WorldWideScience

Sample records for reservoir declines natural

  1. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  2. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  3. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  4. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  5. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  6. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  7. Forest decline, natural and technically generated radioactivity

    International Nuclear Information System (INIS)

    Teufel, D.

    1983-06-01

    The question investigated is whether the radioactive rare gases emanating from nuclear plants are causative or participate in the triggering of forest disease. For one thing, a chemical reaction could be responsible for such an effect exerted by these artificial radioactive effluents. However, a calculation shows the concentration of radionuclides, respectively, in this case, their decomposition products, to be by many orders of magnitude smaller than other constituents in air; so a chemical reaction of this kind may be excluded. For the other part, rare gases might contribute to forest damage by their radioactive decomposition and late physical, chemical, and biological effects. In this connection, a detailed analysis is made of the comparability of natural radioactivity with radioactivity generated by nuclear plants. A possible contribution towards the total stress situation of forests (chemical air pollution, natural radioactivity, artificially produced radioactive rare gases, weather conditions and conditions arising from forest management and the like) would amount to a proportion smaller than 1/1000 considering natural radioactivity as a possible stress factor only. (orig.) [de

  8. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease.

    Science.gov (United States)

    Hoyer, Isaiah J; Blosser, Erik M; Acevedo, Carolina; Thompson, Anna Carels; Reeves, Lawrence E; Burkett-Cadena, Nathan D

    2017-10-01

    Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period ( H (1979) = 1.68, H (2016) = 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators. © 2017 The Author(s).

  9. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  10. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  11. Use of natural geochemical tracers to improve reservoir simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, O.; Chatzichristos, C.; Sagen, J.; Muller, J.; Kleven, R.; Bennett, B.; Larter, S.; Stubos, A.K.; Adler, P.M.

    2005-01-01

    This article introduces a methodology for integrating geochemical data in reservoir simulations to improve hydrocarbon reservoir models. The method exploits routine measurements of naturally existing inorganic ion concentration in hydrocarbon reservoir production wells, and uses the ions as non-partitioning water tracers. The methodology is demonstrated on a North Sea field case, using the field's reservoir model, together with geochemical information (SO{sub 4}{sup 2}, Mg{sup 2+} K{sup +}, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, Cl{sup -} concentrations) from the field's producers. From the data-set we show that some of the ions behave almost as ideal sea-water tracers, i.e. without sorption to the matrix, ion-exchange with the matrix or scale-formation with other ions in the formation water. Moreover, the dataset shows that ion concentrations in pure formation-water vary according to formation. This information can be used to allocate produced water to specific water-producing zones in commingled production. Based on an evaluation of the applicability of the available data, one inorganic component, SO{sub 4}{sup 2}, is used as a natural seawater tracer. Introducing SO{sub 4}{sup 2} as a natural tracer in a tracer simulation has revealed a potential for improvements of the reservoir model. By tracking the injected seawater it was possible to identify underestimated fault lengths in the reservoir model. The demonstration confirms that geochemical data are valuable additional information for reservoir characterization, and shows that integration of geochemical data into reservoir simulation procedures can improve reservoir simulation models. (author)

  12. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  13. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  14. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  15. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    OpenAIRE

    Haihan Zhang; Jingyu Jia; Shengnan Chen; Tinglin Huang; Yue Wang; Zhenfang Zhao; Ji Feng; Huiyan Hao; Sulin Li; Xinxin Ma

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal tr...

  16. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  17. Plague metapopulation dynamics in a natural reservoir

    DEFF Research Database (Denmark)

    Davis, S; Klassovskiy, N; Ageyev, V

    2007-01-01

    The ecology of plague (Yersinia pestis infection) in its ancient foci in Central Asia remains poorly understood. We present field data from two sites in Kazakhstan where the great gerbil (Rhombomys opimus) is the major natural host. Family groups inhabit and defend burrow systems spaced throughout...... the landscape, such that the host population may be considered a metapopulation, with each occupied burrow system a subpopulation. We examine plague transmission within and between family groups and its effect on survival. Transmission of plague occurred disproportionately within family groups although not all...... gerbils became infected once plague entered a burrow system. There were no spatial patterns to suggest that family groups in close proximity to infected burrow systems were more at risk of infection than those far away. At one site, infection increased the chances of burrow-system extinction. Overall...

  18. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    Science.gov (United States)

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.

  19. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  20. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu; Elgassier, Mokhtar; Wu, Yu-Shu

    2015-01-01

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  1. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  2. Atlantic Forest. A natural reservoir of chemical elements

    International Nuclear Information System (INIS)

    De Franca, E.J.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Elias, C.

    2008-01-01

    The accumulation of chemical elements in biological compartments is one of the strategies of tropical species to adapt to a low-nutrient soil. This study focuses on the Atlantic Forest because of its eco-environmental importance as a natural reservoir of chemical elements. About 20 elements were determined by INAA in leaf, soil, litter and epiphyte compartments. There was no seasonality for chemical element concentrations in leaves, which probably indicated the maintenance of chemical elements in this compartment. Considering the estimated quantities, past deforestation events could have released large amounts of chemical elements to the environment. (author)

  3. New modelling of transient well test and rate decline analysis for a horizontal well in a multiple-zone reservoir

    International Nuclear Information System (INIS)

    Nie, Ren-Shi; Guo, Jian-Chun; Jia, Yong-Lu; Zhu, Shui-Qiao; Rao, Zheng; Zhang, Chun-Guang

    2011-01-01

    The no-type curve with negative skin of a horizontal well has been found in the current research. Negative skin is very significant to transient well test and rate decline analysis. This paper first presents the negative skin problem where the type curves with negative skin of a horizontal well are oscillatory. In order to solve the problem, we propose a new model of transient well test and rate decline analysis for a horizontal well in a multiple-zone composite reservoir. A new dimensionless definition of r D is introduced in the dimensionless mathematical modelling under different boundaries. The model is solved using the Laplace transform and separation of variables techniques. In Laplace space, the solutions for both constant rate production and constant wellbore pressure production are expressed in a unified formula. We provide graphs and thorough analysis of the new standard type curves for both well test and rate decline analysis; the characteristics of type curves are the reflections of horizontal well production in a multiple-zone reservoir. An important contribution of our paper is that our model removed the oscillation in type curves and thus solved the negative skin problem. We also show that the characteristics of type curves depend heavily on the properties of different zones, skin factor, well length, formation thickness, etc. Our research can be applied to a real case study

  4. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Haihan Zhang

    2018-02-01

    Full Text Available The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP from the outbreak to the decline period (p < 0.05 while Fe concentration increased sharply during the decline period (p < 0.05. The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02. Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of

  5. Decline Curve Based Models for Predicting Natural Gas Well Performance

    OpenAIRE

    Kamari, Arash; Mohammadi, Amir H.; Lee, Moonyong; Mahmood, Tariq; Bahadori, Alireza

    2016-01-01

    The productivity of a gas well declines over its production life as cannot cover economic policies. To overcome such problems, the production performance of gas wells should be predicted by applying reliable methods to analyse the decline trend. Therefore, reliable models are developed in this study on the basis of powerful artificial intelligence techniques viz. the artificial neural network (ANN) modelling strategy, least square support vector machine (LSSVM) approach, adaptive neuro-fuzzy ...

  6. Decline curve based models for predicting natural gas well performance

    Directory of Open Access Journals (Sweden)

    Arash Kamari

    2017-06-01

    Full Text Available The productivity of a gas well declines over its production life as cannot cover economic policies. To overcome such problems, the production performance of gas wells should be predicted by applying reliable methods to analyse the decline trend. Therefore, reliable models are developed in this study on the basis of powerful artificial intelligence techniques viz. the artificial neural network (ANN modelling strategy, least square support vector machine (LSSVM approach, adaptive neuro-fuzzy inference system (ANFIS, and decision tree (DT method for the prediction of cumulative gas production as well as initial decline rate multiplied by time as a function of the Arps' decline curve exponent and ratio of initial gas flow rate over total gas flow rate. It was concluded that the results obtained based on the models developed in current study are in satisfactory agreement with the actual gas well production data. Furthermore, the results of comparative study performed demonstrates that the LSSVM strategy is superior to the other models investigated for the prediction of both cumulative gas production, and initial decline rate multiplied by time.

  7. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  8. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  9. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  10. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  11. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  12. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  13. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  14. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  15. Evaluation of natural recharge of Chingshui geothermal reservoir using tritium as a tracer

    International Nuclear Information System (INIS)

    Cheng, W.; Kuo, T.; Su, C.; Chen, C.; Fan, K.; Liang, H.; Han, Y.

    2010-01-01

    Naturally existing tritium in groundwater was applied as a tracer to evaluate the natural recharge of the Chingshui geothermal reservoir. The residence time (or, age) of Chingshui geothermal water was first determined with tritium data at 15.2 and 11.3 year using the plug flow and dispersive model, respectively. The annual natural recharge was then estimated by combining the use of the residence time and the fluid-in-place of the Chingshui geothermal reservoir. The natural recharge for Chingshui geothermal reservoir was estimated at 5.0 x 10 5 and 6.7 x 10 5 m 3 year -1 using the plug flow and dispersive model, respectively. Chingshui geothermal water is largely from a fractured zone in the Jentse Member of the Miocene Lushan Formation. The dispersive model more adequately represents the fracture flow system than the simple plug flow model.

  16. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  17. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    Science.gov (United States)

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  18. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, William Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Montana, Missoula, MT (United States)

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  19. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  20. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  1. Population growth and the decline of natural Southern yellow pine forests

    Science.gov (United States)

    David B. South; Edward R. Buckner

    2004-01-01

    Population growth has created social and economic pressures that affect the sustainability of naturally regenerated southern yellow pine forests. Major causes of this decline include (1) a shift in public attitudes regarding woods burning (from one favoring it to one that favors fire suppression) and (2) an increase in land values (especially near urban centers). The...

  2. Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir

    NARCIS (Netherlands)

    Bakker, E.; Hangx, S.J.T.|info:eu-repo/dai/nl/30483579X; Niemeijer, A.R.|info:eu-repo/dai/nl/370832132; Spiers, C.J.|info:eu-repo/dai/nl/304829323

    2016-01-01

    We investigated the effects of long-term CO2-brine-rock interactions on the frictional and transport properties of reservoir-derived fault gouges, prepared from both unexposed and CO2-exposed sandstone, and from aragonite-cemented fault rock of an active CO2-leaking conduit, obtained from a natural

  3. Characteristic fracture spacing in primary and secondary recovery for naturally fractured reservoirs

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2018-01-01

    If the aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is highly inter-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery

  4. Injectivity decline prediction for Campos Basin reservoirs; Previsao da perda de injetividade para reservatorios da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano dos [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Bedrikovetsky, Pavel [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Furtado, Claudio J.A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    A simulator for prediction of injectivity decline in perforated water injection wells is presented. The model parameters (filtration and formation damage coefficients) were determined from history data fitting, allowing injectivity decline prediction for various perforated water injectors. The injectivity model, considering both internal and external filtration, fitted the history data very well and allowed a comprehensive analysis of injectivity decline. The simulations revealed that, after the perforations filling, the injectivity decline rate becomes much more intensive. Therefore, the time necessary for perforations filling is an important variable on work over planning. (author)

  5. Telling a (good?) counterstory of aging: natural bodybuilding meets the narrative of decline.

    Science.gov (United States)

    Phoenix, Cassandra; Smith, Brett

    2011-09-01

    In Western society, the narrative of decline dominates the aging process. We know very little about the complexities of how people resist this narrative. The purpose of this article is to understand how a group of mature natural bodybuilders resisted the narrative of decline. In-depth life story interviews were conducted with 13 natural bodybuilders aged between 50 and 73 years. Verbatim transcripts were produced and the data analyzed using a structural narrative analysis. A dialogical analysis was also utilized. The participants' experiences did not fit with stereotypical assumptions about decline and deterioration in older age. They all told counterstories to "natural" aging, yet what differed was how the participants' counterstories resisted the narrative of decline and the level of resistance that they provided. We advance knowledge in the fields of aging and narrative inquiry by revealing the multidimensionality of resistance. We demonstrated how participants storied resistance in different ways and the important implications this had for the way aging was understood and acted upon-by themselves and potentially by others. In addition to advancing theoretical knowledge, in this article, we also significantly contribute to understandings of the potential of narrative for changing human lives and behavior across the life course in more positive and nuanced ways.

