T.; Tolazzi, Karl N.; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-01

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10-22 joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

  12. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...... the uid ow. We discretize the the two-phase ow model spatially using the nite volume method (FVM), and we use the two point ux approximation (TPFA) and the single-point upstream (SPU) scheme for computing the uxes. We propose a new formulation of the differential equation system that arise...... as a consequence of the spatial discretization of the two-phase ow model. Upon discretization in time, the proposed equation system ensures the mass conserving property of the two-phase ow model. For the solution of the spatially discretized two-phase ow model, we develop mass conserving explicit singly diagonally...

  13. Bottomwater drive in tarmat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kaabi, A.A.; Menouar, H.; Al-Marhoun, M.A.; Al-Hashim, H.S.

    1988-05-01

    This paper addresses the class of tarmat reservoirs subject to bottomwater drive. Different shapes of tar layers are simulated physically and numerically to study the behavior of WOR and oil recovery. Four different cases were studied: a square barrier beneath the well, a disk beneath the well, a hollow square or disk beneath the well, and a half plane. The results showed that breakthrough time occurs earlier in the case of hollow tarmat barriers, while it is delayed considerably in the case of tarmat barriers shaped in the form of a disk beneath the well. Paradoxically, in this last case, the WOR increases more rapidly and becomes higher toward the end of the depletion than in any other case. Among all the cases studied, the no-barrier case gives the highest recovery, while the hollow-tarmat-barrier case leads to the lowest recovery.

  14. Rodent reservoirs of future zoonotic diseases.

    Science.gov (United States)

    Han, Barbara A; Schmidt, John Paul; Bowden, Sarah E; Drake, John M

    2015-06-02

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States.

  15. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.

    2015-01-01

    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU del

  16. A new case of reservoir triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India

    Science.gov (United States)

    Gahalaut, Kalpna; Gahalaut, V. K.; Pandey, M. R.

    2007-07-01

    We report here that seismicity near Govind Ballav Pant reservoir is strongly influenced by the reservoir operations. It is the second largest reservoir in India, which is built on Rihand river in the failed rift region of central India. Most of the earthquakes occurred during the high water stand in the reservoir with a time lag of about 1 month. We use the concept of coulomb stress change and use Green's function based approach to estimate stresses and pore pressure due to the reservoir load. We find that the reservoir increases coulomb stress on the nearby faults of the region that are favourably oriented for failure in predominantly reverse slip manner under the NNE-SSW compression and thus promotes failure. The above two factors make it an obvious, yet so far unreported case of reservoir triggered seismicity.

  17. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2003-10-01

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity

  18. Four Engineers...

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are four engineers traveling in a car;a mechanical engineer,a chemical engi-neer,an electrical engineer and a comput-er engineer.The car breaks down.“Sounds to me as if the pistons have seized.We ll have to strip down the engine before we canget the car working again,”says the mechanical

  19. Mechanical Autonomous Stochastic Heat Engine

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  20. A study on 4D inversion of time-lapse magnetotelluric data sets for monitoring geothermal reservoir

    Science.gov (United States)

    Jang, H.; Nam, M. J.; Song, Y.

    2015-12-01

    The productivity of geothermal reservoir, which is function of pore-space and fluid-flow path of the reservoir, varies since the properties of reservoir changes with geothermal electricity generation. The variation in the reservoir properties causes changes in electrical resistivity, time-lapse (TL) three-dimensional (3D) magnetotelluric (MT) methods can be applied to monitor the productivity variation of geothermal reservoir thanks to its sensitive to the electrical resistivity of deep subsurface. For an accurate interpretation of TL 3D MT data, a 4D MT inversion algorithm has been developed to simultaneously invert all vintage data in a time-coupled way. However, the changes in electrical resistivity of deep geothermal reservoirs are usually small generating minimum variation in TL MT responses. In order to reduce TL inversion artifacts emphasizing the TL changes, we upgrade the TL coupling of the original 4D inversion algorithm with active time constraint (ATC), which has been verified to be efficient for resistivity monitoring based on TL electrical resistivity surveys. In order to maximize the sensitivity to reservoir-region resistivity changes, we further developed a focused 4D MT inversion method by considering the distribution of reservoir fractures. To analyze the validity of the 4D algorithms, we make 4D MT inversion of synthetic TL data sets applying ATC and focusing methods, respectively, and compare their results those from the original 4D algorithm. The numerical tests find that ATC 4D inversion can be useful for conventional geothermal reservoirs, while the focused inversion algorithm can be better for monitoring engineering geothermal system (EGS) reservoir, within which new fracture can be actively developed by fluid circulation during production. This work is supported by KETEP granted by MOTIE, KOREA (NO. 20133030000220).

  1. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    Science.gov (United States)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  2. Integration of complex reservoir grids for hydromechanical coupling

    Science.gov (United States)

    Nakaten, Benjamin; Pohl, Maik; Kempka, Thomas

    2017-04-01

    structure for parameter exchange between reservoir and geomechanical simulators. Using the algorithm enables modellers to transfer multi-million element ECLIPSE grids to, e.g., FLAC3D for coupled hydromechanical simulations within a few minutes instead of employing time-consuming grid simplification or parameter interpolation, while maintaining an efficient data structure for parameter exchange during the specific coupling steps. [1] Itasca. FLAC3D Software Version 5.01, Advanced Three Dimensional Continuum Modelling for Geotechnical Analysis of Rock, Soil and Structural Support. User's Manual. 2015. [2] Schlumberger. ECLIPSE Reservoir Engineering Software, Version 2015.1; 2015. [3] Schlumberger. Petrel Seismic-to-Evaluation Software, Version 2015; 2015.

