WorldWideScience

Sample records for reservoir engineering parameters

  1. Non-parametric Bayesian networks for parameter estimation in reservoir engineering

    NARCIS (Netherlands)

    Zilko, A.A.; Hanea, A.M.; Hanea, R.G.

    2013-01-01

    The ultimate goal in reservoir engineering is to optimize hydrocarbon recovery from a reservoir. To achieve the goal, good knowledge of the subsurface properties is crucial. One of these properties is the permeability. Ensemble Kalman Filter (EnKF) is the most common tool used to deal with this

  2. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  3. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  4. Dynamic bayesian networks as a possible alternative to the ensemble kalman filter for parameter estimation in reservoir engineering

    NARCIS (Netherlands)

    Hanea, A.; Hanea, R.; Zilko, A.

    2012-01-01

    The objective of reservoir engineering is to optimize hydrocarbon recovery. One of the most common and efficient recovery processes is water injection. The water is pumped into the reservoir in injection wells in order to push the oil trapped in the porous media towards the production wells. The

  5. Nonlinearities in reservoir engineering: Enhancing quantum correlations

    Science.gov (United States)

    Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi

    2017-12-01

    There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.

  6. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  7. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  8. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  9. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  10. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  11. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  12. CELSS engineering parameters

    Science.gov (United States)

    Drysdale, Alan; Sager, John; Wheeler, Ray; Fortson, Russ; Chetirkin, Peter

    1993-01-01

    The most important Controlled Ecological Life Support System (CELSS) engineering parameters are, in order of decreasing importance, manpower, mass, and energy. The plant component is a significant contributor to the total system equivalent mass. In this report, a generic plant component is described and the relative equivalent mass and productivity are derived for a number of instances taken from the KSC CELSS Breadboard Project data and literature. Typical specific productivities (edible biomass produced over 10 years divided by system equivalent mass) for closed systems are of the order of 0.2.

  13. Third workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third

  14. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  15. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  16. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  17. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  18. Sixth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of

  19. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who

  20. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  1. Time-lapse seismic within reservoir engineering

    NARCIS (Netherlands)

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves

  2. Multiscale ensemble filtering for reservoir engineering applications

    NARCIS (Netherlands)

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.

    2009-01-01

    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique

  3. Eleventh workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  4. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  5. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  6. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  7. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  8. Standardized surface engineering design of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Guangchuan Liang

    2016-01-01

    Full Text Available Due to the special physical properties of shale gas reservoirs, it is necessary to adopt unconventional and standardized technologies for its surface engineering construction. In addition, the surface engineering design of shale gas reservoirs in China faces many difficulties, such as high uncertainty of the gathering and transportation scale, poor adaptability of pipe network and station layout, difficult matching of the process equipments, and boosting production at the late stage. In view of these problems, the surface engineering construction of shale gas reservoirs should follow the principles of “standardized design, modularized construction and skid mounted equipment”. In this paper, standardized surface engineering design technologies for shale gas reservoirs were developed with the “standardized well station layout, universal process, modular function zoning, skid mounted equipment selection, intensive site design, digitized production management” as the core, after literature analysis and technology exploration were carried out. Then its application background and surface technology route were discussed with a typical shale gas field in Sichuan–Chongqing area as an example. Its surface gathering system was designed in a standardized way, including standardized process, the modularized gathering and transportation station, serialized dehydration unit and intensive layout, and remarkable effects were achieved. A flexible, practical and reliable ground production system was built, and a series of standardized technology and modularized design were completed, including cluster well platform, set station, supporting projects. In this way, a system applicable to domestic shale gas surface engineering construction is developed.

  9. Reservoir engineering studies of the Cerro Prieto geothermal field

    Science.gov (United States)

    Goyal, K. P.; Lippmann, M. J.; Tsang, C. F.

    1982-09-01

    Reservoir engineering studies of the Cerro Prieto geothermal field began in 1978 under a five-year cooperative agreement between the US Department of Energy and the Comision Federal de Electricidad de Mexico, with the ultimate objective of simulating the reservoir to forecast its production capacity, energy longevity, and recharge capability under various production and injection scenarios. During the fiscal year 1981, attempts were made to collect information on the evolution history of the field since exploitation began; the information is to be used later to validate the reservoir model. To this end, wellhead production data were analyzed for heat and mass flow and also for changes in reservoir pressures, temperatures, and saturations for the period from March 1973 to November 1980.

  10. Predicting Engine Parameters using the Optical Spectrum

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Plume Anomaly Detection (OPAD) system is under development to predict engine anomalies and engine parameters of the Space Shuttle's Main Engine (SSME)....

  11. Ninth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

    1983-12-15

    (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  12. A quantum Szilard engine without heat from a thermal reservoir

    Science.gov (United States)

    Hamed Mohammady, M.; Anders, Janet

    2017-11-01

    We study a quantum Szilard engine that is not powered by heat drawn from a thermal reservoir, but rather by projective measurements. The engine is constituted of a system { S }, a weight { W }, and a Maxwell demon { D }, and extracts work via measurement-assisted feedback control. By imposing natural constraints on the measurement and feedback processes, such as energy conservation and leaving the memory of the demon intact, we show that while the engine can function without heat from a thermal reservoir, it must give up at least one of the following features that are satisfied by a standard Szilard engine: (i) repeatability of measurements; (ii) invariant weight entropy; or (iii) positive work extraction for all measurement outcomes. This result is shown to be a consequence of the Wigner–Araki–Yanase theorem, which imposes restrictions on the observables that can be measured under additive conservation laws. This observation is a first-step towards developing ‘second-law-like’ relations for measurement-assisted feedback control beyond thermality.

  13. Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic

    NARCIS (Netherlands)

    Przybysz-Jarnut, J.K.

    2010-01-01

    The numerical simulation of hydrocarbon reservoir flow is necessarily an approximation of the flow in the real reservoir. The knowledge about the reservoir is limited and some of the processes occurring are either not taken into account or not described in an adequate way. The parameters influencing

  14. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    International Nuclear Information System (INIS)

    Scheidt, Rafael de Faria; Vilain, Patrícia; Dantas, M A R

    2014-01-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers

  15. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  16. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2016-09-01

    Full Text Available Drug delivery systems (DDS ensure that therapeutically effective drug concentrations are delivered locally to the target site. For that reason, it is common to coat implants with a degradable polymer which contains drugs. However, the use of polymers as a drug carrier has been associated with adverse side effects. For that reason, several technologies have been developed to design polymer-free DDS. In literature it has been shown that micro-sized reservoirs can be applied as drug reservoirs. Inkjet techniques are capable of depositing drugs into these reservoirs. In this study, two different geometries of micro-sized reservoirs have been laden with a drug (ASA using a drop-on-demand inkjet printhead. Correlations between the characteristics of the drug solution, the operating parameters of the printhead and the geometric parameters of the reservoir are shown. It is indicated that wettability of the surface play a key role for drug deposition into micro-sized reservoirs.

  17. The reservoir engineering report in financial transactions: 'a useful tool - neither panacea nor placebo'

    International Nuclear Information System (INIS)

    Porter, T.W.

    1996-01-01

    The important role that independent reservoir engineering reports play in the oil and gas industry, was discussed. Among other things, such reports often form the basis upon which oil and gas properties are valued, bought and sold, and of course, they are necessary for the industry to gain access to sources of capital. However, interpretation plays a critical role in the process, and very different conclusions can be drawn by equally reputable and qualified engineers. Because of this, financial investors insist upon independent reservoir engineering reports (and then frequently ignore the limitations and qualifications which are stated in the report). Some of the important limitations stated in reservoir engineering reports were discussed, along with the risks inherent in reservoir engineering reports, and the strategies for minimizing those risks. The engineer's professional responsibilities and potential liabilities in the matter of reserves estimates, were re-stated

  18. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  19. In-situ uranium mining: reservoir engineering aspects of leaching and restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.I.

    1982-01-01

    To establish the feasibility of in-situ mining of uranium, a push-pull test of an in-situ uranium leaching process, which consists of a single injection/production test well and two observation wells, was designed to evaluate the parameters which govern the uranium production and restorability of a solution mined zone. The test procedure itself consists of injection (push cycle) of a preflush followed by lixiviant, a brief soak period (soak cycle), and subsequent production (pull cycle) into the same well. Based on computer modeling, procedures are defined which permit, for a properly designed test, the determination of both restoration and leaching parameters. The test procedure and design recommendations are also outlined. Two numerical simulators which model field scale uranium production and restoration operations are presented. These simulators are able to accommodate various well patterns and irregular reservoir boundaries, physical dispersion, directional permeability variations (if present), and a variety of injection/production strategies. A streamline-concentration balance technique has been used to develop the models. The assumption of time invariant boundary conditions and no transverse dispersion between the streamlines reduces the two dimensional problem to a bundle of one dimensional ones. It has been further shown that the production well effluent histories can easily be obtained by superposing the solution of the concentration balance equations for a single streamline, and thus reducing computation time significantly. Finally, the simulators have been used to study various reservoir engineering aspects to optimize in-situ uranium production from field scale operations.

  20. In-situ uranium mining: reservoir engineering aspects of leaching and restoration

    International Nuclear Information System (INIS)

    Kabir, M.I.

    1982-01-01

    To establish the feasibility of in-situ mining of uranium, a push-pull test of an in-situ uranium leaching process, which consists of a single injection/production test well and two observation wells, was designed to evaluate the parameters which govern the uranium production and restorability of a solution mined zone. The test procedure itself consists of injection (push cycle) of a preflush followed by lixiviant, a brief soak period (soak cycle), and subsequent production (pull cycle) into the same well. Based on computer modeling, procedures are defined which permit, for a properly designed test, the determination of both restoration and leaching parameters. The test procedure and design recommendations are also outlined. Two numerical simulators which model field scale uranium production and restoration operations are presented. These simulators are able to accommodate various well patterns and irregular reservoir boundaries, physical dispersion, directional permeability variations (if present), and a variety of injection/production strategies. A streamline-concentration balance technique has been used to develop the models. The assumption of time invariant boundary conditions and no transverse dispersion between the streamlines reduces the two dimensional problem to a bundle of one dimensional ones. It has been further shown that the production well effluent histories can easily be obtained by superposing the solution of the concentration balance equations for a single streamline, and thus reducing computation time significantly. Finally, the simulators have been used to study various reservoir engineering aspects to optimize in-situ uranium production from field scale operations

  1. The effect of rock electrical parameters on the calculation of reservoir saturation

    International Nuclear Information System (INIS)

    Li, Xiongyan; Qin, Ruibao; Liu, Chuncheng; Mao, Zhiqiang

    2013-01-01

    The error in calculating a reservoir saturation caused by the error in the cementation exponent, m, and the saturation exponent, n, should be analysed. In addition, the influence of m and n on the reservoir saturation should be discussed. Based on the Archie formula, the effect of variables m and n on the reservoir saturation is analysed, while the formula for the error in calculating the reservoir saturation, caused by the error in m and n, is deduced, and the main factors affecting the error in reservoir saturation are illustrated. According to the physical meaning of m and n, it can be interpreted that they are two independent parameters, i.e., there is no connection between m and n. When m and n have the same error, the impact of the variables on the calculation of the reservoir saturation should be compared. Therefore, when the errors of m and n are respectively equal to 0.2, 0.4 and 0.6, the distribution range of the errors in calculating the reservoir saturation is analysed. However, in most cases, the error of m and n is about 0.2. When the error of m is 0.2, the error in calculating the reservoir saturation ranges from 0% to 35%. Meanwhile, when the error in n is 0.2, the error in calculating the reservoir saturation is almost always below 5%. On the basis of loose sandstone, medium sandstone, tight sandstone, conglomerate, tuff, breccia, basalt, andesite, dacite and rhyolite, this paper first analyses the distribution range and change amplitude of m and n. Second, the impact of m and n on the calculation of reservoir saturation is elaborated upon. With regard to each lithology, the distribution range and change amplitude of m are greater than those of n. Therefore, compared with n, the effect of m on the reservoir saturation is stronger. The influence of m and n on the reservoir saturation is determined, and the error in calculating the reservoir saturation caused by the error of m and n is calculated. This is theoretically and practically significant for

  2. Geothermal reservoir engineering research at Stanford University. Third annual report for the period October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1983-09-01

    Progress is reported in the following areas: heat extraction from hydrothermal reservoirs; radon reservoir engineering; well test analysis and bench scale experiments; field applications; workshop, seminars, and technical information; reinjection technology; and seismic monitoring of vapor/liquid interfaces. (MHR)

  3. Geothermal engineering integrating mitigation of induced seismicity in reservoirs - The European GEISER project

    NARCIS (Netherlands)

    Bruhn, D.; Huenges, E.; Áǵustsson, K.; Zang, A.; Kwiatek, G.; Rachez, X.; Wiemer, S.; Wees, J.D.A.M. van; Calcagno, P.; Kohl, T.; Dorbath, C.; Natale, G. de; Oye, V.

    2011-01-01

    The GEISER (Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs) project is co-funded by the European Commission to address the mitigation and understanding of induced seismicity (IS) in geothermal engineering. The aim of the project is to contribute to the improvement

  4. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    Science.gov (United States)

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  5. PDVSA Petrolera Sinovensa reservoir engineering project and optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Campos, O. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). Petrolera Sinovensa; Patino, J. [Kizer Energy Inc., Katy, TX (United States); Chalifoux, G.V. [Petrospec Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    This paper presented a development plan for an extra-heavy oil field in Venezuela's Orinoco belt involving cold heavy oil production (CHOP) as well as a thermal follow-up process to increase the ultimate recovery factor. A reservoir simulation model was used to model various reservoir formations in order to assess their oil recovery potential. Several thermal recovery processes were considered, such as steam assisted gravity drainage (SAGD), horizontal alternate steam drive (HASD), cyclic steam stimulation (CSS), horizontal continuous steam drive, and combined drive drainage (CDD). A geological static model and dynamic reservoir model were coupled for the well optimization evaluation. Production data were used to identify trends related to specific geological conditions. The study also examined methods of improving slotted liner designs and evaluated the use of electric heating as a means of improving CHOP performance. Results of the study showed that CDD offered the highest recovery rates as a follow-up to CHOP. The CDD process allowed for the use of existing wells drilled in the field. New horizontal wells will be placed between the existing wells. It was concluded that a CDD pilot should be implemented in order to prepare for a commercial implementation plan. 8 refs., 2 tabs., 14 figs.

  6. Heat engine by exorcism of Maxwell Demon using spin angular momentum reservoir

    Science.gov (United States)

    Bedkihal, Salil; Wright, Jackson; Vaccaro, Joan; Gould, Tim

    Landauer's erasure principle is a hallmark in thermodynamics and information theory. According to this principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) have explored the role of multiple conserved quantities in memory erasure. They further illustrated that for the energy degenerate spin reservoirs, the cost of erasure can be solely in terms of spin angular momentum and no energy. Motivated by the VB erasure, in this work we propose a novel optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir. The novel heat engine exploits ultrafast processes of phonon absorption to convert thermal phonon energy to coherent light. The entropy generated in this process then corresponds to a mixture of spin up and spin down populations of energy degenerate electronic ground states which acts as demon's memory. This information is then erased using a polarised spin reservoir that acts as an entropy sink. The proposed heat engines goes beyond the traditional Carnot engine.

  7. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  8. Determination of verticality of reservoir engineering structure from ...

    African Journals Online (AJOL)

    Terrestrial laser scanners (TLS) are used nowadays as Geomatics instruments for various applications. One of these applications is 3D survey and management of oil and gas facilities and other engineering structures. This recent attention is due to the fact that laser scanner has the ability to generate massive amounts of ...

  9. Automated Modal Parameter Estimation of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Goursat, Maurice

    In this paper the problems of doing automatic modal parameter extraction of ambient excited civil engineering structures is considered. Two different approaches for obtaining the modal parameters automatically are presented: The Frequency Domain Decomposition (FDD) technique and a correlation...

  10. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

    1997-08-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  11. Statistical analysis and experiment planning in reservoir engineering; Analyse statistique et planification d'experience en ingenierie de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza-Mezghani, I.

    2000-05-24

    The aim of this thesis first part is the prediction of simulated production responses, when controlled or uncontrolled parameters act on them. The specificity of our work was to study an uncontrolled parameter: the geostatistical seed, which leads to an hetero-scedastic response behavior. In this context, a joint modelling of both mean and variance of the response was essential to get an efficient prediction. We have proposed two prediction intervals of the response, which either resorted to bootstrap re-sampling or not, and which were very efficient to predict the response accounting for the hetero-scedastic framework. Another aim of this part was to use the available information on gradient response to improve prediction. We have suggested a Bayesian prediction, that involves both response and gradients, in order to highlight the significance of gradient information to reach safe predictions. In the second part, which deals. with history matching problem, the originality of our work was the resort to experimental designs. This problem, which consists in calibrating a reservoir model with respect to dynamic data, fits the description of an objective function minimization. As the objective function behavior is non-linear and therefore cannot fit a polynomial function, we suggest to combine the simplex method, which permits to select a domain where the objective function reveals simple behavior, and experimental design theory, which allows to build an analytical model of the objective function. A minimization of this analytical model makes it possible to reach the parameter values that ensure dynamic data respect. In this way, this methodology highlights the efficiency of experimental designs for history matching, particularly when optimization methods are inadequate because of non-differentiability, as for the calibration of geostatistical facies models. Several reservoir application cases illustrate the efficiency of the approaches we have proposed in this thesis

  12. Parameter identification of civil engineering structures

    Science.gov (United States)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  13. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    Science.gov (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  14. Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs

    Science.gov (United States)

    Agarwalla, Bijay Kumar; Jiang, Jian-Hua; Segal, Dvira

    2017-09-01

    We derive an efficiency bound for continuous quantum heat engines absorbing heat from squeezed thermal reservoirs. Our approach relies on a full-counting statistics description of nonequilibrium transport and it is not limited to the framework of irreversible thermodynamics. Our result, a generalized Carnot efficiency bound, is valid beyond the small-squeezing and high-temperature limit. Our findings are embodied in a prototype three-terminal quantum photoelectric engine where a qubit converts heat absorbed from a squeezed thermal reservoir into electrical power. We demonstrate that in the quantum regime, the efficiency can be greatly amplified by squeezing. From the fluctuation relation, we further receive other operational measures in linear response, for example, the universal maximum power efficiency bound.

  15. Engineering parameters for expansion of MPT berths, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Chandramohan, P.; Jena, B.K.; Pednekar, P.S.

    Comprehensive program for a harbour development and management requires general and detailed information on the coastal environment including engineering characteristics in addition to physical, chemical and biological parameters. Mormugao Port...

  16. RF engineering basic concepts: S-parameters

    CERN Document Server

    Caspers, F

    2011-01-01

    The concept of describing RF circuits in terms of waves is discussed and the S-matrix and related matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualize how waves propagate in an RF network. The properties of the most relevant passive RF devices (hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S-parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as the microstrip line have become very important.

  17. A knowledge engineering approach for improving secondary recovery in offshore reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Milton P.; Tovar, Felipe T.R.; Guerra, Fabio A. [Parana Institute of Technology (TECPAR), Curitiba, PR (Brazil). Artificial Intelligence Div.; Andrade, Cynthia; Baptista, Walmar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Tecnologia de Materiais, Equipamentos e Corrosao

    2004-07-01

    Secondary recovery in offshore petroleum reservoirs by seawater injection is a technique traditionally applied in oil and gas industry. However, the injected water quality must be compatible with the reservoir characteristics in order to prevent corrosion, formation plugging and reservoir souring. So, the seawater must be treated before injection in the reservoirs and on-line monitoring equipment are employed to check the treatments efficacy. Nevertheless, the amount of data to analyze is quite big and involves many different experts, which make their evaluation and the establishment of correlations very difficult. For these cases, where it's crucial to detect the contaminants presence as soon as they occur to indicate corrective procedures, the application of knowledge engineering techniques and the development of expert systems are a good solution proposal. This paper presents the expert system InjeX (heuristic approach), developed for seawater injection treatment plants to maintain the water quality in offshore platforms. The description and the analysis of the problem, a proposed solution and some preliminary results are detailed and discussed along the paper. (author)

  18. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  19. Sensitivity Analysis of Parameters Governing the Recovery of Methane from Natural Gas Hydrate Reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Giraldo

    2014-04-01

    Full Text Available Naturally occurring gas hydrates are regarded as an important future source of energy and considerable efforts are currently being invested to develop methods for an economically viable recovery of this resource. The recovery of natural gas from gas hydrate deposits has been studied by a number of researchers. Depressurization of the reservoir is seen as a favorable method because of its relatively low energy requirements. While lowering the pressure in the production well seems to be a straight forward approach to destabilize methane hydrates, the intrinsic kinetics of CH4-hydrate decomposition and fluid flow lead to complex processes of mass and heat transfer within the deposit. In order to develop a better understanding of the processes and conditions governing the production of methane from methane hydrates it is necessary to study the sensitivity of gas production to the effects of factors such as pressure, temperature, thermal conductivity, permeability, porosity on methane recovery from naturally occurring gas hydrates. A simplified model is the base for an ensemble of reservoir simulations to study which parameters govern productivity and how these factors might interact.

  20. Impact of physicochemical parameters on phytoplankton compositions and abundances in Selameko Manmade Reservoir, Debre Tabor, South Gondar, Ethiopia

    Science.gov (United States)

    Wassie, Tilahun Adugna; Melese, Ayalew Wondie

    2017-07-01

    Impact of physicochemical parameters on 2 compositions and abundances in Selameko Reservoir, Debre Tabor, South Gondar from August 2009 to May 2010 was assessed. Water quality parameters, such as temperature, water transparency, water depth, dissolved oxygen, pH, total dissolved solids, phosphate, nitrate, and silicate were measured in situ from two sites (littoral and open water zone) of the reservoir. Phytoplankton compositions and abundances were analyzed in Tana fisheries and other aquatic organisms' research center. ANOVA result of the physicochemical parameters included chlorophyll-a showed the presence of significance difference among seasons and between sites ( P Diatom, Blue green algae and Green algae) of phytoplankton were identified during the study period. From all groups, diatoms were the most abundant at both sites and Blue green algae were the least abundant. ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). Based on the stepwise regression, a total number of phytoplanktons had positive correlation with some of the physicochemical parameters (R2 = 0.99, P < 0.001, N = 16). The study concluded that some of physicochemical parameters (NO3-N and PO4-P) indicated the presence of reservoir water pollution. This is supported by the presence of pollution-resistant phytoplankton species such as Melosira and Microcystis. The reservoir water was eutrophic (productive) throughout the year. To avoid such pollution, basin and reservoir management are recommended.

  1. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  2. Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering

    Science.gov (United States)

    Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor

    2018-04-01

    Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.

  3. Methods for estimating petrophysical parameters from well logs in tight oil reservoirs: a case study

    International Nuclear Information System (INIS)

    Zhao, Peiqiang; Zhuang, Wen; Mao, Zhiqiang; Tong, Zemin; Sun, Zhongchun; Wang, Zhenlin; Luo, Xingping

    2016-01-01

    Estimating petrophysical parameters from well logs plays a significant role in the exploration and development of tight oil resources, but faces challenges. What’s more, the methods for petrophysical parameters from well logs are paid little attention at present. In this paper, the typical tight oil reservoirs of Northwest China are used as an example. Based on the characteristics of mineralogy and fluids in the study field, the rock is assumed into five components which are clays, quartz and feldspar, carbonates, kerogen and pore fluids (porosity). The sum of kerogen content and porosity is defined as the apparent porosity. Then, two porosity log response equations are established. Once the clay content is determined by an individual method, the quartz and feldspar content, carbonate content and apparent porosity are calculated through the established equations. The kerogen content is the difference of the apparent porosity and porosity from nuclear magnetic resonance (NMR) logs. This paper also presents a new approach that combines the complex refractive index method (CRIM) and pseudo Archie method to compute saturation from dielectric logs, which avoids selection for the dielectric constants of each of the minerals. The effectiveness and reliability of these methods are verified by the successful application in the study of the target tight oil play in Northwest China. (paper)

  4. Objective parameters for engine noise quality evaluation; Objektive Parameter zur Bewertung der Motorgeraeuschqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Bernhard; Brandl, Stephan [AVL List GmbH, Graz (Austria); Sontacchi, Alois [Univ. fuer Musik und Darstellende Kunst, Graz (Austria). Inst. fuer Elektronische Musik und Akustik; Girstmair, Josef [Kompetenzzentrum Das Virtuelle Fahrzeug, Graz (Austria). Gruppe Antriebsstrang Dynamik und Akustik

    2013-06-01

    Due to ongoing downsizing efforts and more stringent emission regulations, relevance of sound quality monitoring during engine and vehicle development is strongly increasing. Therefore AVL developed new sound quality parameters like CKI (Combustion Knocking Index) and HI (Harshness Index). Using these parameters sound quality can be objectively monitored, without subjective evaluations, online throughout the complete development process. (orig.)

  5. Heat Extraction Project, geothermal reservoir engineering research at Stanford. Fourth annual report, January 1, 1988--December 1, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  6. Risk assessment of the Groningen geothermal potential : From seismic to reservoir uncertainty using a discrete parameter analysis

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Doddema, Leon; Herber, Rien

    2016-01-01

    Geothermal exploitation is subject to several uncertainties, even in settings with high data availability, adding to project risk. Uncertainty can stem from the reservoir's initial state, as well as from the geological and operational parameters. The interplay between these aspects entails

  7. Experimental study of dual fuel engine performance using variable LPG composition and engine parameters

    International Nuclear Information System (INIS)

    Elnajjar, Emad; Selim, Mohamed Y.E.; Hamdan, Mohammad O.

    2013-01-01

    Highlights: • The effect of using variable LPG is studied. • Five fuels with propane to butane % volume ratio are: 100-70-55-25-0. • 100% Propane composition shows the highest noise levels with similar performance. • At 45° BTDC injection timing 55% Propane LPG the only fuel experience knocking. • LPG fuels gave similar engine performance, with differences in levels of noise. - Abstract: The present work investigates experimentally the effect of LPG fuel with different composition and engine parameters on the performance of a dual compression engine. Five different blends of LPG fuels are used with Propane to Butane volume ratio of 100:0, 70:30, 55:45, 25:75, and 0:100. A single cylinder, naturally aspirated, four strokes, indirectly injected, water cooled modified Ricardo E6 engine, is used in this study. The study is carried out by measuring the cylinder pressure, engine load, engine speed, crank angle, and the fuel’s flow rate. The engine performance under variable LPG fuel composition, engine load, pilot fuel injection timing, compression ratio, pilot fuel mass and engine speed, are estimated by comparing the following engine parameters: the cylinder maximum pressure, the indicated mean effective pressure, the maximum rate of pressure rise, and the thermal efficiency. The experimental data indicates that the engine parameters are playing a major role on the engine’s performance. Different LPG fuel composition did not show a major effect on the engine efficiency but directly impacted the levels of generated combustion noise

  8. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  9. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  10. Influence of flowfield and vehicle parameters on engineering aerothermal methods

    Science.gov (United States)

    Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.

    1989-01-01

    The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.