  6. Ciliate Paramecium is a natural reservoir of Legionella pneumophila

    Science.gov (United States)

    Watanabe, Kenta; Nakao, Ryo; Fujishima, Masahiro; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2016-04-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, replicates within alveolar macrophages and free-living amoebae. However, the lifestyle of L. pneumophila in the environment remains largely unknown. Here we established a novel natural host model of L. pneumophila endosymbiosis using the ciliate Paramecium caudatum. We also identified Legionella endosymbiosis-modulating factor A (LefA), which contributes to the change in life stage from endosymbiosis to host lysis, enabling escape to the environment. We isolated L. pneumophila strains from the environment, and they exhibited cytotoxicity toward P. caudatum and induced host lysis. Acidification of the Legionella-containing vacuole (LCV) was inhibited, and enlarged LCVs including numerous bacteria were observed in P. caudatum infected with L. pneumophila. An isogenic L. pneumophila lefA mutant exhibited decreased cytotoxicity toward P. caudatum and impaired the modification of LCVs, resulting in the establishment of endosymbiosis between them. Our results suggest that L. pneumophila may have a mechanism to switch their endosymbiosis in protistan hosts in the environment.

  7. The decline of natural sciences in the culture of mass media

    Science.gov (United States)

    Elías, Carlos

    2011-06-01

    This study sets out to determine if the interest in and study of natural sciences is declining in western countries as scientists currently contend. Part one demonstrates how survey results reveal a decline of interest in scientific news in the EU. Part two explores the decline of interest further through examining data such as the number of students interested in scientific subjects and scientific careers. I explore the hypothesis that the lack of interest in scientific subjects is influenced by the culture of the mass media, and the manner in which the media covers scientific items. I examine a range of media outlets, from reality TV shows and TV series, to movies and the press. Many aspects of this paper have been discussed in depth in my book published in 2008: La razón estrangulada (Reason Strangled: the Crisis of Science in Contemporary Society).

  8. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  9. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  10. Advanced Reservoir Characterization and Evaluation of C02 Gravity Drainage in the Naturally Fractured Sprayberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    1998-04-30

    The objective is to assess the economic feasibility of CO2 flooding of the naturally fractured Straberry Trend Area in west Texas. Research is being conducted in the extensive characterization of the reservoirs, the experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, the analytical and numerical simulation of Spraberry reservoirs, and the experimental investigations on CO2 gravity drainage in Spraberry whole cores.

  11. First Case of Natural Infection in Pigs: Review of Trypanosoma cruzi Reservoirs in Mexico

    Directory of Open Access Journals (Sweden)

    Paz María Salazar-Schettino

    1997-07-01

    Full Text Available An epidemiological research project was performed in the State of Morelos including collection of samples for blood smears and culture, serological tests, and xenodiagnoses from a total of 76 domestic and peridomestic mammals. Two strains of Trypanosoma cruzi were isolated by haemocultures; one from a pig (Sus scrofa, the first case of natural infection reported in Mexico, and the other from a dog (Canis familiaris. This study summarizes current information in Mexico concerning confirmed reservoirs of T. cruzi

  12. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    Jiang, Liming; Sun, Jianmeng; Wang, Haitao; Liu, Xuefeng

    2011-01-01

    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  13. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  14. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  15. Extended application of radon as a natural tracer in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Moreira R.M.

    2013-05-01

    Full Text Available In the 80's it was a common practice in the study of contamination by NAPL to incorporate a tracer to the medium to be studied. At that time the first applications focused on the use of 222Rn, a naturally occurring radioactive isotope as a natural tracer, appropriate for thermodynamics studies, geology and transport properties in thermal reservoirs. In 1993 the deficit of radon was used to spot and quantify the contamination by DNAPL under the surface. For the first time these studies showed that radon could be used as a partitioning tracer. A methodology that provides alternatives to quantify the oil volume stored in the porous space of oil reservoirs is under development at CDTN. The methodology here applied, widens up and adapts the knowledge acquired from the use of radon as a tracer to the studies aimed at assessing SOR. It is a postulation of this work that once the radon partition coefficient between oil and water is known, SOR will be determined considering the increased amount of radon in the water phase as compared to the amount initially existent as the reservoir is flooded with water. This paper will present a description of the apparatus used and some preliminary results of the experiments.

  16. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  17. Laboratory Investigation to Assess the Impact of Pore Pressure Decline and Confining Stress on Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    khalil Rehman Memon

    2018-01-01

    Full Text Available Four core samples of outcrop type shale from Mancos, Marcellus, Eagle Ford, and Barnett shale formations were studied to evaluate the productivity performance and reservoir connectivity at elevated temperature and pressure. These laboratory experiments were conducted using hydrostatic permeability system with helium as test gas primarily to avoid potential significant effects of adsorption and/or associated swelling that might affect permeability. It was found that the permeability reduction was observed due to increasing confining stress and permeability improvement was observed related to Knudsen flow and molecular slippage related to Klinkenberg effect. Through the effective permeability of rock is improved at lower pore pressures, as 1000 psi. The effective stress with relatively high flow path was identified, as 100-200 nm, in Eagle Ford core sample. However other three samples showed low marginal flow paths in low connectivity.

  18. Simulation of petroleum recovery in naturally fractured reservoirs: physical process representation

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Hernani P.; Miranda Filho, Daniel N. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    The naturally fractured reservoir recovery normally involves risk especially in intermediate to oil wet systems because of the simulations poor efficiency results under waterflood displacement. Double-porosity models are generally used in fractured reservoir simulation and have been implemented in the major commercial reservoir simulators. The physical processes acting in petroleum recovery are represented in double-porosity models by matrix-fracture transfer functions, therefore commercial simulators have their own implementations, and as a result different kinetics and final recoveries are attained. In this work, a double porosity simulator was built with Kazemi et al. (1976), Sabathier et al. (1998) and Lu et al. (2008) transfer function implementations and their recovery results have been compared using waterflood displacement in oil-wet or intermediate-wet systems. The results of transfer function comparisons have showed recovery improvements in oil-wet or intermediate-wet systems under different physical processes combination, particularly in fully discontinuous porous medium when concurrent imbibition takes place, coherent with Firoozabadi (2000) experimental results. Furthermore, the implemented transfer functions, related to a double-porosity model, have been compared to double-porosity commercial simulator model, as well a discrete fracture model with refined grid, showing differences between them. Waterflood can be an effective recovery method even in fully discontinuous media for oil-wet or intermediate-wet systems where concurrent imbibition takes place with high enough pressure gradients across the matrix blocks. (author)

  19. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  20. Emissions from hydroelectric reservoirs and comparison of hydroelectricity, natural gas and oil

    International Nuclear Information System (INIS)

    Gagnon, L.; Chamberland, A.

    1993-01-01

    When reservoirs are created, a small fraction of the flooded organic matter decomposes into humic acids, carbon dioxide (CO 2 ), methane (CH 4 ), nitrogen, phosphorus, and other elements. The major greenhouse gases produced are CO 2 and CH 4 . For northern projects, Canadian studies on emissions from hydroelectric reservoirs have reached similar conclusions: Emissions, including methane, are less than 35 kg CO 2 equivalent per MWh. Using a typical project in northern Quebec as the basis for analysis, none of the studies dispute the considerable advantages of hydroelectricity regarding greenhouse gas emissions. Taking into account all components of energy systems, emissions of greenhouse gases from natural-gas power plants are 24 to 26 times greater than emissions from hydroelectric plants. The Freshwater Institute, in an article published in Ambio suggests that emissions from hydroelectric plants could be a significant source of greenhouse gases. This conclusion does not apply to most hydroelectric projects for two reasons: First, the Freshwater Institute's studies concerned flooded peatlands and shallow reservoirs that are not typical of most hydro projects; and second, the Institute analyzed a hydro project with a ratio of flooded area to energy production that is 6 to 10 times higher than typical projects in Canada. 7 refs, 4 tabs

  1. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  2. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  3. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  4. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  5. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  6. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  7. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  8. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  9. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  10. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  11. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  12. Strontium isotopes as natural tracers in reservoir oilfield and in groundwater systems

    International Nuclear Information System (INIS)

    Santos, Marcos E.; Palmieri, Helena E.L.; Moreira, Rubens M.

    2009-01-01

    The radioactive beta (β - ) decay of 87 Rb to 87 Sr is an important isotope system that has been widely applied for geochronological purposes and in identifying ground water sources, aquifer interactions and as a tracer for a secondary recovery process in offshore oilfields via seawater injection. The 87 Sr/ 86 Sr ratio of present seawater is constant worldwide, while formation waters in hydrocarbon reservoirs have various values are in most cases higher than modern seawater. This can be the basis for a natural tracer technique aiming at evaluating the performance of seawater injection processes by evaluating the 87 Sr/ 86 Sr ratio and the total Sr content of formation waters in the reservoir prior to injection, followed by monitoring these values in the produced water as injection proceeds. Inductively Couple Plasma Mass Spectrometry ICP-MS is a technique that has potential to be used in studies with tracers in the environment in the determination of isotope ratios and element traces in a sample. This work describes the methodology that will be used for the determination of variations in the isotopic composition of Sr and presents the preliminary results obtained determination of the strontium isotope ratios ( 87 Sr/ 86 Sr) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). (author)

  13. Effects of different block size distributions in pressure transient response of naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, G.H. [Islamic Azad University, Mahshahr (Iran, Islamic Republic of). Dept. of Chemical and Petroleum Engineering], E-mail: montazeri_gh@yahoo.com; Tahami, S.A. [Mad Daneshgostar Tabnak Co. (MDT),Tehran (Iran, Islamic Republic of); Moradi, B.; Safari, E. [Iranian Central Oil Fields Co, Tehran (Iran, Islamic Republic of)], E-mail: morady.babak@gmail.com

    2011-07-15

    This paper presents a model for pressure transient and derivative analysis for naturally fractured reservoirs by a formulation of inter porosity flow incorporating variations in matrix block size, which is inversely related to fracture intensity. Geologically realistic Probability Density Functions (PDFs) of matrix block size, such as uniform, bimodal, linear and exponential distributions, are examined and pseudo-steady-state and transient models for inter porosity flow are assumed. The results have been physically interpreted, and, despite results obtained by other authors, it was found that the shape of pressure derivative curves for different PDFs are basically identical within some ranges of block size variability, inter porosity skin, PDFs parameters and matrix storage capacity. This tool can give an insight on the distribution of block sizes and shapes, together with other sources of information such as Logs and geological observations. (author)

  14. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  15. Natural and artificial nuclides in Salesópolis reservoir by gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo S.C.; Semmler, Renato; Zahn, Guilherme S.; Rocha, Flávio R.; Damatto, Sandra R.; Fávaro, Déborah I.T., E-mail: pscsilva@ipen.br, E-mail: rsemmler@ipen.br, E-mail: gzahn@ipen.br, E-mail: flavio@baquara.com, E-mail: damatto@ipen.br, E-mail: defavaro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Natural radioactivity is ubiquitous in the environment mainly due to the presence of the nuclides from the uranium and thorium series and {sup 40}K. Although in the South Hemisphere nuclear tests have been fewer in number than that in the North, artificial radionuclides can also be found spread at ground level. In this study, the activity concentrations of natural nuclides from the uranium and thorium series, {sup 40}K and the artificial {sup 137}Cs were determined in a sediment core with 42 cm depth collected in the middle of the Salesópolis reservoir, located in the Metropolitan Region of São Paulo city (SPMR). The Usina Parque Rio Tietê reservoir belongs to the Alto do Tietê system for the capture, storage and treatment of water for SPMR. Therefore, the quality of the water and sediments of this dam is of great importance. The activity concentrations were measured by gamma spectrometry. Samples were measured and saved at regular intervals at a maximum of 160 000 seconds. The gross area were determined for each peak and plotted against time and the counting rate was obtained by the slope of the curve. Background and reference materials were also counted and treated in the same way. Results showed that {sup 226}Ra varied from 45 to 116 Bq kg{sup -1}; {sup 228}Ra, from 80 to 165 Bq kg{sup -1}; {sup 40}K, from 155 to 1 187 Bq kg{sup -1} and {sup 137}Cs varied from 0.3 to 7 Bq kg{sup -1}. The methodology applied for determining low levels of {sup 137}Cs in sediment proved to be efficient and reproducible. (author)

  16. Natural and artificial nuclides in Salesópolis reservoir by gamma spectrometry

    International Nuclear Information System (INIS)

    Silva, Paulo S.C.; Semmler, Renato; Zahn, Guilherme S.; Rocha, Flávio R.; Damatto, Sandra R.; Fávaro, Déborah I.T.