  3. Coupling of Thermal-Hydraulic-Mechanical Processes for Geothermal Reservoir Modelling

    Institute of Scientific and Technical Information of China (English)

    Ali Karrechl Oussama Beltaief; Ruyan Vincec; Thomas Poulet; Klaus Regenauer-Lieb

    2015-01-01

    This paper uses a fully coupled framework of thermal-hydraulic-mechanical processes to investigate how the injection and extraction of fluid within a geothermal reservoir impacts on the dis-tributions of temperature, pore pressure, and deformation within the rock formations. Based on this formulation, a numerical model is developed in light of the thermodynamics of porous materials. The proposed procedure relies on the derivation of dissipative flow rules by postulating proper storage and dissipation functions. This approach opens new horizons for several resource engineering applications. Since it allows for full coupling, this formulation can play a key role in predicting risks when used for reservoir simulation. The results indicate that the injection-extraction process and temperature change have a definite impact on altering the in-situ properties of the reservoir.

  4. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    Science.gov (United States)

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m(3) of liquid radioactive waste with a total activity of some 5 × 10(15) Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...... of experimental results, discussions are made about possible mechanisms for improving oil recovery in carbonate reservoir as a function of change in brine salinity. Copyright 2012, Society of Petroleum Engineers....

  6. Intelligent Computing System for Reservoir Analysis and Risk Assessment of Red River Formation, Class Revisit

    Energy Technology Data Exchange (ETDEWEB)

    Sippel, Mark A.

    2002-09-24

    Integrated software was written that comprised the tool kit for the Intelligent Computing System (ICS). The software tools in ICS are for evaluating reservoir and hydrocarbon potential from various seismic, geologic and engineering data sets. The ICS tools provided a means for logical and consistent reservoir characterization. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) combining tools. A flexible approach can be used with the ICS tools. They can be used separately or in a series to make predictions about a desired reservoir objective. The tools in ICS are primarily designed to correlate relationships between seismic information and data obtained from wells; however, it is possible to work with well data alone.

  7. Improving Reservoir Simulation using Seismic Data

    Science.gov (United States)

    Shamsa, Amir

    The principal premise of this thesis is that the ambiguities of reservoir simulation can be and should be reduced by using time-lapse seismic data. Such data can be considered as a sort of reservoir dynamic data, with distinctive features compared to the typical reservoir production data. While well production data are sparse in space and dense in time, 4D timelapse seismic can be utilized to fill the spatial data gaps between wells. This provides an opportunity to constrain reservoir dynamic behaviour not only at well locations but also between them by honoring time lapse response of the reservoir. This means that seismic assisted history matching should involve a simultaneous minimization of the mismatch between all types of measured and simulated data including seismic data. This thesis is an effort to discuss critical aspects of integrating 4D time-lapse data in reservoir simulation and history matching. I have illustrated a detailed scheme of seismic assisted history matching with implications on real data, to emphasize the extra value that seismic data can bring into the conventional reservoir history matching. This goal was followed by developing a software application to assess the feasibility of the theory at industrial scales. In addition to the conventional oils, a significant effort has been devoted to extend the scope of the work to viscoelastic heavy oils and their fluid substitution models in thermal cases. I also studied the production/injection induced stresses impacts on anisotropic velocity variations, using coupled geomechanical-flow simulations. (Abstract shortened by UMI.).

  8. Stochastic Reservoir Characterization Constrained by Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Alfhild Lien

    1999-07-01

    In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.

  9. The Tanggu geothermal reservoir (Tianjin, China)

    Energy Technology Data Exchange (ETDEWEB)

    Axelsson, Gudni [Virkir-Orkint Consulting Group and National Energy Authority, Reykjavik (Iceland); Zhilin Dong [Tanggu Geothermal Office, Tianjin (China)

    1998-06-01

    The Tanggu geothermal system is an extensive, highly permeable, horizontal sandstone reservoir, situated within the North China Sedimentary Basin. Twenty-three successful production wells, yielding water with an average temperature of about 70degC, have been drilled into this reservoir since 1987, distributed over an area of some 330 km{sup 2}. The hot water is mostly used for space heating. In 1995 the annual production exceeded 5 million tons. Hot water extraction has caused the water level to drop to a depth of 80 m in the production wells, and it continues to decline at a rate of 3-4 m per year. This has raised the question as to whether the reservoir may be overexploited. The main objective of a reservoir evaluation carried out in 1996 was to estimate the long-term production potential of the Tanggu reservoir. Two simple models were developed for this purpose. The potential is determined by specifying a maximum allowable pump setting depth of 150 m . On this basis the potential of the Tanggu reservoir is estimated to be about 10 million tons per year, for the next ten years. A comprehensive reservoir management program must be implemented in Tanggu. The first priority of such a program should be to improve the energy efficiency of space heating in the district, which should result in about 50% reduction in hot water consumption. Another management option is reinjection, which would counteract the water level draw-down. (Author)

  10. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  11. Reservoir stimulation techniques to minimize skin factor of Longwangmiao Fm gas reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guo Jianchun