  11. A History of Geothermal Energy Research and Development in the United States. Reservoir Engineering 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippmann, Marcelo J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Majer, Ernest L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rose, Peter E. [Univ. of Utah, Salt Lake City, UT (United States); Adams, Michael [Univ. of Utah, Salt Lake City, UT (United States); Roberston-Tait, Ann [GeothermEx Inc., San Pablo, CA (United States); Moller, Nancy [Univ. of California, San Diego, CA (United States); Weare, John [Univ. of California, San Diego, CA (United States); Clutter, Ted [ArtComPhoto (United States); Brown, Donald W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-01

    This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

  12. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters

    Directory of Open Access Journals (Sweden)

    Jianqiang Xue

    2017-12-01

    Full Text Available Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs. However, conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments, resulting in significant errors in calculation results. In this article, a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories, potential superimposition, and numerical analysis. Herein, an open-hole segment between two adjacent fractures was regarded as an equivalent fracture, which was discretized as in cases of artificial fractures. The proposed model was then applied to investigate the effects of various parameters, such as the angle between the fracture and horizontal shaft, fracture quantity, fracture length, diversion capacity of fractures, horizontal well length, and inter-fracture distance, on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells. Simulation results revealed that the quantity, length, and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible. Additionally, a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. Keywords: Low permeability gas reservoir, Multi-fractured horizontal well, Productivity prediction, Open-hole completion, Unsteady-state flow, Fracture parameters optimization

  13. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    Science.gov (United States)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    -Burman experiments resulting in 16 simulations for the seven parameters investigated. The reservoir is divided into 3-, 4-, or 5- layer systems with log-normal permeability distributions. We consider 10 sets of values for each case resulting in a total of 16x3x10 =480 simulations.We analyze the performance of the system to maximize the amount of heat energy extracted, minimize reservoir temperature depletion and maximize the CO2concentration in the produced fluid. Achieving the latter objective reduces power system problems as Welch and Boyle (GRC Trans. 2009) found that CO2 concentration should be >94% in the systems they investigated.

  14. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    International Nuclear Information System (INIS)

    Hermes, C.E.; Koo, J.

    1995-01-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC's and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco's E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC's connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software

  15. APPLICATION OF WELL LOG ANALYSIS IN ASSESSMENT OF PETROPHYSICAL PARAMETERS AND RESERVOIR CHARACTERIZATION OF WELLS IN THE “OTH” FIELD, ANAMBRA BASIN, SOUTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Eugene URORO

    2014-12-01

    Full Text Available Over the past years, the Anambra basin one of Nigeria’s inland basins has recorded significant level of hydrocarbon exploration activities. The basin has been confirmed by several authors from source rock analyses to have the potential for generating hydrocarbon. For the hydrocarbon to be exploited, it is imperative to have a thorough understanding of the reservoir. Computer-assisted log analyses were employed to effectively evaluate the petrophysical parameters such as the shale volume (Vsh, total porosity (TP, effective porosity (EP, water saturation (Sw, and hydrocarbon saturation (Sh. Cross-plots of the petrophysical parameters versus depth were illustrated. Five hydrocarbon bearing reservoirs were delineated in well 1, four in well 2. The reservoirs in well 3 do not contain hydrocarbon. The estimated reservoir porosity varies from 10% to 21% while their permeability values range from 20md to 1400md. The porosity and permeability values suggest that reservoirs are good enough to store and also permit free flow of fluid. The volume of shale (0.05% to 0.35% analysis reveals that the reservoirs range from shaly sand to slightly shaly sand to clean sand reservoir. On the basis of petrophysics data, the reservoirs are interpreted a good quality reservoir rocks which has been confirmed with high effective porosity range between 20% and high hydrocarbon saturation exceeding 55% water saturation in well 1 and well 2. Water saturation 3 is nearly 100% although the reservoir properties are good.  

  16. ZOOPLANKTON DIVERSITY AND ITS RELATIONSHIP WITH PHYSICO-CHEMICAL PARAMETERS IN MANI RESERVOIR OF WESTERN GHATS, REGION, HOSANAGAR TALUK, SHIVAMOGA DISTRICT KARNATAKA, INDIA

    Directory of Open Access Journals (Sweden)

    D. N. Veerendra

    2012-01-01

    Full Text Available Studies on relationship between zooplankton abundance and water quality parameter in Mani reservoir were made between January 2008 and December 2008. In the current investigation, impact of different physico-chemical parameters on zooplankton population was found. Ten genera of zooplankton were identified. The relationship between zooplankton and water quality parameters was varied from place to place depending upon the condition of the reservoir water.

  17. Restricting Factors at Modification of Parameters of Associative Engineering Objects

    Science.gov (United States)

    Horváth, László

    Advancements in product development have reached full integration of engineering activities and processes in product lifecycle management (PLM) systems. PLM systems are based on high-level modeling, simulation and data management. Despite significant development of modeling in PLM systems, a strong demand was recognized for improved decision assistance in product development. Decision assistance can be improved by application of methods from the area of computer intelligence. In order for a product development company to stay competitive, it is important for its modeling system to be relied on local even personal knowledge. The authors analyzed current PLM systems for shortcomings and possibilities for extended intelligence at decision-making during product development. They propose methods in order to increase suitability of current modeling systems to accommodate knowledge based IT at definition of sets of parameters of modeled objects and in the management of frequent changes of modeled objects. In the center of the proposed methodology, constrained parameters act as restricting factors at definition and modification of parameters of associative engineering objects. Paper starts with an outlook to modeling in current engineering systems and preliminary results by the authors. Following this, groups of essential information as handled by he proposed modeling are summarized and procedures for processing of that groups of information are detailed. Next, management of chains of changes along chains of associa-tive product objects and a new style of decision assistance in modeling systems are explained. Changes are created or verified by behavior analysis. Finally, behavior analysis, human intent combination, product data view creation, and change management are discussed as the proposed integrated and coordinated methodology for enhanced support of decision-making in product development.

  18. Invariant-Based Inverse Engineering of Crane Control Parameters

    Science.gov (United States)

    González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.

    2017-11-01

    By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.

  19. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    International Nuclear Information System (INIS)

    Fernandes, J S; Lima, F A; Vieira, S F; Reis, P J; Appoloni, C R

    2015-01-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones. (paper)

  20. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    Science.gov (United States)

    Fernandes, J. S.; Lima, F. A.; Vieira, S. F.; Reis, P. J.; Appoloni, C. R.

    2015-07-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones.

  1. Chemical and physical reservoir parameters at initial conditions in Berlin geothermal field, El Salvador: a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    D`Amore, F. [CNR, Pisa (Italy). International Institute for Geothermal Research ; Mejia, J.T. [Comision Ejuctiva Hidroelectrica del Rio Lempa, El Salvador (El Salvador)

    1999-02-01

    A study has been made to obtain the main chemical and physical reservoir conditions of the Berlin field (El Salvador), before the commencement of large-scale exploitation of the geothermal resource. The upflow zone and the main flow path within the geothermal system have been determined from the area distribution of chemical parameters such as Cl concentrations, ratios such as Na/K, K/Mg, K/Ca, and temperatures computed from silica concentrations and cation ratios. Gas compositions have been used to calculate reservoir parameters such as temperature, steam fraction and P{sub CO{sub 2}}. The computer code WATCH (new edition 1994) has been used to evaluate the temperature of equilibrium between the aqueous species and selected alteration minerals in the reservoir. The fluid in Berlin flows to the exploited reservoir from the south, entering it in the vicinity of well TR-5. Along its flow-path (south-north direction), the fluid is cooled by boiling and conductive cooling. The chloride-enthalpy diagram indicates the existence of a parent water, with a chemical composition similar to well TR-5, that boils and the residual brine produces the fluid of well TR-3, which is very concentrated in salts. The fluid of TR-5 is probably produced from this parent water, generating the fluids of wells TR-2 and TR-9 by boiling, and the fluids of wells TR-1 and TR-4 by conductive cooling. The computed values for the deep steam fraction clearly indicate that this is a liquid-dominated system, with computed temperature values decreasing from 310{sup o}C (upflow zone) to about 230{sup o}C, from south to north. (author)

  2. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    Karimpouli, Sadegh; Hassani, Hossein; Nabi-Bidhendi, Majid; Khoshdel, Hossein; Malehmir, Alireza

    2013-01-01

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  3. 40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications

    Science.gov (United States)

    2010-07-01

    ... Engine Parameters-Four Stroke Cycle Reciprocating Engines. 1. Compression ratio. 2. Cranking compression... Parameters—Two-Stroke Cycle Reciprocating Engine. 1.-5. Same as Section C.I. 6. Intake port(s). a. Timing in...

  4. Reservoir engineering in the 70's and 80's

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.

    1971-01-01

    Most of the significant contributions to reservoir engineering were made by a handful of prodigious giants in the 1930's and 1940's. The most significant contribution that can be made in the next 20 yr will be to fully understand--perhaps with the help of that latest prodigy, the computer--what those giants were driving at. Even if only the presently known oil-recovery processes are considered, exciting happenings in the area of oil recovery can be forecast for the next 20 yr. During the 1950's and 1960's, thermal recovery, miscible fluid injection, and non-Newtonian (mobility control) fluid injection were developed and widely pilot tested. All of these methods offer the potential for very high oil recoveries--on the order of 80 to 100% of oil in the displaced region. It is hoped that the development of methods will occur, which are capable of recovering 75% of oil in place at the start of fluid injection. Technologically, this is really not a bold forecast--both wet combustion and micellar solution slug injection already appear to have this capability in well-designed operations. The late 1960's was a period of unusually successful exploration. Large finds were made, worldwide, almost daily: Prudhoe Bay, the North Sea, Australia, and Indonesia. (11 refs.)

  5. Study of reservoir properties and operational parameters influencing in the steam assisted gravity drainage process in heavy oil reservoirs by numerical simulation

    Directory of Open Access Journals (Sweden)

    Farshad Dianatnasab

    2016-09-01

    Full Text Available This study was originally aimed at suggesting a two-dimensional program for the Steam Assisted Gravity Drainage (SAGD process based on the correlations proposed by Heidari and Pooladi, using the MATLAB software. In fact, the work presented by Chung and Butler was used as the basis for this study. Since the steam chamber development process and the SAGD production performance are functions of reservoir properties and operational parameters, the new model is capable of analyzing the effects of parameters such as height variation at constant length, length variation at constant height, permeability variation, thermal diffusivity coefficient variation and well location on the production rate and the oil recovery among which, the most important one is the thermal diffusivity coefficient analysis. To investigate the accuracy and authenticity of the model outcomes, they were compared with the results obtained by Chung and Butler. The privilege of this method over that proposed by Heidari and Pooladi lies in its ability to investigate the effect of thermal diffusivity coefficient on recovery and analyzing the effect of temperature distribution changes on thickness diffusivity. Based on the observations, results reveal that the proposed model gives more accurate predictions compared to the old model proposed by Chung & Butler.

  6. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  7. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    Science.gov (United States)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir

    International Nuclear Information System (INIS)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-01-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. - Highlights: • Magnetic proxies can be used to monitor the heavy mental pollution in sediments. • Accurate age model was obtained using known events of environmental improvement. • Regression equation was obtained among sediment records and monitoring data. • Atmospheric pollution history was quantitatively reconstructed. - Atmospheric pollution history was quantitatively reconstructed using magnetic and chemical records of reservoir sediments combined with atmospheric monitoring data

  9. Incorporating engineering intuition for parameter estimation in thermal sciences

    Science.gov (United States)

    Balaji, C.; Reddy, B. Konda; Herwig, H.

    2013-12-01

    This paper proposes a new method of incorporating priors based on engineering intuition for solving inverse problems. The thesis of this paper is that if an asymptote can be found to a problem in applied sciences or engineering, estimation of parameters can be first done for this asymptotic variant, which in principle should be simpler, since one or more parameters of the original problem may vanish for the asymptotic variant. Even so, by solving the inverse problem associated with the asymptotic variant, estimates of key parameters of the full problem can be obtained. This information can then be quantitatively incorporated as priors in the estimation of parameters for the full version of the problem which we call as prior generation through asymptotic variant. The goal is to see if this methodology will significantly reduce the uncertainties in the resulting estimates. To demonstrate this methodology, the classic problem of unsteady heat transfer from a one dimensional fin is chosen. The inverse problem is posed as the simultaneous estimation of the temperature dependent transfer coefficient (h θ ) and the thermal diffusivity ( α) of the fin material, given experimentally measured temperature-time histories at various locations along the fin. The asymptotic variant θ ( x, t) is the steady state problem where the influence of thermal diffusivity vanishes. Using surrogate temperature data generated from assumed values of h θ , first the asymptotic variant of the problem is solved using the Markov Chain Monte Carlo method in a Bayesian framework to generate an estimate of h θ . The estimate of h θ is then used as an informative prior for solving the inverse problem of determining h θ and α from θ ( x, t), and the effect of prior is quantitatively assessed by performing estimation with and without the prior. Finally, for purposes of validation, in-house experiments have been done where θ ( x, t) is generated using liquid crystal thermography and these data

  10. Model-Based Control and Optimization of Large Scale Physical Systems - Challenges in Reservoir Engineering

    NARCIS (Netherlands)

    Van den Hof, P.M.J.; Jansen, J.D.; Van Essen, G.M.; Bosgra, O.H.

    2009-01-01

    Due to urgent needs to increase efficiency in oil recovery from subsurface reservoirs new technology is developed that allows more detailed sensing and actuation of multiphase flow properties in oil reservoirs. One of the examples is the controlled injection of water through injection wells with the

  11. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    Science.gov (United States)

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  12. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lea, C.M.; Lee, K.; Miller, M.A.

    1993-09-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of energy geopressured-geothermal research program. The well was shut in october 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics show in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  13. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Min; Less, K.; Miller, M.A.

    1994-01-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of Energy geopressured-geothermal research program. The well was shut in October 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, and (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics shown in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  14. Effect of analytical treatment interruption and reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected individuals.

    Science.gov (United States)

    Clarridge, Katherine E; Blazkova, Jana; Einkauf, Kevin; Petrone, Mary; Refsland, Eric W; Justement, J Shawn; Shi, Victoria; Huiting, Erin D; Seamon, Catherine A; Lee, Guinevere Q; Yu, Xu G; Moir, Susan; Sneller, Michael C; Lichterfeld, Mathias; Chun, Tae-Wook

    2018-01-01

    Therapeutic strategies aimed at achieving antiretroviral therapy (ART)-free HIV remission in infected individuals are under active investigation. Considering the vast majority of HIV-infected individuals experience plasma viral rebound upon cessation of therapy, clinical trials evaluating the efficacy of curative strategies would likely require inclusion of ART interruption. However, it is unclear what impact short-term analytical treatment interruption (ATI) and subsequent reinitiation of ART have on immunologic and virologic parameters of HIV-infected individuals. Here, we show a significant increase of HIV burden in the CD4+ T cells of infected individuals during ATI that was correlated with the level of plasma viral rebound. However, the size of the HIV reservoirs as well as immune parameters, including markers of exhaustion and activation, returned to pre-ATI levels 6-12 months after the study participants resumed ART. Of note, the proportions of near full-length, genome-intact and structurally defective HIV proviral DNA sequences were similar prior to ATI and following reinitiation of ART. In addition, there was no evidence of emergence of antiretroviral drug resistance mutations within intact HIV proviral DNA sequences following reinitiation of ART. These data demonstrate that short-term ATI does not necessarily lead to expansion of the persistent HIV reservoir nor irreparable damages to the immune system in the peripheral blood, warranting the inclusion of ATI in future clinical trials evaluating curative strategies.

  15. COMPARATIVE CHARACTERISTICS OF MORPHOMETRIC PARAMETERS OF MONKEY GOBY (NEOGOBIUS FLUVIATILIS PALLAS OF FRESH AND SALINE WATER RESERVOIRS IN UKRAINE

    Directory of Open Access Journals (Sweden)

    V. P. Onoprienko

    2014-04-01

    physiological processes. The result of this effect is the difference in weight, size and body parts. To clarify, as our model species was taken Cottus Sandpiper (Neogobius fluviatilis Pallas. The reason for this was the fact that this species, along with other Ponto- Caspian solonovato - freshwater gobies, the International Union for Conservation of Nature classified as species biology are poorly understood and require further research. This fact that deepened interest of ichthyologists in this group of fish, in this regard appeared in the literature as material for the bulls and in Sandpiper. Based on the above, the purpose of this paper is a comparative morphometric parameters characteristic of individuals of this species of fresh and salt water bodies of Ukraine. All this affects the absolute morphometric parameters, which decrease in the direction from sea to the river. However, it should be noted that in rivers with rich feeding grounds sheer size of some individuals close to the size and species of sea Kakhovskoe reservoir. This situation is observed in the Sandpiper Grouse River. Here are some specimens reach a length (TL 118-148 mm and a weight of 15-36 g, Kakhovskoe Reservoir: 106-150 mm 11-38 g, in the Sea of ​​Azov: 115-174 mm 17-58 g. For relative parameters Sandpiper with these reservoirs are more similar, however, for some of them, there are differences. Among the latter is most clearly distinguished the ratio SL / N. This indicator podovzhenist (prohonystist body. As pointed out by VP Mitrofanov (1977, this indicator shows the hydrodynamic qualities of fish: the larger the index, the more active lifestyle is individual. When compared with individuals with a little water and a large stream, in the latter case, individuals are more elongated. This is confirmed by our material: the ratio SL / L for the smallest species of sea of ​​Azov (4.96, slightly more for Kakhovsky reservoir (5.52 and even more for rivers Grouse, Trubizh, Desna, Ros (respectively 5, 86

  16. COMPARATIVE CHARACTERISTICS OF MORPHOMETRIC PARAMETERS OF MONKEY GOBY (NEOGOBIUS FLUVIATILIS PALLAS OF FRESH AND SALINE WATER RESERVOIRS IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Onoprienko V.

    2014-04-01

    physiological processes. The result of this effect is the difference in weight, size and body parts. To clarify, as our model species was taken Cottus Sandpiper (Neogobius fluviatilis Pallas. The reason for this was the fact that this species, along with other Ponto- Caspian solonovato - freshwater gobies, the International Union for Conservation of Nature classified as species biology are poorly understood and require further research. This fact that deepened interest of ichthyologists in this group of fish, in this regard appeared in the literature as material for the bulls and in Sandpiper. Based on the above, the purpose of this paper is a comparative morphometric parameters characteristic of individuals of this species of fresh and salt water bodies of Ukraine. All this affects the absolute morphometric parameters, which decrease in the direction from sea to the river. However, it should be noted that in rivers with rich feeding grounds sheer size of some individuals close to the size and species of sea Kakhovskoe reservoir. This situation is observed in the Sandpiper Grouse River. Here are some specimens reach a length (TL 118-148 mm and a weight of 15-36 g, Kakhovskoe Reservoir: 106-150 mm 11-38 g, in the Sea of Azov: 115-174 mm 17-58 g. For relative parameters Sandpiper with these reservoirs are more similar, however, for some of them, there are differences. Among the latter is most clearly distinguished the ratio SL / N. This indicator podovzhenist (prohonystist body. As pointed out by VP Mitrofanov (1977, this indicator shows the hydrodynamic qualities of fish: the larger the index, the more active lifestyle is individual. When compared with individuals with a little water and a large stream, in the latter case, individuals are more elongated. This is confirmed by our material: the ratio SL / L for the smallest species of sea of Azov (4.96, slightly more for Kakhovsky reservoir (5.52 and even more for rivers Grouse, Trubizh, Desna, Ros (respectively 5, 86, 6.22 , 6

  17. U.S. Army Corps of Engineers (USACE) Owned and Operated Reservoirs

    Data.gov (United States)

    Department of Homeland Security — This dataset shows maximum conservation pool or is a reasonable representation of the boundaries for reservoirs and lakes owned and operated by USACE. Data is from...

  18. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  19. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  20. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  1. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  2. Movement of geothermal fluid in the Cerro Prieto field as determined from well log and reservoir engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.

    1982-01-01

    A hydrogeologic model of the Cerro Prieto geothermal field in its undisturbed state, developed on the basis of well log and reservoir engineering data, is discussed. According to this model, geothermal fluid enters the field from the east through a deep (>10,000 ft) sandstone aquifer which is overlain by a thick shale unit which locally prevents the upward migration of the fluid. As it flows westward, the fluid gradually rises through faults and sandy gaps in the shale unit. Eventually, some of the fluid leaks to the surface in the western part of the field, while the rest mixes with surrounding colder waters.

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  4. 40 CFR 91.406 - Engine parameters to be measured and recorded.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine parameters to be measured and recorded. 91.406 Section 91.406 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 91.406 Engine parameters to be measured and recorded. Measure or calculate, then record, the...

  5. 40 CFR 90.406 - Engine parameters to be measured and recorded.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine parameters to be measured and recorded. 90.406 Section 90.406 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Gaseous Exhaust Test Procedures § 90.406 Engine parameters to be measured and recorded. Measure or...

  6. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Science.gov (United States)

    2010-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control.... Exhaust Emission Control System. 1. Air injection system. a. Control parameters and calibrations. b. Pump...

  7. Stimulation and reservoir engineering of geothermal resources. Second annual report, July 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr.

    1979-09-01

    Individual projects are grouped under four main areas of study: energy extraction, bench-scale flow experiments, radon tracer techniques, and well test analysis. The energy extraction experiments concern the efficiency with which the in-place heat and fluids can be produced in the most economical manner. The bench-scale flow experiments cover the results of three models used to examine the properties of flow through porous media at elevated temperature and pressures. Random tracer techniques describe accelerated efforts to field test several geothermal reservoirs by both transient and transect test procedures. The well test analysis section describes several new developments: analysis of earth-tide effects, pressure transient analysis of multilayered systems, interference testing with storage and skin effects, determination of steam-water relative permeability from wellhead data, well test analysis for wells produced at constant pressure, the parallelepiped model, slug test DST analysis, and pressure transient behavior in naturally fractured reservoirs. (MHR)

  8. Study on the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Huiying Cui

    2017-02-01

    Full Text Available There hasn't been a clear understanding of the lower limits of petrophysical parameters of tight sandstone gas reservoirs so far. However, it is an important question directly related to exploration and development strategies. Research methods of the lower limits of petrophysical parameters are reviewed. The new minimum flow pore throat radius method is used to determine the lower limit of flow pore throat radius. The relative permeability curve method, irreducible water saturation method, and testing method, are used to determine the lower limits of porosity, permeability, and gas saturation. After the comprehensive analysis, the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in Ordos Basin are thought as follows: the minimum flow pore throat radius is 0.02 μm, the lower limits of porosity are 3%, the permeability is 0.02 × 10−3 μm2 and the gas saturation is 20%. Besides, the influence of formation pressure on porosity and permeability, the tight sandstone gas filling mechanism, and reservoir characterization petrophysical parameters of tight sandstone reservoirs are further discussed.

  9. TEMPORAL VARIATION OF LIMNOLOGICAL PARAMETERS, FREQUENT GROUPS AND BIOLOGICAL INDICES OF PHYTOPLANKTON COMMUNITY OF SANTA CRUZ RESERVOIR, RIO GRANDE DO NORTE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Emilly Kataline Rodrigues Pessoa

    2017-06-01

    Full Text Available Frequency of phytoplankton community in reservoirs depends on several physical, chemical and biological factors, which in turn are subjected to rainfall regime. This work presents temporal variations of limnological parameters, frequent groups and biological indices of phytoplankton community of the Santa Cruz reservoir, Rio Grande do Norte, Brazil. The surface water samples of the reservoir were collected monthly during October, 2013 to August, 2014, and environmental parameters were registered and the phytoplankton community of the reservoir was identified. Mean water temperature during the dry period was 29°C and during the rainy season was 24°C. The pH showed a maximum value of 8.9 during the month of October and a minimum value of 6.1 during the month of January. Mean electrical conductivity was high, with a value of 1889 μScm-1 during of the entire study period. The inorganic nutrients maintained very low concentrations during of the study period. The trophic state of the Santa Cruz reservoir indicated an oligotrophic environment. Cylindrospermopsis raciborskii (Cianofícea and Surirella ovalis (Diatomácea were present during the months of December to August. During the dry season Cloterium elongatum, Crucigenia tetrapedia and Staurastrum punctatum (Clorofícea were frequent, while during the rainy season Navícula cuspidata, Surirella ovalis (Diatomácea and Cylindrospermopsis raciborskii (Cianofícea were abundant. The phytoplankton community showed higher indexes of richness, diversity, dominance and similarity, in May, after the rainy season, allowing the coexistence of the species. Keywords: phytoplankton; environmental parameters; chlorophyll a; trophic status; reservoir.

  10. Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mclntire, Blayde; McPherson, Brian

    2013-09-30

    The purpose of this report is to outline a methodology for calculating the optimum number of injection wells for geologic CCS. The methodology is intended primarily for reservoir pressure management, and factors in cost as well. Efficiency may come in many forms depending on project goals; therefore, various results are presented simultaneously. The developed methodology is illustrated via application in a case study of the Rocky Mountain Carbon Capture and Storage (RMCCS) project, including a CCS candidate site near Craig, Colorado, USA. The forecasting method provided reasonable estimates of cost and injection volume when compared to simulated results.

  11. EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.

  12. Visual display of reservoir parameters affecting enhanced oil recovery. Final report, September 29, 1993--September 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.

    1997-05-01

    The Pioneer Anticline, 25 miles southwest of Bakersfield, California, which has yielded oil since 1926, was the subject of a three-year study aimed at recovering more oil. A team from Michigan Technological University of Houghton, Michigan (MTU), and Digital Petrophysics, Inc. of Bakersfield, California (DPI), undertook the study as part of the Department of Energy`s Advanced Extraction and Process Technology Program. The program provides support for projects which cross-cut geoscience and engineering research in order to develop innovative technologies for increasing the recovery of some of the estimated 340 billion barrels of in-place oil remaining in U.S. reservoirs. In recent years, low prices and declining production have increased the likelihood that oil fields will be prematurely abandoned, locking away large volumes of unrecovered oil. The major companies have sold many of their fields to smaller operators in an attempt to concentrate their efforts on fewer {open_quotes}core{close_quotes} properties and on overseas exploration. As a result, small companies with fewer resources at their disposal are becoming responsible for an ever-increasing share of U.S. production. The goal of the MTU-DPI project was to make small independent producers who are inheriting old fields from the majors aware that high technology computer software is now available at relatively low cost. In this project, a suite of relatively inexpensive, PC-based software packages, including a commercial database, a multimedia presentation manager, several well-log analysis program, a mapping and cross-section program, and 2-D and 3-D visualization programs, were tested and evaluated on Pioneer Anticline in the southern San Joaquin Valley of California. These relatively inexpensive, commercially available PC-based programs can be assembled into a compatible package for a fraction of the cost of a workstation program with similar capabilities.

  13. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    Science.gov (United States)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  14. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    International Nuclear Information System (INIS)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-01-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics

  15. Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime

    Science.gov (United States)

    Lee, Jae Hoon; Seok, H.

    2018-01-01

    We explore an electromagnetic field coupled to a mechanical resonator via quadratic optomechanical interaction in the reversed dissipation regime where the mechanical damping rate is much higher than the cavity-field dissipation rate. It is shown that in this regime, the cavity field effectively acquires an additional reservoir which is conditioned by the temperature of the mechanical bath as well as the mechanical damping rate. We analytically find the steady-state mean photon number and the critical temperature of the mechanical oscillator to cool or heat the coupled electromagnetic field. We also show that in the case of quadratic coupling, the temperature of the mechanical oscillator can be estimated in the quantum regime by observing the noise spectrum of the cavity field.

  16. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  17. Effect of spent engine oil on germination and growth parameters of ...

    African Journals Online (AJOL)

    This study investigated the effects of spent engine oil on the germination and growth parameters of fluted pumpkin (Telfairia occidentalis). Fluted pumpkin was grown on soils contaminated with 20ml, 40ml, 60ml, 80ml and 100ml of spent engine oil to obtain 1, 2, 3, 4 and 5% contaminations respectively and monitored for ...

  18. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  19. Methods of calculating engineering parameters for gas separations

    Science.gov (United States)

    Lawson, D. D.