    2017-01-01

    Natural radioactivity is ubiquitous in the environment mainly due to the presence of the nuclides from the uranium and thorium series and 40 K. Although in the South Hemisphere nuclear tests have been fewer in number than that in the North, artificial radionuclides can also be found spread at ground level. In this study, the activity concentrations of natural nuclides from the uranium and thorium series, 40 K and the artificial 137 Cs were determined in a sediment core with 42 cm depth collected in the middle of the Salesópolis reservoir, located in the Metropolitan Region of São Paulo city (SPMR). The Usina Parque Rio Tietê reservoir belongs to the Alto do Tietê system for the capture, storage and treatment of water for SPMR. Therefore, the quality of the water and sediments of this dam is of great importance. The activity concentrations were measured by gamma spectrometry. Samples were measured and saved at regular intervals at a maximum of 160 000 seconds. The gross area were determined for each peak and plotted against time and the counting rate was obtained by the slope of the curve. Background and reference materials were also counted and treated in the same way. Results showed that 226 Ra varied from 45 to 116 Bq kg -1 ; 228 Ra, from 80 to 165 Bq kg -1 ; 40 K, from 155 to 1 187 Bq kg -1 and 137 Cs varied from 0.3 to 7 Bq kg -1 . The methodology applied for determining low levels of 137 Cs in sediment proved to be efficient and reproducible. (author)

  17. Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natural lake

    International Nuclear Information System (INIS)

    Tremblay, Alain; Lucotte, Marc; Cloutier, Louise

    1998-01-01

    Total mercury (total Hg) concentrations in emerging aquatic insects ranged from 140 to 1500 ng g -1 dry wt. in two hydroelectric reservoirs of northern Quebec compared with 50-160 ng g -1 dry wt. in a natural lake. Methylmercury (MeHg) concentrations were somewhat lower, ranging from 35 to 800 ng Hg g -1 dry wt. in reservoirs and from 29 to 90 ng g -1 dry wt. in the natural lake. Contamination of insect taxa of reservoirs was on average 2-3 times higher than their counterparts in the natural lake. There was no difference between total Hg and MeHg concentrations of insects sampled from flooded forest soils and flooded peatland, although total Hg and MeHg concentrations differed between flooded peatland and flooded forest soils themselves. Insect biomasses were approx. two times higher in the reservoirs than in the natural lake (580-2200 mg m -2 year -1 dry wt., 950 mg m -2 year -1 dry wt., respectively); chironomids dominated in the reservoirs and trichopterans dominated in the natural lake. Similarly, total MeHg fluxes via emerging insects were approx. 2-4 times higher in reservoirs than that of the natural lake (55-224 ng MeHg m -2 year -1 dry wt., 74 ng MeHg m -2 year -1 dry wt., respectively). Our results show the importance of the insect community in the transfer of MeHg from flooded soils and flooded peatlands to fish, and that this pathway probably makes a significant contribution to the rapid rise of Hg levels in the fish community after flooding

  18. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    Science.gov (United States)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  19. Spring flood pH decline in northern Sweden: Towards an operational model separating natural acidity from anthropogenic acidification

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, H.

    1999-10-01

    The spring flood is a defining feature of the ecosystem in northern Sweden. In this region, spring flood is an occasion for dramatic hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also the period most susceptible to anthropogenic acidification. A belief in the anthropogenic component to pH decline during spring flood has been an important factor in spending over half a billion crowns to lime surface waters in Northern Sweden during the last decade. The natural component of episodic pH decline during spring flood, however, has received less attention. The main objective of this work is to present an operational model for separating and quantifying the anthropogenic and natural contributions of episodic acidification during high flow events in Northern Sweden. The key assumptions in this model are that baseflow ANC has not been affected by anthropogenic acidification, that DOC has not changed due to modern land-use practice and that natural dilution during hydrological episodes can be quantified. The limited data requirements of 10-15 stream water samples before and during spring flood make the model suitable for widespread use in environmental monitoring programs. This makes it possible to distinguish trends of human impact as well as natural pH decline in space and time. Modeling results from northern Sweden demonstrate that the natural driving mechanisms of dilution and organic acidity were the dominant factors in the episodic acidification of spring flood in the region. The anthropogenic contribution to spring pH decline was similar in size to the natural contribution in only two of the more than 30 events where this model was applied. Natural factors alone were found to cause pH values below 4.5 in some streams. Anthropogenic sources of acidity can be superimposed on this natural dynamics. In the sites studied, the magnitude of the anthropogenic ANC decline was correlated to the winter deposition of

  20. Modeling flow in naturally fractured reservoirs : effect of fracture aperture distribution on dominant sub-network for flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2017-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture

  1. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    changes from 3800 to 5100 μScm-1 in the deepest layers are found with a similar daily water inflow. On the other hand, when reservoir water level is low, salinity increases around 1000 μScm-1 are found with a 2 m water level falling. In view of the influence of water level in the reservoir dynamics, this factor should be considered when dam operation decisions are taken by managers in terms of satisfying the water demand. The results will be implemented in a Decision Support System that is being displayed in the Guadalhorce River and which includes prediction of water quantity and quality in the reservoir in terms of salinity, involving water level and water inflow forecasting as the main factors to control the state of the reservoir and therefore with implications in water management. This methodology could be implemented in other reservoirs with high salinity and be adapted to other substances (such as nutrients and heavy metals) associated to water inflow in water bodies where water quality and quantity are driven by human decisions factors besides natural factors such as floods and dynamics of flows in the reservoir.

  2. The natural history of cardiac and pulmonary function decline in patients with duchenne muscular dystrophy.

    Science.gov (United States)

    Roberto, Rolando; Fritz, Anto; Hagar, Yolanda; Boice, Braden; Skalsky, Andrew; Hwang, Hosun; Beckett, Laurel; McDonald, Craig; Gupta, Munish

    2011-07-01

    Retrospective review of scoliosis progression, pulmonary and cardiac function in a series of patients with Duchenne Muscular Dystrophy (DMD). To determine whether operative treatment of scoliosis decreases the rate of pulmonary function loss in patients with DMD. It is generally accepted that surgical intervention should be undertaken in DMD scoliosis once curve sizes reach 35° to allow intervention before critical respiratory decline has occurred. There are conflicting reports, however, regarding the effect of scoliosis stabilization on the rate of pulmonary function decline when compared to nonoperative cohorts. We reviewed spinal radiographs, echocardiograms, and spirometry, hospital, and operative records of all patients seen at our tertiary referral center from July 1, 1992 to June 1, 2007. Data were recorded to Microsoft Excel (Microsoft, Redmond, WA) and analyzed with SAS (SAS Institute, Cary, NC) and R statistical processing software (www.r-project.org). The percent predicted forced vital capacity (PPFVC) decreased 5% per year before operation. The mean PPFVC was 54% (SD = 21%) before operation with a mean postoperative PPFVC of 43% (SD = 14%). Surgical treatment was associated with a 12% decline in PPFVC independent of other treatment variables. PPFVC after operation declined at a rate of 1% per year and while this rate was lower, it was not significantly different than the rate of decline present before operation (P = 0.18). Cardiac function as measured by left ventricular fractional shortening declined at a rate of 1% per year with most individuals exhibiting a left ventricular fractional shortening rate of more than 30 before operation. Operative treatment of scoliosis in DMD using the Luque Galveston method was associated with a reduction of forced vital capacity related to operation. The rate of pulmonary function decline after operation was not significantly reduced when compared with the rate of preoperative forced vital capacity decline.

  3. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  4. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  5. Molecular Survey on Brucellosis in Rodents and Shrews - Natural Reservoirs of Novel Brucella Species in Germany?

    Science.gov (United States)

    Hammerl, J A; Ulrich, R G; Imholt, C; Scholz, H C; Jacob, J; Kratzmann, N; Nöckler, K; Al Dahouk, S

    2017-04-01

    Brucellosis is a widespread zoonotic disease introduced from animal reservoirs to humans. In Germany, bovine and ovine/caprine brucellosis were eradicated more than a decade ago and mandatory measures in livestock have been implemented to keep the officially brucellosis-free status. In contrast, surveillance of wildlife is still challenging, and reliable data on the prevalence of brucellae in small mammal populations do not exist. To assess the epidemiology of Brucella spp. in rodents and shrews, a molecular survey was carried out. A total of 537 rodents and shrews were trapped in four federal states located throughout Germany and investigated for the presence of Brucella. Using a two-step molecular assay based on the detection of the Brucella-specific bcsp31 and IS711 sequences in tissue samples, 14.2% (n = 76) of the tested animals were positive. These originated mainly from western and south-western Germany, where preliminary analyses indicate population density-dependent Brucella prevalence in voles (Myodes glareolus) and mice (Apodemus spp.). recA typing revealed a close relationship to a potentially novel Brucella species recently isolated from red foxes (Vulpes vulpes) in Austria. The molecular detection of brucellae in various rodent taxa and for the first time in shrew species shows that these animals may be naturally infected or at least have a history of exposure to Brucella spp. © 2015 Blackwell Verlag GmbH.

  6. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  7. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska.

    Science.gov (United States)

    Adelaide C. Johnson; Peter. Wilcock

    1998-01-01

    A natural decline in the population of yellow-cedar (Chamaecyparis nootkatensis) is occurring in pristine southeast Alaska forests and may be the most significant forest decline in the western United States. The frequency of landslides in cedar decline areas is three times larger than in areas of healthy forest. Three regions are investigated in...