    2014-10-01

    Full Text Available The Lower Cambrian Longwangmiao Fm carbonatite gas reservoirs in the Leshan-Longnüsi Paleouplift in the Sichuan Basin feature strong heterogeneity, well-developed fractures and caverns, and a high content of H2S, so these reservoirs are prone to reservoir damages caused by the invasion of drilling fluid or the improper well completion, so to minimize the reservoir skin factor is key to achieving high yield of oil and gas in this study area. Therefore, based on the geological characteristics of the Longwangmiao reservoirs, the binomial productivity equation was applied to demonstrate the possibility and scientificity of minimizing the skin factor. According to the current status of reservoir stimulation, the overall skin factors of reservoir damage caused by drilling fluid invasion, improper drilling and completion modes etc were analyzed, which shows there is still potential for skin factor reduction. Analysis of reservoir damage factors indicates that the main skin factor of Longwangmiao Fm reservoirs consists of that caused by drilling fluid and by improper completion modes. Along with the minimization of skin factor caused by drilling and improper completion, a fracture-network acidizing process to achieve “non-radial & network-fracture” plug-removal by making good use of natural fractures was proposed according to the characteristics of Longwangmiao Fm carbonatite reservoirs.

  12. Ecological operation for Three Gorges reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian GUO

    2011-06-01

    Full Text Available The traditional operation rule of Three Gorges reservoir has mainly focused on water for flood control, power generation, navigation, water supply and recreation and given less attention to the negative impacts of reservoir operation on river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied to maintain healthy river ecosystem. The study considered the ecological operation targets, including maintaining river environmental flow and protecting the spawning and reproduction of Chinese sturgeon and four major Chinese carps. Based on the flow data from 1900 to 2006 of Yichang gauge as the control station of the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets of Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. The paper proposed a reservoir ecological operation model of comprehensively considering flood control, power generation, navigation and ecological environment. Three typical periods including wet, normal and dry year were selected and particle swarm optimization was applied to analyze the model. The results show that there are different influences of ecological operation rules on economic benefit of hydropower station and reservoir ecological operation model can simulate the flood pulse for requirement of spawning of Chinese sturgeon and four major Chinese carps. Finally, ecological operation measures of Three Gorges reservoir were proposed. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand can be met. The results provide the reference for making the reasonable operation schemes for Three Gorges reservoir.

  13. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  14. Outer boundary effects in a petroleum reservoir

    Science.gov (United States)

    Nelson, Rhodri; Crowdy, Darren; Kropf, Everett; Zuo, Lihua; Weijermars, Ruud

    2016-11-01

    A new toolkit for potential theory based on the Schottky-Klein prime function is first introduced. This potential theory toolkit is then applied to study the fluid flow structures in bounded 2D petroleum reservoirs. In the model, reservoirs are assumed to be heterogeneous and isotropic porous medium and can thus be modelled using Darcy's equation. First, computations of flow contours are carried out on some 'test' domains and benchmarked against results from the ECLIPSE reservoir simulator. Following this, a case study of the Quitman oil field in Texas is presented.

  15. TRANSFER RESERVOIR AS A RAINWATER DRAINAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Robert Malmur

    2016-06-01

    Full Text Available Intensive rainfalls and snow melting often cause floods in protected areas and overflow the existing sewage systems. Such cases are particularly burdensome for the inhabitants and cause considerable physical losses. One of the possible constructional solutions to ensure the effective outflow of stormwater are transfer reservoirs located between the draining system and a receiver set discussed in this paper. If gravity outflow of sewage is impossible, the initial part of sewage volume is accumulated in the transfer reservoir and then it is transferred into the water receiver set. However, gravity discharge of sewage to the water receiver set occurs through transfer chambers in the transfer reservoir.

  16. Production-induced changes in reservoir geomechanics

    Science.gov (United States)

    Amoyedo, Sunday O.

    Sand production remains a source of concern in both conventional and heavy oil production. Porosity increase and changes in local stress magnitude, which often enhance permeability, have been associated with severe sanding. On the other hand, sand production has been linked to a large number of field incidences involving loss of well integrity, casing collapse and corrosion of down-hole systems. It also poses problems for separators and transport facilities. Numerous factors such as reservoir consolidation, well deviation angle through the reservoir, perforation size, grain size, capillary forces associated with water cut, flow rate and most importantly reservoir strain resulting from pore pressure depletion contribute to reservoir sanding. Understanding field-specific sand production patterns in mature fields and poorly consolidated reservoirs is vital in identifying sand-prone wells and guiding remedial activities. Reservoir strain analysis of Forties Field, located in the UK sector of the North Sea, shows that the magnitude of the production-induced strain, part of which is propagated to the base of the reservoir, is of the order of 0.2 %, which is significant enough to impact the geomechanical properties of the reservoir. Sand production analysis in the field shows that in addition to poor reservoir consolidation, a combined effect of repeated perforation, high well deviation, reservoir strain and high fluid flow rate have contributed significantly to reservoir sanding. Knowledge of reservoir saturation variation is vital for in-fill well drilling, while information on reservoir stress variation provides a useful guide for sand production management, casing design, injector placement and production management. Interpreting time-lapse difference is enhanced by decomposing time-lapse difference into saturation, pressure effects and changes in rock properties (e.g. porosity) especially in highly compacting reservoirs. Analyzing the stress and saturation

  17. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  18. Freshwater reservoir effect variability in Northern Germany

    DEFF Research Database (Denmark)

    Philippsen, Bente; Heinemeier, Jan

    2012-01-01

    The freshwater reservoir effect is a potential problem when radiocarbon dating fishbones, shells, human bones or food crusts on pottery from sites next to rivers or lakes. The reservoir age in rivers containing considerable amounts of dissolved 14C-free carbonates can be up to several thousand...... years and may be highly variable. For accurate radiocarbon dating of freshwater-based samples, the order of magnitude of the reservoir effect as well as the degree of variability has to be known. The initial problem in this case was the accurate dating of food crusts on pottery from the Mesolithic sites...