    1980-01-01

    A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  20. Design Engineering of Safety Parameter Display for Kartini Reactor

    International Nuclear Information System (INIS)

    Yoyok Dwi Setyo Pambudi; Suharyo Widagdo; Aliq Zuhdi; Darlis

    2003-01-01

    Modification information parameter of Reactor Kartini has been conducted. This program use compiler LabView 5.0 that compatible and relevant with National Instrument card. These card mostly use in reactor instrumentation and industry. The information that been display is control rod position, fuel temperature, and water pH. The development in this research is control rod figure that can move up and down as the output from reactor power. Beside this is a module-module security figure that can light if there is a warning signal. Maximum high of control rod is 100 cm. (author)

  1. Study of the seismic source parameters and its relation with other seismic engineering parameters

    OpenAIRE

    Rodríguez-Pérez, Quetzalcoatl

    2013-01-01

    The term seismic source refers to the sources which can generate seismic waves. The seismic source of tectonic earthquakes is represented as a displacement discontinuity on a plane surface as a result of shear faulting. Earthquakes can be defined as a rapid release of strain energy caused by tectonic forces. The elastic wave radiation carries with it information concerning the parameters of faulting or seismic source parameters, so estimating them provides us valuable informati...

  2. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  3. Defining New Parameters for Green Engineering Design of Treatment Reactors

    Directory of Open Access Journals (Sweden)

    Susana Boeykens

    2016-06-01

    Full Text Available This study proposes a green way to design Plug Flow Reactors (PFR that use biodegradable polymer solutions, capable of contaminant retaining, for industrial wastewater treatment. Usually, to the design of a PFR, the reaction rate is determined by tests on a Continuous Stirred-Tank Reactor (CSTR, these generate toxic effluents and also increase the cost of the design. In this work, empirical expressions (called “slip functions”, in terms of the average concentration of the contaminant, were developed through the study of the transport behaviour of CrVI into solutions of xanthan gum. “In situ” XRµF was selected as a no-invasive micro-technique to determine local concentrations. Slip functions were used with laboratory PFR experiments planned in similar conditions, to obtain useful dimensionless parameters for the industrial design. 

  4. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  5. Temporal and vertical variations in phythoplankton community structure and its relation to some morphometric parameters of four Colombian reservoirs Temporal and vertical variations in phythoplankton community structure and its relation to some morphometric parameters of four Colombian reservoirs

    Directory of Open Access Journals (Sweden)

    Ramírez R. John J.

    2000-07-01

    Full Text Available Phytoplankton samples were taken at three depths within the photie zone of eaeh of four reservoirs, Punehiná, Las Playas, El Peñol and San Lorenzo loeated in Antioquia department, Colombia. A total of 77 taxa were identified in the four reservoirs. Diatoms were not included. In all reservoirs, Chlorophyta was the dominant group. Botryococcus braunii was the dominant species at Punchiná, Las Playas and El Peñol reservoirs; Cosmarium sp. was the dominant at San Lorenzo. Temporal variation in phytoplankton showed two peaks of abundance, apparently related to precipitation. Taxonomic composition among samples from the same reservoir showed little variation. Community structure at different depths showed significant differences only at San Lorenzo reservoir. The inverse of β-diversity showed small values indicating high similarity among the reservoirs. Diversitv showed no significant assoeiation with any morphometric factor evaluated (area, retention time, altitude and age.Se efectuaron muestreos de fitoplaneton en tres profundidades de la zona fótica de los embalses Punchiná, Las Playas, El Peñol y San Lorenzo, localizados en el departamento de Antioquia, Colombia. Se identificaron un total de 77 taxones en los cuatro embalses. Las diatomeas no fueron incluídas. En todos los casos las Cholorophyta fueron el grupo dominante. Botryococcus braunii fue el taxón de mayor densidad en los embalses Punchiná, Las Playas y El Peñol; y Cosmarium sp. en el embalse San Lorenzo. La comunidad fitoplanctónica mostró dos picos de abundancia aparentemente relacionados con la precipitación. En cada embalse, la composición de taxones entre muestreos varió poco. La estructura de la comunidad a diferentes profundidades mostró diferencias significativas únicamente en el embalse San Lorenzo. El inverso de la β-diversidad presentó valores bajos que muestran la alta similaridad entre embalses. La diversidad no mostró asociación significativa con

  6. Investigation on combustion parameters of palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    M.H.M. Yasin

    2015-12-01

    Full Text Available Biodiesel is a renewable and decomposable fuel which is derived from edible and non-edible oils. It has different properties compared to conventional diesel but can be used directly in diesel engines. Different fuel properties characterise different combustion-phasing parameters such as cyclic variations of Indicated Mean Effective Pressure (IMEP and maximum pressure (Pmax. In this study, cyclic variations of combustion parameters such as IMEP and Pmax were investigated using a multi-cylinder diesel engine operating with conventional diesel and palm biodiesel. The experiments were conducted using different engine loads; 20, 40, and 60% at a constant engine speed of 2500 rpm. The coefficient of variation (COV and standard deviation of parameters were used to evaluate the cyclic variations of the combustion phasing parameters for the test fuels at specific engine test conditions. It was observed that palm biodiesel has lower COV IMEP compared to conventional diesel but is higher in COV Pmax at higher engine loads respectively. In addition, palm biodiesel tends to have a higher recurrence for the frequency distribution for maximum pressure. It can be concluded from the study that the fuel properties of palm biodiesel have influenced most of the combustion parameters.

  7. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  8. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    Science.gov (United States)

    2016-09-01

    temperature and combined B exhaust temperature. Combined A exhaust temperature measures exhaust gas temperature of cylinders located on the left side of the...engine, and combined B exhaust temperature measures exhaust gas temperature of cylinders on the right side of the engine. For our analysis, the...exhaust gas temperature. 59 V. CONCLUSION AND FUTURE WORK Condition-based maintenance (CBM) is a preventive maintenance method that predicts the onset

  9. Investigation into engineering parameters of marls from Seydoon dam in Iran

    Directory of Open Access Journals (Sweden)

    Sohrab Salehin

    2017-10-01

    Full Text Available The quality of designed structures embedded in rocks is strongly related to rock strength parameters of intact rock. Measuring different parameters from tests could be very expensive in designing phase of projects. Estimating some parameters from other ones can reduce costs and time of project procedure. In this paper, the relationships between static and dynamic parameters of marls are studied by using the single and multiple linear regressions. For this purpose, several marl core samples from Seydoon region, Khoozestan Province in Iran are collected and tested. Some equations with sufficient correlation have been obtained to predict the engineering parameters of marls, especially the uniaxial compressive strength (UCS.

  10. An investigation of engine performance parameters and artificial intelligent emission prediction of hydrogen powered car

    International Nuclear Information System (INIS)

    Ho, Tien; Karri, Vishy; Lim, Daniel; Barret, Danny

    2008-01-01

    With the depletion of fossil fuel resources and the potential consequences of climate change due to fossil fuel use, much effort has been put into the search for alternative fuels for transportation. Although there are several potential alternative fuels, which have low impact on the environment, none of these fuels have the ability to be used as the sole 'fuel of the future'. One fuel which is likely to become a part of the over all solution to the transportation fuel dilemma is hydrogen. In this paper, The Toyota Corolla four cylinder, 1.8 l engine running on petrol is systematically converted to run on hydrogen. Several ancillary instruments for measuring various engine operating parameters and emissions are fitted to appraise the performance of the hydrogen car. The effect of hydrogen as a fuel compares with gasoline on engine operating parameters and effect of engine operating parameters on emission characteristics is discussed. Based on the experimental setup, a suite of neural network models were tested to accurately predict the effect of major engine operating conditions on the hydrogen car emissions. Predictions were found to be ±4% to the experimental values. This work provided better understanding of the effect of engine process parameters on emissions. (author)

  11. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    Highlights: • An experimental and simulation study of a linear engine is conducted. • The effects of operating parameters on the generating power are investigated. • The air gap length has a significant influence on the generating power. • The generating power of the linear engine is optimized with the value of 111.3 W. • There are no problems for the linear engine after 100 h of durable test. - Abstract: In this paper, we present our experiment and simulation study of a free piston linear engine based on operating conditions and structure of the linear engine for generating electric power. The free piston linear engine includes a two-stroke free piston engine, linear generators, and compressors. In the experimental study, the effects of key parameters such as input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air gap length on the piston dynamics and electric power output are investigated. Propane is used as a fuel in the free piston linear engine, and it is premixed with the air to make a homogeneous charge before go into the cylinder. The air and fuel mass flow rate are varied by a mass flow controller. The experimental results show that the maximum generating power is found with the value of 111 W at the input caloric value of 5.88 kJ/s, spark timing delay of 1.5 ms, equivalence ratio of 1.0, electric resistance of 30 Ω, and air gap length of 1.0 mm. In order to check the durability of the linear engine, a durable test is conducted during 100 h. The experimental results show that there are no problems for the linear engine after about one hundred hours of the durable test. Beside experimental study, a simulation study is conducted to predict operating behavior of the linear engine. In the simulation study, the two-stroke free piston linear engine is modeled and simulated through a combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These

  12. [Ribosome engineering of streptomyces sp. FJ3 from Three Gorges reservoir area and metabolic product of the selected mutant strain].

    Science.gov (United States)

    Hai, Le; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2011-07-01

    To explore new resource from inactive actinomycete strains, we screened resistant mutant strains by ribosome engineering, and analyzed the products derived from the selected mutant strains. Three Gorges reservoir area-derived actinomycete strains including BD20, FJ3, WZ20 and FJ5 were used as initial strains, which showed no-antibacterial activities. The streptomycin-resistant (str(R)) mutants and rifampicin-resistant (rif(R)) mutants were screened by single colony isolation on streptomycin-containing plates and rifampicin-containing plates according to the method for obtaining drug-resistant mutants in ribosome engineering. The four initial strains and their str(R)-mutants and rif(R)-mutants were fermented in a liquid medium with the same composition. Mutants with anti-Staphylococcus aureus activity were obtained by paper chromatography. The components of fermentation broth were analyzed by high performance liquid chromatography (HPLC) and high performance liquid chromatography-mass spectrometry (LC-MS). Furthermore, FJ3 strain was identified by 16S rDNA and morphology. The minimal inhibitory concentration (MIC) of streptomycin and rifampicin for FJ3 was: 0.5 microg/mL and 110 microg/mL, respectively. Twenty-four strR-mutant strains and 20 rif(R)-mutant strains of FJ3 mutant strains were selected for bioassay. The result of the antibacterial activity screening demonstrated that six strains inhibited bacteria. Two strains (FJ3-2 and FJ3-6) were screened from the streptomycin-resistance mutants of inactive strain FJ3. The result of bioassay showed that the fermentation broth of FJ3-2 and FJ3-6 exhibited obvious anti-Staphylococcus aureus activity. The assay of paper chromatography showed that the active substance may be nucleic acid class antibiotic via using solvent system Doskochilova. Moreover, the results of HPLC and LC-MS exhibited that this substance may be thiolutin. Ribosome engineering for changing the secondary metabolic function of the inactive wild

  13. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  14. Integrating geologic and engineering data into 3-D reservoir models: an example from norman wells field, NWT, Canada

    International Nuclear Information System (INIS)

    Yose, L.A.

    2004-01-01

    A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)

  15. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  16. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  17. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  18. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  19. Biofuel and Hydrogen Influence for Operation Parameters of Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Martynas Damaševičius

    2016-12-01

    Full Text Available Paper presents research of efficient and ecological parameters of gasoline engine working with biobuthanol (10% and 20% by volume and addi-tionaly supplying oxygen and hydrogen (HHO gas mixture (3.6 l/min, which was obtained from from water by electrolysis. Biobuthanol addition decreases rate of heat release, the combustion temperature and pressure are lower, which has an influence on lower nitrous oxide (NOx emission in exhaust gases. However, biobuthanol increases carbon monoxide (CO concentration. Biobuthanol fuel has a simplier molecular structure, therefore the concentration of HC in the exhaust gas is decreasing. Due to lower heating value of biobuthanol fuel and slower combustion process, the engine efficiency decreases and specific fuel consumptions increase. The change of engine energetical indicators due to biobuthanol, can be compensated with advanced ignition angle. Using experimental investigation, it was determined, that negative biobuthanol influence for the combustion process and engine efficient inicators can be compensated also by additional supplied HHO gas, in which the hydrogen element iprove fuel mixture com-bustion. Fuel combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced biobuthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved, when engine is working for petrol fuel typical optimal spark timing.

  20. Proposal of criteria for evaluation of engineering safety factors of WWER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation. The AER countries use different approaches to evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all WWER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (Authors)

  1. Proposal of criteria for evaluation of engineering safety factors of VVER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation (K eng ). The AER countries use different approaches to K eng evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all VVER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (authors)

  2. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shidong, E-mail: emblembl@sina.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Jia, Haifeng, E-mail: jhf@tsinghua.edu.cn [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Xu, Changqing, E-mail: 2008changqing@163.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Xu, Te, E-mail: xt_lichking@qq.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Melching, Charles, E-mail: steve.melching17@gmail.com [Melching Water Solutions, 4030 W. Edgerton Avenue, Greenfield, WI 53221 (United States)

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5–1030.6 t·yr{sup −1}; Total Phosphorus (TP): 23.3–31.0 t·yr{sup −1}; and Total Nitrogen (TN): 480–1918.0 t·yr{sup −1}. The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS

  3. Lightning severity in Malaysia and some parameters of interest for engineering applications

    Directory of Open Access Journals (Sweden)

    Ab-Kadir Mohd Zainal Abidin

    2016-01-01

    Full Text Available To the electric utility engineer, the parameters of the flash that are of primary interest are the crest current for the first and subsequent strokes, the waveshape of these currents, correlation between the parameters, the number of strokes per flash and flash incidence rates where the ground flash density, denoted as flashes per square km-year and symbolized by Ng. The first three parameters, as we know them today, are to a very large extent based on the measurements of Berger. Berger's masts, 70 and 80 meters high, were mounted atop Mt. San Salvatore (Switzerland, which is 650 meters above Lake Lugano, where it can be readily noted that these 125 records represent one of the best and most extensive set of data available to the industry to date. This paper focuses on the lightning severity scenario in Malaysia, which could also applicable to other tropic countries, and some of the useful parameters for lightning protection system design and forensic study. Some specific engineering applications have also been summarised, taking into account various lightning parameters, available from past and current measurements available.

  4. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2015-12-01

    Full Text Available Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the investigation, bioethanol was obtained from the Mahua Indica flower which was collected from the Madhuca Indica tree, and it was produced from fermentation process using Saccharomyces cerevisiae. Further, the BMDE15 emulsion was tested in a single cylinder, four stroke, air cooled, DI diesel engine developing a power of 4.4 kW at a rated speed of 1500 rpm. Two important combustion parameters: cylinder pressure and ignition delay, and two important emission parameters: nitric oxide (NO and smoke emissions were determined and compared with those of diesel operation at all loads. The experimental results were validated using mathematical modelling, and the analysis of the results is presented in this paper.

  5. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa

    OpenAIRE

    Sackey, S. M.; Bester, A.; Adams, D.

    2017-01-01

    To manage the impact of Industry 4.0 on industrial engineering (IE) education curriculum requirements, realistic teaching and learning infrastructure such as a learning factory are required. This paper scans the literature to determine Industry 4.0’s principles and interactions with IE and a learning factory, surveys relevant universities by questionnaire to determine its current status and practices, and formulates didactic design parameters for an Industry 4.0 learning factory to support IE...

  6. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  7. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  8. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  9. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  10. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    Science.gov (United States)

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  11. The Influence of Common-rail Adjustment on the Parameters of a Diesel Tractor Engine

    Directory of Open Access Journals (Sweden)

    Lukáš Tunka

    2016-01-01

    Full Text Available The article deals with the issue of high-pressure indication of a diesel tractor engine Z 1727, which was fitted with a modern electronically controlled common-rail injection system. The aim of the study is to evaluate the influence of the adjustment of the fuel system – start of injection (SOI timings and the rail pressure (PRAIL – on the pressure development in the cylinder (PCYL, the heat release (HR and the combustion noise level (CNLA. Furthermore, the article examines the influence of pilot and post fuel injections on the CNLA. The experiments were conducted at constant speed (1480 rpm with four PRAILs and different SOI timings. As the results of measurements have shown, higher rail pressure causes higher pressure and a release of a larger amount of heat in the cylinder. These two parameters are the basic prerequisite for higher engine efficiency – higher power output of the engine at lower fuel consumption and decreased production of harmful emissions. Other advantages of the common-rail fuel system include the potential of dividing the main injection dose into the pilot injection and main injection, as well as the potential post injection. The measurements have further demonstrated that including a pilot injection phase significantly contributes to a decrease in combustion noise level as well as a more even, quieter operation of the engine.

  12. Well testing in gas hydrate reservoirs

    OpenAIRE

    Kome, Melvin Njumbe

    2015-01-01

    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  13. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  14. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  15. Application of software solutions for modeling and analysis of parameters of belt drive in engineering

    Science.gov (United States)

    Timerbaev, N. F.; Sadrtdinov, A. R.; Prosvirnikov, D. B.; Fomin, A. A.; Stepanov, V. V.

    2017-10-01

    The application of software systems in engineering when developing the belt drive designs and evaluating their characteristics is considered. A technique for calculating and analyzing belt drives is described using the example of calculating V-belt and flat-belt drives using a software solution. As a result of the belt drive analysis, belt profiles, belt cross-sectional dimensions, drive and driven sheave diameters and power parameters are determined, and graphics images of the dependences of belt’s prestressing force and the force acting on the shaft from the diameter of the driving sheave are obtained. By approximating the results of calculations, theoretical equations for calculating the power parameters of the belt drives were derived. Carrying out the analysis of belt drives with the use of software solutions allows one to avoid computational errors and to optimize the design and performance. At the same time, a convenient and intuitive interface, as well as an integrated graphical editor, provide visibility of the output data and allow the accelerated engineering analysis of the development object.

  16. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  17. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  18. Engineering a segmented dual-reservoir polyurethane intravaginal ring for simultaneous prevention of HIV transmission and unwanted pregnancy.

    Directory of Open Access Journals (Sweden)

    Justin T Clark

    Full Text Available The HIV/AIDS pandemic and its impact on women prompt the investigation of prevention strategies to interrupt sexual transmission of HIV. Long-acting drug delivery systems that simultaneously protect womenfrom sexual transmission of HIV and unwanted pregnancy could be important tools in combating the pandemic. We describe the design, in silico, in vitro and in vivo evaluation of a dual-reservoir intravaginal ring that delivers the HIV-1 reverse transcriptase inhibitor tenofovir and the contraceptive levonorgestrel for 90 days. Two polyether urethanes with two different hard segment volume fractions were used to make coaxial extruded reservoir segments with a 100 µm thick rate controlling membrane and a diameter of 5.5 mm that contain 1.3 wt% levonorgestrel. A new mechanistic diffusion model accurately described the levonorgestrel burst release in early time points and pseudo-steady state behavior at later time points. As previously described, tenofovir was formulated as a glycerol paste and filled into a hydrophilic polyurethane, hollow tube reservoir that was melt-sealed by induction welding. These tenofovir-eluting segments and 2 cm long coaxially extruded levonorgestrel eluting segments were joined by induction welding to form rings that released an average of 7.5 mg tenofovir and 21 µg levonorgestrel per day in vitro for 90 days. Levonorgestrel segments placed intravaginally in rabbits resulted in sustained, dose-dependent levels of levonorgestrel in plasma and cervical tissue for 90 days. Polyurethane caps placed between segments successfully prevented diffusion of levonorgestrel into the tenofovir-releasing segment during storage.Hydrated rings endured between 152 N and 354 N tensile load before failure during uniaxial extension testing. In summary, this system represents a significant advance in vaginal drug delivery technology, and is the first in a new class of long-acting multipurpose prevention drug delivery systems.

  19. Engineering a Segmented Dual-Reservoir Polyurethane Intravaginal Ring for Simultaneous Prevention of HIV Transmission and Unwanted Pregnancy

    Science.gov (United States)

    Clark, Justin T.; Clark, Meredith R.; Shelke, Namdev B.; Johnson, Todd J.; Smith, Eric M.; Andreasen, Andrew K.; Nebeker, Joel S.; Fabian, Judit; Friend, David R.; Kiser, Patrick F.

    2014-01-01

    The HIV/AIDS pandemic and its impact on women prompt the investigation of prevention strategies to interrupt sexual transmission of HIV. Long-acting drug delivery systems that simultaneously protect womenfrom sexual transmission of HIV and unwanted pregnancy could be important tools in combating the pandemic. We describe the design, in silico, in vitro and in vivo evaluation of a dual-reservoir intravaginal ring that delivers the HIV-1 reverse transcriptase inhibitor tenofovir and the contraceptive levonorgestrel for 90 days. Two polyether urethanes with two different hard segment volume fractions were used to make coaxial extruded reservoir segments with a 100 µm thick rate controlling membrane and a diameter of 5.5 mm that contain 1.3 wt% levonorgestrel. A new mechanistic diffusion model accurately described the levonorgestrel burst release in early time points and pseudo-steady state behavior at later time points. As previously described, tenofovir was formulated as a glycerol paste and filled into a hydrophilic polyurethane, hollow tube reservoir that was melt-sealed by induction welding. These tenofovir-eluting segments and 2 cm long coaxially extruded levonorgestrel eluting segments were joined by induction welding to form rings that released an average of 7.5 mg tenofovir and 21 µg levonorgestrel per day in vitro for 90 days. Levonorgestrel segments placed intravaginally in rabbits resulted in sustained, dose-dependent levels of levonorgestrel in plasma and cervical tissue for 90 days. Polyurethane caps placed between segments successfully prevented diffusion of levonorgestrel into the tenofovir-releasing segment during storage.Hydrated rings endured between 152 N and 354 N tensile load before failure during uniaxial extension testing. In summary, this system represents a significant advance in vaginal drug delivery technology, and is the first in a new class of long-acting multipurpose prevention drug delivery systems. PMID:24599325

  20. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.

    Science.gov (United States)

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5-1030.6t·yr(-1); Total Phosphorus (TP): 23.3-31.0t·yr(-1); and Total Nitrogen (TN): 480-1918.0t·yr(-1). The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS) determination. The sources

  1. Distributions of grain parameters on the surface of aircraft engine turbine blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2010-10-01

    Full Text Available In the quality assurance system for components cast using the lost wax method, the object of evaluation is the grain size on the surface of the casting. This paper describes a new method for evaluating the primary grain parameters on the surface of aircraft engine turbine blades. Effectiveness of the method has been tested on two macrostructures distinguished by a high degree of diversity in the grain size. The grounds for evaluating the grain parameters consist of geometric measurement of the turbine blade using a laser profilometer and of approximation of the measurement results using a polynomial of a proper degree. The so obtained analytical non-planar surface serves as a reference point for an assessment of the parameters of grains observed on the real blade surface of a variable curvature. The aspects subjected to evaluation included: the grain areas, shape and elongation coefficients of grains on a non-planar surface of the blade airfoil, using measurements taken on a perpendicular projection by means of a stereoscopic microscope and image analysis methods, and by making calculations using the Mathematica® package.

  2. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  3. The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs

    International Nuclear Information System (INIS)

    Sogut, Oguz Salim; Ust, Yasin; Sahin, Bahri

    2006-01-01

    A thermo-ecological performance analysis of an irreversible intercooled and regenerated closed Brayton heat engine exchanging heat with variable-temperature thermal reservoirs is presented. The effects of intercooling and regeneration are given special emphasis and investigated in detail. A comparative performance analysis considering the objective functions of an ecological coefficient of performance, an ecological function proposed by Angulo-Brown and power output is also carried out. The results indicate that the optimal total isentropic temperature ratio and intercooling isentropic temperature ratio at the maximum ecological coefficient of performance conditions (ECOP max ) are always less than those of at the maximum ecological function ( E-dot max ) and the maximum power output conditions ( W-dot max ) leading to a design that requires less investment cost. It is also concluded that a design at ECOP max conditions has the advantage of higher thermal efficiency and a lesser entropy generation rate, but at the cost of a slight power loss

  4. Estimation of operational parameters for a direct injection turbocharged spark ignition engine by using regression analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Tosun Erdi

    2017-01-01

    Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.

  5. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  6. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa

    Directory of Open Access Journals (Sweden)

    Sackey, S. M.

    2017-05-01

    Full Text Available To manage the impact of Industry 4.0 on industrial engineering (IE education curriculum requirements, realistic teaching and learning infrastructure such as a learning factory are required. This paper scans the literature to determine Industry 4.0’s principles and interactions with IE and a learning factory, surveys relevant universities by questionnaire to determine its current status and practices, and formulates didactic design parameters for an Industry 4.0 learning factory to support IE education in South Africa, making use of existing models of cyber-physical systems and learning factory morphology. In other results, the technical universities are discovered to be more positively disposed, in general terms, to developing an Industry 4.0 learning factory than are the traditional programmes which, with one exception, prefer computational facilities. Of ten universities that offer IE, only one — a traditional programme — has made significant progress towards creating an Industry 4.0 learning factory.

  7. Selecting the Parameters of the Orientation Engine for a Technological Spacecraft

    Science.gov (United States)

    Belousov, A. I.; Sedelnikov, A. V.

    2018-01-01

    This work provides a solution to the issues of providing favorable conditions for carrying out gravitationally sensitive technological processes on board a spacecraft. It is noted that an important role is played by the optimal choice of the orientation system of the spacecraft and the main parameters of the propulsion system as the most important executive organ of the system of orientation and control of the orbital motion of the spacecraft. Advantages and disadvantages of two different orientation systems are considered. One of them assumes the periodic impulsive inclusion of a low thrust liquid rocket engines, the other is based on the continuous operation of the executing elements. A conclusion is drawn on the need to take into account the composition of gravitationally sensitive processes when choosing the orientation system of the spacecraft.

  8. Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption.

    Science.gov (United States)

    Wang, Pengwei; Chen, Naibo; Tang, Chaojun; Chen, Jing; Liu, Fanxin; Sheng, Saiqian; Yan, Bo; Sui, Chenghua

    2017-12-01

    We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ε and permeability μ of a metamaterial anti-reflection layer, which could cancel the reflection from a hydrogenated amorphous silicon (α-Si:H) thin film on a metal substrate, within the visible wavelength range from 300 to 800 nm. We found that the metamaterial anti-reflection layer should have a negative refractive index (n  0) for long-wavelength visible light. The relative permittivity ε and permeability μ could be fitted by the Lorentz model, which exhibited electric and magnetic resonances, respectively.

  9. Deterministic seismic hazard parameters and engineering risk implications for the Hong Kong region

    Science.gov (United States)

    Chandler, A. M.; Chan, L. S.; Lam, N. T. K.

    2001-12-01

    The paper reviews and compares recent regional studies evaluating the seismic hazard parameters required to assess the seismic risk to engineering construction in the Coastal Region of South China (CRSC) including Hong Kong (HK). The review establishes that the CRSC, and in particular the offshore seismic belt, has mean earthquake magnitude recurrence intervals (MRIs) or return periods that are 2-3 times shorter than those in the eastern United States (EUS), with which the HK region has been compared. An ensemble of realistic design-level earthquake events suitable for defining the regional seismic hazard and for undertaking engineering risk assessment is then formulated, in the form of deterministic magnitude-distance pairs associated with earthquake magnitudes having a range of MRIs, and the significance of the maximum credible earthquake (MCE) magnitude is highlighted. Next, the scenario earthquake events have been used to predict the expected levels of peak design ground motions (for bedrock) in the HK region. The approximate method proposed here indicates that peak (effective) ground accelerations may reasonably be estimated to be around 10% g for 500-year earthquake events and 15-20% g for 1000-year events. However, the predicted ground motions arising from design-level earthquake events indicate large uncertainties arising from the attenuation equations. The uncertainties arise from both epistemic (event-to-event) and aleatory (site-to-site) considerations. These uncertainties represent the greatest source of errors in defining the seismic hazard for engineering design purposes. Further research is required to define the attenuation characteristics of ground motions for the CRSC, across a range of parameters including ground displacement and velocity as well as acceleration. It is further found that the Chinese earthquake building code gives a reasonably conservative estimate of seismic demand for the region, and is quite consistent with results from both

  10. Development of engineering parameters for the design of metal biosorption waste treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.S.