  8. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-03-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  9. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  10. Three Gorges Reservoir Area: soil erosion under natural condition vs. soil erosion under current land use

    Science.gov (United States)

    Schönbrodt, Sarah; Behrens, Thorsten; Scholten, Thomas

    2010-05-01

    Apparently, the current most prominent human-induced example for large scale environmental impact is the Three Gorges Dam in China. The flooding alongside the Yangtze River, and its tributaries results in a vast loss of settlement and farmland area with productive, fertile valley soils. Due to the associated high land use dynamic on uphill-sites, the soil resources are underlying high land use pressure. Within our study, the soil erosion under natural conditions is compared to the soil erosion under current land use after the impoundment. Both were modeled using the empirical Universal Soil Loss Equation (USLE) which is able to predict long-term annual soil loss with limited data. The database consists of digital terrain data (45 m resolution DEM, erosive slope length based on Monte-Carlo-Aggregation according to Behrens et al. (2008)), field investigations of recent erosion forms, and literature studies. The natural disposition to soil erosion was calculated considering the USLE factors R, S, and K. The soil erosion under current land use was calculated taking into account all USLE factors. The study area is the catchment of the Xiangxi River in the Three Gorges Reservoir area. Within the Xiangxi Catchment (3,200 km²) the highly dynamic backwater area (580 km²), and two micro-scale study sites (Xiangjiaba with 2.8 km², and Quyuan with 88 km²) are considered more detailed as they are directly affected by the river impoundment. Central features of the Xiangxi Catchment are the subtropical monsoon climate, an extremely steep sloping relief (mean slope angle 39°, SD 22.8°) artificially fractured by farmland terraces, and a high soil erodibility (mean K factor 0.37, SD 0.13). On the catchment scale the natural disposition to soil erosion makes up to mean 518.0 t ha-1 a-1. The maximum potential soil loss of 1,730.1 t ha-1 a-1 under natural conditions is reached in the Quyuan site (mean 635.8 t ha-1 a-1) within the backwater area (mean 582.9 t ha-1 a-1). In the

  11. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  12. Role of golden jackals (Canis aureus) as natural reservoirs of Dirofilaria spp. in Romania

    Czech Academy of Sciences Publication Activity Database

    Ionică, A.M.; Matei, I.A.; D’Amico, G.; Daskalaki, A.A.; Juránková, J.; Ionescu, D.T.; Mihalca, A. D.; Modrý, David; Gherman, C.M.

    2016-01-01

    Roč. 9, APR 28 (2016), č. článku 240. ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : wild carnivores * reservoir * heartworm * dirofilariases * dissemination * Romania Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.080, year: 2016

  13. Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish-based index (FBI) for French lakes

    OpenAIRE

    Launois, L.; Veslot, J.; Irz, P.; Argillier, C.

    2010-01-01

    1.Fish-based indices of biotic integrity (IBI) have been developed for many lotic systems but remain scarce for lakes. The goal of the present study was to assess the responses of lentic fish assemblages to anthropogenic pressures when environmental variability was controlled for, and to compare them between French natural lakes and reservoirs. 2.Environmental features, catchment-scale anthropogenic descriptors and fish data were collected from 30 natural lakes and 59 reservoirs throughout...

  14. Emulating natural disturbances for declining late-successional species: A case study of the consequences for Cerulean Warblers (Setophaga cerulea)

    Science.gov (United States)

    Boves, Than J.; Buehler, David A.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Newell, Felicity L.; George, Gregory A.; Bakermans, Marja H.; Evans, Andrea; Beachy, Tiffany A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently

    2013-01-01

    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is

  15. Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, P.

    1998-06-01

    The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

  16. Immiscible and Miscible Gas-Oil Gravity Drainage in Naturally Fractured Reservoirs

    NARCIS (Netherlands)

    Ameri, A.

    2014-01-01

    In the phase of declining oilfields and at a time when recovering hydrocarbons has becoming more difficult, effective techniques are the key to extract more oil from mature fields. The difficulty of developing effective techniques is often the real obstacle when dealing with heterogeneous formations

  17. Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh [Univ. of Wyoming, Laramie, WY (United States); Onishi, Tsubasa [Texas A & M Univ., College Station, TX (United States); Carey, James William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Will, Bob [Schlumberger, Houston, TX (United States); Zaluski, Wade [Schlumberger, Houston, TX (United States); Bowen, David [Montana State Univ., Bozeman, MT (United States); DeVault, Brian [Vecta Oil and Gas, Dallas, TX (United States); Duguid, Andrew [Battelle Memorial Inst., Columbus, OH (United States); Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-22

    In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO2 storage at Kevin Dome, Montana. Geologic CO2 sequestration in saline aquifers poses certain risks including CO2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a large number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.

  18. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  19. Economics of Developing Hot Stratigraphic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  20. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  1. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1997-12-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  2. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  3. Social capital and cognitive decline in the aftermath of a natural disaster: a natural experiment from the 2011 Great East Japan Earthquake and Tsunami.

    Science.gov (United States)

    Hikichi, Hiroyuki; Tsuboya, Toru; Aida, Jun; Matsuyama, Yusuke; Kondo, Katsunori; Subramanian, S V; Kawachi, Ichiro

    2017-06-01

    We examined prospectively whether social capital mitigates the adverse effects of natural disaster on cognitive decline. The baseline for our study was established seven months before the 2011 Great East Japan Earthquake and Tsunami in a survey of older community-dwelling adults who lived 80 kilometers west of the epicenter (59.0% response rate). Approximately two and a half years after the disaster, the follow-up survey gathered information about personal experiences of disaster as well as incidence of cognitive disability (82.1% follow-up rate). Our primary outcome was cognitive disability (measured on an 8-level scale) assessed by in-home assessment. The experience of housing damage was associated with risk of cognitive impairment (coefficient = 0.04, 95% confidence interval: 0.02 to 0.06). Factor analysis of our analytic sample (n = 3,566) established two sub-scales of social capital: a cognitive dimension (perceptions of community social cohesion) and a structural dimension (informal socializing and social participation). Fixed effects regression showed that informal socializing and social participation buffered the risk of cognitive decline resulting from housing damage. Informal socializing and social participation may prevent cognitive impairment following natural disaster. National Institutes of Health (R01AG042463-04), the Japan Society for the Promotion of Science, the Japanese Ministry of Health, Labour and Welfare and the Japanese Ministry of Education, Culture, Sports, Science and Technology.

  4. Extracellular Trap Formation in Response to Trypanosoma cruzi Infection in Granulocytes Isolated From Dogs and Common Opossums, Natural Reservoir Hosts

    Directory of Open Access Journals (Sweden)

    Nicole de Buhr

    2018-05-01

    Full Text Available Granulocytes mediate the first line of defense against infectious diseases in humans as well as animals and they are well known as multitasking cells. They can mediate antimicrobial activity by different strategies depending on the pathogen they encounter. Besides phagocytosis, a key strategy against extracellular pathogens is the formation of extracellular traps (ETs. Those ETs mainly consist of DNA decorated with antimicrobial components and mediate entrapment of various pathogens. In the last years, various studies described ET formation as response to bacteria, viruses and parasites e.g., Trypanosma (T. cruzi. Nevertheless, it is not fully understood, if ET formation helps the immune system to eliminate intracellular parasites. The goal of this study was to analyze ET formation in response to the intracellular parasite Trypanosma (T. cruzi by granulocytes derived from animals that serve as natural reservoir. Thus, we investigated the ET formation in two T. cruzi reservoirs, namely dogs as domestic animal and common opossums (Didelphis marsupialis as wild animal. Granulocytes were harvested from fresh blood by density gradient centrifugation and afterwards incubated with T. cruzi. We conducted the analysis by determination of free DNA and immunofluorescence microscopy. Using both methods, we show that T. cruzi efficiently induces ET formation in granulocytes derived from common opossum as well as dog blood. Most ETs from both animal species as response to T. cruzi are decorated with the protease neutrophil elastase. Since T. cruzi is well known to circulate over years in both analyzed animals as reservoirs, it may be assumed that T. cruzi efficiently evades ET-mediated killing in those animals. Therefore, ETs may not play a major role in efficient elimination of the pathogen from the blood of dogs or common opossums as T. cruzi survives in niches of their body. The characterization of granulocytes in various animals and humans may be helpful

  5. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-01

    The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. This report presents the findings of the DOE National Laboratories Well Integrity Work Group efforts in the four tasks. In addition to documenting the work of the Work Group, this report presents high priority recommendations to improve well integrity and reduce the likelihood and consequences of subsurface natural gas leaks.

  6. Could the Health Decline of Prehistoric California Indians be Related to Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) from Natural Bitumen?

    Science.gov (United States)

    Sholts, Sabrina B.; Erlandson, Jon M.; Gjerdrum, Thor; Westerholm, Roger

    2011-01-01

    Background: The negative health effects of polycyclic aromatic hydrocarbons (PAHs) are well established for modern human populations but have so far not been studied in prehistoric contexts. PAHs are the main component of fossil bitumen, a naturally occurring material used by past societies such as the Chumash Indians in California as an adhesive, as a waterproofing agent, and for medicinal purposes. The rich archaeological and ethnohistoric record of the coastal Chumash suggests that they were exposed to multiple uptake pathways of bituminous PAHs, including direct contact, fume inhalation, and oral uptake from contaminated water and seafood. Objectives: We investigated the possibility that PAHs from natural bitumen compromised the health of the prehistoric Chumash Indians in California. Conclusions: Exposure of the ancient Chumash Indians to toxic PAHs appears to have gradually increased across a period of 7,500 years because of an increased use of bitumen in the Chumash technology, together with a dietary shift toward PAH-contaminated marine food. Skeletal analysis indicates a concurrent population health decline that may be related to PAH uptake. However, establishing such a connection is virtually impossible without knowing the actual exposure levels experienced by these populations. Future methodological research may provide techniques for determining PAH levels in ancient skeletal material, which would open new avenues for research on the health of prehistoric populations and on the long-term effects of human PAH exposure. PMID:21596651

  7. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Science.gov (United States)

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...

  8. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  9. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  10. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-02

    Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through the Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE

  11. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  12. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnǚsi Palaeohigh, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xu Chunchun

    2014-10-01

    Full Text Available As several major new gas discoveries have been made recently in the Lower Cambrian Longwangmiao Fm reservoirs in the Leshan-Longnǚsi Palaeohigh of the Sichuan Basin, a super-huge gas reservoir group with multiple gas pay zones vertically and cluster reservoirs laterally is unfolding in the east segment of the palaeohigh. Study shows that the large-scale enrichment and accumulation of natural gas benefits from the good reservoir-forming conditions, including: (1 multiple sets of source rocks vertically, among which, the high-quality Lower Paleozoic source rocks are widespread, and have a hydrocarbon kitchen at the structural high of the Palaeohigh, providing favorable conditions for gas accumulation near the source; (2 three sets of good-quality reservoirs, namely, the porous-vuggy dolomite reservoirs of mound-shoal facies in the 2nd and 4th members of the Sinian Dengying Fm as well as the porous dolomite reservoirs of arene-shoal facies in the Lower Cambrian Longwangmiao Fm, are thick and wide in distribution; (3 structural, lithological and compound traps developed in the setting of large nose-like uplift provide favorable space for hydrocarbon accumulation. It is concluded that the inheritance development of the Palaeohigh and its favorable timing configuration with source rock evolution are critical factors for the extensive enrichment of gas in the Lower Cambrian Longwangmiao Fm reservoirs. The structural high of the Palaeohigh is the favorable area for gas accumulation. The inherited structural, stratigraphic and lithological traps are the favorable sites for gas enrichment. The areas where present structures and ancient structures overlap are the sweet-spots of gas accumulation.

  14. Essential Role of Invasin for Colonization and Persistence of Yersinia enterocolitica in Its Natural Reservoir Host, the Pig

    Science.gov (United States)

    Schaake, Julia; Drees, Anna; Grüning, Petra; Uliczka, Frank; Pisano, Fabio; Thiermann, Tanja; von Altrock, Alexandra; Seehusen, Frauke

    2014-01-01

    In this study, an oral minipig infection model was established to investigate the pathogenicity of Yersinia enterocolitica bioserotype 4/O:3. O:3 strains are highly prevalent in pigs, which are usually symptomless carriers, and they represent the most common cause of human yersiniosis. To assess the pathogenic potential of the O:3 serotype, we compared the colonization properties of Y. enterocolitica O:3 with O:8, a highly mouse-virulent Y. enterocolitica serotype, in minipigs and mice. We found that O:3 is a significantly better colonizer of swine than is O:8. Coinfection studies with O:3 mutant strains demonstrated that small variations within the O:3 genome leading to higher amounts of the primary adhesion factor invasin (InvA) improved colonization and/or survival of this serotype in swine but had only a minor effect on the colonization of mice. We further demonstrated that a deletion of the invA gene abolished long-term colonization in the pigs. Our results indicate a primary role for invasin in naturally occurring Y. enterocolitica O:3 infections in pigs and reveal a higher adaptation of O:3 than O:8 strains to their natural pig reservoir host. PMID:24343656

  15. First field example of remediation of unwanted migration from a natural CO2 reservoir: The Bečej Field, Serbia

    NARCIS (Netherlands)

    Karas, D.; Demić, I.; Kultysheva, K.; Antropov, A.; Blagojević, M.; Neele, F.; Pluymaekers, M.; Orlić, B.