  19. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  20. Revitalizing a mature oil play: Strategies for finding and producing oil in Frio Fluvial-Deltaic Sandstone reservoirs of South Texas

    Energy Technology Data Exchange (ETDEWEB)

    Knox, P.R.; Holtz, M.H.; McRae, L.E. [and others

    1996-09-01

    Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locate remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.

  1. Engineering and Software Engineering

    Science.gov (United States)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  2. Impacts of the Snake River drawdown experiment on fisheries resources in Little Goose and Lower Granite Reservoirs, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D D; Geist, D R

    1992-09-01

    In March 1992, the US Army Corps of Engineers initiated a test to help evaluate physical and environmental impacts resulting from the proposed future drawdown of Snake River reservoirs. Drawdown would reduce water levels in Snake River reservoirs and is being proposed as a solution to decrease the time it takes for salmon and steelhead smolts to migrate to the ocean. The Pacific Northwest Laboratory evaluated impacts to specific fisheries resources during the drawdown experiment by surveying Lower Granite Reservoir to determine if fall chinook salmon (Oncorhynchus tshawytscha) spawning areas and steelhead (0. mykiss) access to tributary creeks were affected. In addition, shoreline areas of Little Goose Reservoir were monitored to evaluate the suitability of these areas for spawning by fall chinook salmon. Relative abundance of fish species in nearshore areas was also determined during the drawdown, and stranded resident fish and other aquatic organisms were observed.

  3. Using GEFS ensemble forecasts for decision making in reservoir management in California

    Science.gov (United States)

    Scheuerer, M.; Hamill, T.; Webb, R. S.

    2015-12-01

    Reservoirs such as Lake Mendocino in California's Russian River Basin provide flood control, water supply, recreation, and environmental stream flow regulation. Many of these reservoirs are operated by the U.S. Army Corps of Engineers (Corps) according to water control manuals that specify elevations for an upper volume of reservoir storage that must be kept available for capturing storm runoff and reducing flood risk, and a lower volume of storage that may be used for water supply. During extreme rainfall events, runoff is captured by these reservoirs and released as quickly as possible to create flood storage space for another potential storm. These flood control manuals are based on typical historical weather patterns - wet during the winter, dry otherwise - but are not informed directly by weather prediction. Alternative reservoir management approaches such as Forecast-Informed Reservoir Operations (FIRO), which seek to incorporate advances in weather prediction, are currently being explored as means to improve water supply availability while maintaining flood risk reduction and providing additional ecosystem benefits.We present results from a FIRO proof-of-concept study investigating the reliability of post-processed GEFS ensemble forecasts to predict the probability that day 6-to-10 precipitation accumulations in certain areas in California exceed a high threshold. Our results suggest that reliable forecast guidance can be provided, and the resulting probabilities could be used to inform decisions to release or hold water in the reservoirs. We illustrate the potential of these forecasts in a case study of extreme event probabilities for the Russian River Basin in California.

  4. Impact of Reservoirs on Contemporary and Future Hydrology of the Northeastern United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2015-12-01

    Construction of dams and the resulting water impoundments are one of the most common engineering procedures implemented on river systems. One major problem in dams' impact studies is the lack of reliable methods for simulating reservoir operation. We have used Artificial Neural Networks (ANN) to parameterize actual dam operations and developed a General Reservoir Operation Scheme (GROS) which may be added to daily hydrologic routing models for simulating the releases from dams in regional and global-scale studies. GROS is sufficiently accurate in simulating the operation of existing reservoirs and is specifically designed to provide a broad perspective of the general behavior of dams and improve the understanding of the large-scale hydrological impact of dams operation in a relatively easy and efficient way. Embedding GROS in a water balance model (WBMplus), we are analyzing the hydrological impact of dams on the thirteen states of the Northeastern United States. Our analysis shows the changing trends in hydrological characteristics of each state for the period of 1950 to 2099 under the four Representative Concentration Pathways (RCPs). We demonstrate how the magnitude and timing of minimum and maximum monthly flows change as a result of climate change and explore the role of reservoirs in that change. In addition, we investigate whether building new dams can provide engineered resilience to climate change and enhance future water security.

  5. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass

    Science.gov (United States)

    Makrakis, S.; Miranda, L.E.; Gomes, L.C.; Makrakis, M.C.; Junior, H.M.F.