    1991-12-03

    Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption or metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.

  11. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  12. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  13. Reservoir and civil engineering geophysics (CD-Rom); Geophysique de gisement et de genie civil (CD-Rom)

    Energy Technology Data Exchange (ETDEWEB)

    Mari, J.L.; Chapellier, D.

    1999-07-01

    This CD-Rom is a pedagogical tool developed from the book 'field and civil engineering geophysics' (Technip ed., 1998). It presents the geophysical methods (surface and well geophysical surveys, radar surveys and well logging) and their application in the study of oil fields and also in civil engineering. Several cartoons illustrate the principle of methods, their domain of use and their limitations. It covers the following topics: surface seismic surveys (waves propagation, equipments, reflexion and refraction seismic surveys, surface waves); well seismic surveys (operation, data processing, imaging); well logging (acoustic, nuclear,electrical and others, methods of interpretation); radar surveys (principle, surface, wells, possibilities and limitations). (J.S.)

  14. Monitoring of endangered Roanoke logperch (Percina rex) in Smith River upstream from the Philpott Reservoir on U.S. Army Corps of Engineers property near Martinsville, Virginia

    Science.gov (United States)

    Roberts, James H.; Angermeier, Paul L.

    2012-01-01

    The purpose of this study was to continue annual monitoring of Roanoke logperch (Percina rex), an endangered fish, in the Smith River immediately upstream from Philpott Reservoir. This river reach is owned by the U.S. Army Corps of Engineers (USACE), which must ensure that appropriate actions are undertaken to aid in recovery of logperch. Monitoring of fish abundance and habitat conditions provides a means for assessing the species’ status and its responses to USACE management actions. The Roanoke logperch is a large darter (Percidae: Etheostomatinae) endemic to the Roanoke, Dan, and Nottoway River basins of Virginia and North Carolina, where it occupies third- to sixth-order streams containing relatively silt-free substrate (Jenkins and Burkhead, 1994). Because of its rarity, small range, and vulnerability to siltation, the Roanoke logperch was listed in 1989 as endangered under the U.S. Endangered Species Act (ESA) (U.S. Federal Register 54:34468-34472). Within the Dan basin, Roanoke logperch have long been known to occupy the Smith River and one of its largest tributaries, Town Creek (Jenkins and Burkhead, 1994). Logperch also recently were discovered in other tributaries of the Dan River, including North Carolina segments of the Mayo River, Cascade Creek, Big Beaver Island Creek, Wolf Island Creek (William Hester, U.S. Fish and Wildlife Service, personal commun., 2012). Within the Smith River, Roanoke logperch are present both upstream and downstream from Philpott Reservoir, a hydroelectric and water storage project owned and operated by the USACE. Although logperch have not been observed in the reservoir itself, the species is relatively abundant in a free-flowing, ≈ 2.5-km-long segment of Smith River upstream from the reservoir on USACE property (Lahey and Angermeier, 2006). This segment is bounded on the downstream end by the lentic conditions of the reservoir and on the upstream end by White Falls, a natural waterfall that presumably allows fish passage

  15. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  16. Some Calculated Research Results of the Working Process Parameters of the Low Thrust Rocket Engine Operating on Gaseous Oxygen-Hydrogen Fuel

    Science.gov (United States)

    Ryzhkov, V.; Morozov, I.

    2018-01-01

    The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.

  17. Geo-Engineering through Internet Informatics (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.; Bohling, Goeffrey C.; Bhattacharya, Saibal; Byers, Alan P.; Carr, Timothy R.; Dubois, Martin K.; Gagnon, Glen; Guy, Willard J.; Look, Kurt; Magnuson, Mike; Moore, Melissa; Olea, Ricardo; Pakalapadi, Jayprakash; Stalder, Ken; Collins, David R.

    2002-06-25

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and region (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.

  18. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  19. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Dara K. Khidir

    2016-05-01

    Full Text Available The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were analyzed using S/N (signal to noise ratio for each factor. The obtained results show that the optimum operating conditions for minimum BSFC (brake specific fuel consumption are achieved when the engine speed is 2500 rpm, the throttle is placed at 75% of full throttling, the water temperature is 80 oC and the engine is using fuel type D. Also, results of S/N ratio reveal that the throttle has significant influence on brake thermal and exergic efficiencies. Water temperature is the second most effective factor and then comes the influence of engine speed. The least effective factor among the studied parameters for the types of fuel considered in this experiment is the fuel type.

  20. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  1. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  2. Reservoir characterization of the Snorre Field

    OpenAIRE

    Gjestvang, Jørgen

    2016-01-01

    Master's thesis in Petroleum engineering The fluvial sandstone in the Snorre field consists of braided to meander streams deposited in arid and in humid climate that show a clear differences in the sedimentology and reservoir properties, especially the silt content in large part of the reservoir which decrease the reservoir properties and water saturation. The heterogeneity of these fluvial formations combined with the faulting history makes this reservoir highly complex with many local an...

  3. Estimating Modal Parameters of Civil Engineering Structures subject to Ambient and Harmonic Excitation

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Ventura, Carlos

    In this paper addresses the problems of separating structural modes and harmonics arising from sinusoidal excitation. Though the problem is mostly know in mechanical engineering applications such as rotating machinery, some civil engineering applications experiences the same challenges. A robust...... and fast harmonic detection procedure is presented and illustrated on a civil engineering case....

  4. A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data

    KAUST Repository

    Katterbauer, Klemens

    2014-03-25

    The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill

  5. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  6. Voltage Spectral Structure as a Parameter of System Technical Diagnostics of Ship Diesel Engine-Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Gasparjans Aleksandrs

    2015-07-01

    Full Text Available A method of technical diagnostics of ship diesel engine – generator installation – is proposed. Spectral-power diagnostic parameters of the synchronous generator voltage and currents are used. The electric machine in this case is the multipurpose sensor of diagnostic parameters. A judgment on the quality of the operational processes in diesel engine cylinders and its technical condition is possible on the basis of these parameters. This method is applicable to piston compressor installations with electric drive. On the basis of such parameters as rotating torque, angular speed and angular acceleration it is possible to estimate the quality of the operating process in the cylinders of a diesel engine, the condition of its cylinder-piston group and the crank gear mechanism. The investigation was realized on the basis of a diesel-generator with linear load. The generator operation was considered for the case of constant RL load. Together with the above mentioned, the condition of bearings of synchronous machines, uniformity of the air gap, windings of the electric machine were estimated during the experiments as well. The frequency spectrum of the stator current of the generator was researched and analyzed. In this case the synchronous machine is becoming a rather exact multipurpose diagnostic sensor. The signal of non-uniformity in the operation process of diesel engine cylinders and its technical condition is the increasing of the amplitudes of typical frequencies.

  7. Multi-data reservoir history matching of crosswell seismic, electromagnetics and gravimetry data

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Reservoir engineering has become of prime importance for oil and gas field development projects. With rising complexity, reservoir simulations and history matching have become critical for fine-tuning reservoir production strategies, improved subsurface formation knowledge and forecasting remaining reserves. The sparse spatial sampling of production data has posed a significant challenge for reducing uncertainty of subsurface parameters. Seismic, electromagnetic and gravimetry techniques have found widespread application in enhancing exploration for oil and gas and monitor reservoirs, however these data have been interpreted and analyzed mostly separately rarely utilizing the synergy effects that may be attainable. With the incorporation of multiple data into the reservoir history matching process there has been the request knowing the impact each incorporated observation has on the estimation. We present multi-data ensemble-based history matching framework for the incorporation of multiple data such as seismic, electromagnetics, and gravimetry for improved reservoir history matching and provide an adjointfree ensemble sensitivity method to compute the impact of each observation on the estimated reservoir parameters. The incorporation of all data sets displays the advantages multiple data may provide for enhancing reservoir understanding and matching, with the impact of each data set on the matching improvement being determined by the ensemble sensitivity method.

  8. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    Science.gov (United States)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  9. Multi-response optimization of diesel engine operating parameters running with water-in-diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Vellaiyan Suresh

    2017-01-01

    Full Text Available Water-in-diesel emulsion fuel is a promising alternative diesel fuel, which has the potential to promote better performance and emission characteristics in an existing Diesel engine without engine modification and added cost. The key factor that has to be focused with the introduction of such fuel in existing Diesel engine is desired engine-operating conditions. The present study attempts to address the previous issue with two-phases of experiments. In the first phase, stable water-in-diesel emulsion fuels (5, 10, 15, and 20 water-in-diesel are prepared and their stability period and physico-chemical properties are measured. In the second phase, experiments are conducted in a single cylinder, 4-stroke Diesel engine with pre-pared water-in-diesel emulsion fuel blends based on L16 orthogonal array suggested in Taguchi’s quality control concept to record the output responses (perormance and emission levels. Based on signal-to-noise ratio and grey relational analysis, optimal level of operating factors are determined to obtain better response and verified through confirmation experiments. A statistical analysis of variance is applied to measure the significance of individual operating parameters on overall engine performance. Results indicate that the emulsion fuel prepared by Sorbitan monolaurate surfactant at high stirrer speed endows with better emulsion stability and acceptable variation in physicochemical properties. Results of this study also reveal that the optimal parametric setting effectively improves the combustion, performance, and emission characteristics of Diesel engine.

  10. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    OpenAIRE

    Sivalingam, Murugan; Mahapatra, Subranshu Sekhar; Hansdah, Dulari; Horák, Bohumil

    2015-01-01

    Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI) engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the inv...

  11. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    Science.gov (United States)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  12. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  13. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  14. Simulation Modeling and Optimization of Uniflow Scavenging System Parameters on Opposed-Piston Two-Stroke Engines

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2018-04-01

    Full Text Available Based on the introduction of opposed-piston two-stroke (OP2S gasoline direct injection (GDI engines, the OP2S-GDI engine working principle and scavenging process were analyzed. GT-Power software was employed to model the working process based on the structural style and principle of OP2S-GDI engine. The tracer gas method and OP2S-GDI engine experiment were employed for model validation at full load of 6000 rpm. The OP2S-GDI engine scavenging system parameters were optimized, including intake port height stroke ratio, intake port circumference ratio, exhaust port height stroke ratio, exhaust port circumference ratio, and opposed-piston motion phase difference. At the same time, the effect of the port height stroke ratio and opposed-piston motion phase difference on effective compression ratio and expansion ratio were considered, and the indicated work was employed as the optimization objective. A three-level orthogonal experiment was applied in the calculation process to reduce the calculation work. The influence and correlation coefficient on the scavenging efficiency and delivery ratio were investigated by the orthogonal experiment analysis of intake and exhaust port height stroke ratio and circular utilization. The effect of the scavenging system parameters on delivery ratio, scavenging efficiency and indicated work were calculated to obtain the best parameters. The results show that intake port height stroke ratio is the main factor for the delivery ratio, while exhaust port height stroke ratio is the main factor to engine delivery ratio and scavenging efficiency.

  15. CHOOSING OF PERFORMANCE PARAMETERS OF LIGHT-DUTY ENGINE RUNNING ON NATURAL GAS AND HYDROGEN MIXTURE

    Directory of Open Access Journals (Sweden)

    Y. Dube

    2011-01-01

    Full Text Available The results of investigation of light-duty gas engine running on natural gas and hydrogen mixture has been given. The mathematical model of combustion process with variable Vibe combus-tion factor for this engine type has been specified.

  16. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  17. Investigation of work parameters of SI engine dedicated to energetics aggregates with pneumatic injection system

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The article presents the possibilities of alternative fuel combustion in the engine four- stroke spark ignition engines. Power of the motor was carried out pneumatic fuel injection system using a hot gas developed by Prof. Stanislaw Jarnuszkiewicz. Presented made the position of the measuring system with the power and results. The engine experimental at the time of the study was powered by a blend of alcohol and gasoline. The main aim of the study was the question of control fuel dosage, taking into account the energy needs of forcing the engine load. During the tests carried load characteristics control the motor using the power control quality. Another issue was the elimination of penetration of fuel to the engine lubrication system, a problem occurred in the initial study on the issue of the pneumatic fuel injection using the hot exhaust gases. In summary we present the findings of this phase of the study.

  18. Parameters for assay in engines of agricultural tractor for biofuel use

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Meyer, Wagner [Universidade Estadual de Maringa (DEA/CCA/UEM), Cidade Gaucha, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Engenharia Agricola], E-mail: raplopes@uem.br; Pinheiro Neto, Raimundo; Pinheiro, Andreia Cristina [Universidade Estadual de Maringa (DAG/CCA/UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia; Laurindo, Jose Carlos [Instituto de Tecnologia do Parana (CERBIO/TECPAR), Curitiba, PR (Brazil). Centro Brasileiro de Referencia em Biocombustiveis; Biazzono, Sergio Luis [Instituto de Tecnologia do Parana (TECPAR), Maringa, PR (Brazil). Inspecao Veicular

    2008-07-01

    The use of biofuel in tractors of diesel engines and agricultural harvester, in the operations of preparation of soil and harvest, is a good option of economy for the agriculturist. For a good performance of the machine, regulation and maintenance is necessary. This paper has the objective to prepare the agricultural tractors engine for the use of biofuel. The experiment was carried through State University of Maringa. One used for the assays three Massey Ferguson tractors engines. The smoke assays and opacity had shown that both the tractors had presented problems of regulations. The assays demonstrate the necessity of periodically to carry through the correct maintenance of the machines, as well as the training of the operators. The regulations allow adjusting the engines of the tractors to operate in situations recommended for the manufacturers. The regulations allow the correct functioning and better accompaniment of the useful life of the engine using biofuel in operations of soil preparation, sowing and harvest. (author)

  19. Impacts of fuel formulation and engine operating parameters on the nanostructure and reactivity of diesel soot

    Science.gov (United States)

    Yehliu, Kuen

    This study focuses on the impacts of fuel formulations on the reactivity and nanostructure of diesel soot. A 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine was used in generating soot samples. The impacts of engine operating modes and the start of combustion on soot reactivity were investigated first. Based on preliminary investigations, a test condition of 2400 rpm and 64 Nm, with single and split injection strategies, was chosen for studying the impacts of fuel formulation on the characteristics of diesel soot. Three test fuels were used: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester (B100), and a synthetic Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The start of injection (SOI) and fuel rail pressures were adjusted such that the three test fuels have similar combustion phasing, thereby facilitating comparisons between soots from the different fuels. Soot reactivity was investigated by thermogravimetric analysis (TGA). According to TGA, B100 soot exhibits the fastest oxidation on a mass basis followed by BP15 and FT derived soots in order of apparent rate constant. X-ray photoelectron spectroscopy (XPS) indicates no relation between the surface oxygen content and the soot reactivity. Crystalline information for the soot samples was obtained using X-ray diffraction (XRD). The basal plane diameter obtained from XRD was inversely related to the apparent rate constants for soot oxidation. For comparison, high resolution transmission electron microscopy (HRTEM) provided images of the graphene layers. Quantitative image analysis proceeded by a custom algorithm. B100 derived soot possessed the shortest mean fringe length and greatest mean fringe tortuosity. This suggests soot (nano)structural disorder correlates with a faster oxidation rate. Such results are in agreement with the X-ray analysis, as the observed fringe length is a measure of basal plane diameter. Moreover the relation

  20. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments.

    Science.gov (United States)

    Chen, How-Ji; Chang, Sheng-Nan; Tang, Chao-Wei

    2017-11-10

    This study aimed to apply the Taguchi optimization technique to determine the process conditions for producing synthetic lightweight aggregate (LWA) by incorporating tile grinding sludge powder with reservoir sediments. An orthogonal array L 16 (4⁵) was adopted, which consisted of five controllable four-level factors (i.e., sludge content, preheat temperature, preheat time, sintering temperature, and sintering time). Moreover, the analysis of variance method was used to explore the effects of the experimental factors on the particle density, water absorption, bloating ratio, and loss on ignition of the produced LWA. Overall, the produced aggregates had particle densities ranging from 0.43 to 2.1 g/cm³ and water absorption ranging from 0.6% to 13.4%. These values are comparable to the requirements for ordinary and high-performance LWAs. The results indicated that it is considerably feasible to produce high-performance LWA by incorporating tile grinding sludge with reservoir sediments.

  1. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    OpenAIRE

    Krzysztof GARBALA; Wojciech PIEKARSKI; Sylwia ANDRZEJEWSKA; Kazimierz WITASZEK

    2016-01-01

    This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI) engines (diesel). Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel). A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element...

  2. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  3. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  4. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    Science.gov (United States)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  5. Investigation of diffusivity coefficient of Asmari reservoir by well test analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shadizadeh, S.R. [Petroleum Univ. of Technology, Tehran (Iran, Islamic Republic of); Amiri, M.; Zaferanieh, M. [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)

    2007-07-01

    One of the greatest challenges facing petroleum engineers is to characterize the physical nature of subterranean reservoirs from which crude oil is produced. The quality of reservoir description determines the results of numerical simulations of reservoir performance. The ways by which information can be obtained include seismic and geological studies; well drilling data; well pressure testing; and analysis of reservoir performance through history matching. This paper presented the results of a study in which the Asmari field in southern onshore Iran was characterized. The field went into production in 1970. To date, a total of 39 wells have been completed in the Asmari and Bangestan groups of this field. Pan System software was used in this study to analyze the well test data. Parameters such as permeability, skin factor, wellbore storage, average reservoir pressure, diffusivity coefficient and productivity index are calculated for each well. In particular, the diffusivity coefficient for the Asmari sedimentary layer was determined. This dimensionless reservoir parameter is a ratio of a medium's capacity for transmissibility of fluid to capacity. Diffusivity offers a quantitative measure for the rate of response during transient fluid flow. All available information such as petrophysical data, PVT data, production data and pressure build up data of the completed wells in Asmari formation were collected. Twenty one data tests were then analyzed. A correlation between productivity index and the diffusivity coefficient for the Asmari formation was subsequently obtained. It was concluded that permeability is one of the most important parameter in reservoir engineering calculations. Different completion of well number 1 showed that the diffusivity coefficient and productivity index of carbonate layer is less than in the sandstone layer. It was determined that the western part of the reservoir is suitable for drilling new wells.13 refs., 5 tabs., 7 figs.

  6. Interactive software integrates geological and engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, G.S. (Oxy USA Inc., Tulsa, OK (United States))

    1994-09-05

    A comprehensive software package provides Oxy USA Inc. a set of interactive tools for rapid and easy integration of geological, geophysical, petrophysical, and reservoir engineering data for the purpose of reservoir characterization. The stacked curves system (SCPC), proprietary software of Oxy USA Inc., is used extensively within Occidental Petroleum Corp. to determine detailed knowledge of reservoir geometry and associated parameters crucial in infill drilling, field extension, and enhanced recovery projects. SCPC has all the desk top management and mapping software tools necessary to fully address, analyze, and resolve three components of reservoir characterization: defining the geometry; calculating reservoir properties; and making volumetric estimates. The paper discusses the background of the software, describes its functions of data base management and transformation, and explains the types of displays it is capable of producing.

  7. Determination of operating parameters of industrial engine fuelled with post processing gases with high hydrogen content

    Science.gov (United States)

    Brzeżański, M.; Mareczek, M.; Marek, W.; Papuga, T.

    2016-09-01

    The results of investigations of SI engine fuelled with hydrogen and mixed n-butanol with isobutanol have been presented in article. The idea of flexible feeding system and the aim and methodology of carried out measurement have been also described. Obtained results have been compared to the results of tests carried out during flexible feeding of the same engine. The proposed control system enables not only application of different liquid and gaseous fuels but also application of the fuels which chemical composition vary within the relatively short time intervals.

  8. Influence of the overlap parameter on the convergence of the ptychographical iterative engine

    International Nuclear Information System (INIS)

    Bunk, Oliver; Dierolf, Martin; Kynde, Soren; Johnson, Ian; Marti, Othmar; Pfeiffer, Franz

    2008-01-01

    The ptychographical iterative engine (PIE) algorithm is examined with both simulated and experimental scanning coherent-diffraction microscopy data. The optimum overlap in terms of image quality, dose on the sample and time of measurements is determined using simulated diffraction data. The validity of the results is supported by experimental helium-neon laser light diffraction data

  9. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon pl...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  10. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  11. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  12. The influence of air-fuel ratio on mixture parameters in port fuel injection engines

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2008-10-01

    Full Text Available Nowadays, research in the internal combustion engine field is focusing on detailed understanding of the processes that take place in certain parts of the aggregate, and can have a great influence on the engine’s performance and pollution levels. Such research is developed in this paper, in which using a numerical method based on the i-x air-fuel diagram, one can simulate a series of values for pressure, temperature and intake air humidity before and after mixture formation takes place in a spark ignition engine inlet port. The aim is to evaluate the final temperature of the air-fuel mixture near the inlet valve and evaluating the main factors of influence on the homogeneity of the mixture.

  13. Effect of biodiesel on the performance and combustion parameters of a turbocharged compression ignition engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Baluch, A.H.; Chao, H.

    2009-01-01

    Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)

  14. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Science.gov (United States)

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  15. Evaluation of some physicochemical parameters and benthic ...

    African Journals Online (AJOL)

    Evaluation of some physicochemical parameters and benthic macroinvertebrates of Ikere Gorge Reservoir in Oyo State, Nigeria. ... Reservoir is relatively under stress due to dominance of indicators of pollution. Keywords: Anthropogenic activities, Bioindicator, Ikere Gorge Reservoir, Melanoides tuberculata, Water quality.

  16. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Mohammadi, Pouya; Pourvosoughi, Navid; Nikbakht, Ali M.; Goli, Sayed Amir Hossein

    2015-01-01

    Highlights: • Exergy analysis of diesel engine fuelled with various SBE biodiesel–diesel blends containing EPS. • Profound effect of engine speed and load on exergetic performance parameters of diesel engine. • Selection of B5 containing 50 g EPS/L biodiesel as the best mixture. • Potential application of the applied framework for optimizing sustainability index of IC engines. - Abstract: Exergy analysis of a DI diesel engine running on several biodiesel/diesel blends (B5) containing various quantities of expanded polystyrene (EPS) was carried out. Neat diesel and B5 were also investigated during the engine tests. The biodiesel used was produced using waste oil extracted from spend bleaching earth (SBE). The experiments were conducted to assess the effects of fuel type, engine speed, and load on thermal efficiency, exergetic parameters, and sustainability index of the diesel engine. The obtained results revealed that the exergetic parameters strongly depended on the engine speed and load. Generally, increasing engine speed remarkably decreased the exergy efficiency and sustainability index of the diesel engine. However, increasing engine load initially enhanced the exergy efficiency and sustainability index, while its further augmentation did not profoundly affect these parameters. The maximum exergy efficiency and sustainability index of the diesel engine (i.e. 40.21% and 1.67, respectively) were achieved using B5 containing 50 g EPS/L biodiesel. Generally, the approach presented herein could be a promising strategy for energy recovery from polymer waste, emissions reduction, and performance improvement. The findings of the present study also confirmed that exergy analysis could be employed to minimize the irreversibility and losses occurring in modern engines and to enhance the sustainability index of combustion processes.

  17. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  18. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  19. 49 CFR 393.50 - Reservoirs required.

    Science.gov (United States)

    2010-10-01

    ... depressing the brake pedal or treadle valve to the limit of its travel. (c) Safeguarding of air and vacuum... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... driver to make a full service brake application with the engine stopped without depleting the air...

  20. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Science.gov (United States)

    2010-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1... coolant, dedicated cooling system). c. Performance (charge air delivery temperature (°F) at rated power... Emission Control System. 1. Air injection system. a. Control parameters and calibrations. b. Pump flow rate...

  1. Sensitivity analysis of large system of chemical kinetic parameters for engine combustion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, H; Sanz-Argent, J; Petitpas, G; Havstad, M; Flowers, D

    2012-04-19

    In this study, the authors applied the state-of-the art sensitivity methods to downselect system parameters from 4000+ to 8, (23000+ -> 4000+ -> 84 -> 8). This analysis procedure paves the way for future works: (1) calibrate the system response using existed experimental observations, and (2) predict future experiment results, using the calibrated system.

  2. Optimization of the nuclear power engineering safety on the basis of social and economic parameters

    International Nuclear Information System (INIS)

    Kozlov, V.F.; Kuz'min, I.I.; Lystsov, V.N.; Amosova, T.V.; Makhutov, N.A.; Men'shikov, V.F.

    1995-01-01

    Principle of optimization of nuclear power engineering safety is presented on the basis of estimating the risks to the man's health with an account of peculiarities of socio-economic system and other types of economic activities in the region. Average expected duration of forthcoming life and costs of its prolongation serve as a unit for measuring the man's safety. It is shown that if the expenditures on NPP technical safety exceed the scientifically substantiated costs for this region with application of the above principle, than the risk for population will exceed the minimum achievable level. 8 refs., 2 figs., 1 tab

  3. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  4. Artificial neural networks for dynamic monitoring of simulated-operating parameters of high temperature gas cooled engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak

    2003-01-01

    This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data

  5. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.

    Science.gov (United States)

    Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra

    2014-08-01

    Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.

  6. Improvement of diesel engine ecological and economic parameters by using hydrogen

    Directory of Open Access Journals (Sweden)

    Dalius KALISINSKAS

    2013-01-01

    Full Text Available Exhaustion and rising cost of fossil energy resources stimulates the search of ways to minimize their consumption. In the transport sector the main energy source is liquid fuel. Due to combustion of that fuel noxious gas is being emitted to atmosphere and creates the “greenhouse” effect, as well, as smog. Reduction of oil reserves increases the price of fuel as well, therefore the search for various alternatives is being made. One of them is usage of hydrogen as a supplement to the traditional fuel. During combustion of hydrogen toxic gases are not emitted. For obtaining hydrogen in a car a hydrogen generator which extracts it from water by electrolysis usually is used. The benefit of using hydrogen is better efficiency of an internal combustion engine. Hydrogen helps to reduce fuel consumption and emission of noxious gas as well. Research of efficiency and emissions of an internal combustion engine using hydrogen as an additive to the traditional fuel has been carried out, computational model to determine fuel costs and exhaust gas emissions under different working conditions has been developed.

  7. Sensitivity of numerical simulation models of debris flow to the rheological parameters and application in the engineering environment

    Science.gov (United States)

    Rosso, M.; Sesenna, R.; Magni, L.; Demurtas, L.; Uras, G.

    2009-04-01

    Debris flows represents serious hazards in mountainous regions. For engineers it is important to know the quantitative analysis of the flow in terms of volumes, velocities and front height, and it is significant to predict possible triggering and deposition areas. In order to predict flow and deposition behaviour, debris flows traditionally have been regarded as homogenous fluids and bulk flow behaviour that was considered to be controlled by the rheological properties of the matrix. Flow mixtures with a considerable fraction of fines particles typically show a viscoplastic flow behaviour but due to the high variability of the material composition, complex physical interactions on the particle scale and time dependent effects, no generally applicable models are at time capable to cover the full range of all possible flow types. A first category of models, mostly of academic origin, uses a rigorous methodological approach, directed to describe to the phenomenon characterizing all the main parameters that regulate the origin and the propagation of the debris flow, with detail attention to rheology. A second category, which are referred mainly to the commercial environment, has as first objective the versatility and the simplicity of use, introducing theoretical simplifications in the definition of the rheology and in the propagation of the debris flow. The physical variables connected to the rheology are often difficult to determine and involve complex procedures of calibration of the model or long and expensive campaigns of measure, whose application can turn out not suitable to the engineering environment. The rheological parameters of the debris are however to the base of the codes of calculation mainly used in commerce. The necessary data to the implementation of the model refer mainly to the dynamic viscosity, to the shear stress, to the volumetric mass and to the volumetric concentration, that are linked variables. Through the application of various

  8. Strain-engineered band parameters of graphene-like SiC monolayer

    International Nuclear Information System (INIS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-01-01

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices

  9. CONCURRENT ENGINEERING MODEL (CEM ANALYSIS ON LOGISTICS DESIGN PARAMETERS – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    J.S. Gnanasekaran

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Logistics engineering can be divided into internal or in-plant logistics and external manufacturing logistics. Internal (in-plant logistics include material handling, warehousing, and storage systems, while external manufacturing logistics include transportation. Both must be integrated to minimise costs at a competitive level of service. For example, plant layout and production planning must consider internal logistics. The design decisions are made in the early phases of product design, and development will have a significant effect over future manufacturing and logistical activities. In this paper, a methodology is developed and presented to minimise the design cycle time of any manufacturing firm, including their suppliers, and to maximise the whole system’s effectiveness.