    2016-01-01

    The Bečej field, discovered in 1951 by the Petroleum Industry of Serbia (NIS), is one of the largest natural CO2 fields in Europe. Uncontrolled migration of CO2 out of the main reservoir, leading to subsurface seepage and surface leakage, was caused by the Bč-5 well blowout in 1968. Remediation

  16. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD).

  17. Role of golden jackals (Canis aureus) as natural reservoirs of Dirofilaria spp. in Romania.

    Science.gov (United States)

    Ionică, Angela Monica; Matei, Ioana Adriana; D'Amico, Gianluca; Daskalaki, Aikaterini Alexandra; Juránková, Jana; Ionescu, Dan Traian; Mihalca, Andrei Daniel; Modrý, David; Gherman, Călin Mircea

    2016-04-28

    Dirofilaria immitis and Dirofilaria repens are mosquito-transmitted zoonotic nematodes, causing heartworm disease and skin lesions, respectively, in carnivores. In Europe, the domestic dog is apparently the main definitive host, but patent infections occur also in other species of carnivores. The rapid spread of the golden jackals (Canis aureus) throughout Europe opens a question of involvement of this species in the sylvatic cycle of pathogens in the colonised territories, including Dirofilaria spp. Between January 2014 and May 2015, 54 golden jackals from 18 localities in Romania were examined by full necropsy for the presence of adult filarioid nematodes and blood samples from all animals were screened for the presence of microfilariae of D. immitis, D. repens and Acanthocheilonema reconditum by multiplex PCR DNA amplification. Nematodes morphologically identified as D. immitis were found in 18.52% of the animals, originating from the southern part of Romania. No D. repens or A. reconditum were found at necropsy. The molecular prevalence in blood samples from the same animals was 9.26% for D. immitis and 1.85% for D. repens. All samples were negative by PCR for A. reconditum. The relatively high prevalence of Dirofilaria spp. infections in golden jackals from Romania together with the increasing density of the jackal populations highlight their potential role in the transmission of these zoonotic parasites and in the maintenance of natural disease foci.

  18. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  19. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.

    2001-11-19

    The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

  20. A Study of the Fruit Bat (Rousettus sp Brain Anatomy as Natural Reservoir Wild Animal for the Rabies Virus

    Directory of Open Access Journals (Sweden)

    Karina Mayang Sari

    2015-06-01

    Full Text Available Rousettus sp. (Fruit bat is one type of fruit bats in Indonesia and act as a natural reservoir of rabies. Rabies is caused by a virus from genus Lyssavirus, family Rhabdoviridae, which attack central nervous system (CNS.The brain is an organ that is sensitive to rabies infection. The purpose of this study was to determine the anatomical structure of the fruit bat brain macroscopically. Five fruit bat were used in this study, they were anaesthetized using ketamine and xylazin. Animals were perfused using physiological saline and 10% buffered formalin. Brains were taken using tweezers after all the bones of the skull were separated. Analysis of macroscopic brain was done descriptively. The results showed that the fruit bat brain were generally divided into cerebrum, cerebellum and brain stem. Gyrus, sulcus and the paraflokulus lobes of the fruit bat brain were less developed than that of the dogs brain.

  1. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.

    Science.gov (United States)

    Zhu, Hongli; Jia, Zheng; Chen, Yuchen; Weadock, Nicholas; Wan, Jiayu; Vaaland, Oeyvind; Han, Xiaogang; Li, Teng; Hu, Liangbing

    2013-07-10

    Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we demonstrate that an anode consisting of a Sn thin film deposited on a hierarchical wood fiber substrate simultaneously addresses all the challenges associated with Sn anodes. The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber. These properties are confirmed experimentally and computationally. A stable cycling performance of 400 cycles with an initial capacity of 339 mAh/g is demonstrated; a significant improvement over other reported Sn nanostructures. The soft and mesoporous wood fiber substrate can be utilized as a new platform for low cost Na-ion batteries.

  2. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  3. Investigation of gas-oil gravity drainage in naturally fractured reservoirs using discrete fracture and matrix numerical model

    International Nuclear Information System (INIS)

    Bazr-Afkan, S.

    2012-01-01

    To simulate fluid flow in Naturally Fractured Reservoirs (NFRs), a new Descrete Fracture and Matrix (DFM) simulation technique is developed as a physically more realistic alternative to the dual continuum approach. This Finite-Element Centered Finite-Volume method (FECFVM) has the advantage over earlier FECFVM approaches that it honors saturation dicontinuities that can arise at material interfaces from the interplay of viscous, capillary and gravitational forces. By contrast with an earlier embedded-discontinuity DFEFVM method, the FECFVM achieves this without introducing additional degrees of freedom. It also allows to simulate capillary- and other fracture-matrix exchange processes using a lower dimensional representation of fractures, simplifying model construction and unstructured meshing as well as speeding up computations. A further step-up is obtained by solving the two-phase fluid-flow and saturation transport equations only on 'active elements'. This also diminishes round-off and truncation errors, reducing numerical diffusion during the solution of the transport equation. The FECFVM is verified by comparing IMPES operator-splitting sequential solutions with analytical ones, as well as benchmarking it against commercial reservoir simulators on simple geometries that these can represent. This testing confirms that my 2D FECFVM implementation simulates gravitational segregation, capillary redistribution, capillary barriers, and combinations thereof physically realistically, achieving (at least) first-order solution accuracy. Following this verification, the FECFVM is applied to study Gas-Oil Gravity Drainage (GOGD) process in cross-sectional models of layered NFRs. Here comparisons with dual continua simulations show that these do not capture a range of block-to-block effects, yielding over-optimistic drainage rates. Observations made on individual matrix blocks in the DFM simulations further reveal that their saturation evolution is at odds with the

  4. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    Directory of Open Access Journals (Sweden)

    Jay Ram Lamichhane

    Full Text Available Pseudomonas avellanae (Pav has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions and contributing factors (Pav. Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD.

  5. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    Science.gov (United States)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents ( δ13C ethane (C2) gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  6. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  7. ROBUST DECLINE CURVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  8. Application of natural antimicrobial compounds for reservoir souring and MIC prevention in offshore oil and gas production systems

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Skovhus, Torben Lund; Mashietti, Marco

    Offshore oil production facilities are subjectable to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring - sulphide production by sulfate reducing microorganisms in the reservo...

  9. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir; Monitoring geochimique par couplage entre les gaz rares et les isotopes du carbone: etude d'un reservoir naturel

    Energy Technology Data Exchange (ETDEWEB)

    Jeandel, E

    2008-12-15

    To limit emissions of greenhouse gases in the atmosphere, CO{sub 2} geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO{sub 2}. Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  10. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  11. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    Science.gov (United States)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  12. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  13. Natural infection of trematodes in Lymnaea (Radix) auricularia rubiginosa in water reservoirs in Amphoe Muang, Khon Kaen Province.

    Science.gov (United States)

    Charoenchai, A; Tesana, S; Pholpark, M

    1997-01-01

    Lymnaea (Radix) auricularia rubiginosa (Michelin, 1831) was surveyed in 54 reservoirs of 18 districts in Amphoe Muang, Khon Kaen Province during February to May 1994. Lymnaeid snails were found in the water of 20 reservoirs, of which 16 reservoirs contained clear water and 4 turbid water. Two of the four turbid water reservoirs received drainage water from Khon Kaen Town. Two thousand four hundred and eight L. auricularia rubiginosa were collected and examined by shedding and crushing. Trematode infection occurred in 163 (6.77%) of 2,408 L. auricularia rubiginosa and some snails were infected with more than one cercarial species. Ninety-nine snails (4.11%) were infected with echinostomes, while mixed infection of echinostomes with Fasciola gigantica and with schistosomes was found in 5 snails (0.21%) and 2 snails (0.08%), respectively. Only 1 snail (0.04%), 19 snails (0.79%) and 37 snails (1.54%) were infected with F. gigantica, schistosomes and unidentified species, respectively. The mean size of infected snails was 6.89 +/- 2.02 mm (6.20-22.36) while the mean of sampled snails was 13.46 +/- 3.64 mm (4.00-26.55). The water plants which were found in reservoirs and presented with snails, were creeping water primose (Jusstaea repens), water lily (Nymphaea sp), water hyacinths (Eichornia crassipes) and grass.

  14. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    Science.gov (United States)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (tested in our laboratory and have proven effective in greatly reducing interfering monovalent and divalent cation concentrations (e

  15. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1998-07-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling

  16. A multi-scale case study of natural fracture systems in outcrops and boreholes with applications to reservoir modelling

    NARCIS (Netherlands)

    Taal-van Koppen, J.K.J.

    2008-01-01

    Fractured reservoirs are notoriously difficult to characterize because the resolution of seismic data is too low to detect fractures whereas borehole data is detailed but sparse. Therefore, outcrops can be of great support in gaining knowledge of the three-dimensional geometry of fracture networks,

  17. No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions

    Czech Academy of Sciences Publication Activity Database

    Mariën, J.; Borremans, B.; Gryseels, S.; Soropogui, B.; De Bruyn, L.; Ngiala Bongo, G.; Becker-Ziaja, B.; Goüy de Bellocq, Joëlle; Günther, S.; Magassouba, N.; Leirs, H.; Fichet-Calvet, E.

    2017-01-01

    Roč. 10, č. 1 (2017), č. článku 210. ISSN 1756-3305 Institutional support: RVO:68081766 Keywords : Arenavirus * Lassa virus * Morogoro virus * Gairo virus * Mastomys natalensis * Rodent-borne disease * Host-pathogen interaction * Reservoir host Subject RIV: EG - Zoology OBOR OECD: Parasitology Impact factor: 3.080, year: 2016

  18. A new, fully coupled, reaction-transport-mechanical approach to modeling the evolution of natural gas reservoirs in the Piceance Basin

    Science.gov (United States)

    Payne, Dorothy Frances

    The Piceance Basin is highly compartmented, and predicting the location and characteristics of producible reservoirs is difficult. Gas generation is an important consideration in quality and size of natural gas reserves, but it also may contribute to fracturing, and hence the creation of the reservoirs in which it is contained. The purpose of this dissertation is to use numerical modeling to study the evolution of these unconventional natural gas reservoirs in the Piceance Basin. In order to characterize the scale and structure of compartmentation in the Piceance Basin, a set of in-situ fluid pressure data were interpolated across the basin and the resulting fluid pressure distribution was analyzed. Results show complex basin- and field-scale compartmentation in the Upper Cretaceous units. There are no simple correlations between compartment location and such factors as stratigraphy, basin structure, or coal thickness and maturity. To account for gas generation in the Piceance Basin, a new chemical kinetic approach to modeling lignin maturation is developed, based primarily on structural transformations of the lignin molecule observed in naturally matured samples. This model calculates mole fractions of all species, functional group fractions, and elemental weight percents. Results show reasonable prediction of maturities at other sites in the Piceance Basin for vitrinite reflectance up to about 1.7 %Ro. The flexible design of the model allows it to be modified to account for compositionally heterogeneous source material. To evaluate the role of gas generation in this dynamical system, one-dimensional simulations have been performed using the CIRFB reaction-transport-mechanical (RTM) simulator. CIRFB accounts for compaction, fracturing, hydrocarbon generation, and multi-phase flow. These results suggest that by contributing to overpressure, gas generation has two important implications: (1) gas saturation in one unit affects fracturing in other units, thereby

  19. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  20. Molecular processes in the biodegradation of crude oils and crude oil products in the natural reservoir and in laboratory experiments

    International Nuclear Information System (INIS)

    Schalenbach, S.S.