    2011-01-01

    The Piracema Canal is a complex 10-km fish pass system that climbs 120m to connect the Paran?? River to the Itaipu Reservoir along the Brazil-Paraguay border. The canal was constructed to allow migratory fishes to reach suitable habitats for reproduction and feeding in tributaries upstream from the reservoir. The Piracema Canal attracted 17 of the 19 long-distance migratory species that have been recorded in the Paran?? River Basin and Paraguay-Paran?? Basin. However, the incidence of migratory fish decreased from downstream to upstream, with the pattern of decrease depending on species. Overall, 0.5% of the migratory fish that entered the Piracema Canal and segment 1, eventually were able to reach segment 5 and potentially Itaipu Reservoir. Ascension rate was examined relative to various physical attributes of canal segments; maximum water velocity emerged as the most influential variable affecting fish passage. Water velocity may be manipulated by controlling water discharge, and by re-engineering critical sections of the canal. Because the Itaipu Reservoir flooded a set of falls that separated two distinct biogeographical regions, facilitating fish movements through the Piracema Canal into the Itaipu Reservoir presents a management dilemma that requires deliberation in the context of the fish assemblages rather than on selected migratory species. ?? 2010 John Wiley & Sons, Ltd.

  6. EMSE: Synergizing EM and seismic data attributes for enhanced forecasts of reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2014-10-01

    New developments of electromagnetic and seismic techniques have recently revolutionized the oil and gas industry. Time-lapse seismic data is providing engineers with tools to more accurately track the dynamics of multi-phase reservoir fluid flows. With the challenges faced in distinguishing between hydrocarbons and water via seismic methods, the industry has been looking at electromagnetic techniques in order to exploit the strong contrast in conductivity between hydrocarbons and water. Incorporating this information into reservoir simulation is expected to considerably enhance the forecasting of the reservoir, hence optimizing production and reducing costs. Conventional approaches typically invert the seismic and electromagnetic data in order to transform them into production parameters, before incorporating them as constraints in the history matching process and reservoir simulations. This makes automatization difficult and computationally expensive due to the necessity of manual processing, besides the potential artifacts. Here we introduce a new approach to incorporate seismic and electromagnetic data attributes directly into the history matching process. To avoid solving inverse problems and exploit information in the dynamics of the flow, we exploit petrophysical transformations to simultaneously incorporate time lapse seismic and electromagnetic data attributes using different ensemble Kalman-based history matching techniques. Our simulation results show enhanced predictability of the critical reservoir parameters and reduce uncertainties in model simulations, outperforming with only production data or the inclusion of either seismic or electromagnetic data. A statistical test is performed to confirm the significance of the results. © 2014 Elsevier B.V. All rights reserved.

  7. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    Science.gov (United States)

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  8. Coupling of a reservoir model and of a poro-mechanical model. Application to the study of the compaction of petroleum reservoirs and of the associated subsidence; Couplage d'un modele de gisement et d'un modele mecanique. Application a l'etude de la compaction des reservoirs petroliers et de la subsidence associee

    Energy Technology Data Exchange (ETDEWEB)

    Bevillon, D.

    2000-11-30

    The aim of this study is to provide a better description of the rock contribution to fluid flows in petroleum reservoirs. The production of oil/gas in soft highly compacting reservoirs induces important reduction of the pore volume, which increases oil productivity. This compaction leads to undesirable effects such as surface subsidence or damage of well equipment. Analysis of compaction and subsidence can be performed using either engineering reservoir models or coupled poro-mechanical models. Poro-mechanical model offers a rigorous mechanical framework, but does not permit a complete description of the fluids. The reservoir model gives a good description of the fluid phases, but the description of the mechanic phenomenon is then simplified. To satisfy the set of equations (mechanical equilibrium and diffusivity equations), two simulators can be used together sequentially. Each of the two simulators solves its own system independently, and information passed both directions between simulators. This technique is usually referred to the partially coupled scheme. In this study, reservoir and hydro-mechanical simulations show that reservoir theory is not a rigorous framework to represent the evolution of the high porous rocks strains. Then, we introduce a partially coupled scheme that is shown to be consistent and unconditionally stable, which permits to describe correctly poro-mechanical theory in reservoir models. (author)

  9. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    Science.gov (United States)

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap

  10. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  11. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic Sandstone Reservoirs of South Texas

    Energy Technology Data Exchange (ETDEWEB)

    McRae, L.E.; Holtz, M.H.; Knox, P.R.

    1995-07-01

    The Frio Fluvial-Deltaic Sandstone Play of South Texas is one example of a mature play where reservoirs are being abandoned at high rates, potentially leaving behind significant unrecovered resources in untapped and incompletely drained reservoirs. Nearly 1 billion barrels of oil have been produced from Frio reservoirs since the 1940`s, yet more than 1.6 BSTB of unrecovered mobile oil is estimated to remain in the play. Frio reservoirs of the South Texas Gulf Coast are being studied to better characterize interwell stratigraphic heterogeneity in fluvial-deltaic depositional systems and determine controls on locations and volumes of unrecovered oil. Engineering data from fields throughout the play trend were evaluated to characterize variability exhibited by these heterogeneous reservoirs and were used as the basis for resource calculations to demonstrate a large additional oil potential remaining within the play. Study areas within two separate fields have been selected in which to apply advanced reservoir characterization techniques. Stratigraphic log correlations, reservoir mapping, core analyses, and evaluation of production data from each field study area have been used to characterize reservoir variability present within a single field. Differences in sandstone depositional styles and production behavior were assessed to identify zones with significant stratigraphic heterogeneity and a high potential for containing unproduced oil. Detailed studies of selected reservoir zones within these two fields are currently in progress.