    AFRIKAANSE OPSOMMING: Logistieke ingenieurswese kan verdeel word in interne of binne-aanleg logistiek en eksterne vervaardigingslogistiek. Interne (binne-aanleg logistiek behels materiaalhantering, berging en voorraadhoudingsisteme, terwyl eksterne vervaardigingslogistiek vervoer insluit. Die fasette moet geintegreer wees om koste te minimiseer by ‘n mededingende diensvlak. So byvoorbeeld moet die uitleg van ‘n aanleg en produksiebeplanning interne logistiek in aanmerking neem. Die ontwerpbesluite word geneem in die beginstadium van die produkontwerp en ontwikkeling sal ‘n betekenisvolle invloed hê op toekomstige vervaardigings- en logistieke aktiwiteite. In hierdie artikel word ‘n metodologie ontwikkel en aangebied om die ontwerpsiklustyd van enige vervaardigingsonderneming te minimiseer met inagneming van die leweransiers om sodoende die totale sisteem se effektiwiteit te maksimiseer.

  10. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  11. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  12. Riparian Buffers for Runoff Control and Sensitive Species Habitat on U.S. Army Corps of Engineers Lake and Reservoir Projects

    Science.gov (United States)

    2016-10-01

    significant fluctuations in water levels (Allen and Klimas 1986) based on a variety of factors , including hydropower, recreation, and water supply...Development Center. REFERENCES Allen, H. H., and C. V . Klimas. 1986. Reservoir shoreline revegetation guidelines. Technical Report E-86-13. Vicksburg...103–113). Backhuys, Leiden , the Netherlands. Brodhead, K. M. S. H. Stoleson, and D. M. Finch. 2007. Southwestern Willow Flycatchers (Empidonax traillii

  13. Stabilization of bottom sediments from Rzeszowski Reservoir

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2015-06-01

    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  14. Effects of reservoir squeezing on quantum systems and work extraction

    Science.gov (United States)

    Huang, X. L.; Wang, Tao; Yi, X. X.

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when THreservoirs, respectively; (2) the efficiency can be higher than classical Carnot efficiency. These results do not violate the second law of thermodynamics and it can be understood as quantum fuel is more efficient than the classical one.

  15. ASUD2- decision support system on Dnieper reservoirs operations taking into account environmental priorities

    Science.gov (United States)

    Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.

    2003-04-01

    On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the

  16. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    Science.gov (United States)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  17. Flow-based dissimilarity measures for reservoir models : a spatial-temporal tensor approach

    NARCIS (Netherlands)

    Insuasty, Edwin; van den Hof, P.M.J.; Weiland, Siep; Jansen, J.D.

    2017-01-01

    In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir

  18. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  19. Oil reservoir properties estimation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  20. EMSE: Synergizing EM and seismic data attributes for enhanced forecasts of reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2014-10-01

    New developments of electromagnetic and seismic techniques have recently revolutionized the oil and gas industry. Time-lapse seismic data is providing engineers with tools to more accurately track the dynamics of multi-phase reservoir fluid flows. With the challenges faced in distinguishing between hydrocarbons and water via seismic methods, the industry has been looking at electromagnetic techniques in order to exploit the strong contrast in conductivity between hydrocarbons and water. Incorporating this information into reservoir simulation is expected to considerably enhance the forecasting of the reservoir, hence optimizing production and reducing costs. Conventional approaches typically invert the seismic and electromagnetic data in order to transform them into production parameters, before incorporating them as constraints in the history matching process and reservoir simulations. This makes automatization difficult and computationally expensive due to the necessity of manual processing, besides the potential artifacts. Here we introduce a new approach to incorporate seismic and electromagnetic data attributes directly into the history matching process. To avoid solving inverse problems and exploit information in the dynamics of the flow, we exploit petrophysical transformations to simultaneously incorporate time lapse seismic and electromagnetic data attributes using different ensemble Kalman-based history matching techniques. Our simulation results show enhanced predictability of the critical reservoir parameters and reduce uncertainties in model simulations, outperforming with only production data or the inclusion of either seismic or electromagnetic data. A statistical test is performed to confirm the significance of the results. © 2014 Elsevier B.V. All rights reserved.

  1. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    Science.gov (United States)

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  2. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  3. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-03-01

    Full Text Available Degrapol® and PLGA electrospun fiber fleeces were characterized with regard to fiber diameter, alignment, mechanical properties as well as scaffold porosity. The study showed that electrospinning parameters affect fiber diameter and alignment in an inverse relation: fiber diameter was increased with increased flow rate, with decrease in working distance and collector velocity, whereas fiber alignment increased with the working distance and collector velocity but decreased with increased flow rate. When Degrapol® or PLGA-polymers were co-spun with increasing ratios of a water-soluble polymer that was subsequently removed; fibrous scaffolds with increased porosities were obtained. Mechanical properties correlated with fiber alignment rather than fiber diameter as aligned fiber scaffolds demonstrated strong mechanical anisotropy. For co-spun fibers the Young’s modulus correlated inversely with the amount of co-spun polymer. Cell proliferation was independent of the porosity of the scaffold, but different between the two polymers. Furthermore, fibrous scaffolds with different porosities were analyzed for cell infiltration suggesting that cell infiltration was enhanced with increased porosity and increasing time. These experiments indicate that 3D-fiber fleeces can be produced with controlled properties, being prerequisites for successful scaffolds in tissue engineering applications.

  4. Well-test analysis for gas hydrate reservoirs : examination of parameters suggested by conventional analysis for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Funatsu, K. [Japan Oil Engineering Co., Tokyo (Japan); Kusaka, K.; Yasuda, M. [Japan National Oil Corp., Chiba (Japan); Dallimore, S.R. [Geological Survey of Canada, Pacific Geoscience Centre, Sidney, BC (Canada); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hancock, S.H. [APA Petroleum Engineering Ltd., Calgary, AB (Canada)

    2005-07-01

    Formation tests were conducted with a Modular Formation Dynamics Tester (MDT) tool during the Mallik 2002 Gas Hydrate Production Research Well Program. Conventional pressure-transient test analysis methods were used to analyze the test results. However, it was noted that the reliability of the reservoir-parameter estimates is uncertain due to the abrupt change in gas hydrate saturation associated with gas hydrate dissociation during the tests. In order to examine the appropriateness of these methods, the bottom-hole pressure responses during MDT tests in the hypothetical and actual gas hydrate zones were predicted using a numerical simulator. They were then analyzed by conventional test-analysis methods. It was determined that the conventional methods may indicate the average effective permeability over the area of the gas hydrate dissociation. However, the study also revealed that conventional methods might accurately indicate the radius of gas hydrate dissociation only when applying appropriate multiphase-fluid properties and production rates to the cases with high gas hydrate saturation.

  5. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    Science.gov (United States)

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  6. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    Directory of Open Access Journals (Sweden)

    Bruno Molino

    2014-07-01

    Full Text Available Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. represents a relevant sustainable alternative to landfill and other more consolidated practices.

  7. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  8. The transformation of rivers’ temperature regime downstream of reservoirs

    Directory of Open Access Journals (Sweden)

    Kirvel Ivan

    2015-12-01

    Full Text Available The article is dedicated to the problem of the transformation of rivers’ temperature conditions influenced by artificial reservoirs. A quantitative estimation of average water temperatures over ten days, and maximum and average annual water temperatures of regulated rivers downstream of reservoirs was made on the basis of the data analysis of a complete period of instrumental observations of the Republican Hydrometeorological Centre of the Republic of Belarus. It is established that the character and the parameters of the transformation of temperature conditions of the regulated rivers along with morphometric features of the reservoirs are determined by the meteorological conditions of the year and the operating conditions of the water-engineering system. The length of the cooling period effect varies from 20 days downstream of small reservoirs to 50-70 days downstream of small and average size reservoirs. The warming effect is less significant by temperature, but lasts longer and is appreciable around 200-240 days in a year. An increase in the average annual water temperature up to 0.5°C and a decrease in maximum temperature down to 1.1°C are observed in the tail-water of average size storage pools. Small size storage pools demonstrate an annual increase in annual water temperature up to 0.3°C and a decrease in maximum temperature down to 0.3°C. Small size water pools show an increase both in annual water temperature up to 0.5°C and maximum water temperature up to 0.3°C. Typical changes in temperature conditions of rivers are observed for a distance of 130 kilometres below the dam of average size water pools, along 70 kilometres in small water pools and along 30 kilometres in tiny ones.

  9. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  10. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Directory of Open Access Journals (Sweden)

    Filipović Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely

  11. Reservoir-induced seismicity at Castanhao reservoir, NE Brazil

    Science.gov (United States)

    Nunes, B.; do Nascimento, A.; Ferreira, J.; Bezerra, F.

    2012-04-01

    Our case study - the Castanhão reservoir - is located in NE Brazil on crystalline rock at the Borborema Province. The Borborema Province is a major Proterozoic-Archean terrain formed as a consequence of convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. This reservoir is a 60 m high earth-filled dam, which can store up to 4.5 billion m3 of water. The construction begun in 1990 and finished in October 2003.The first identified reservoir-induced events occurred in 2003, when the water level was still low. The water reached the spillway for the first time in January 2004 and, after that, an increase in seismicity occured. The present study shows the results of a campaign done in the period from November 19th, 2009 to December 31th, 2010 at the Castanhão reservoir. We deployed six three-component digital seismographic station network around one of the areas of the reservoir. We analyzed a total of 77 events which were recorded in at least four stations. To determine hypocenters and time origin, we used HYPO71 program (Lee & Lahr, 1975) assuming a half-space model with following parameters: VP= 5.95 km/s and VP/VS=1.73. We also performed a relocation of these events using HYPODD (Waldhauser & Ellsworth, 2000) programme. The input data used we used were catalogue data, with all absolute times. The results from the spatio-temporal suggest that different clusters at different areas and depths are triggered at different times due to a mixture of: i - pore pressure increase due to diffusion and ii - increase of pore pressure due to the reservoir load.

  12. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  13. Reservoirs in the United States

    Science.gov (United States)

    Harbeck, G. Earl

    1948-01-01

    Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/  Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/  Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.

  14. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  15. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    Science.gov (United States)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  16. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  17. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  18. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya S.

    2016-01-01

    Full Text Available On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  19. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  20. Some practical aspects of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

    1996-09-01

    The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

  1. Some matters concerned with selecting steam parameters and process-circuit solutions to optimize the parameters of steam turbine equipment and engineering design developments

    Science.gov (United States)

    Kultyshev, A. Yu.; Stepanov, M. Yu.; Polyaeva, E. N.

    2014-12-01

    The possibility and advantages of increasing steam pressure in the steam-turbine low-pressure loop for combined-cycle power plants are considered. The question about the advisability of developing and manufacturing steam turbines for being used in combined-cycle power units equipped with modern class F gas turbines for supercritical and ultrasupercritical steam parameters is raised.

  2. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    International Nuclear Information System (INIS)

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-01-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations

  3. Analysis of multi-factor coupling effect on hydraulic fracture network in shale reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2015-03-01

    Full Text Available Based on the research results of lab triaxial hydraulic fracturing simulation experiments, field fracturing practice, and theory analysis, the factors affecting the growth of hydraulic fracture network in shale reservoirs, including brittleness, difference of horizontal stress, distribution and mechanical characteristics of natural fractures, fluid viscosity and fracturing parameters, etc are analyzed in this study. The results show that the growth of fracture network in shale reservoirs is affected by geological factors and engineering factors jointly. From the perspective of reservoir geological factors, the higher the rock brittleness, the more developed the natural fractures, and the poorer the natural fracture consolidation, the more likely hydraulic fracture network will be formed. From the perspective of fracturing engineering factors, lower fluid viscosity and larger fracturing scale will be more helpful to the formation of extensive fracture network. On the basis of the analysis of single factors, a multi-factor coupling index has been established to characterize the growth degree of hydraulic fracture network and evaluate the complexity of hydraulic fractures after the fracturing of shale reservoirs.

  4. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  5. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mella, Michael [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

    2016-08-31

    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  6. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO 2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO x ) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO 2 ), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η e ); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO 2 concentration, HC concentration and smokiness were achieved. However, the NO x and thermo-mechanical engine load increased.

  7. The influence of drive parameters and technical condition on the vibroactivity of devices with single-cylinder internal combustion engines

    Directory of Open Access Journals (Sweden)

    Tomasz FIGLUS

    2013-01-01

    Full Text Available The study presents the important issue of the noise emission, generated bysingle-cylinder internal combustion engine constructions. This type of engine is used indrives of different types of machines and devices, including transport machines. In thestudy, the measurements and results analysis were conducted, which aim was to estimatethe influence of the engine capacity, their power and the change of the technicalcondition on the generated noise. The researches of exemplary lawnmowers, equipped inthis type of drive, showed the reduction of the sound level, together with the increase ofthe engines capacity and power decrease, and the increase of the noise (a few decibelscaused by the change of the technical condition during the operation.

  8. An algorithm on simultaneous optimization of performance and mass parameters of open-cycle liquid-propellant engine of launch vehicles

    Science.gov (United States)

    Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.

    2017-12-01

    In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.

  9. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  10. Top-Down, Intelligent Reservoir Model

    Science.gov (United States)

    Mohaghegh, Shahab

    2010-05-01

    Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum

  11. Guiding rational reservoir flood operation using penalty-type genetic algorithm

    Science.gov (United States)

    Chang, Li-Chiu

    2008-06-01

    SummaryReal-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. This study proposes a reservoir flood control optimization model with linguistic description of requirements and existing regulations for rational operating decisions. The approach involves formulating reservoir flood operation as an optimization problem and using the genetic algorithm (GA) as a search engine. The optimizing formulation is expressed not only by mathematical forms of objective function and constraints, but also by no analytic expression in terms of parameters. GA is used to search a global optimum of a mixture of mathematical and nonmathematical formulations. Due to the great number of constraints and flood control requirements, it is difficult to reach a solution without violating constraints. To tackle this bottleneck, the proper penalty strategy for each parameter is proposed to guide the GA searching process. The proposed approach is applied to the Shihmen reservoir in North Taiwan for finding the rational release and desired storage as a case study. The hourly historical data sets of 29 typhoon events that have hit the area in last thirty years are investigated bye the proposed method. To demonstrate the effectiveness of the proposed approach, the simplex method was performed. The results demonstrated that a penalty-type genetic algorithm could effectively provide rational hydrographs to reduce flood damage during the flood operation and to increase final storage for future usages.

  12. Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP

    Directory of Open Access Journals (Sweden)

    Fu-Kang Ma

    2017-03-01

    Full Text Available In this paper, an opposed-piston two-stroke (OP2S gasoline direct injection (GDI engine is introduced and its working principles and scavenging process were analyzed. An optimization function was established to optimize the scavenging system parameters, include intake port height, exhaust port height, intake port circumference ratio, the exhaust port circumference ratio and opposed-piston motion phase difference. The effect of the port height on the effective compression ratio and effective expansion ratio were considered, and indicated mean effective pressure (IMEP was employed as the optimization objective instead of scavenging efficiency. Orthogonal experiments were employed to reduce the calculation work. The effect of the scavenging parameters on delivery ratio, trapping ratio, scavenging efficiency and indicated thermal efficiency were calculated, and the best parameters were also obtained by the optimization function. The results show that IMEP can be used as the optimization objective in the uniflow scavenging system; intake port height is the main factor to the delivery ratio, while exhaust port height is the main to engine trapping ratio, scavenging efficiency and indicated thermal efficiency; exhaust port height is the most important factor to effect the gas exchange process of OP2S-GDI engine.

  13. An experimental unification of reservoir computing methods.

    Science.gov (United States)

    Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D

    2007-04-01

    Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.

  14. Stochastic Reservoir Characterization Constrained by Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Alfhild Lien

    1999-07-01

    In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.

  15. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    International Nuclear Information System (INIS)

    Othman Inayatullah; Nordin Jamaludin; Fauziah Mat

    2009-04-01

    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  16. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  17. Parâmetros de projeto de microrreservatório, de pavimentos permeáveis e de previsão de enchentes urbanas Design parameters for micro reservoir, for porous pavements and for forecast of urban flow

    Directory of Open Access Journals (Sweden)

    Lourenço Leme da Costa Junior

    2006-03-01

    proportional random sampling. The sample was divided in: plots smaller than 160 m², between 160 m² and 300 m², between 300 m² and 600 m², between 600 m² and 900 m², between 900 m² and 1500 m² and bigger than 1500 m². The data was collected on survey "in loco", registered information and also interview with the residents. For lots characterization, free area, impermeability area, built area, occupation rate, occupation and impermeability rate, soil type, water table level, topografic were used. The residents were questioned about the acceptation of the use of these measures. This parameters were utilized to evaluated the possibilities to introduce it, and then, the costs were evaluate. The results showed that TO goes down with the increasing of the plots' area. The TOI showed the same behavior. Were obtained relation between TO and area of plot, TOI and area of plot and TO and TOI represented by equations, whose the coefficient of determination got higher than 0,96. The use of micro reservoir of detention, as a control measure, was limited by the acceptation from the residents to 82,8% of the plots. The use of permeable floor was limited by the free area parameter and the acceptation from the residents.

  18. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  19. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  20. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  1. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  2. Ecological-geochemical characteristics of bottom sediments of Sophiivske reservoir

    Directory of Open Access Journals (Sweden)

    Тетяна Миколаївна Альохіна

    2014-09-01

    Full Text Available Results of the investigation of the chemical composition of the bottom sediments Sophiivske reservoir located on the Ingul River was presented in this article. The most significant factor of differential sedimentation chemical compounds can be facies factor that reflects the impact of geomorphic parameters and hydrological characteristics of the reservoir. There are a change of environment sedimentogenesis from oxidative to reductive on sites near reservoir dam.

  3. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  4. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  5. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1996-11-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  6. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle

    2003-11-01

    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  7. Universal Optimization Efficiency for Nonlinear Irreversible Heat Engines

    Science.gov (United States)

    Zhang, Yanchao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2017-06-01

    We introduce a multi-parameter combined objective function of heat engines under the strong coupling and symmetry condition and derive the universal expression of the optimization efficiency. The results obtained show that the optimization efficiency derived from the multi-parameter combined objective function include a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum ecological or unified trade-off function, and Carnot efficiency. It is further explained that these results are also suitable for the endoreversible cycle model of the Carnot heat engines operating between two heat reservoirs.

  8. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  9. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Science.gov (United States)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  10. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  11. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  12. Seismic response to power production at the Coso Geothermal field, south-eastern CA: using operational parameters and relocated events to study anthropogenic seismicity rates and reservoir scale tectonic structure

    Science.gov (United States)

    Lajoie, L. J.; O'Connell, D. R.; Creed, R. J.; Brodsky, E. E.

    2013-12-01

    The United States is increasing its dependence on renewable energies and with that has come an interest in expanding geothermal operations. Due to the proximity of many existing and potential geothermal sites to population centers and seismically active regions, it is important to understand how geothermal operations interact with local (and regional) seismicity, and to determine if seismicity rates are predictable from operational parameters (i.e. fluid injection, production, and net fluid extraction) alone. Furthermore, geothermal injection and production strategies can be improved by identifying, locating and characterizing related earthquakes within the tectonic related background seismicity. As the geothermal production related seismic source focal mechanisms, moment, and location are better characterized, important pragmatic questions (such as the improvement of injection strategies and 3-d thermohydromechanical model validation) and research issues (such as the relationship between far field seismic signals, local rheology changes, and native state reservoir stress evolution as a function of injection and production transients) can be more systematically addressed. We focus specifically on the 270 MW Coso geothermal field in south-eastern California, which is characterized by both high seismicity rates and relatively high aftershock triggering. After performing statistical de-clustering of local seismicity into background and aftershock rates, we show that the background rate (at both the Coso and Salton Sea geothermal fields) can be approximated during many time intervals at the 90% + confidence level by a linear combination of injection volume and the net extracted volume (difference between production and injection). Different magnitude ranges are sampled to determine if the response is constant with respect to magnitude. We also use relative relocations and focal mechanisms from Yang et al. (2012) to map fault planes within the Coso geothermal field. We

  13. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    African Journals Online (AJOL)

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  14. Application of zero-dimensional thermodynamic model for predicting combustion parameters of CI engine fuelled with biodiesel-diesel blends

    Directory of Open Access Journals (Sweden)

    V. Hariram

    2016-12-01

    Full Text Available Biodiesel from non-edible vegetable oil seems to be a promising alternate for petro-diesel in the present energy scenario. This study analyses the experimental and theoretical effects on the blends of Bee Wax biodiesel with straight diesel on combustion parameters. A zero-dimensional mathematical model is developed to analyse the rise in in-cylinder pressure along with Wiebie’s heat release correlations, ignition delay, gas dynamics model, heat transfer model and frictional model. The combustion parameters include in-cylinder pressure rise, net heat release and rate of pressure rise are investigated and found to be higher for straight diesel and deteriorated with the increase in blends of BWB. The theoretical simulation also supports the experimental data with constant injection timing, speed and compression ratio.

  15. Reservoir sizing using inert and chemically reacting tracers

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.; Tester, J.W.; Brown, L.F.

    1984-01-01

    Non-reactive tracer tests in prototype hot dry rock (HDR) geothermal reservoirs indicate multiple fracture flow paths that show increases in volume due to energy extraction. Tracer modal volumes correlate roughly with estimated reservoir heat-transfer capacity. Chemically reactive tracers are proposed which will map the rate of advance of the cooled region of an HDR reservoir, providing advanced warning of thermal drawdown. Critical parameters are examined using a simplified reservoir model for screening purposes. Hydrolysis reactions are a promising class of reactions for this purpose.

  16. Sidi Saâd reservoir

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-01-12

    Jan 12, 2012 ... with environmental factors in a semi arid area: Sidi. Saâd reservoir .... between changes in environmental parameters, biological factors and ..... Dinophyceae. Copepoda. Anabaena sp. Gonyaulax sp. Acanthocyclops robustus Acanthocyclops viridis. Chroococcus sp. Gonyaulax spinifera. Gloeothece sp.

  17. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  18. Annotated research bibliography for geothermal reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sudol, G.A.; Harrison, R.F.; Ramey, H.J. Jr.

    1979-08-01

    This bibliography is divided into the following subject areas: formation evaluation, modeling, exploitation strategies, and interpretation of production trends. A subject/author index is included. (MHR)

  19. determination of verticality of reservoir engineering structure

    African Journals Online (AJOL)

    user

    recent TLS, digital cameras have been integrated into the instruments which further enhance the beauty and utilization of the instrument. Another possible combination is the determination of the scanner position and orientation with GNSS, which allows the user to transform data to the desired coordinate system with the.

  20. A primer of statistical methods for correlating parameters and properties of electrospun poly(l -lactide) scaffolds for tissue engineering-PART 1: Design of experiments

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-03-20

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-l-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young\\'s modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed.

  1. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 1: design of experiments.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.

  2. Hydrography, HydroBndy-The data set is a line feature containing representing the outline ponds and small reservoirs. It consists of more than 150 lines representing natural and engineered surface water bodies., Published in 2005, Davis County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Hydrography dataset current as of 2005. HydroBndy-The data set is a line feature containing representing the outline ponds and small reservoirs. It consists of more...

  3. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  4. The relationship of geophysical measurements to engineering and construction parameters in the Straight Creek Tunnel pilot bore, Colorado

    Science.gov (United States)

    Scott, J.H.; Lee, F.T.; Carroll, R.D.; Robinson, C.S.

    1968-01-01

    Seismic-refraction and electrical-resistivity measurements made along the walls of the Straight Creek Tunnel pilot bore indicate that both a low-velocity and a high-resistivity layer exist in the disturbed rock surrounding the excavation. Seismic measurements were analyzed to obtain the thickness and seismic velocity of rock in the low-velocity layer, the velocity of rock behind the layer and the amplitude of seismic energy received at the detectors. Electrical-resistivity measurements were analyzed to obtain the thickness and electrical resistivity of the high-resistivity layer and the resistivity of rock behind the layer. The electrical resistivity and the seismic velocity of rock at depth, the thickness of rock in the low-velocity layer, and the relative amplitude of seismic energy were correlated against the following parameters, all of which are important in tunnel construction: height of the tension arch, stable vertical rock load, rock quality, rate of construction and cost per foot, percentage of lagging and blocking, set spacing, and type and amount of steel support required, The correlations were statistically meaningful, having correlation coefficients ranging in absolute value from about 0??7 to nearly 1??0. This finding suggests the possibility of predicting parameters of interest in tunnel construction from geophysical measurements made in feeler holes drilled ahead of a working face. Predictions might be based on correlations established either during the early stages of construction or from geophysical surveys in other tunnels of similar design in similar geologic environments. ?? 1968.

  5. Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach

    International Nuclear Information System (INIS)

    Bose, Probir Kumar; Deb, Madhujit; Banerjee, Rahul; Majumder, Arindam

    2013-01-01

    Environmental issues and rapid exhaustion of fossil fuels are the major concerns over the past two decades to search for alternative fuels. Among various alternatives hydrogen is a long-term renewable and least polluting fuel. Its clean burning capability helps to meet the stern emission norms. Full substitution of diesel with hydrogen may not be convenient for the time being but employing of hydrogen in a diesel engine in dual fuel mode is possible. In this experimental investigation a TMI (timed manifold injection) system has been developed using ECU (electronic control unit) with varying injection strategy to deliver hydrogen on to the intake manifold. Through adopting this technique in the existing diesel engine a momentous improvement in performance and combustion parameters has been observed. The study also attempts to explain the application of the fuzzy logic based Taguchi analysis to optimize the performance parameters i.e. BSEC (Brake specific energy consumption), Vol. Eff. (Volumetric efficiency) and BTHE (brake thermal efficiency) for the different hydrogen injection strategies. - Highlights: • A timed manifold injection system has been developed which enhances the BTHE by 31.74% at full load conditions. • Use of hydrogen-diesel dual fuel of BSEC was reduced by a maximum of 68.98% at full load condition compared to diesel. • Τhe Vol. Eff. reduced by 73.14% in dual fuel mode as compared to 77.23% at full load condition with base diesel. • A fuzzy based Taguchi's parameter design technique has been involved in multi objective optimization for prediction. • Predicted optimum combination improved BTHE and Vol. Eff. by 24.04% and 72.87% respectively and reduced BSEC by 59.03%

  6. Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir

    Science.gov (United States)

    Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang

    2017-10-01

    The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0

  7. Theoretical Study for The Influence of Biodiesel Addition on The Combustion, Performance and Emissions Parameters of Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody

    2017-08-01

    Full Text Available This study examines the characteristics of combustion, performance and emission of constant speed compression ignition engine fed with different percentages of diesel fuel and rapeseed methyl ester (RME on a volume basis by using the well-known software simulation Diesel-RK. As the percentage of RME increased, the maximal pressure is noticed to be closer to top dead center (TDC. It was found that 47.27 %, 81.06 %, 82.56 % and 93.36 % reduction in the Bosch smoke number is obtainable with 10% RME, 20% RME, 50% RME and 100% RME respectively, compared with ordinary diesel. The blends of RME are noticed to emit higher NOx emissions. The result signals that 10% RME is the promising ratio of blending which reports less performance variations and reduced carbon emissions as well. The effect of variable injection timings is studied to moderate biodiesel NOx effects on the 10% RME and 18 degree crank angle before top dead center (BTDC was recorded as the advisable injection timing which gives a promising reduction in NOx emissions.