    1993-10-01

    Two ains were pursued in the present study; first, to find positive indicators of the onset of biodegradation of reservoir oil wherever other parameters fail to give a clear picture; second, to establish a basic understanding of the molecular processes underlying the biodegradation of hydrocarbons and thus create a starting point for finding better criteria for valuating biological restoration methods for crude oil contaminated soils. (orig./HS) [de

  1. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  2. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  3. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  4. Simulation of Naturally Fractured Reservoirs. State of the Art Simulation des réservoirs naturellement fracturés. État de l’art

    Directory of Open Access Journals (Sweden)

    Lemonnier P.

    2010-04-01

    Full Text Available Naturally fractured reservoirs contain a significant amount of the world oil reserves. The production of this type of reservoirs constitutes a challenge for reservoir engineers. Use of reservoir simulators can help reservoir engineers in the understanding of the main physical mechanisms and in the choice of the best recovery process and its optimization. Significant progress has been made since the first publications on the dual-porosity concept in the sixties. This paper and the preceding one (Part 1 present the current techniques of modeling used in industrial simulators. The optimal way to predict matrix-fracture transfers at the simulator cell scale has no definite answer and various methods are implemented in industrial simulators. This paper focuses on the modeling of physical mechanisms driving flows and interactions/ exchanges within and between fracture and matrix media for a better understanding of proposed flow formula and simulation methods. Typical features of fractured reservoir numerical simulations are also described with an overview of the implementation of geomechanics effects, an application of uncertainty assessment methodology to a fractured gas reservoir and finally a presentation of a history matching methodology for fractured reservoirs. Les réservoirs naturellement fracturés contiennent une partie significative des réserves en huile mondiales. La production de ce type de réservoirs constitue un défi pour les ingénieurs de réservoir. L’utilisation des simulateurs de réservoir peut aider l’ingénieur de réservoir à mieux comprendre les principaux mécanismes physiques, à choisir le procédé de récupération le mieux adapté et à l’optimiser. Des progrès sensibles ont été réalisés depuis les premières publications sur le concept double-milieu dans les années soixante. Cet article et le précédent (Partie 1 présentent les techniques actuelles de modélisation utilisées dans les simulateurs

  5. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells

    OpenAIRE

    Vidal , Jeanne; Genter , Albert

    2018-01-01

    International audience; Since the 1980′s, more than 15 geothermal wells have been drilled in the Upper Rhine Graben (URG), representing more than 60 km of drill length. Although some early concepts were related to purely matrix-porosity reservoirs or Hot Dry Rock systems, most projects in the URG are currently exploiting the geothermal resources that are trapped in fracture networks at the base of the sedimentary cover and in the granitic basement. Lessons-learnt from the European EGS referen...

  6. A Natural Experiment in Monetary Policy Covering Three Episodes of Growth and Decline in the Economy and the Stock Market

    OpenAIRE

    Milton Friedman

    2005-01-01

    The third of three episodes in a major natural experiment in monetary policy that started more than 80 years ago is just now coming to an end. The experiment consists in observing the effect on the economy and the stock market of the monetary policies followed during and after three very similar periods of rapid economic growth in response to rapid technological change: the booms of the 1920s in the United States, the 1980s in Japan and the 1990s in the United States. In this experiment, the ...

  7. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  8. Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden

    Directory of Open Access Journals (Sweden)

    Sven G. Nilsson

    2013-11-01

    Full Text Available Currently, we are experiencing biodiversity loss on different spatial scales. One of the best studied taxonomic groups in decline is the butterflies. Here, we review evidence for such declines using five systematic studies from southern Sweden that compare old butterfly surveys with the current situation. Additionally, we provide data on butterfly and burnet moth extinctions in the region’s counties. In some local areas, half of the butterfly fauna has been lost during the last 60-100 years. In terms of extinctions, counties have lost 2-10 butterfly and burnet moth species. Land use has changed markedly with key butterfly habitats such as hay meadows disappearing at alarming rates. Grazed, mixed open woodlands have been transformed into dense coniferous forests and clear-cuts and domestic grazers have been relocated from woodlands to arable fields and semi-natural grasslands. Ley has increased rapidly and is used for bale silage repeatedly during the season. Overall, the changed and intensified land use has markedly reduced the availability of nectar resources in the landscape. Species that decline in Sweden are strongly decreasing or already extinct in other parts of Europe. Many typical grassland species that were numerous in former times have declined severely; among those Hesperia comma, Lycaena virgaureae, Lycaena hippothoe, Argynnis adippe, and Polyommatus semiargus. Also, species associated with open woodlands and wetlands such as, Colias palaeno, Boloria euphrosyne and the glade-inhabiting Leptidea sinapis have all decreased markedly. Current management practise and EU Common Agricultural Policy rules favour intensive grazing on the remaining semi-natural grasslands, with strong negative effects on butterfly diversity. Abandoned grasslands are very common in less productive areas of southern Sweden and these habitats may soon become forests. There is an urgent need for immediate action to preserve unfertilized, mown and lightly grazed

  9. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1996-12-17

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  10. Veins in Paleo-reservoir as a Natural Indication of Coupled Changes in Pore Pressure and Stress, Salt Wash Graben of SE Utah, USA

    Science.gov (United States)

    Gwon, S.; Edwards, P.; Kim, Y. S.

    2015-12-01

    Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are

  11. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  12. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings.

    Directory of Open Access Journals (Sweden)

    André Lin Ouédraogo

    2018-05-01

    Full Text Available Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001 but not submicroscopic (p = 0.937 gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the

  13. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    Science.gov (United States)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  14. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  15. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  16. Geoprocessing techniques to evaluate the spatial distribution of natural rain erosion potential in the Hydrographic Basin of Cachoeira Dourada Reservoir – Brazil

    Directory of Open Access Journals (Sweden)

    João Batista Pereira CABRAL

    2005-12-01

    Full Text Available Natural potential erosion were defined from their main natural conditioners in the region of hydrographic basin of Cachoeira Dourada (between Goiás and Minas Gerais states −Brazil, with geoprocessing techniques and the Universal Soil Loss Equation (USLE. Upon the decision for natural erosion potential, a matrix with values of erosivity (R, erodibility (K, declivity, and ramp length (LS was elaborated, where classes of low, medium, high, very high, and extremely high natural erosion potential (NEP were established. Spatial distribution for the factors R, K, LS, and PNE was defined. The highest average R index for the rainy series was 8173.50 MJ ha mm-1 h-1 year-1. The period with data from 30 years (1973 – 2002 showed that the reservoir basin displayed areas susceptible to rill and interill erosion (69.16% of the total. There is a predominance of low erosion potential among the classes, which can be explained due to the soil predominant classes as well as to the low declivity. Areas with medium to extremely high erosion potential require the adoption of measures to avoid start and development of more severe erosion processes (ravines and gullies.

  17. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  18. Significance of the molecular diffusion for chemical and isotopic separation during the formation and degradation of natural gas reservoirs

    International Nuclear Information System (INIS)

    Hermichen, W.D.; Schuetze, H.

    1987-01-01

    Investigations at natural gas fields as well as modelling experiments have pointed out that changes of the chemical and isotopic composition occur in the course of migration, accumulation and dispersion of natural gas. Dissolution and sorption processes as well as in particular the diffusion process are considered to be the elementary separation processes. The influences on dissolved and freely flowing gases and on stationary gas accumulation are described by differential equations. The simulation of the following phenomena is shown: (1) immigration of gas into the pore space which is hydrodynamically passive, (2) diffusive migration of gas into the environment of the accumulation, and (3) diffusive 'decompression' into the roof and the floor of a gas bed and a gas containing subsoil water stratum, respectively. (author)

  19. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: a recent CO{sub 2} accumulation in a lithic sandstone reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.N. [Adelaide Univ., SA (Australia). Australian School of Petroleum; Zwingmann, N. [CSIRO Petroleum, Bentley, WA (Australia); Lemon, N.M. [Santos Ltd., Adelaide, SA (Australia)

    2004-08-01

    The Ladbroke Grove and Katnook Gas Fields, within the western Otway Basin, southeastern South Australia, provide a natural laboratory to study the effects of CO{sub 2} on siliciclastic reservoirs. CO{sub 2} degassing from nearby volcanics has migrated into the methane accumulation of the Ladbroke Grove Field within the Pretty Hill Formation. CO{sub 2} levels in the Ladbroke Grove Field range from 26 to 57 mol% while Katnook has less than 1 mol%. In Ladbroke Grove, the CO{sub 2} has altered or dissolved most of the reactive minerals, somewhat constrained by the Pleistocene to Recent age of the CO{sub 2} influx. The developed late-stage kaolinite, quartz and less soluble carbonate are products of the reactions involving CO{sub 2} and reactive minerals. The major formation water types were identified using the geochemical code EQ3NR. Ladbroke Grove waters above the gas-water contact (GWC) have bicarbonate levels an order of magnitude higher than the other waters analysed. Below the GWC, Ladbroke Grove and Katnook formation waters have similar ionic compositions, however, pH levels in Ladbroke Grove are low relative to Katnook. The Ladbroke Grove Field has efficiently stored CO{sub 2} in a gaseous and aqueous phase since the influx began in the Pleistocene. In addition, due to the high amount of reactive minerals within the reservoir, mineralisation of ferroan carbonates has also occurred as a more permanent form of mineral storage of some of the CO{sub 2}. (author)

  20. Spatial-temporal variations of natural suitability of human settlement environment in the Three Gorges Reservoir Area—A case study in Fengjie County, China

    Science.gov (United States)

    Luo, Jieqiong; Zhou, Tinggang; Du, Peijun; Xu, Zhigang

    2018-01-01

    With rapid environmental degeneration and socio-economic development, the human settlement environment (HSE) has experienced dramatic changes and attracted attention from different communities. Consequently, the spatial-temporal evaluation of natural suitability of the human settlement environment (NSHSE) has become essential for understanding the patterns and dynamics of HSE, and for coordinating sustainable development among regional populations, resources, and environments. This study aims to explore the spatialtemporal evolution of NSHSE patterns in 1997, 2005, and 2009 in Fengjie County near the Three Gorges Reservoir Area (TGRA). A spatially weighted NSHSE model was established by integrating multi-source data (e.g., census data, meteorological data, remote sensing images, DEM data, and GIS data) into one framework, where the Ordinary Least Squares (OLS) linear regression model was applied to calculate the weights of indices in the NSHSE model. Results show that the trend of natural suitability has been first downward and then upward, which is evidenced by the disparity of NSHSE existing in the south, north, and central areas of Fengjie County. Results also reveal clustered NSHSE patterns for all 30 townships. Meanwhile, NSHSE has significant influence on population distribution, and 71.49% of the total population is living in moderate and high suitable districts.

  1. Natural gas diffusion model and diffusion computation in well Cai25 Bashan Group oil and gas reservoir

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Natural gas diffusion through the cap rock is mainly by means ofdissolving in water, so its concentration can be replaced by solubility, which varies with temperature, pressure and salinity in strata. Under certain geological conditions the maximal solubility is definite, so the diffusion com-putation can be handled approximately by stable state equation. Furthermore, on the basis of the restoration of the paleo-buried history, the diffusion is calculated with the dynamic method, and the result is very close to the real diffusion value in the geological history.

  2. On-farm irrigation reservoirs for surface water storage in eastern Arkansas: Trends in construction in response to aquifer depletion

    Science.gov (United States)

    Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.