  12. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    OpenAIRE

    Bogusław Michalec

    2015-01-01

    Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is l...

  13. Lower Palaeozoic reservoirs of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, R.; McDougall, N. [Robertson Research International Ltd., Llandudno, Conwy (United Kingdom)

    1998-12-31

    This paper provides an overview of features considered significant in the exploration and development of Lower Palaeozoic reservoirs of North Africa. Information is derived from a review of literature on the Lower Palaeozoic successions of North Africa, combined with outcrop observations from the Anti Atlas mountains of Morocco. The focus of the exploration-oriented part of the review is on identification of potential traps other than two-way structural dip closure. Stratigraphic elements described include depositional models of reservoir facies, tectonic unconformities and possible eustatic unconformities. Cases of established or potential trapping by post-depositional faulting by diagenesis and by hydrodynamic flow are examined. Development-related topics highlighted include the impact on reservoir matrix quality of burial diagenesis and of palaeo-weathering at the Hercynian unconformity. Other issues discussed which additionally affect producibility from the reservoir matrix include tectonic fracturing, palaeotopography and unloading fracturing at the Hercynian unconformity, and induced fracturing within the present stress regimes. (author)

  14. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  15. The glaciogenic reservoir analogue studies project (GRASP)

    DEFF Research Database (Denmark)

    Moscariello, A.; Moreau, Julien; Vegt, P. van der

    Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...

  16. Fishery management plan for the Dorris reservoir

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Fishery Management Plan for Dorris Reservoir at Modoc National Wildlife Refuge. The U.S. Fish and Wildlife service proposes to continue a public fishing program...

  17. Overdamped stochastic thermodynamics with multiple reservoirs

    Science.gov (United States)

    Murashita, Yûto; Esposito, Massimiliano

    2016-12-01

    After establishing stochastic thermodynamics for underdamped Langevin systems in contact with multiple reservoirs, we derive its overdamped limit using timescale separation techniques. The overdamped theory is different from the naive theory that one obtains when starting from overdamped Langevin or Fokker-Planck dynamics and only coincides with it in the presence of a single reservoir. The reason is that the coarse-grained fast momentum dynamics reaches a nonequilibrium state, which conducts heat in the presence of multiple reservoirs. The underdamped and overdamped theory are both shown to satisfy fundamental fluctuation theorems. Their predictions for the heat statistics are derived analytically for a Brownian particle on a ring in contact with two reservoirs and subjected to a nonconservative force and are shown to coincide in the long-time limit.

  18. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  19. Improved storage efficiency through geologic modeling and reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ammer, J.R.; Mroz, T.H.; Covatch, G.L.

    1997-11-01

    The US Department of Energy (DOE), through partnerships with industry, is demonstrating the importance of geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. The geologic modeling and reservoir simulation study for the Natural Fuel Gas Supply Corporation CRADA was completed in September 1995. The results of this study were presented at the 1995 Society of Petroleum Engineers` (SPE) Eastern Regional Meeting. Although there has been no field verification of the modeling results, the study has shown the potential advantages and cost savings opportunities of using horizontal wells for storage enhancement. The geologic modeling for the Equitrans` CRADA was completed in September 1995 and was also presented at the 1995 SPE Eastern Regional Meeting. The reservoir modeling of past field performance was completed in November 1996 and prediction runs are currently being made to investigate the potential of offering either a 10 day or 30 day peaking service in addition to the existing 110 day base load service. Initial results have shown that peaking services can be provided through remediation of well damage and by drilling either several new vertical wells or one new horizontal well. The geologic modeling for the Northern Indiana Public Service Company CRADA was completed in November 1996 with a horizontal well being completed in January 1997. Based on well test results, the well will significantly enhance gas deliverability from the field and will allow the utilization of gas from an area of the storage field that was not accessible from their existing vertical wells. Results are presented from these three case studies.

  20. Origins of acid fluids in geothermal reservoirs

    Science.gov (United States)

    Truesdell, Alfred

    1991-01-01

    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  1. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  2. Effects of Fluctuating Reservoir Water Levels on Fisheries, Wildlife, and Vegetation; Summary of a Workshop, 24-26 February 1981.

    Science.gov (United States)

    1983-07-01

    RIVER, OREGON AND WASHINGTONe k .9 Wilber E. Ternyik* ABSTRACT . Marsh and shoreline vegetation establishment on the reservoirs of the Pacific...6862 Experiment Station P. 0. Box 631 Mr. Ken Lee Vicksburg, MS 39180 U. S. Army Engineer District, 601-634-3771 Baltimore FTS 542-3771 P. 0. Box 1712...J. Newling Dr. Ken Ridlehuber Environmental Laboratory Department of Wildlife and U. S. Army Engineer Waterways Fisheries Sciences Experiment Station

  3. Massachusetts reservoir simulation tool—User’s manual

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  4. Hydropower Reservoir Operation using Standard Operating and Standard Hedging Policies

    OpenAIRE

    T.R. Neelakantan; K. Sasireka

    2013-01-01

    Standard operating policy and hedging policies are commonly used for reservoir operation for municipal or irrigation water supply. Application of these policies to hydropower reservoir operation is complex. In this paper, new standard operating policies and standard hedging policy are proposed for hydropower reservoir operation. The newly proposed policies were applied to the operation of Indira Sagar reservoir in India and demonstrated.