  8. Hydro/Engineering Geophysical Parameters and Design Response Spectrum for Sustainable Development in Ras Muhammed National Park, Sinai

    Science.gov (United States)

    Khalil, Mohamed H.; Gamal, Mohamed A.

    2016-06-01

    The Egyptian government is preparing a sustainable development master plan for the Ras Muhammed National Park (RMNP), south Sinai. Noteworthy, the scarcity of the freshwater resources and close proximity to the active seismic zones of the Gulf of Aqaba implicate geophysical investigations for the fresh groundwater aquifers and construct a design response spectrum, respectively. Accordingly, 14 VESs, hydro/engineering geophysical analysis, pumping tests, downhole seismic test, a design response spectrum for buildings, and borehole data were carried out in the study area. The unconfined freshwater aquifer was effectively depicted with true resistivities, thickness, and EC ranged from 56 to 135 Ω m, 11 to 112 m, and 1.4 to 7.1 mS/m, respectively. The Northeastern part was characterized by higher aquifer potentiality, where coarser grains size, highest thickness (112 m), high true resistivity (135 Ω m), groundwater flow (0.074 m3/day), tortuosity (1.293-1.312), formation resistivity factor (4.1-4.6), and storativity (0.281-0.276). An increase in pumping rate was accompanied by an increase in well loss, increase in aquifer losses, decrease in well specific capacity, and decrease in well efficiency. Design response spectrum prognosticated the short buildings (<7 floors) in RMNP to be suffering from a high peak horizontal acceleration and shear forces for acceleration between 0.25 and 0.35 g. Therefore, appropriate detailing of shear reinforcement is indispensable to reduce the risk of structural damages at RMNP.

  9. Towards an integrated workflow for structural reservoir model updating and history matching

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Peters, E.; Wilschut, F.

    2011-01-01

    A history matching workflow, as typically used for updating of petrophysical reservoir model properties, is modified to include structural parameters including the top reservoir and several fault properties: position, slope, throw and transmissibility. A simple 2D synthetic oil reservoir produced by

  10. Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications

    Science.gov (United States)

    Dyman, Thaddeus S.; Schmoker, James W.

    2003-01-01

    Oil and gas well production parameters, including peakmonthly production (PMP), peak-consecutive-twelve month production (PYP), and cumulative production (CP), are tested as tools to quantify and understand the heterogeneity of reservoirs in fields where current monthly production is 10 percent or less of PMP. Variation coefficients, defined as VC= (F5-F95)/F50, where F5, F95, and F50 are the 5th, 95th, and 50th (median) fractiles of a probability distribution, are calculated for peak and cumulative production and examined with respect to internal consistency, type of production parameter, conventional versus unconventional accumulations, and reservoir depth. Well-production data for this study were compiled for 69 oil and gas fields in the Lower Pennsylvanian Morrow Formation of the Anadarko Basin, Oklahoma. Of these, 47 fields represent production from marine clastic facies. The Morrow data were supplemented by data from the Upper Cambrian and Lower Ordovician Arbuckle Group, Middle Ordovician Simpson Group, Middle Pennsylvanian Atoka Formation, and Silurian and Lower Devonian Hunton Group of the Anadarko Basin, one large gas field in Upper Cretaceous reservoirs of north-central Montana (Bowdoin field), and three areas of the Upper Devonian and Lower Mississippian Bakken Formation continuous-type (unconventional) oil accumulation in the Williston Basin, North Dakota and Montana. Production parameters (PMP, PYP, and CP) measure the net result of complex geologic, engineering, and economic processes. Our fundamental hypothesis is that well-production data provide information about subsurface heterogeneity in older fields that would be impossible to obtain using geologic techniques with smaller measurement scales such as petrographic, core, and well-log analysis. Results such as these indicate that quantitative measures of production rates and production volumes of wells, expressed as dimensionless variation coefficients, are potentially valuable tools for

  11. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...... driftsstrategier kan erstattes af optimale strategier baseret på den nyeste udvikling indenfor computer-baserede beregninger. Hovedbidraget i afhandlingen er udviklingen af et beregningssystem, hvori en simuleringsmodel er koblet til en model for optimering af nogle udvalgte beslutningsvariable, der i særlig grad...

  12. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors.

    Science.gov (United States)

    Zemke, Peter E; Sommerfeld, Milton R; Hu, Qiang

    2013-06-01

    For the design of a large field of vertical flat plate photobioreactors (PBRs), the effect of four design parameters-initial biomass concentration, optical path length, spacing, and orientation of PBRs-on the biochemical composition and productivity of Chlorella zofingiensis was investigated. A two-stage batch process was assumed in which inoculum is generated under nitrogen-sufficient conditions, followed by accumulation of lipids and carbohydrates in nitrogen-deplete conditions. For nitrogen-deplete conditions, productivity was the most sensitive to initial biomass concentration, as it affects the light availability to individual cells in the culture. An initial areal cell concentration of 50 g m(-2) inoculated into 3.8-cm optical path PBR resulted in the maximum production of lipids (2.42 ± 0.02 g m(-2) day(-1)) and carbohydrates (3.23 ± 0.21 g m(-2) day(-1)). Productivity was less sensitive to optical path length. Optical path lengths of 4.8 and 8.4 cm resulted in similar areal productivities (biomass, carbohydrate, and lipid) that were 20 % higher than a 2.4-cm optical path length. Under nitrogen-sufficient conditions, biomass productivity was 48 % higher in PBRs facing north-south during the winter compared to east-west, but orientation had little influence on biomass productivity during the spring and summer despite large differences in insolation. An optimal spacing could not be determined based on growth alone because a tradeoff was observed in which volumetric and PBR productivity increased as space between PBRs increased, but land productivity decreased.

  13. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  14. Model based management of a reservoir system

    Energy Technology Data Exchange (ETDEWEB)

    Scharaw, B.; Westerhoff, T. [Fraunhofer IITB, Ilmenau (Germany). Anwendungszentrum Systemtechnik; Puta, H.; Wernstedt, J. [Technische Univ. Ilmenau (Germany)

    2000-07-01

    The main goals of reservoir management systems consist of prevention against flood water damages, the catchment of raw water and keeping all of the quality parameters within their limits besides controlling the water flows. In consideration of these goals a system model of the complete reservoir system Ohra-Schmalwasser-Tambach Dietharz was developed. This model has been used to develop optimized strategies for minimization of raw water production cost, for maximization of electrical energy production and to cover flood situations, as well. Therefore a proper forecast of the inflow to the reservoir from the catchment areas (especially flooding rivers) and the biological processes in the reservoir is important. The forecast model for the inflow to the reservoir is based on the catchment area model of Lorent and Gevers. It uses area precipitation, water supply from the snow cover, evapotranspiration and soil wetness data to calculate the amount of flow in rivers. The other aim of the project is to ensure the raw water quality using quality models, as well. Then a quality driven raw water supply will be possible. (orig.)

  15. Correlation-powered information engines and the thermodynamics of self-correction

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-01-01

    Information engines can use structured environments as a resource to generate work by randomizing ordered inputs and leveraging the increased Shannon entropy to transfer energy from a thermal reservoir to a work reservoir. We give a broadly applicable expression for the work production of an information engine, generally modeled as a memoryful channel that communicates inputs to outputs as it interacts with an evolving environment. The expression establishes that an information engine must have more than one memory state in order to leverage input environment correlations. To emphasize this functioning, we designed an information engine powered solely by temporal correlations and not by statistical biases, as employed by previous engines. Key to this is the engine's ability to synchronize—the engine automatically returns to a desired dynamical phase when thrown into an unwanted, dissipative phase by corruptions in the input—that is, by unanticipated environmental fluctuations. This self-correcting mechanism is robust up to a critical level of corruption, beyond which the system fails to act as an engine. We give explicit analytical expressions for both work and critical corruption level and summarize engine performance via a thermodynamic-function phase diagram over engine control parameters. The results reveal a thermodynamic mechanism based on nonergodicity that underlies error correction as it operates to support resilient engineered and biological systems.

  16. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  17. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  18. Optimal nonlinear information processing capacity in delay-based reservoir computers

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  19. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J.

    1993-05-01

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho's INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ''Data'' section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ''Data'' section does not include actual values or data

  20. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-III. 5. Parameter and State Estimation Using DSD

    International Nuclear Information System (INIS)

    Aldemir, Tunc; Wang, Peng; Miller, Don W.

    2001-01-01

    The DSD (dynamic system doctor) is a system-independent, interactive software under development for on-line state/parameter estimation in dynamic systems, partially supported through a Nuclear Engineering Education grant during 1998-2001. This paper summarizes the recent accomplishments in improving the user-friendliness and computational capability of DSD. During the past 3 years several accomplishments have been made in improving the user-friendliness and computational capability of DSD. We describe the major ones: Development of User Interface Module for Model and Partitioning Data Input; Development of Multi-Threading Capability; Dynamic Partitioning; Recursive Partitioning. The DSD is currently capable of tracking several parameters/state variables per task (or system) for on-line monitoring; multiple tasks can be run. The algorithm is transparent to the user. The model and data input are accomplished through dialogue windows. The software is highly transportable because of its self-installment/de-installment capability. A current practical implementation is global xenon estimation in nuclear reactors in real time. Future applications will include in-core power monitoring in nuclear reactors using constant-temperature power sensors

  1. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  2. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  3. Modeling the impact of in-cylinder combustion parameters of DI engines on soot and NOx emissions at rated EGR levels using ANN approach

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Taghavifar, Hadi; Mardani, Aref; Mohebbi, Arash

    2014-01-01

    Highlights: • Effect of in-cylinder combustion parameters on soot and NOx emissions at rated EGR levels was studied. • ANN model was adopted to predict the emissions under the effect of combustion parameters. • A trainlm ANN with 5-19-17-2 structure denoted MSE equal to 0.0004627 as outperforming model. • Increment of EGR reduced the emissions where the equivalence ratio had contradictory effect. - Abstract: This study examines the effect of in-cylinder combustion parameters on soot and NOx emissions at rated EGR levels by using the data obtained from the CFD implemented code. The obtained data were subsequently used to construct an artificial neural network (ANN) model to predict the soot and NOx productions. To this aim, at three different engine speeds of 2000, 3000 and 4000 rpm, heat release rate, equivalence ratio, turbulence kinetic energy and temperature varied to obtain the relevant soot and NOx data at three EGR levels of 0.2, 0.3 and 0.4. It was discovered that wherein the application of higher EGR rates reduced the NOx as a result of mixture dilution, equivalence ratio increment makes soot production to be increased as well as NOx emission. It was also found that the application of higher EGR from 20% to 40% decreased soot mass fraction in the combustion chamber. Increment of EGR reduced the emissions where the equivalence ratio had contradictory effect on the produced emissions. Various ANN topological configurations and training algorithms were incorporated to yield the optimal solution to the modeling problem applying statistical criteria. Among the four adopted training algorithms of trainlm, trainscg, trainrp, and traingdx, the training function of Levenberg–Marquardt (trainlm) with topological structure of 5-19-17-2 denoted MSE equal to 0.0004627

  4. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.; Donaldson, A.; Shumaker, R.; Wilson, T.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositional systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.

  5. Small Reservoir Impact on Simulated Watershed-Scale Nutrient Yield

    Directory of Open Access Journals (Sweden)

    Shane J. Prochnow

    2007-01-01

    Full Text Available The soil and water assessment tool (SWAT is used to assess the influence of small upland reservoirs (PL566 on watershed nutrient yield. SWAT simulates the impact of collectively increasing and decreasing PL566 magnitudes (size parameters on the watershed. Totally removing PL566 reservoirs results in a 100% increase in total phosphorus and an 82% increase in total nitrogen, while a total maximum daily load (TMDL calling for a 50% reduction in total phosphorus can be achieved with a 500% increase in the magnitude of PL566s in the watershed. PL566 reservoirs capture agriculture pollution in surface flow, providing long-term storage of these constituents when they settle to the reservoir beds. A potential strategy to reduce future downstream nutrient loading is to enhance or construct new PL566 reservoirs in the upper basin to better capture agricultural runoff.

  6. The Hybrid of Classification Tree and Extreme Learning Machine for Permeability Prediction in Oil Reservoir

    KAUST Repository

    Prasetyo Utomo, Chandra

    2011-06-01

    Permeability is an important parameter connected with oil reservoir. Predicting the permeability could save millions of dollars. Unfortunately, petroleum engineers have faced numerous challenges arriving at cost-efficient predictions. Much work has been carried out to solve this problem. The main challenge is to handle the high range of permeability in each reservoir. For about a hundred year, mathematicians and engineers have tried to deliver best prediction models. However, none of them have produced satisfying results. In the last two decades, artificial intelligence models have been used. The current best prediction model in permeability prediction is extreme learning machine (ELM). It produces fairly good results but a clear explanation of the model is hard to come by because it is so complex. The aim of this research is to propose a way out of this complexity through the design of a hybrid intelligent model. In this proposal, the system combines classification and regression models to predict the permeability value. These are based on the well logs data. In order to handle the high range of the permeability value, a classification tree is utilized. A benefit of this innovation is that the tree represents knowledge in a clear and succinct fashion and thereby avoids the complexity of all previous models. Finally, it is important to note that the ELM is used as a final predictor. Results demonstrate that this proposed hybrid model performs better when compared with support vector machines (SVM) and ELM in term of correlation coefficient. Moreover, the classification tree model potentially leads to better communication among petroleum engineers concerning this important process and has wider implications for oil reservoir management efficiency.

  7. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  8. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens

    2015-05-01

    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History matching has long been dominated by adjusting reservoir parameters based solely on well data whose spatial sparse sampling has been a challenge for characterizing the flow properties in areas away from the wells. Geophysical data are widely collected nowadays for reservoir monitoring purposes, but has not yet been fully integrated into history matching and forecasting fluid flow. In this thesis, I present a pioneering approach towards incorporating different time-lapse geophysical data together for enhancing reservoir history matching and uncertainty quantification. The thesis provides several approaches to efficiently integrate multiple geophysical data, analyze the sensitivity of the history matches to observation noise, and examine the framework’s performance in several settings, such as the Norne field in Norway. The results demonstrate the significant improvements in reservoir forecasting and characterization and the synergy effects encountered between the different geophysical data. In particular, the joint use of electromagnetic and seismic data improves the accuracy of forecasting fluid properties, and the usage of electromagnetic data has led to considerably better estimates of hydrocarbon fluid components. For volatile oil and gas reservoirs the joint integration of gravimetric and InSAR data has shown to be beneficial in detecting the influx of water and thereby improving the recovery rate. Summarizing, this thesis makes an important contribution towards integrated reservoir management and multiphysics integration for reservoir history matching.

  9. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  10. A primer of statistical methods for correlating parameters and properties of electrospun poly( l -lactide) scaffolds for tissue engineering-PART 2: Regression

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-04-07

    This two-articles series presents an in-depth discussion of electrospun poly-l-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y1-4), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y4) and morphological descriptors of the scaffolds (Y1-3) in 32 types of scaffolds, finding that the mean fiber diameter (Y1) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y5) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y1-4). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y1-4), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters.

  11. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 2: regression.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Mozetic, Pamela; Rainer, Alberto; Giannitelli, Sara Maria; Basoli, Francesco; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    This two-articles series presents an in-depth discussion of electrospun poly-L-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y₁₋₄), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y₄) and morphological descriptors of the scaffolds (Y₁₋₃) in 32 types of scaffolds, finding that the mean fiber diameter (Y₁) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y₅) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y₁₋₄). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y₁₋₄), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters. © 2014 Wiley Periodicals, Inc.

  12. Integrated reservoir assessment and characterization: Final report, October 1, 1985--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M.; Szpakiewicz, M.; Sharma, B.; Chang, Ming-Ming; Schatzinger, R.; Jackson, S.; Tomutsa, L.; Maerefat, N.

    1989-05-01

    This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.

  13. Permeability Variation Models for Unsaturated Coalbed Methane Reservoirs

    Directory of Open Access Journals (Sweden)

    Lv Yumin

    2016-05-01

    Full Text Available A large number of models have been established to describe permeability variation with the depletion of reservoir pressure to date. However, no attempt has been made to draw enough attention to the difference in the effect of various factors on permeability variation in different production stages of unsaturated CoalBed Methane (CBM reservoirs. This paper summarizes the existing and common permeability models, determines the relationship between various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to quantificationally describe permeability variation, and finally discusses the effects of various factors (gas saturation, cleat porosity, Poisson’s ratio and shrinkage coefficient on permeability variation. The results show that permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that permeability variation is only affected by the effective stress effect, and the second is that permeability variation is affected by the combination of the effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than the effective stress effect, which leads to an increase in permeability with depletion of reservoir pressure. Sensitivity analysis of parameters in the improved models reveals that those parameters associated with gas saturation, such as gas content, reservoir pressure, Langmuir volume and Langmuir pressure, have a significant impact on permeability variation in the first stage, and the important parameters in the second stage are the gas content, reservoir pressure, Langmuir volume, Langmuir pressure, Poisson’s ratio, Young’s modulus and shrinkage coefficient during the depletion of reservoir pressure. A comparative

  14. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  15. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    Science.gov (United States)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  16. Limnology of the Huesna reservoir, Spain; Limnologia del embalse del Huesna

    Energy Technology Data Exchange (ETDEWEB)

    Medina Vela, M.; Diaz Borrego, M. D.; Puente Guisado, M. L.; Burraco Barrera, C. [Consorcio del Huesna. Sevilla (Spain)

    1999-07-01

    The limnological study of a reservoir is based on the periodic monitoring of a number of physicochemical and biological parameters. These data together with data on climate change and turnover rate enable us to determine reservoir water quality and forecast behaviour. Knowledge of the ecology of reservoirs, used for drinking water supply, is essential to be able to take water from depth, with the best characteristics for treatment there by reducing treatment cost. The study shows the steps followed to initiate a study of de Huesca reservoir and complete the first year. No previous data exist from the reservoir because it only started being used recently. (Author) 8 refs.

  17. Development of a segmentation method for analysis of Campos basin typical reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Eneida Arendt; Bueno, Andre Duarte [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao de Petroleo (LENEP)]. E-mails: eneida@lenep.uenf.br; bueno@lenep.uenf.br

    2008-07-01

    This paper represents a master thesis proposal in Exploration and Reservoir Engineering that have the objective to development a specific segmentation method for digital images of reservoir rocks, which produce better results than the global methods available in the bibliography for the determination of rocks physical properties as porosity and permeability. (author)

  18. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Twin Buttes Dam and Reservoir... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.22 Twin Buttes Dam..., shall operate the Twin Buttes Dam and Reservoir in the interest of flood control as follows: (a...

  19. Elements of Poro-Elasticity for Reservoir Engineering Éléments de poro-élasticité pour l'ingénierie de réservoirs

    Directory of Open Access Journals (Sweden)

    Bouteca M.

    2006-11-01

    Full Text Available Poro-elasticity is introduced by establishing the parallel between the equations of elastic solid mechanics and the equations describing the single-phase flow of a fluid in a porous medium. We then develop a number of practical applications of poro-elasticity for reservoir engineering. In conclusion, we demonstrate that poro-elasticity helps to define rigorously the total compressibility factor of the diffusivity equation, and we quantify the contribution of the elastic deformation of the rock to production. Dans la première partie de ce document nous élaborons progressivement les équations de la poro-élasticité. On établit tout d'abord le parallèle entre les équations de la mécanique du solide déformable et l'équation décrivant l'écoulement d'un fluide incompressible dans un milieu poreux. La démarche adoptée pour établir ces équations (définition d'un potentiel, de son gradient, du flux associé et de la divergence du flux sera conservée tout au long de la première partie. Le parallèle étant établi on montre les modifications apportées par la prise en compte de la compressibilité du fluide. La poro-élasticité n'est introduite qu'après cette étape, et l'on souligne les modifications introduites par le couplage entre l'écoulement du fluide et la déformation du milieu poreux. A ce stade, l'équation de diffusivité hydraulique contient un terme de couplage qui décrit la contribution de la déformation du solide à l'écoulement du fluide. L'ensemble de la démarche est illustré par trois tableaux synthétiques (tableaux 1 à 3. Les bases de la poro-mécaniques ont été définies par M. A. Biot dont les travaux demeurent la référence indispensable. Nous avons également eu recours aux travaux de 0. Coussy, en particulier nous avons utilisé la masse fluide comme variable au lieu d'utiliser le volume fluide. Dans la deuxième partie de ce document, nous montrons quelques applications de la poro

  20. Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2016-01-01

    Highlights: • The influence of the principal pilot injection parameters is discussed for low-temperature combustion systems. • Swirl-sweep and dwell-time sweep results are combined to analyze soot emissions. • The pilot injection effects are investigated in injection profiles featuring rate-shaped main injections. - Abstract: The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NO x emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot

  1. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  2. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  3. Use of isotopes techniques during the life cycle of dams and reservoirs: cases in Latin American

    International Nuclear Information System (INIS)

    Leon, S.H.

    2006-01-01

    In fact, the combined use of isotope and conventional techniques is considered a reliable tool for studying problems related to dam safety and has become a new culture for civil / dam engineers, hydro geologists and researchers who involve in water resource management fields. The use of natural (environmental) and artificial isotopes as tracers together with systematic analyses of the hydrochemistry, electrical conductivity and temperature profiles data during the investigation and monitoring of leakage and seepage in dams and reservoirs are now becoming popular among the dam owners in seeking the best solution for dam related problems. Many studies and experiences worldwide on effective dam management programmes have indicated that any investigation about leakages and seepages are not possible to be accomplished successfully without synergic application of the conventional technologies and isotopic techniques. The major advancement in this area is the measurements study for establishment of baseline hydrogeology at each hydraulic work project like dams and reservoirs. The parameters include hydro chemicals, isotopic and geologic in each basin, river, reservoir, dams, tunnels and groundwater which provide high value information for decision making during all the stages in the life cycle of the dams. Many hydroelectric and water supply projects in latin america apply these investigation strategies. The main target is to investigate and understand the water movement around the dam and its vicinity. Then the specialised work teams will decide for the effective and economic monitoring activities and the implementation of the recommended remedial measures to ensure high standards of safety and security of the large dams and reservoirs. A typical example of specific leakage investigation of la Honda dam is briefly discussed. (Author)

  4. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Dam failure has been the subject of many hydraulic engineering studies due to its complicated physics with many uncertainties involved and the potential to cause many ... This paper presents an experimental study on instantaneous dam failure flood under different reservoir's capacities and lengths in which the side slopes ...

  5. Monthly reservoir inflow forecasting using a new hybrid SARIMA ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, Razi University, Kermanshah, Iran. ∗. Corresponding author. e-mail: bonakdari@yahoo.com. Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average ...

  6. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  7. Reservoir Characterization of Upper Devonian Gordon Sandstone, Jacksonburg, Stringtown Oil Field, Northwestern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Avary, K.L.; Bilgesu, H.I.; Hohn, M.E.; McDowell, R.R.; Patchen, D.L.

    2002-05-21

    The purpose of this work was to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production.

  8. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    International Nuclear Information System (INIS)

    Schmukat, A.; Duester, L.; Goryunova, E.; Ecker, D.; Heininger, P.; Ternes, T.A.

    2016-01-01

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  9. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schmukat, A., E-mail: schmukat@harzwasserwerke.de [Harzwasserwerke GmbH, Zur Granetalsperre 8, 38685 Langelsheim (Germany); Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Duester, L. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Goryunova, E. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); KAPP-Chemie GmbH & Co. KG, Industriestr. 2-4, 56357 Miehlen (Germany); Ecker, D.; Heininger, P.; Ternes, T.A. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2016-03-05

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  10. Reservoir characterization using core, well log, and seismic data and intelligent software

    Science.gov (United States)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from

  11. The tight reservoir microscopic classification of southern part of Qijia area in Songliao Basin

    Science.gov (United States)

    Hang, Fu

    2018-02-01

    With the decreasing of the conventional oil and gas reserves, the unconventional tight oil and gas are gradually becoming the focus of the study. The casting thin section, conventional mercury injection, constant velocity and pressure mercury and other experimental methods, tight reservoir microscopic characteristics in southern part of Qijia area were studied in this paper. Based on the above conditions, combined with the parameters of pore type, pore throat radius, the reservoir is divided into two types, conventional reservoir and low permeability tight reservoir. Reservoir conventional reservoir permeability values are greater than 1mD, low permeability tight reservoirs are classified into IIa type and IIb type, which provides some reference value for the actual exploration and development.

  12. Rate Transient Analysis for Multistage Fractured Horizontal Well in Tight Oil Reservoirs considering Stimulated Reservoir Volume

    Directory of Open Access Journals (Sweden)

    Ruizhong Jiang

    2014-01-01

    Full Text Available A mathematical model of multistage fractured horizontal well (MsFHW considering stimulated reservoir volume (SRV was presented for tight oil reservoirs. Both inner and outer regions were assumed as single porosity media but had different formation parameters. Laplace transformation method, point source function integration method, superposition principle, Stehfest numerical algorithm, and Duhamel’s theorem were used comprehensively to obtain the semianalytical solution. Different flow regimes were divided based on pressure transient analysis (PTA curves. According to rate transient analysis (RTA, the effects of related parameters such as SRV radius, storativity ratio, mobility ratio, fracture number, fracture half-length, and fracture spacing were analyzed. The presented model and obtained results in this paper enrich the performance analysis models of MsFHW considering SRV.

  13. Geometric quantum discord and non-Markovianity of structured reservoirs

    Science.gov (United States)

    Hu, Ming-Liang; Lian, Han-Li

    2015-11-01

    The reservoir memory effects can lead to information backflow and recurrence of the previously lost quantum correlations. We establish connections between the direction of information flow and variation of the geometric quantum discords (GQDs) measured respectively by the trace distance, the Hellinger distance, and the Bures distance for two qubits subjecting to the bosonic structured reservoirs, and unveil their dependence on a factor whose derivative signifies the (non-)Markovianity of the dynamics. By considering the reservoirs with Lorentzian and Ohmic-like spectra, we further demonstrated that the non-Markovianity induced by the backflow of information from the reservoirs to the system enhances the GQDs in most of the parameter regions. This highlights the potential of non-Markovianity as a resource for protecting the GQDs.

  14. Looking for diagnostics parameters of bearings of the gas turbine engine LM 2500 on the basis of mechanical contaminations in the lubricating oil

    Directory of Open Access Journals (Sweden)

    Waldemar MIRONIUK

    2009-01-01

    Full Text Available While operation a gas turbine engine more modest methods of research are brought into effect. But one of the basic methods to estimate the technical condition of gas turbine engines bearing is oil analysis. To estimate the technical condition of gas turbine engines bearing systems on the basis of oil research on, an x-ray method of radio-isotope fluorescence was used. This method has been also satisfactorily used in aircraft engine diagnosis.This paper presents the method of diagnosis bearings of marine gas turbines on the basis of studies of mechanical contamination in oil. Results of mechanical contamination research in oil vs time of engine work are presented. On the basis of experiments results the analytical function that makes calculating the future value of the process possible was chosen.

  15. A review of reservoir desiltation

    DEFF Research Database (Denmark)

    Brandt, Anders

    2000-01-01

    physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation......physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation...