    2017-12-01

    On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.

  3. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae.

    Science.gov (United States)

    Arraes, Maria Luisa Bezerra de Macedo; Holanda, Maísa Viana de; Lima, Luana Nepomuceno Gondim Costa; Sabadia, José Antônio Beltrão; Duarte, Cynthia Romariz; Almeida, Rosa Livia Freitas; Kendall, Carl; Kerr, Ligia Regina Sansigolo; Frota, Cristiane Cunha

    2017-12-01

    The detection of live Mycobacterium leprae in soil and animals other than humans suggests that the environment plays a role in the transmission of leprosy. The objective of this study was to investigate the presence of viable M. leprae in natural water sources used by the local population in five municipalities in the state of Ceará, northeastern Brazil. Samples were collected from 30 different sources. Viable bacilli were identified by reverse transcriptase polymerase chain reaction (PCR) of the M. leprae gyrA gene and sequencing of the PCR products. Physicochemical properties of each water source were also assessed. M. leprae gyrA mRNA was found in 23 (76.7%) of the water sources. No association was found between depth of the water and sample positivity, nor was there any association between the type of water used by the population and sample positivity. An association between viable M. leprae and temperature and pH was found. Georeferencing showed a relation between the residences of leprosy cases and water source containing the bacterium. The finding of viable M. leprae in natural water sources associated with human contact suggests that the environment plays an important role in maintaining endemic leprosy in the study region.

  4. Forest decline through radioactivity

    International Nuclear Information System (INIS)

    Reichelt, G.; Kollert, R.

    1985-01-01

    Is more serious damage of forest observed in the vicinity of nuclear reactors. How are those decline patterns to be explained. Does the combined effect of radioactivity and different air pollutants (such as nitrogen oxides, sulfur dioxide, oxidants etc.) have an influence in the decline of the forest. In what way do synergisms, i.e. mutually enhanced effects, participate. How does natural and artificial radioactivity affect the chemistry of air in the polluted atmosphere. What does this mean for the extension of nuclear energy, especially for the reprocessing plant planned. Damage in the forests near nuclear and industrial plants was mapped and the resulting hypotheses on possible emittors were statistically verified. Quantitative calculations as to the connection between nuclear energy and forest decline were carried through: they demand action. (orig./HP) [de

  5. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    Science.gov (United States)

    Jung, Na-Hyun; Han, Weon Shik; Watson, Z. T.; Graham, Jack P.; Kim, Kue-Young

    2014-10-01

    The study investigated a natural analogue for soil CO2 fluxes where CO2 has naturally leaked on the Colorado Plateau, East-Central Utah in order to identify various factors that control CO2 leakage and to understand regional-scale CO2 leakage processes in fault systems. The total 332 and 140 measurements of soil CO2 flux were made at 287 and 129 sites in the Little Grand Wash (LGW) and Salt Wash (SW) fault zones, respectively. Measurement sites for CO2 flux involved not only conspicuous CO2 degassing features (e.g., CO2-driven springs/geysers) but also linear features (e.g., joints/fractures and areas of diffusive leakage around a fault damage zone). CO2 flux anomalies were mostly observed along the fault traces. Specifically, CO2 flux anomalies were focused in the northern footwall of the both LGW and SW faults, supporting the existence of north-plunging anticlinal CO2 trap against south-dipping faults as well as higher probability of the north major fault traces as conduits. Anomalous CO2 fluxes also appeared in active travertines adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). These observations indicate that CO2 has escaped through those pathways and that CO2 leakage from these fault zones does not correspond to point source leakage. The magnitude of CO2 flux is progressively reduced from north (i.e. the LGW fault zone, ∼36,259 g m-2 d-1) to south (i.e. the SW fault zone, ∼1,428 g m-2 d-1) despite new inputs of CO2 and CO2-saturated brine to the northerly SW fault from depth. This discrepancy in CO2 flux is most likely resulting from the differences in fault zone architecture and associated permeability structure. CO2-rich fluids from the LGW fault zone may become depleted with respect to CO2 during lateral transport, resulting in an additional decrease in CO2 fluxes

  6. Condensate recovery by cycling at declining pressures

    Energy Technology Data Exchange (ETDEWEB)

    Havlena, Z G; Griffith, J D; Pot, R; Kiel, O G

    1967-06-05

    Cycling condensate reservoirs under conditions of declining pressure, rather than constant pressure, is advantageous from both a recovery and an economic standpoint. Wet gas displaced from the swept areas is recovered concurrently with wet gas recovered by gas expansion from the unswept portions of the reservoir. Any liquid condensed in the swept areas is revaporized by dry injection gas and recovered as an enriched gas. By this mode of operation, high condensate recovery is obtained, gas sales may be possible at an earlier stage of depletion, more flexibility in field and plant operations is feasible and reduction of 15% in investment and operating costs is achieved. Injection gas requirements are reduced by 40%. The Windfall reservoir in Canada has been successfully produced in this manner, starting in 1962. It is a typical retrograde type reservoir which in 1965 represented 15% of reservoirs exploited in North America.

  7. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  8. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  9. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    Science.gov (United States)

    Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A

    2018-03-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

  10. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development

    OpenAIRE

    Glaum, Paul; Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-01-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumb...

  11. Novel Method of Production Decline Analysis

    Science.gov (United States)

    Xie, Shan; Lan, Yifei; He, Lei; Jiao, Yang; Wu, Yong

    2018-02-01

    ARPS decline curves is the most commonly used in oil and gas field due to its minimal data requirements and ease application. And prediction of production decline which is based on ARPS analysis rely on known decline type. However, when coefficient index are very approximate under different decline type, it is difficult to directly recognize decline trend of matched curves. Due to difficulties above, based on simulation results of multi-factor response experiments, a new dynamic decline prediction model is introduced with using multiple linear regression of influence factors. First of all, according to study of effect factors of production decline, interaction experimental schemes are designed. Based on simulated results, annual decline rate is predicted by decline model. Moreover, the new method is applied in A gas filed of Ordos Basin as example to illustrate reliability. The result commit that the new model can directly predict decline tendency without needing recognize decline style. From arithmetic aspect, it also take advantage of high veracity. Finally, the new method improves the evaluation method of gas well production decline in low permeability gas reservoir, which also provides technical support for further understanding of tight gas field development laws.

  12. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development.

    Science.gov (United States)

    Glaum, Paul; Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-05-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee ( Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that 'shrinking cities' potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation.

  13. Natural radionuclides from U-238 and Th-232 series and inorganic chemical characterization of soil profiles and sediment cores of the TaiaÇUpeba Reservoir, SÃO Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.M.; Damatto, S.R.; Surkov, A.M.; Silva, A.R.; Maduar, M.F.; Gonçalves, P.N., E-mail: jmarques@ipen.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Leonardo, L. [Centro Universitário São Camilo (Campus Ipiranga), São Paulo, SP (Brazil)

    2017-07-01

    Taiaçupeba reservoir, located in the state of São Paulo, Brazil, belongs to Producer System of Alto Tietê (Sistema Produtor Alto Tietê) and it is responsible for water supply for about 3.1million of people. The water quality of a reservoir is very important, but this is reduced by the increase of environmental degradation of the soil around the reservoir and its different uses. The study of soil profiles and sediment cores is an important tool for understanding the geophysical and geochemical aspects of an aquatic ecosystem. The objective of this work was to present the natural radionuclides {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Th,{sup 228}Ra and {sup 40}K activity concentrations and also the inorganic chemical characterization of four soil profiles and four sediment cores collected in the area of influence area of Taiaçupeba reservoir. The analytical techniques, gamma spectrometry and instrumental neutron activation analysis were used in the determination. In the soil profiles the highest activity concentrations were obtained for the radionuclides {sup 40}K and {sup 228}Th and the lowest for {sup 210}Pb; in the sediment cores the highest activity concentrations were obtained for the radionuclide {sup 210}Pb and the lowest for {sup 226}Ra and {sup 228}Ra. For the inorganic chemical characterization the highest values obtained were for Na, As and Sb; in a sediment core a very high concentration was obtained for the element Zn indicating a probable accumulation of this element inside the reservoir; enrichment factor was used to evaluate a possible anthropic contamination in the soil and sediment at the margins of Taiaçupeba reservoir. (author)

  14. Natural radionuclides from U-238 and Th-232 series and inorganic chemical characterization of soil profiles and sediment cores of the TaiaÇUpeba Reservoir, SÃO Paulo, Brazil

    International Nuclear Information System (INIS)

    Souza, J.M.; Damatto, S.R.; Surkov, A.M.; Silva, A.R.; Maduar, M.F.; Gonçalves, P.N.; Leonardo, L.

    2017-01-01

    Taiaçupeba reservoir, located in the state of São Paulo, Brazil, belongs to Producer System of Alto Tietê (Sistema Produtor Alto Tietê) and it is responsible for water supply for about 3.1million of people. The water quality of a reservoir is very important, but this is reduced by the increase of environmental degradation of the soil around the reservoir and its different uses. The study of soil profiles and sediment cores is an important tool for understanding the geophysical and geochemical aspects of an aquatic ecosystem. The objective of this work was to present the natural radionuclides 238 U, 226 Ra, 210 Pb, 232 Th, 228 Th, 228 Ra and 40 K activity concentrations and also the inorganic chemical characterization of four soil profiles and four sediment cores collected in the area of influence area of Taiaçupeba reservoir. The analytical techniques, gamma spectrometry and instrumental neutron activation analysis were used in the determination. In the soil profiles the highest activity concentrations were obtained for the radionuclides 40 K and 228 Th and the lowest for 210 Pb; in the sediment cores the highest activity concentrations were obtained for the radionuclide 210 Pb and the lowest for 226 Ra and 228 Ra. For the inorganic chemical characterization the highest values obtained were for Na, As and Sb; in a sediment core a very high concentration was obtained for the element Zn indicating a probable accumulation of this element inside the reservoir; enrichment factor was used to evaluate a possible anthropic contamination in the soil and sediment at the margins of Taiaçupeba reservoir. (author)

  15. Massachusetts reservoir simulation tool—User’s manual

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  16. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Directory of Open Access Journals (Sweden)

    Gómez Susana

    2014-07-01

    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  17. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  18. Contribution to the tectonic characterization of fractured reservoirs, I: photo-elasticimetric modelling of the stress perturbations near faults and the associated fracture network: application to oil reserves, II mechanisms for the 3D joint organization in a natural reservoir analogue (flat-lying Devonian Old Red Sandstones of Caitness in North Scotland); Contribution a la caracterisation tectonique des reservoirs fractures, I: modelisation photoelecticimetrique des perturbations de contrainte au voisinage des failles et de la fracturation associee: application petroliere, II: mecanismes de developpement en 3D des diaclases dans un analogue de reservoir, le Devonien tabulaire du caithness (Ecosse)

    Energy Technology Data Exchange (ETDEWEB)

    Auzias, V

    1995-10-27

    In order to understand joint network organisation in oil reservoirs, as a first step we have adapted to technique (the photo-elasticimetry) to study stress fields in 2D. This method allows to determine the principal stress trajectories near faults, as well as the associated joint network organisation. Natural joint networks perturbed near faults are modeled and the parameters that control stress perturbation are proposed. With the aim of extrapolating joint data from a well to the entire reservoir our modelling is based on both 3 D seismic data and local joint data. The second part of our research was dedicated to studying joint propagation mechanisms in a natural reservoir analogue (flat-lying Devonian Old Red Sandstones of Caitness in North Scotland). Several exposure observation at different scales and in 3D (horizontal and cliff sections) allow to reconstitute the fracturing geometry from centimeter to kilometer scale and to link these to the regional tectonic history. This study shows that it is possible to differentiate three types of joints major joints, `classic` joints and micro-joints, each with different vertical persistence. New concepts on the 3D joint organisation have been deduced from field quantitative data, which can be applied to reservoir fracture modeling. In particular the non-coexistence phenomenon in a single bed of two regional joint sets with close strikes. Some joint development mechanisms are discussed: interaction between joints and sedimentary interfaces, joint distribution near faults, origin of en echelon arrays associated with joints. (author) 142 refs.