  5. Reservoir assessment of The Geysers Geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  6. Reservoir Thermal Recover Simulation on Parallel Computers

    Science.gov (United States)

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  7. Parallel reservoir computing using optical amplifiers.

    Science.gov (United States)

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  8. Assessment of reservoir system variable forecasts

    Science.gov (United States)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  9. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  10. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Martin J.; Orr, Franklin M.

    1999-05-17

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  11. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Michael J.; Orr, Franklin M.

    1999-05-26

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996 - September 1997 under the first year of a three-year Department of Energy grant on the Prediction of Gas Injection Performance for Heterogeneous Reservoirs. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The original proposal described research in four main areas; (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each stage of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  12. An analytical thermohydraulic model for discretely fractured geothermal reservoirs

    Science.gov (United States)

    Fox, Don B.; Koch, Donald L.; Tester, Jefferson W.

    2016-09-01

    In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one-dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.

  13. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  14. Carbonate reservoir characterization. An integrated approach. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, F. Jerry [Bureau of Economic Geology, Austin, TX (United States)

    2007-07-01

    What would the oil barons of Texas really like to know? Well, in the pages of this book they might find some answers. This hugely experienced author working in Texas, America's main oil-rich state, has produced a work that goes after one of the holy grails of oil prospecting. One main target in petroleum recovery is the description of the three-dimensional distribution of petrophysical properties on the interwell scale in carbonate reservoirs. Doing so would improve performance predictions by means of fluid-flow computer simulations. Lucia's book focuses on the improvement of geological, petrophysical, and geostatistical methods, describes the basic petrophysical properties, important geology parameters, and rock fabrics from cores, and discusses their spatial distribution. A closing chapter deals with reservoir models as an input into flow simulators. Not only does this book provide a hugely practical approach that uses geostatistical as well as petrophysical methods, it can also be used as course material to integrate geology, geophysics and engineering. (orig.)

  15. Potential methane reservoirs beneath Antarctica.

    Science.gov (United States)

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  16. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.19... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses....

  17. Characterization of Aerobic Chemical Processes in Reservoirs: Problem Description and Model Formulation.

    Science.gov (United States)

    1983-10-01

    Corps of Engineers (CE) reservoirs have within the hypo- limnion low concentrations of dissolved oxygen and high concentrations of products of anaerobic...alleviating the associated water quality problems. 3. Artificial mixing and/or destratification of the anoxic hypo- limnion to improve water quality has...sonia1)V we lI the , ctual time-dependent concentrations of Fe and Mn in the hypo limnion A Lake Mendota during sununer stratification (Hot fmann and

  18. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  19. Predicting interwell heterogeneity in fluvial-deltaic reservoirs: Outcrop observations and applications of progressive facies variation through a depositional cycle

    Energy Technology Data Exchange (ETDEWEB)

    Knox, P.R.; Barton, M.D. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Nearly 11 billion barrels of mobile oil remain in known domestic fluvial-deltaic reservoirs despite their mature status. A large percentage of this strategic resource is in danger of permanent loss through premature abandonment. Detailed reservoir characterization studies that integrate advanced technologies in geology, geophysics, and engineering are needed to identify remaining resources that can be targeted by near-term recovery methods, resulting in increased production and the postponement of abandonment. The first and most critical step of advanced characterization studies is the identification of reservoir architecture. However, existing subsurface information, primarily well logs, provides insufficient lateral resolution to identify low-permeability boundaries that exist between wells and compartmentalize the reservoir. Methods to predict lateral variability in fluvial-deltaic reservoirs have been developed on the basis of outcrop studies and incorporate identification of depositional setting and position within a depositional cycle. The position of a reservoir within the framework of a depositional cycle is critical. Outcrop studies of the Cretaceous Ferron Sandstone of Utah have demonstrated that the architecture and internal heterogeneity of sandstones deposited within a given depositional setting (for example, delta front) vary greatly depending upon whether they were deposited in the early, progradational part of a cycle or the late, retrogradational part of a cycle. The application of techniques similar to those used by this study in other fluvial-deltaic reservoirs will help to estimate the amount and style of remaining potential in mature reservoirs through a quicklook evaluation, allowing operators to focus characterization efforts on reservoirs that have the greatest potential to yield additional resources.

  20. Ecological optimization of endoreversible chemical engines

    Directory of Open Access Journals (Sweden)

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-09-01

    Full Text Available Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological function versus the efficiency characteristic of the cycles. The results can provide some theoretical guidelines for the design of practical chemical engines.

  1. Upstream-downstream cooperation approach in Guanting Reservoir watershed

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-feng; ZHANG Wen-guo

    2005-01-01

    A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts.The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed, Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

  2. Response of wells producing layered reservoirs: Unequal fracture length

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, R.G.; Raghavan, R.; Reynolds, A.C.

    1987-03-01

    The response of fractured wells producing noncommunicating layered reservoirs is the focus of this work. The conductivity of the fracture is assumed to be finite. The fracture length is assumed to vary from layer to layer. Two modes of production - constant wellbore pressure and constant rate - are considered. In the first part, the fractures are assumed to communicate only at the wellbore. The results given in this section are intended to provide engineers with analytical capabilities to examine responses in wells where the layers that have been stimulated are separated by considerable distances. Procedures to interpret the results of pressure buildup and/or production tests (drawdown responses) in terms of layer properties are presented. Criteria to ensure maximum productivity are specified. The second part examines well responses when the fractures are in communication at points other than the wellbore. All other things being identical, we show that communication between fractures increases productivity.