  16. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  17. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... 50% calcite, leaving the remaining internal surface to the fine grained silica and clay. The high specific surface of these components causes clay- and silica rich intervals to have high irreducible water saturation. Although chalks typically are found to be water wet, chalk with mixed wettability...... stabilizes chemically by recrystallization. This process requires energy and is promoted by temperature. This recrystallization in principle does not influence porosity, but only specific surface, which decreases during recrystallization, causing permeability to increase. The central North Sea is a warm...

  18. Pacifiers: a microbial reservoir.

    Science.gov (United States)

    Comina, Elodie; Marion, Karine; Renaud, François N R; Dore, Jeanne; Bergeron, Emmanuelle; Freney, Jean

    2006-12-01

    The permanent contact between the nipple part of pacifiers and the oral microflora offers ideal conditions for the development of biofilms. This study assessed the microbial contamination on the surface of 25 used pacifier nipples provided by day-care centers. Nine were made of silicone and 16 were made of latex. The biofilm was quantified using direct staining and microscopic observations followed by scraping and microorganism counting. The presence of a biofilm was confirmed on 80% of the pacifier nipples studied. This biofilm was mature for 36% of them. Latex pacifier nipples were more contaminated than silicone ones. The two main genera isolated were Staphylococcus and Candida. Our results confirm that nipples can be seen as potential reservoirs of infections. However, pacifiers do have some advantages; in particular, the potential protection they afford against sudden infant death syndrome. Strict rules of hygiene and an efficient antibiofilm cleaning protocol should be established to answer the worries of parents concerning the safety of pacifiers.

  19. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  20. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes; W. Lynn Watney; Willard Guy

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- to 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of

  1. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  2. An algorithm for the visualization of stochastically generated colour images of reservoir attributes, structural information and reservoir boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, O.G.; Intevep, S.A.

    1995-12-31

    Visualization of reservoir models, integration of a variety of relevant information and generation of final maps on both computer screen and paper, are important parts of reservoir modelling work. The automation of the map generation process enhances the visualization of models integrating multiple geological features, improves quality and reduces time requirements. This paper presents an image processing algorithm, developed on workstations, which enhances the integration of information used in visualizing and representing reservoir models and related geological-engineering characteristics. The algorithm can integrate images of: (1) Stochastically generated colour maps of reservoir attributes. (2) Scanned structural reservoir maps including faults as well as borehole locations and names. (3) Scanned maps of reservoir boundaries. This information is digitally integrated into a single colour map that can be manipulated on the screen or printed on paper. Part of the work is developed to extend the visualization of two dimensional maps such as structural maps into three dimensions without relying on digitizer tables. The practical aspects and visualization capabilities of the algorithm are demonstrated with examples.

  3. Investigation of seasonal thermal flow in a real dam reservoir using 3-D numerical modeling

    Directory of Open Access Journals (Sweden)

    Üneş Fatih

    2015-03-01

    Full Text Available Investigations indicate that correct estimation of seasonal thermal stratification in a dam reservoir is very important for the dam reservoir water quality modeling and water management problems. The main aim of this study is to develop a hydrodynamics model of an actual dam reservoir in three dimensions for simulating a real dam reservoir flows for different seasons. The model is developed using nonlinear and unsteady continuity, momentum, energy and k-ε turbulence model equations. In order to include the Coriolis force effect on the flow in a dam reservoir, Coriolis force parameter is also added the model equations. Those equations are constructed using actual dimensions, shape, boundary and initial conditions of the dam and reservoir. Temperature profiles and flow visualizations are used to evaluate flow conditions in the reservoir. Reservoir flow’s process and parameters are determined all over the reservoir. The mathematical model developed is capable of simulating the flow and thermal characteristics of the reservoir system for seasonal heat exchanges. Model simulations results obtained are compared with field measurements obtained from gauging stations for flows in different seasons. The results show a good agreement with the field measurements.

  4. Gravity observations for hydrocarbon reservoir monitoring

    NARCIS (Netherlands)

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The

  5. Microstructural characterization of reservoir rocks by X-ray microtomography

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel Salvi; Appoloni, Carlos Roberto

    2007-01-01

    The evaluation of microstructural parameters from reservoir rocks is of great importance for petroleum industries. This work presents measurements of total porosity and pore size distribution of a sandstone sample from Tumblagooda geological formation, extracted from the Kalbari National Park in Australia. X-ray microtomography technique was used for determining porosity and pore size distribution. Other techniques, such as mercury intrusion porosimetry and Archimedes method have also been applied for those determinations but since they are regarded destructive techniques, samples cannot usually be used for further analyses. X-ray microtomography, besides allowing future analyses of a sample already evaluated, also provides tridimensional images of the sample. The experimental configuration included a SkysCan 1172 from CENPES-PETROBRAS, Rio de Janeiro, Brazil. The spatial resolution of this equipment is 2.9 μm. Images have been reconstructed using NRecon software and analysed with the IMAGO software developed by the Laboratory of Porous Materials and Thermophysical Properties of the Department of Mechanical Engineering / Federal University of Santa Catarina, Florianopolis, Brazil

  6. Upscaling verticle permeability within a fluvio-aeolian reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-08-01

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  7. Enhanced characterization of reservoir hydrocarbon components using electromagnetic data attributes

    KAUST Repository

    Katterbauer, Klemens

    2015-12-23

    Advances in electromagnetic imaging techniques have led to the growing utilization of this technology for reservoir monitoring and exploration. These exploit the strong conductivity contrast between the hydrocarbon and water phases and have been used for mapping water front propagation in hydrocarbon reservoirs and enhancing the characterization of the reservoir formation. The conventional approach for the integration of electromagnetic data is to invert the data for saturation properties and then subsequently use the inverted properties as constraints in the history matching process. The non-uniqueness and measurement errors may however make this electromagnetic inversion problem strongly ill-posed, leading to potentially inaccurate saturation profiles. Another limitation of this approach is the uncertainty of Archie\\'s parameters in relating rock conductivity to water saturation, which may vary in the reservoir and are generally poorly known. We present an Ensemble Kalman Filter framework for efficiently integrating electromagnetic data into the history matching process and for simultaneously estimating the Archie\\'s parameters and the variance of the observation error of the electromagnetic data. We apply the proposed framework to a compositional reservoir model. We aim at assessing the relevance of EM data for estimating the different hydrocarbon components of the reservoir. The experimental results demonstrate that the individual hydrocarbon components are generally well matched, with nitrogen exhibiting the strongest improvement. The estimated observation error standard deviations are also within expected levels (between 5 and 10%), significantly contributing to the robustness of the proposed EM history matching framework. Archie\\'s parameter estimates approximate well the reference profile and assist in the accurate description of the electrical conductivity properties of the reservoir formation, hence leading to estimation accuracy improvements of around

  8. Thermal noise engines

    OpenAIRE

    Kish, Laszlo B.

    2010-01-01

    Electrical heat engines driven by the Johnson-Nyquist noise of resistors are introduced. They utilize Coulomb's law and the fluctuation-dissipation theorem of statistical physics that is the reverse phenomenon of heat dissipation in a resistor. No steams, gases, liquids, photons, combustion, phase transition, or exhaust/pollution are present here. In these engines, instead of heat reservoirs, cylinders, pistons and valves, resistors, capacitors and switches are the building elements. For the ...

  9. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    Science.gov (United States)

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  10. The influence of engine operating parameters on aldehyde emissions from an ethanol-fuelled vehicle; Influencia de parametros de operacao do motor nas emissoes de aldeidos por um veiculo a etanol

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Rinaldo Antunes [FIAT Automoveis S.A., Betim, MG (Brazil). Engenharia de Motores]. E-mail: expmotor@fiat.com.br; Sodre, Jose Ricardo [Pontificia Univ. Catolica de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: ricardo@pucminas.br

    2000-07-01

    This work presents results and analysis of experiments on aldehyde emissions and on the regulated pollutants (CO, HC and NO{sub X}) emissions, with varying engine operational parameters in an ethanol-fuelled vehicle during a standard urban test cycle. The test cycle was carried out with the vehicle in a chassis dynamometer, and simulates an average urban trip of approximately 5,8 km, under steady state conditions. The varied parameters were fuel/air equivalence ratio, dash pot function, cut off function and gear change speed. The results found showed lower aldehyde emissions for gear change at lower speeds and for richer mixtures. (author)

  11. Sediment Characteristics of Tennessee Streams and Reservoirs

    National Research Council Canada - National Science Library

    Trimble, Stanley W; Carey, William P

    1984-01-01

    Suspended-sediment and reservoir sedimentation data have been analyzed to determine sediment yields and transport characteristics of Tennessee streams Data from 31 reservoirs plus suspended-sediment...

  12. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  13. Changes to the Bakomi Reservoir

    Directory of Open Access Journals (Sweden)

    Kubinský Daniel

    2014-08-01

    Full Text Available This article is focused on the analysis and evaluation of the changes of the bottom of the Bakomi reservoir, the total volume of the reservoir, ecosystems, as well as changes in the riparian zone of the Bakomi reservoir (situated in the central Slovakia. Changes of the water component of the reservoir were subject to the deposition by erosion-sedimentation processes, and were identifed on the basis of a comparison of the present relief of the bottom of reservoir obtained from feld measurements (in 2011 with the relief measurements of the bottom obtained from the 1971 historical maps, (i.e. over a period of 40 years. Changes of landscape structures of the riparian zone have been mapped for the time period of 1949–2013; these changes have been identifed with the analysis of ortophotomaps and the feld survey. There has been a signifcant rise of disturbed shores with low herb grassland. Over a period of 40 years, there has been a deposition of 667 m3 of sediments. The results showed that there were no signifcant changes in the local ecosystems of the Bakomi reservoir in comparison to the other reservoirs in the vicinity of Banská Štiavnica.

  14. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  15. The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs

    Science.gov (United States)

    Tan, Maojin; Bai, Ze; Xu, Jingjing

    2017-04-01

    Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF

  16. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi

    2012-12-01

    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  17. Virtual outcrop models of petroleum reservoir outcrop analogues – a review of the current state-of-the-art

    OpenAIRE

    Pringle, JK; Howell, JA; Hodgetts, D; Westerman, AR; Hodgson, DM

    2006-01-01

    A subsurface reservoir model is a computer based representation of petrophysical parameters such a porosity, permeability, fluid saturation, etc. Given that direct measurement of these parameters is limited to a few wells it is necessary to extrapolate their distribution. As geology is a first order control on petrophysics, it follows that an understanding of facies and their distribution is central to predicting reservoir quality and architecture. The majority of reservoir modelling systems ...

  18. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    Science.gov (United States)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  19. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  20. Integration of dynamical data in a geostatistical model of reservoir; Integration des donnees dynamiques dans un modele geostatistique de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Costa Reis, L.

    2001-01-01

    We have developed in this thesis a methodology of integrated characterization of heterogeneous reservoirs, from geologic modeling to history matching. This methodology is applied to the reservoir PBR, situated in Campos Basin, offshore Brazil, which has been producing since June 1979. This work is an extension of two other thesis concerning geologic and geostatistical modeling of the reservoir PBR from well data and seismic information. We extended the geostatistical litho-type model to the whole reservoir by using a particular approach of the non-stationary truncated Gaussian simulation method. This approach facilitated the application of the gradual deformation method to history matching. The main stages of the methodology for dynamic data integration in a geostatistical reservoir model are presented. We constructed a reservoir model and the initial difficulties in the history matching led us to modify some choices in the geological, geostatistical and flow models. These difficulties show the importance of dynamic data integration in reservoir modeling. The petrophysical property assignment within the litho-types was done by using well test data. We used an inversion procedure to evaluate the petrophysical parameters of the litho-types. The up-scaling is a necessary stage to reduce the flow simulation time. We compared several up-scaling methods and we show that the passage from the fine geostatistical model to the coarse flow model should be done very carefully. The choice of the fitting parameter depends on the objective of the study. In the case of the reservoir PBR, where water is injected in order to improve the oil recovery, the water rate of the producing wells is directly related to the reservoir heterogeneity. Thus, the water rate was chosen as the fitting parameter. We obtained significant improvements in the history matching of the reservoir PBR. First, by using a method we have proposed, called patchwork. This method allows us to built a coherent

  1. THE SURDUC RESERVOIR (ROMANIA

    Directory of Open Access Journals (Sweden)

    Niculae Iulian TEODORESCU

    2008-06-01

    Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.

  2. Carbonate reservoir characterization with lithofacies clustering and porosity prediction

    International Nuclear Information System (INIS)

    Al Moqbel, Abdulrahman; Wang, Yanghua

    2011-01-01

    One of the objectives in reservoir characterization is to quantitatively or semi-quantitatively map the spatial distribution of its heterogeneity and related properties. With the availability of 3D seismic data, artificial neural networks are capable of discovering the nonlinear relationship between seismic attributes and reservoir parameters. For a target carbonate reservoir, we adopt a two-stage approach to conduct characterization. First, we use an unsupervised neural network, the self-organizing map method, to classify the reservoir lithofacies. Then we apply a supervised neural network, the back-propagation algorithm, to quantitatively predict the porosity of the carbonate reservoir. Based on porosity maps at different time levels, we interpret the target reservoir vertically related to three depositional phases corresponding to, respectively, a lowstand system tract before sea water immersion, a highstand system tract when water covers organic deposits and a transition zone for the sea level falling. The highstand system is the most prospective zone, given the organic content deposited during this stage. The transition zone is also another prospective feature in the carbonate depositional system due to local build-ups

  3. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    Science.gov (United States)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  4. Sampling from stochastic reservoir models constrained by production data

    Energy Technology Data Exchange (ETDEWEB)

    Hegstad, Bjoern Kaare

    1997-12-31

    When a petroleum reservoir is evaluated, it is important to forecast future production of oil and gas and to assess forecast uncertainty. This is done by defining a stochastic model for the reservoir characteristics, generating realizations from this model and applying a fluid flow simulator to the realizations. The reservoir characteristics define the geometry of the reservoir, initial saturation, petrophysical properties etc. This thesis discusses how to generate realizations constrained by production data, that is to say, the realizations should reproduce the observed production history of the petroleum reservoir within the uncertainty of these data. The topics discussed are: (1) Theoretical framework, (2) History matching, forecasting and forecasting uncertainty, (3) A three-dimensional test case, (4) Modelling transmissibility multipliers by Markov random fields, (5) Up scaling, (6) The link between model parameters, well observations and production history in a simple test case, (7) Sampling the posterior using optimization in a hierarchical model, (8) A comparison of Rejection Sampling and Metropolis-Hastings algorithm, (9) Stochastic simulation and conditioning by annealing in reservoir description, and (10) Uncertainty assessment in history matching and forecasting. 139 refs., 85 figs., 1 tab.

  5. The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects

    Science.gov (United States)

    Alves, Eduardo Q.; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher

    2018-03-01

    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.

  6. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  7. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  8. Assessment of the water quality parameters in relation to fish ...

    African Journals Online (AJOL)

    Physicochemical indices of water body changed seasonally and this necessitated an investigation to assess the water quality parameters of Osinmo reservoir in relation to its fish species. The water quality parameters were measured using standard methods. Results obtained show that the reservoir is alkaline in nature with ...

  9. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    Science.gov (United States)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  10. Assessment of Ilam Reservoir Eutrophication Response in Controlling Water Inflow

    Directory of Open Access Journals (Sweden)

    Fereshteh Nourmohammadi Dehbalaei

    2016-12-01

    Full Text Available In this research, a 2D laterally averaged model of hydrodynamics and water quality, CE-QUAL-W2, was applied to simulate water quality parameters in the Ilam reservoir. The water quality of Ilam reservoir was obtained between mesotrophic and eutrophic based on the measured data including chlorophyll a, total phosphorus and subsurface oxygen saturation. The CE-QUAL-W2 model was calibrated and verified by using the data of the year 2009 and 2010, respectively. Nutrients, chlorophyll a and dissolved oxygen were the water quality constituents simulated by the CE-QUAL-W2 model. The comparison of the simulated water surface elevation with the measurement records indicated that the flow was fully balanced in the numerical model. There was a good agreement between the simulated and measured results of the hydrodynamics and water quality constituents in the calibration and verification periods. Some scenarios have been made base on decreasing in water quantity and nutrient inputs of reservoir inflows. The results have shown that the water quality improvements of the Ilam reservoir will not be achieved by reducing a portion of the reservoir inflow. The retention time of water in reservoir would be changed by decreasing of inflows and it made of the negative effects on the chlorophyll-a concentration by reduction of nutrient inputs and keeping constant of discharge inflow to reservoir, the concentration of total phosphorus would be significantly changed and also the concentration of chlorophyll-a was constant approximately. Thus, the effects of control in nutrient inputs are much more than control in discharge inflows in the Ilam reservoir.

  11. Multi-objective Optimization of the Mississippi Headwaters Reservoir System

    Science.gov (United States)

    Faber, B. A.; Harou, J. J.

    2006-12-01

    The Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers is participating in a re- operation study of the Mississippi Headwaters reservoir system. The study, termed ROPE (Reservoir Operation Plan Evaluation), will develop a new operation policy for the reservoir system in a Shared Vision Planning effort. The current operating plan is 40 years old and does not account for the diverse objectives of the system altered by increased development and resource awareness. Functions of the six-reservoir system include flood damage reduction, recreation, fish and wildlife habitat considerations, tribal resources, water quality, water supply, erosion and sedimentation control, and hydropower production. Experience has shown that a modeling approach using both optimization, which makes decisions based on their value to objectives, and simulation, which makes decisions that follow operating instructions or rules, is an effective way to improve or develop new operating policies. HEC's role in this study was to develop a multi- objective optimization model of the system using HEC-PRM (Prescriptive Reservoir Model), a generalized computer program that performs multi-period deterministic network-flow optimization of reservoir systems. The optimization model's purpose is to enable stakeholders and decision makers to select appropriate tradeoffs between objectives, and have these tradeoffs reflected in proposed rules. Initial single-objective optimizations allow stakeholders to verify that the penalty functions developed by experts accurately represent their interests. Once penalty functions are confirmed, trade-off curves between pairs of system objectives are developed, and stakeholders and decision makers choose a desired balance between the two objectives. These chosen balance points are maintained in optimizations that consider all objectives. Finally, optimal system decisions are studied to infer operating patterns that embody the chosen tradeoffs. The

  12. Reservoir characterization of hydraulic flow units in heavy-oil reservoirs at Petromonagas, eastern Orinoco belt, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Merletti, G.D.; Hewitt, N.; Barrios, F.; Vega, V.; Carias, J. [BP Exploration, Houston, TX (United States); Bueno, J.C.; Lopez, L. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of)

    2009-07-01

    An accurate integrated reservoir description is necessary in extra-heavy oil prospects where pore throat geometries are the ultimate control on hydrocarbon primary recovery. The key element in producing accurate oil reservoir descriptions and improving productivity is to determine relationships between core-derived pore-throat parameters and log-derived macroscopic attributes. This paper described the use of the flow zone indicator technique (FZI) to identify hydraulic units within depositional facies. It focused on a petrophysical analysis aimed at improving the description of reservoir sandstones containing heavy or extra heavy oil in the eastern Orinoco belt in Venezuela. The Petromonagas license area contains large volumes of crude oil in-place with an API gravity of 8. Production comes primarily from the lowermost stratigraphic unit of the Oficina Formation, the Miocene Morichal Member. Facies analysis has revealed various depositional settings and core measurements depict a wide range in reservoir quality within specific depositional facies. The reservoir is divided into 4 different rock qualities and 5 associated non-reservoir rocks. The use of the FZI technique provides a better understanding of the relationship between petrophysical rock types and depositional facies. 4 refs., 4 tabs., 8 figs.

  13. Effects of reservoirs water level variations on fish recruitment

    Directory of Open Access Journals (Sweden)

    Fabíula T. de Lima

    2017-10-01

    Full Text Available ABSTRACT The construction of hydroelectric power plants has many social and environmental impacts. Among them, the impacts on fish communities, which habitats are drastically modified by dams, with consequences across the ecosystem. This study aimed to assess the influence of water level (WL variations in the reservoirs of the Itá and Machadinho hydroelectric plants on the recruitment of fish species from the upper Uruguay River in southern Brazil. The data analyzed resulted from the WL variation produced exclusively by the hydroelectric plants generation and were collected between the years 2001 and 2012. The results showed significant correlations between the abundance of juvenile fish and the hydrological parameters only for some reproductive guilds. The species that spawn in nests showed, in general, a clear preference for the stability in the WL of the reservoirs, while the species that spawn in macrophytes or that release demersal eggs showed no significant correlation between the abundance of juvenile fish and hydrological parameters. A divergence of results between the two reservoirs was observed between the species that release semi-dense eggs; a positive correlation with a more stable WL was only observed in the Machadinho reservoir. This result can be driven by a wider range of WL variation in Machadinho reservoir.

  14. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  15. Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine

    Science.gov (United States)

    Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.

    2016-07-01

    The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.

  16. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  17. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    Science.gov (United States)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper

  18. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River)

    Science.gov (United States)

    Nikonorova, I. V.

    2018-01-01

    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  19. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  20. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  1. Thermoelastic properties of the Rotokawa Andesite: A geothermal reservoir constraint

    Science.gov (United States)

    Siratovich, P. A.; von Aulock, F. W.; Lavallée, Y.; Cole, J. W.; Kennedy, B. M.; Villeneuve, M. C.

    2015-08-01

    Knowledge of the thermal properties of geothermal reservoir rocks is essential to constraining important engineering concerns such as wellbore stability, reservoir forecasting and stimulation procedures. The thermo-mechanical evolution of geological material is also important to assess when considering natural processes such as magmatic dyke propagation, contact metamorphism and magma/lava emplacement and cooling effects. To better constrain these properties in the geothermal reservoir, thermal measurements were carried out on core samples from production wells drilled in the Rotokawa Andesite geothermal reservoir, located in the Taupo Volcanic Zone, New Zealand. Linear thermal expansion testing, thermogravimetric analysis, and differential scanning calorimetry were used, employing experimental heating rates of 2, 5 and 20 °C/min. Thermal property analyses can elucidate whether thermal expansion values measured under varied heating (and cooling) rates are rate dependent and if thermo-chemical reactions influence the resultant expansivity. Measured thermal expansion coefficients of the Rotokawa Andesite are shown not to be heating rate dependent. We have also found that significant thermochemical reactions occur during heating above 500 °C resulting in non-reversible changes to the thermomechanical properties. The combined thermogravimetric, calorimetric and thermomechanical analysis allows insight to the reactions occurring and how the thermomechanical properties are affected at high temperature. We incorporated results of tensile strength testing on the Rotokawa Andesite to apply our thermal property measurements to a one-dimensional thermal stress model. The developed model provides a failure criterion for the Rotokawa Andesite under thermal stress. The importance of this study is to further understand the critical heating and cooling rates at which thermal stress may cause cracking within the Rotokawa reservoir. Thermal cracking in the reservoir can be

  2. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  3. Comparison of the combustion engine operating parameters and the ecological indicators of an urban bus in dynamic type approval tests and in actual operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article presents the considerations regarding a city bus combustion engine performanceparameters in dynamic type approval tests and in real operating conditions when servicing an urban bus line. A comparison of the designated engine operating time shares with respect to load and crankshaft rotational speed was made. The analysis included the ETC and WHTC tests, which showed significant discrepancies in the work areas of internal combustion engines in these test when compared to actual driving conditions. The details of the type approval tests used and the method of their denormalization for the drive unit were presented. The vehicle used for this research was an eighteen meter city bus equipped with a CI engine with a displacement of 9.2 dm3. The latest PEMS mobile equipment technology was used to conduct the road measurements. This allowed the emission indicators for CO, HC, NOx and PM to be determined, including specific emissions. The obtained values were then compared with the Euro V limits.The analysis of the test results was supplemented with the calculation of fuel consumption using the carbonbalance method.

  4. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  5. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  6. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  7. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  8. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    Science.gov (United States)

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  9. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV Fracturing in Tight Oil Reservoirs.

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    Full Text Available Stimulated reservoir volume (SRV fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM, mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  10. Gravity observations for hydrocarbon reservoir monitoring

    OpenAIRE

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The added value of gravity data for reservoir monitoring and characterization is analyzed within closed-loop reservoir management concept. Synthetic 2D and 3D numerical experiments are performed where var...

  11. Uncertainties in reservoir performance forecasts; Estimativa de incertezas na previsao de desempenho de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Loschiavo, Roberto

    1999-07-01

    Project economic evaluation as well as facilities design for oil exploration is, in general based on production forecast. Since production forecast depends on several parameters that are not completely known, one should take a probabilistic approach for reservoir modeling and numerical flow simulation. In this work, we propose a procedure to estimate probabilistic production forecast profiles based on the decision tree technique. The most influencing parameters of a reservoir model are identified identified and combined to generate a number of realizations of the reservoirs. The combination of each branch of the decision tree defines the probability associated to each reservoir model. A computer program was developed to automatically generate the reservoir models, submit them to the numerical simulator, and process the results. Parallel computing was used to improve the performance of the procedure. (author)

  12. Introduction to the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2018-02-01

    Full Text Available Due to the limitation of actual shale gas reservoir conditions and fracturing technologies, artificial fracture networks are different greatly even in the same or similar stimulated reservoir volume. Deviations and even faults occur in evaluation and cognition if only the stimulated reservoir volume (SRV is used to characterize and evaluate the effect of stimulation. In this paper, the spatial distribution of artificial fractures and natural fractures and the internal pressure state and degree of reserve recovery of stimulated shale gas reservoirs were studied by means of artificial fracture propagation numerical simulation and production numerical simulation. And three concepts were proposed, i.e., shale gas fracture network, ideal fracture network and appropriate-stimulation degree of fracture network. The study results indicate that, at the end of reservoir development, target zones can be classified into three types (i.e., relatively appropriate stimulation zone, transitional stimulation zone, and uncompleted stimulation zone according to the recovery degree and production time of stimulated reservoirs; and that the final morphologic parameter of fracture networks and the reservoir characteristic are two main factors affecting the appropriate-stimulation degree of fracture networks. As for a specific gas reservoir, the orientation, length, conduction, height and spatial location of its fracture network are the main factors influencing its appropriate-stimulation degree if the well trajectory is set. The proposal of the theory on the appropriate-stimulation degree of hydraulic fracture networks in shale gas reservoir enriches the theoretical system of shale reservoir stimulation technology, and it can be used as the reference for characterizing the fracture systems in other unconventional reservoirs, such as tight oil and gas reservoirs. Keywords: Shale gas, Reservoir stimulation, Ideal fracture network, Appropriate-stimulation degree of

  13. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.

  14. Multi-objective calibration of a reservoir model: aggregation and non-dominated sorting approaches

    Science.gov (United States)

    Huang, Y.

    2012-12-01

    Numerical reservoir models can be helpful tools for water resource management. These models are generally calibrated against historical measurement data made in reservoirs. In this study, two methods are proposed for the multi-objective calibration of such models: aggregation and non-dominated sorting methods. Both methods use a hybrid genetic algorithm as an optimization engine and are different in fitness assignment. In the aggregation method, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e. parameter values). The contribution of this study to the aggregation method is the correlation analysis and its implication to the choice of weight factors. In the non-dominated sorting method, a novel method based on non-dominated sorting and the method of minimal distance is used to calculate the dummy fitness of solutions. The proposed methods are illustrated using a water quality model that was set up to simulate the water quality of Pepacton Reservoir, which is located to the north of New York City and is used for water supply of city. The study also compares the aggregation and the non-dominated sorting methods. The purpose of this comparison is not to evaluate the pros and cons between the two methods but to determine whether the parameter values, objective function values (simulation errors) and simulated results obtained are significantly different with each other. The final results (objective function values) from the two methods are good compromise between all objective functions, and none of these results are the worst for any objective function. The calibrated model provides an overall good performance and the simulated results with the calibrated parameter values match the observed data better than the un-calibrated parameters, which supports and justifies the use of multi-objective calibration. The results achieved in this study can be very useful for the calibration of water

  15. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  16. Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, C.