  3. Response of wells producing layered reservoirs: Unequal fracture length

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-V., R.G.; Raghavan, R.; Reynolds, A.C.

    1984-05-01

    The response of fractured wells producing noncommunicating layered reservoirs is the focus of this work. The conductivity of the fracture is assumed to be finite. The fracture length is assumed to vary from layer to layer. Two modes of production--constant wellbore pressure and constant rate--are considered. In the first part of this work the fractures are assumed to communicate only at the wellbore. The results given in this section are intended to provide engineers with analytical capabilities to examine responses in wells where the layers that have been stimulated are separated by considerable distances. Procedures to interpret the results of pressure buildup and/or production tests (drawdown responses) in terms of layer properties are presented. Criteria to ensure maximum productivity are specified. The second part of this work examines well responses when the fractures are in communication at points other than the wellbore. All other things being identical, the authors show that communication between fractures increases productivity.

  4. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  5. Entanglement and entropy engineering of atomic two-qubit states

    CERN Document Server

    Clark, S G

    2002-01-01

    We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal states of two atoms trapped in a high finesse optical cavity. Using laser and cavity fields to drive two separate Raman transitions between metastable atomic ground states, a system is realized corresponding to a pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir correlations lead to entanglement between the atoms, and, via local unitary transformations and adjustment of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed combination of linear entropy and entanglement of formation.

  6. Efficiency of Brownian heat engines.

    Science.gov (United States)

    Derényi, I; Astumian, R D

    1999-06-01

    We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.

  7. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  8. Fuzzy control in environmental engineering

    CERN Document Server

    Chmielowski, Wojciech Z

    2016-01-01

    This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...

  9. Current Challenges in Geothermal Reservoir Simulation

    Science.gov (United States)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this

  10. MITIGATION OF SEDIMENTATION HAZARDS DOWNSTREAM FROM RESERVOIRS

    Institute of Scientific and Technical Information of China (English)

    Ellen WOHL; Sara RATHBURN

    2003-01-01

    Many reservoirs currently in operation trap most or all of the sediment entering the reservoir,creating sediment-depleted conditions downstream. This may cause channel adjustment in the form of bank erosion, bed erosion, substrate coarsening, and channel planform change. Channel adjustment may also result from episodic sediment releases during reservoir operation, or from sediment evacuation following dam removal. Channel adjustment to increased sediment influx depends on the magnitude, frequency, duration and grain-size distribution of the sediment releases, and on the downstream channel characteristics. Channel adjustment may occur as a change in substrate sizedistribution, filling of pools, general bed aggradation, lateral instability, change in channel planform,and/or floodplain aggradation. The increased sediment availability may alter aquatic and riparian habitat, reduce water quality, distribute adsorbed contaminants along the river corridor, and provide germination sites for exotic vegetation. Mitigation of these sedimentation hazards requires: (1)mapping grain-size distribution within the reservoir and estimating the grain-size distributions of sediment that will be mobilized through time; (2) mapping shear stress and sediment transport capacity as a function of discharge on the basis of channel units for the length of the river likely to be affected; (3) mapping potential depositional zones, and aquatic habitat and "acceptable losses," along the downstream channel, and comparing these volumes to the total sediment volume stored in the reservoir as a means of estimating total transport capacity required to mobilize reservoir sediment delivered to the channel; (4) designing discharge and sediment release regime (magnitude, frequency,duration) to minimize adverse downstream impacts; and (5) developing plans to remove, treat, contain,or track contaminants, and to restrict establishment of exotic vegetation. The North Fork Poudre River in Colorado is used to

  11. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  13. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Science.gov (United States)

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  14. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  15. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  16. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Keers, Henk

    2006-11-27

    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  17. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  18. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  19. Physical modelling of the Akkajaure reservoir

    Directory of Open Access Journals (Sweden)

    J. Sahlberg

    2003-01-01

    Full Text Available This paper describes the seasonal temperature development in the Akkajaure reservoir, one of the largest Swedish reservoirs. It lies in the headwaters of the river Lulealven in northern Sweden; it is 60 km long and 5 km wide with a maximum depth of 92 m. The maximum allowed variation in surface water level is 30 m. The temperature field in the reservoir is important for many biochemical processes. A one-dimensional lake model of the Akkajaure reservoir is developed from a lake model by Sahlberg (1983 and 1988. The dynamic eddy viscosity is calculated by a two equation turbulence model, a k–ε model and the hypolimnic eddy diffusivity formulation which is a function of the stability frequency (Hondzo et al., 1993. A comparison between calculated and measured temperature profiles showed a maximum discrepancy of 0.5–1.0°C over the period 1999-2002. Except for a few days in summer, the water temperature is vertically homogeneous. Over that period of years, a weak stratification of temperature occurred on only one to two weeks a year on different dates in July and August. This will have biological consequences. Keywords: temperature profile,reservoir, 1-D lake model, stratification, Sweden

  20. Mechanisms of HIV persistence in HIV reservoirs.

    Science.gov (United States)

    Mzingwane, Mayibongwe L; Tiemessen, Caroline T

    2017-03-01

    The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.