    1998-01-01

    A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

  17. The role of snowpack, rainfall, and reservoirs in buffering California against drought effects

    Science.gov (United States)

    Johannis, Mary; Flint, Lorraine E.; Dettinger, Michael; Flint, Alan L.; Ochoa, Regina

    2016-08-29

    California’s vast reservoir system, fed by annual snow-and rainfall, plays an important part in providing water to the State’s human and wildlife population. There are almost 1,300 reservoirs throughout the State, but only approximately 200 of them are considered storage reservoirs, and many of the larger ones are critical components of the Federal Central Valley Project and California State Water Project. Storage reservoirs, such as the ones shown in figure 1, capture winter precipitation for use in California’s dry summer months. In addition to engineered reservoir storage, California also depends on water “stored” in the statewide snowpack, which slowly melts during the course of the summer, to augment the State’s water supply.

  18. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  19. Parâmetros de crescimento e metabólicos da tilápia vermelha criada em tanques-rede flutuantes em açude de pequeno porte Growth and metabolic parameters of red tilapia reared in floating net cages in a small reservoir

    Directory of Open Access Journals (Sweden)

    Damares Perecim Roviero

    2000-05-01

    Full Text Available O objetivo deste estudo foi gerar informação sobre parâmetros de crescimento e metabólicos da tilápia vermelha criada em tanques-rede num açude de pequeno porte. Foram instalados 12 tanques-rede flutuantes (5m3, em um açude de 1 ha, estocados com 25, 50, 75 e 100 tilápias vermelhas revertidas por m3, e alimentadas com duas rações extrusadas comerciais (32 e 28% PB, durante 213 dias. Não foram observadas diferenças significativas (P > 0,05 entre as diferentes densidades de estocagem ao final do período experimental com relação aos parâmetros de crescimento: peso corporal, comprimento total, fator de condição, conversão alimentar aparente, taxa de sobrevivência, ganho de peso médio diário e taxa de crescimento específico. Também não foram observadas diferenças significativas (P > 0,05 no glicogênio hepático, índice hepato-somático e lipídio hepático entre as densidades testadas. Contudo, a glicemia apresentou uma pequena diminuição entre o início do experimento e o 64o dia, retornando ao nível inicial a partir do 118o dia. O nível de glicogênio hepático foi mais elevado (P o dia, e o lipídio hepático apresentou maior valor no final do período experimental (P The objective of this study was to provide information on growth and metabolic parameters of red tilapia reared in cages in a small reservoir. Twelve floating net cages (5 m3 placed in an 1-ha reservoir were stocked with 25, 50, 75 and 100 sex-reversed red tilapias/m3, fed with two commercial floating feeds (32 and 28% crude protein, during 213 days. No effect (P > 0.05 of stocking density was observed at the end of the experimental period on body weight, body length, condition factor, feed conversion rate, survival rate, mean daily weight gain and specific growth rate. No differences (P > 0.05 on liver glycogen, liver somatic index (LSI, and total liver lipid were verified among the tested densities. However, blood glucose decreased slightly (P > 0

  20. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  1. [Monitoring report of Oncomelania hupensis snail distribution and diffusion in main drainages of Hexi Reservoir].

    Science.gov (United States)

    Zhang, Liu-hong; Xu, Feng-ming; Lu, Hong-mei; Qin, Jia-sheng; Cao, Wei-min; Jiang, Ya-juan; Lu, Qin-nan

    2015-02-01

    To understand the status of Oncomelania hupensis snail distribution and diffusion in main drainages of Hexi Reservoir and evaluate the snail control effect of the schistosomiasis control engineering of Hexi Reservoir. The O. hupensis snails were investigated by using the straw curtain method and fishing net method in different areas of the main drainages of Hexi Reservoir, and the results were analyzed. A total of 1 800 straw curtains were used and 37 snails were found in Naxi stream. Totally 5 870 kg floats were salved and no snails were found. The schistosomiasis control engineering of Hexi Reservoir is effective in the prevention of the snail diffusion, but there are still snails in the upstream. rherefore, the snail surveillance and control need to be strengthened.

  2. Ensemble-Based Data Assimilation in Reservoir Characterization: A Review

    Directory of Open Access Journals (Sweden)

    Seungpil Jung

    2018-02-01

    Full Text Available This paper presents a review of ensemble-based data assimilation for strongly nonlinear problems on the characterization of heterogeneous reservoirs with different production histories. It concentrates on ensemble Kalman filter (EnKF and ensemble smoother (ES as representative frameworks, discusses their pros and cons, and investigates recent progress to overcome their drawbacks. The typical weaknesses of ensemble-based methods are non-Gaussian parameters, improper prior ensembles and finite population size. Three categorized approaches, to mitigate these limitations, are reviewed with recent accomplishments; improvement of Kalman gains, add-on of transformation functions, and independent evaluation of observed data. The data assimilation in heterogeneous reservoirs, applying the improved ensemble methods, is discussed on predicting unknown dynamic data in reservoir characterization.

  3. Full Waveform Inversion for Reservoir Characterization - A Synthetic Study

    KAUST Repository

    Zabihi Naeini, E.

    2017-05-26

    Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI) as an alternative tool for higher-resolution reservoir characterization. An important step in developing reservoir-oriented FWI is the implementation of facies-based rock physics constraints adapted from the classic methods. We show that such constraints can be incorporated into FWI by adding appropriately designed regularization terms to the objective function. The advantages of the proposed algorithm are demonstrated on both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models with pronounced lateral and vertical heterogeneity. The inversion results are explained using the theoretical radiation patterns produced by perturbations in the medium parameters.

  4. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    . The controller consists of -A model based optimizer for maximizing some predicted financial measure of the reservoir (e.g. the net present value). -A parameter and state estimator. -Use of the moving horizon principle for data assimilation and implementation of the computed control input. The optimizer uses...... Optimization has been suggested to compensate for inherent geological uncertainties in an oil field. In robust optimization of an oil reservoir, the water injection and production borehole pressures are computed such that the predicted net present value of an ensemble of permeability field realizations...... equivalent strategy is not justified for the particular case studied in this paper. The third contribution of this thesis is a mean-variance method for risk mitigation in production optimization of oil reservoirs. We introduce a return-risk bicriterion objective function for the profit-risk tradeoff...

  5. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    the irrigation network in the area We evaluate the possibility to merge two different resolution satellite data i.e. MERIS/ENVISAT and LANDSAT to facilitate the study of the Polyfitos reservoir. State of the art data fusion techniques, that preserve the best characteristics (spatial, temporal, spectral) of the two types of images are implemented and used to mining information concerning selected parameters. Summer 2011 Landsat and ENVISAT MERIS satellite images are used in order to extract lake water quality parameters such as water clarity -and sediment content. Assessment of the whole watershed of Polyfitos reservoir is carried out for the last 25 years. The methodology presented here can be used to support existing reservoir monitoring programs as it gives regular measurements for the whole of the watershed area of the reservoir. The results can be made available to end-users / reservoir managers, using web/GIS techniques. They can also support environmental awareness of the conditions of watershed of Polyfitos reservoir.

  6. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  7. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  8. Fracture density determination using a novel hybrid computational scheme: a case study on an Iranian Marun oil field reservoir

    International Nuclear Information System (INIS)

    Nouri-Taleghani, Morteza; Mahmoudifar, Mehrzad; Shokrollahi, Amin; Tatar, Afshin; Karimi-Khaledi, Mina

    2015-01-01

    Most oil production all over the world is from carbonated reservoirs. Carbonate reservoirs are abundant in the Middle East, the Gulf of Mexico and in other major petroleum fields that are regarded as the main oil producers. Due to the nature of such reservoirs that are associated with low matrix permeability, the fracture is the key parameter that governs the fluid flow in porous media and consequently oil production. Conventional methods to determine the fracture density include utilizing core data and the image log family, which are both time consuming and costly processes. In addition, the cores are limited to certain intervals and there is no image log for the well drilled before the introduction of this tool. These limitations motivate petroleum engineers to try to find appropriate alternatives. Recently, intelligent systems on the basis of machine learning have been applied to various branches of science and engineering. The objective of this study is to develop a mathematical model to predict the fracture density using full set log data as inputs based on a combination of three intelligent systems namely, the radial basis function neural network, the multilayer perceptron neural network and the least square supported vector machine. The developed committee machine intelligent system (CMIS) is the weighted average of the individual results of each expert. Proper corresponding weights are determined using a genetic algorithm (GA). The other important feature of the proposed model is its generalization capability. The ability of this model to predict data that have not been introduced during the training stage is very good. (paper)

  9. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  10. Reservoir effects in radiocarbon dating

    International Nuclear Information System (INIS)

    Head, M.J.

    1997-01-01

    Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where

  11. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  12. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  13. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  14. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  15. Reservoir triggering seismicity in Greece: An evidence based review

    Science.gov (United States)

    Pavlou, Kyriaki; Drakatos, George; Kouskouna, Vasiliki; Makropoulos, Konstantinos

    2017-04-01

    First filling and water fluctuation in artificial lakes and reservoirs are known causes of local seismicity. In Greece, 117 dams were built over the past 60 years, of which, however, only 22 have a capacity greater than 20x206cm3 and could thus affect seismicity in a meaningful way. Most of these larger dams have been constructed and operated by the Greek Public Power Corporation (PPC). The paper aims at a comprehensive review of all relevant studies, undertaken so far, and critically examines the evidence of reservoir triggering seismicity and possible accelerated earthquake occurrence provided. The main reservoirs examined include the Marathon, Kremasta, Pournari, Ilarion and Polyphyto artificial lakes, all of which have recorded seismic events associated with their filling and/or operation for the time period up to 2010. Seismic activity that correlates with maximum or minimum water level fluctuations leads to conclusions about a possible triggering seismicity due to a pore pressure diffusion (drained or un-drained response). In each case we review the cross-correlation coefficients between the reservoir levels and triggered events, and discuss the reasons for their association from an engineering geological (mechanical properties of rocks and formations) and seismological (triggered events) perspective. Our work suggests that, whilst in these cases PCC performs very well the task of hydrological and energy management of the reservoirs, it is crucially important to monitor and validate the daily seismicity at and around the artificial lakes for a better understanding of the upmost limit of triggered seismicity, and possible triggered landslides in the areas surrounding its main reservoirs.

  16. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  17. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    Science.gov (United States)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  18. The effects of two multipurpose reservoirs on the water temperature of the McKenzie River, Oregon

    Science.gov (United States)

    Hansen, R.P.

    1988-01-01

    A one dimensional, unsteady-state temperature model using the equilibrium temperature approach (with air temperature used to estimate equilibrium temperature) is used to evaluate the effects of two Army Corps of Engineers dams and resulting reservoirs on the McKenzie River, from Delta Park (River Kilometer 99.9) to Leaburg Dam (River Kilometer 62.4). Both Corps of Engineers projects are on tributaries to the McKenzie River and at present have only bottom withdrawal capabilities. An effective top width parameter (ETW) was introduced into model calibrations to account for the high turbulence of the reach. Extensive data were collected from May to October, 1983 and 1984. Using these data, water temperatures were predicted to within 0.30 C mean absolute deviation (MAD) at Finn Rock (at River Kilometer 87.2, 4.5 km below the second tributary confluence) and near Vida (River Kilometer 76.8), and to within 0.40 C at Leaburg Dam (River Kilometer 62.4). Since these data represent hydrologic and meteorologic conditions over a very short period, analyses were extended to include three additional historic years and an average conditions year. The average conditions values were obtained by using the mean daily values for the period of record at key stations. Accuracy was lost when simulating historic years, since the only meteorological data available were collected outside the basin, and hence were less representative. Simulation of historic data showed that Corps of Engineers projects have little or no effect on water temperatures of the McKenzie River near Vida (River Kilometer 76.8) from the end of November to the end of May. Projects have a cooling effect from the beginning of June to the first part of September and a warming effect from the middle of September to the end of November. Warming and cooling effects average just over 1 C. There is little or no temperature effect during periods of flood control operation or reservoir filling. Cooling effects are due to

  19. Evaluation of Gaussian approximations for data assimilation in reservoir models

    KAUST Repository

    Iglesias, Marco A.

    2013-07-14

    The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our

  20. Monitoring gas reservoirs by seismic interferometry

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  1. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    Science.gov (United States)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  2. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar

    2014-01-01

    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  3. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  4. Superposition method used for treating oilfield interference in Iranian water-drive reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, K. [National Iranian South Oil Company, (Iran, Islamic Republic of)

    2003-07-01

    Water-drive oil fields that share a common aquifer are in hydrodynamic communication. Production from such fields is accompanied by pressure loss that manifests itself as pressure interference because the decline in pressure is transmitted through the aquifer to other fields even several miles away from a producing pool. In order to address the challenge of discovering new Iranian oil reserves, attention has focused on the efficient development of existing reservoirs. The Asmari reservoir consists of a high permeability sand and carbonate section in an elongated anticlinal structure. A drop in reservoir pressure was observed in field 'A' in 1974. This drop in pressure was noted one year after field 'B' in the same reservoir reached peak oil production of 1.1 MMBPD. A practical analytical method was developed to help the reservoir engineer analyze oilfield interference problems. Reservoir performance indicates that the aquifer from field 'A' has strong communication with field 'B'. The most practical method for treating oilfield interference in water-drive Iranian reservoirs was the superposition technique. It was emphasized that the impact of nearby fields should be considered in all reservoir simulations to accurately identify regional aquifer effects on flow rates and oil-water contact movement. 13 refs., 2 tabs., 4 figs.

  5. Exergy Analysis of the Revolving Vane Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Alison Subiantoro

    2016-01-01

    Full Text Available Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%, throttling (38%, heat transfer (12%, and fluid mixing (1%. A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar, operating speed (2,400 to 3,600 rev·min−1, and rotational cylinder inertia (0.94 to 2.81 g·mm2. The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.

  6. [Eutrophication control in local area by physic-ecological engineering].

    Science.gov (United States)

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  7. On automatic data processing and well-test analysis in real-time reservoir management applications

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Stig

    2011-06-15

    The use of pressure and rate sensors for continuous measurements in the oil and gas wells are becoming more common. This provides better and more measurements in real time that can be analyzed to optimize the extraction of oil and gas. An analysis which can provide valuable information on oil and gas production, is transient analysis. In transient analysis pressure build-up in a well when it closed in are analyzed and parameters that describe the flow of oil and gas in the reservoir is estimated. However, it is very time consuming to manage and analyze real-time data and the result is often that only a limited amount of the available data are analyzed. It is therefore desirable to have more effective methods to analyze real time data from oil and gas wells. Olsen automated transient analysis in order to extract the information of real-time data in an efficient and labor-saving manner. The analysis must be initialized with well and reservoir-specific data, but when this is done, the analysis is performed automatically each time the well is closed in. For each shut-in are parameters that describe the flow of oil and gas in the reservoir estimated. By repeated shut, it will then appear time series of estimated parameters. One of the goals of the automated transient analysis lights up is to detect any changes in these time series so that the focus of the engineers can aim on the analysis results that deviate from normal. As part of this work it was also necessary to develop automated data filters for noise removal and data compression. The filter is designed so that it continuously filters the data using methods that are optimized for use on the typical pressure and rate signals measured in the oil and gas wells. The thesis shows Olsen examples of the use of automated data filtering and automated transient analysis of both synthetic data and real data from a field in the North Sea. (AG)

  8. Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs

    Science.gov (United States)

    Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja

    2017-04-01

    Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D

  9. Data assimilation in reservoir management

    NARCIS (Netherlands)

    Rommelse, J.R.

    2009-01-01

    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  10. Reasons for reservoir effect variability

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    , aquatic plants and fish from the rivers Alster and Trave range between zero and about 3,000 radiocarbon years. The reservoir age of water DIC depends to a large extent on the origin of the water and is for example correlated with precipitation amounts. These short-term variations are smoothed out in water...

  11. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  12. 49 CFR 236.792 - Reservoir, equalizing.

    Science.gov (United States)

    2010-10-01

    ... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of the equalizing piston chamber of the automatic brake valve, to provide uniform service reductions in brake pipe...

  13. Dissolved methane in Indian freshwater reservoirs

    Digital Repository Service at National Institute of Oceanography (India)

    Narvenkar, G.; Naqvi, S.W.A.; Kurian, S.; Shenoy, D.M.; Pratihary, A.K.; Naik, H.; Patil, S.; Sarkar, A.; Gauns, M.

    Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian...

  14. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  15. Reservoir structural model updating using the Ensemble Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Alexandra

    2010-09-15

    In reservoir characterization, a large emphasis is placed on risk management and uncertainty assessment, and the dangers of basing decisions on a single base-case reservoir model are widely recognized. In the last years, statistical methods for assisted history matching have gained popularity for providing integrated models with quantified uncertainty, conditioned on all available data. Structural modeling is the first step in a reservoir modeling work flow and consists in defining the geometrical framework of the reservoir, based on the information from seismic surveys and well data. Large uncertainties are typically associated with the processing and interpretation of seismic data. However, the structural model is often fixed to a single interpretation in history-matching work flows due to the complexity of updating the structural model and related reservoir grid. This thesis present a method that allows to account for the uncertainties in the structural model and continuously update the model and related uncertainties by assimilation of production data using the Ensemble Kalman Filter (EnKF). We consider uncertainties in the depth of the reservoir horizons and in the fault geometry, and assimilate production data, such as oil production rate, gas-oil ratio and water-cut. In the EnKF model-updating work flow, an ensemble of reservoir models, expressing explicitly the model uncertainty, is created. We present a parameterization that allows to generate different realizations of the structural model to account for the uncertainties in faults and horizons and that maintains the consistency throughout the reservoir characterization project, from the structural model to the prediction of production profiles. The uncertainty in the depth of the horizons is parameterized as simulated depth surfaces, the fault position as a displacement vector and the fault throw as a throw-scaling factor. In the EnKF, the model parameters and state variables are updated sequentially in

  16. Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process

    Science.gov (United States)

    Sahoo, Chinmaya Kumar; Masanta, Manoj

    2015-04-01

    In this work, TiC reinforced steel composite layer has been produced by laser scanning over the preplaced TiC powder on AISI 304 steel substrate, using a pulse Nd:YAG laser. Depending on the pulse laser parameters, TiC either deposited or dispersed on the surface of steel substrate. Depth and width of laser processed TiC-steel composite layer has been deliberated from the SEM images at the transverse cross section of the laser scanned samples. Hardness of the laser processed composite layer has been measured through Vickers micro-hardness tester. Effect of pulsed laser parameters i.e. peak power, pulse duration, overlapping factor (corresponding to scan speed and frequency) on micro-hardness, composite layer profile (depth and width) and microstructure of the laser processed TiC-steel composite layer has been studied. From the experimental analysis, it is revealed that, laser peak power and overlapping factor have significant effect on the TiC-steel composite layer profile and its hardness value.

  17. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  18. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into

  19. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  20. An alternative approach to assessing feasibility of flushing sediment from reservoirs

    Directory of Open Access Journals (Sweden)

    Elfimov Valeriy Ivanovich

    2014-07-01

    Full Text Available Effective parameters on feasibility of sediment flushing through reservoirs include hydrological, hydraulic, and topographic properties of the reservoirs. In this study, the performances of the Decision tree forest (DTF and Group method of data handling (GMDH for assessing feasibility of flushing sediment from reservoirs, were investigated. In this way, Decision tree Forest, that combines multiple Decision tree, used to evaluate the relative importance of factors affecting flushing sediment. At the second step, GMDH deployed to predict the feasibility of flushing sediment from reservoirs. Results indicate that these models, as an efficient novel approach with an acceptable range of error, can be used successfully for assessing feasibility of flushing sediment from reservoirs.

  1. Estimating Water Levels with Google Earth Engine

    Science.gov (United States)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any

  2. 32 CFR 644.4 - Reservoir Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir Projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  3. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  4. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  5. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Seasonal variation in physico-chemical parameters of Tekeze ...

    African Journals Online (AJOL)

    Tekeze reservoir is situated in the northern part of Ethiopia. Physico-chemical parameters of reservoir water such as temperature, dissolved oxygen (DO), pH, transparency, electric conductivity, total dissolved solids (TDS), alkalinity, total hardness, phosphate and sulphate levels was carried out from August 2013 to July ...

  7. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  8. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  9. Reservoir microseismicity at the Ekofisk Oil Field

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysical, Inc., Santa Fe, NM (United States); Albright, J.N. [Los Alamos National Lab., NM (United States); Boade, R.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Dangerfield, J.; Landa, G.H. [Phillips Petroleum Co., Tananger (Norway)

    1994-07-01

    A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.

  10. Effective Stress Approximation using Geomechanical Formulation of Fracturing Technology (GFFT) in Petroleum Reservoirs

    Science.gov (United States)

    Haghi, A.; Asef, M.; Kharrat, R.

    2010-12-01

    Recently, rock mechanics and geophysics contribution in petroleum industry has been significantly increased. Wellbore stability analysis in horizontal wells, sand production problem while extracting hydrocarbon from sandstone reservoirs, land subsidence due to production induced reservoir compaction, reservoir management, casing shearing are samples of these contributions. In this context, determination of the magnitude and orientation of the in-situ stresses is an essential parameter. This paper is presenting new method to estimate the magnitude of in-situ stresses based on fracturing technology data. Accordingly, kirsch equations for the circular cavities and fracturing technology models in permeable formations have been used to develop an innovative Geomechanical Formulation (GFFT). GFFT introduces a direct reasonable relation between the reservoir stresses and the breakdown pressure of fracture, while the concept of effective stress was employed. Thus, this complex formula contains functions of some rock mechanic parameters such as poison ratio, Biot’s coefficient, Young’s modulus, rock tensile strength, depth of reservoir and breakdown/reservoir pressure difference. Hence, this approach yields a direct method to estimate maximum and minimum effective/insitu stresses in an oil field and improves minimum in-situ stress estimation compared to previous studies. In case of hydraulic fracturing; a new stress analysis method is developed based on well known Darcy equations for fluid flow in porous media which improves in-situ stress estimation using reservoir parameters such as permeability, and injection flow rate. The accuracy of the method would be verified using reservoir data of a case history. The concepts discussed in this research would eventually suggest an alternative methodology with sufficient accuracy to derive in-situ stresses in hydrocarbon reservoirs, while no extra experimental work is accomplished for this purpose.

  11. Study of Carrying Capacity Assesment for Natural Fisheries in Jatibarang Reservoir In Semarang City

    Science.gov (United States)

    Sujono, Bambang; Anggoro, Sutrisno

    2018-02-01

    Jatibarang reservoir serves as water supply in dry season and controlling flood in Semarang City. This reservoir is stem Kreo River which cathment areas of 54 km2, pool of area 110 ha and volume is 20 billion m3. This reservoir is potential to develop as natural fisheries area. The goals of this research were to explore existing condition of physical, biological as well as chemical parameter; carrying capacity assessment for natural fisheries; determining appropriate fish species to be developed in Jatibarang reservoir. This research was done in descriptive explorative scheme. Field survey and laboratory analyses were conducted to identify physical, chemical and biological parameters of the water. Physical parameters measured were temperature and water brightness. Chemical parameters measured were pH, DO, phosphate, Ammonia, nitrites and nitrate, while biological parameter measured were chlorophyll-a concentration. Carrying capacity analyses was done referred to the Government Regulation Number 82, 2001 that regulate the management of water quality and water pollution control. Based on the research, it showed that the existing condition of physical, chemical and biological parameters were still good to be used for natural fisheries. Based on TSI index, it classified as eutrofic water. Furthermore, tilapia fish (Oreochromis mossambicus), nile tilapia (Oreochromis niloticus) tawes (Barbonymus gonionotus) and carper fish (Cyprinus carpio) were considered as best species for natural fisheries in Jatibarang Reservoir.

  12. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...... that a heavy oil (that with a large fraction of heavy components) exhibited viscosity reduction in contact with brine, while a light crude oil exhibited emulsion formation. Most of reported high salinity waterflooding studies were carried out with outcrop chalk core plugs, and by performing spontaneous...

  13. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    With an increasing demand for oil and diculties in nding new major oil elds, research on methods to improve oil recovery from existing elds is more necessary now than ever. The subject of this thesis is to construct ecient numerical methods for simulation and optimization of oil recovery...... programming (SQP) with line-search and BFGS approximations of the Hessian, and the adjoint method for ecient computation of the gradients. We demonstrate that the application of NMPC for optimal control of smart-wells has the potential to increase the economic value of an oil reservoir....... with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...

  14. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    for both variational upscaling and the construction of linear solvers. In particular, it is found to be beneficial (or even necessary) to apply an AMGe based multigrid solver to solve the upscaled problems. It is found that the AMGe upscaling changes the spectral properties of the matrix, which renders...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...

  15. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  16. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  17. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  18. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  19. Cased-hole log analysis and reservoir performance monitoring

    CERN Document Server

    Bateman, Richard M

    2015-01-01

    This book addresses vital issues, such as the evaluation of shale gas reservoirs and their production. Topics include the cased-hole logging environment, reservoir fluid properties; flow regimes; temperature, noise, cement bond, and pulsed neutron logging; and casing inspection. Production logging charts and tables are included in the appendices. The work serves as a comprehensive reference for production engineers with upstream E&P companies, well logging service company employees, university students, and petroleum industry training professionals. This book also: ·       Provides methods of conveying production logging tools along horizontal well segments as well as measurements of formation electrical resistivity through casing ·       Covers new information on fluid flow characteristics in inclined pipe and provides new and improved nuclear tool measurements in cased wells ·       Includes updates on cased-hole wireline formation testing  

  20. Limnological evaluation of the fisheries potentials and productivity of a small shallow tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    Morphometrics and physico-chemical parameters of Oyun reservoir, Offa, Nigeria (a small shallow tropical African Reservoir) were used to estimate the potential fish yield of the reservoir according to the morpho-edaphic index (MEI). Physico-chemical characteristics of the water body were sampled monthly from three stations between January 2002 and December 2003 with standard methods. Estimates of the potential fish yield were obtained using the physico-chemical characteristics of the reservoir and the relationship Y = 23.281 MEI(0.447), where Y is the potential fish yield in kg/ha, MEI is the morpho-edaphic index (given in microS/cm and estimated by dividing the mean conductivity by the mean depth). The reservoir mean depth and conductivity values were 2.6m and 113.10 microS/cm respectively, while its potential fish yield was estimated at 125.72 kg/ha. This estimate was higher than other small shallower and larger African reservoirs. The reservoir high ionic content, high nutrient and dissolved oxygen levels, good pH, low level of pollution and shallow depth were responsible for the high estimate of the fish yield. In order to realize this high potential fish yield and sustainable exploration of the fisheries, effective management of the reservoir to curb eutrophication should be adopted, while other management practices such as stocking and conservation of desirable and indigenous fish species, implementation of fishing regulations and adoption of best management practices should be implemented.

  1. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization

    Science.gov (United States)

    Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang

    2017-04-01

    Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.

  2. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  3. MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2017-01-01

    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  4. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  5. Application of fractal theory in refined reservoir description for EOR pilot area

    Energy Technology Data Exchange (ETDEWEB)

    Yue Li; Yonggang Duan; Yun Li; Yuan Lu

    1997-08-01

    A reliable reservoir description is essential to investigate scenarios for successful EOR pilot test. Reservoir characterization includes formation composition, permeability, porosity, reservoir fluids and other petrophysical parameters. In this study, various new tools have been applied to characterize Kilamayi conglomerate formation. This paper examines the merits of various statistical methods for recognizing rock property correlation in vertical columns and gives out methods to determine fractal dimension including R/S analysis and power spectral analysis. The paper also demonstrates that there is obvious fractal characteristics in conglomerate reservoirs of Kilamayi oil fields. Well log data in EOR pilot area are used to get distribution profile of parameters including permeability, porosity, water saturation and shale content.

  6. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-04-03

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of