  19. CONTRIBUTIONS TO THE STUDY OF THE AVIFAUNA FROM THE SITE NATURE 2000 ROSPA0062 – “THE RESERVOIRS ON THE ARGEŞ RIVER” - THE WINTERING QUARTERS FROM THE MIDDLE BASIN OF THE ARGEŞ RIVER. THE HIEMAL SEASON.

    Directory of Open Access Journals (Sweden)

    Maria Denisa Conete

    2014-11-01

    Full Text Available In the present paper we present the results of our ecological research on the avifauna of some reservoirs (a site of the Nature 2000 Network from the middle basin of the Argeş River, during the hiemal season in the period 2003 – 2010. The hibernal/hiemal season is the poorest in species of the six seasons (118 species belonging to 14 orders, 32 families and 68 genera, of which 49 species are dependent on wetlands, but the richest in the number of individuals (448,064. We also perform an analysis of the avifauna according to ecological indices (IR, constancy, dominancy, the Dzuba index of ecological significance, etc.. The Anseriformes were overdominant. It is the only season in which the order Passeriformes is complementary. Great agglomerations of Anseriformes are constantly present during the hiemal season; the specific composition and the number of individuals of the different species vary continuously on each of the reservoirs in relation to the weather conditions, the accessibility of food, etc. The highest number of Anseriformes species was observed on the Budeasa Reservoir (19 species and the lowest on the Bascov Reservoir (12 species. The correlation between temperature and the total number of individuals of the bird species is negative. As the temperature increases, the number of individuals decreases and vice versa. The most important wintering quarter is, during our research, the Goleşti Reservoir, with impressive concentrations of waterbirds. Mention should be made of five characteristic species (eudominant and dominant present in the area of the reservoirs in the hiemal season: Anas platyrhynchos, Aythya ferina, Fulica atra, Aythya fuligula and Larus ridibundus. The high number of subrecedent species (102 emphasizes the great fluctuation of bird species in the area as a result of the fact that these reservoirs are on the course of some European migration routes and ensure favourable conditions (halting, sheltering and feeding

  20. Factors affecting growth and viability of natural diatom populations in the meso-eutrophic Římov Reservoir (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Znachor, Petr; Rychtecký, Pavel; Nedoma, Jiří; Visocká, Veronika

    2015-01-01

    Roč. 762, č. 1 (2015), s. 253-265 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP504/11/2177; GA ČR(CZ) GAP504/11/2182 Institutional support: RVO:60077344 Keywords : diatom * growth rate * viability * PDMPO * SYTOX green * reservoir Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.051, year: 2015

  1. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire

  2. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    International Nuclear Information System (INIS)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs

  4. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs.

  5. Model to predict the flow of tracers in naturally fractured geothermal reservoirs; Modelo para predecir el flujo de trazadores en yacimientos geotermicos naturalmente fracturados

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Sabag, Jetzabeth

    1988-02-01

    The proposed model has been developed to study the flow of tracers through naturally fractured geothermal reservoirs. The idealized system of the reservoir is made up of two regions: A movable region, where diffusion and convection mechanisms are present and a stagnant or immovable region where the diffusion and adsorption mechanisms are considered: in both regions the loss of mass by radioactive decay is considered. The solutions of the basic flow equations are in the Laplace space and for its numerical inversion the Stehfest algorithm was used. In spite of the numerical dispersion that these solutions involve, a well defined tendency to infer the system behavior under different flow conditions was found. It was found that, for practical purposes, the size of the matrix blocks does not have an influence on the concentration response, and the solution is reduced to the one presented by Tang and associates. Under these conditions, the system behavior can be described by two non-dimensional parameters: The Peclet number in fractures, P{sub e1}, and a parameter. The tracer response for the peak solution was also derived. An analytical solution limit was found for the case in which {alpha} tends to zero, which corresponds to the case of a homogenous system. It was verified that this limit solution is valid, for {alpha}<0.01. For the case of continuous injection, this solution is reduced to the one presented by Coasts and Smith. For the peak solution, it was found that the irruption time corresponding to the maximum concentration is directly related to the non-dimensional group. Therefore, it is possible to obtain the value of P{sub e1} for a given X{sub D}, or vice versa. A group of graphs of non-dimensional concentration in the fracture versus non-dimensional time, was developed. It was found that if P{sub e1} remains constant whereas {alpha} changes, the limit solution is the envelope of a family of curves in a graph of C{sub D} versus t{sub D}. In this figure P

  6. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  7. Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil - doi: 10.4025/actascibiolsci.v32i4.4627 Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil - doi: 10.4025/actascibiolsci.v32i4.4627

    Directory of Open Access Journals (Sweden)

    Liliana Rodrigues

    2010-11-01

    Full Text Available Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil. This study evaluated the heterogeneity in periphytic algal community, under the influence of time colonization on artificial substratum. We also examined which abiotic variables most influenced the community in natural and artificial substratum. Egeria najas Planchon was used as natural substratum, and a plastic plant, as artificial. This experiment was carried out in a lateral arm from Rosana Reservoir, formed by Corvo Stream (Paranapanema river basin, in the period from November 21st to December 12nd, 2003, characterized as a warm and rainy period. Changes in species composition were assessed using the similarity indices. 495 taxa were registered in the phycoperiphytic community, distributed in 133 genera and 11 classes. Zygnemaphyceae, Bacillariophyceae, Chlorophyceae and Cyanophyceae presented higher species number, in both substrata. Staurodesmus, Closterium, Staurastrum and Cosmarium (Desmidiales; Gomphonema and Eunotia (Pennales; Characium, Scenedesmus and Desmodesmus (Chlorococcales; Anabaena and Aphanocapsa (Nostocales and Chroococcales, respectively were the most species-rich genera. The epiphytic community reached the highest species richness in the 15th successional day. Regardless the substratum type, the number of species was probably related to the high concentrations of nutrients (phosphorus and nitrogen.Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil. This study evaluated the heterogeneity in periphytic algal community, under the influence of time colonization on artificial substratum. We also examined which abiotic variables most influenced the community in natural and artificial substratum. Egeria najas Planchon was used as natural substratum, and a plastic plant, as artificial. This experiment was

  8. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.; Jenkins, R. [Science Applications International Corp., McLean, VA (United States); Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W.; Tuncay, K. [Laboratory for Computational Geodynamics (United States); Sundberg, K. [Phillips Petroleum Company (United States)

    1998-07-01

    The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.

  9. Enhanced Recovery in Tight Gas Reservoirs using Maxwell-Stefan Equations

    Science.gov (United States)

    Santiago, C. J. S.; Kantzas, A.

    2017-12-01

    Due to the steep production decline in unconventional gas reservoirs, enhanced recovery (ER) methods are receiving great attention from the industry. Wet gas or liquid rich reservoirs are the preferred ER candidates due to higher added value from natural gas liquids (NGL) production. ER in these reservoirs has the potential to add reserves by improving desorption and displacement of hydrocarbons through the medium. Nevertheless, analysis of gas transport at length scales of tight reservoirs is complicated because concomitant mechanisms are in place as pressure declines. In addition to viscous and Knudsen diffusion, multicomponent gas modeling includes competitive adsorption and molecular diffusion effects. Most models developed to address these mechanisms involve single component or binary mixtures. In this study, ER by gas injection is investigated in multicomponent (C1, C2, C3 and C4+, CO2 and N2) wet gas reservoirs. The competing effects of Knudsen and molecular diffusion are incorporated by using Maxwell-Stefan equations and the Dusty-Gas approach. This model was selected due to its superior properties on representing the physics of multicomponent gas flow, as demonstrated during the presented model validation. Sensitivity studies to evaluate adsorption, reservoir permeability and gas type effects are performed. The importance of competitive adsorption on production and displacement times is demonstrated. In the absence of adsorption, chromatographic separation is negligible. Production is merely dictated by competing effects between molecular and Knudsen diffusion. Displacement fronts travel rapidly across the medium. When adsorption effects are included, molecules with lower affinity to the adsorption sites will be produced faster. If the injected gas is inert (N2), an increase in heavier fraction composition occurs in the medium. During injection of adsorbing gases (CH4 and CO2), competitive adsorption effects will contribute to improved recovery of heavier

  10. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  11. Geochemical characteristics of natural gas in the hydrocarbon accumulation history, and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available The analysis of hydrocarbon generation, trap formation, inclusion homogenization temperature, authigenic illite dating, and ESR dating were used to understand the history of hydrocarbon accumulation and its difference among gas reservoirs in the Upper Triassic formation of Sichuan Basin. The results show the hydrocarbon accumulation mainly occurred during the Jurassic and Cretaceous periods; they could also be classified into three stages: (1 early hydrocarbon generation accumulation stage, (2 mass hydrocarbon generation accumulation stage before the Himalayan Epoch, (3 and parts of hydrocarbon adjustment and re-accumulation during Himalayan Epoch. The second stage is more important than the other two. The Hydrocarbon accumulation histories are obviously dissimilar in different regions. In western Sichuan Basin, the gas accumulation began at the deposition period of member 5 of Xujiahe Formation, and mass accumulation occurred during the early Middle Jurassic up to the end of the Late Cretaceous. In central Sichuan Basin, the accumulation began at the early Late Jurassic, and the mass accumulation occurred from the middle Early Cretaceous till the end of the Late Cretaceous. In southern Sichuan Basin, the accumulation began at the middle Late Jurassic, and the mass accumulation occurred from the middle of the Late Cretaceous to the end of the Later Cretaceous. The accumulation history of the western Sichuan Basin is the earliest, and the southern Sichuan Basin is the latest. This paper will help to understand the accumulation process, accumulation mechanism, and gas reservoir distribution of the Triassic gas reservoirs in the Sichuan Basin better. Meanwhile, it is found that the authigenic illite in the Upper Triassic formation of Sichuan Basin origin of deep-burial and its dating is a record of the later accumulation. This suggests that the illite dating needs to fully consider illite origin; otherwise the dating results may not accurately

  12. Lung function decline in COPD

    Directory of Open Access Journals (Sweden)

    Tantucci C

    2012-02-01

    Full Text Available Claudio Tantucci, Denise ModinaUnit of Respiratory Medicine, Department of Medical and Surgical Sciences, University of Brescia, Brescia, ItalyAbstract: The landmark study of Fletcher and Peto on the natural history of tobacco smoke-related chronic airflow obstruction suggested that decline in the forced expiratory volume in the first second (FEV1 in chronic obstructive pulmonary disease (COPD is slow at the beginning, becoming faster with more advanced disease. The present authors reviewed spirometric data of COPD patients included in the placebo arms of recent clinical trials to assess the lung function decline of each stage, defined according to the severity of airflow obstruction as proposed by the Global Initiative for Chronic Obstructive Lung Disease (GOLD guidelines. In large COPD populations the mean rate of FEV1 decline in GOLD stages II and III is between 47 and 79 mL/year and 56 and 59 mL/year, respectively, and lower than 35 mL/year in GOLD stage IV. Few data on FEV1 decline are available for GOLD stage I. Hence, the loss of lung function, assessed as expiratory airflow reduction, seems more accelerated and therefore more relevant in the initial phases of COPD. To have an impact on the natural history of COPD, it is logical to look at the effects of treatment in the earlier stages.Keywords: chronic obstructive pulmonary disease, decline, forced expiratory volume in 1 second, FEV1

  13. Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

    NARCIS (Netherlands)

    Salimi, H.

    2010-01-01

    This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world’s oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a

  14. Natural radionuclide dose and lifetime cancer risk due to ingestion of fish and water from fresh water reservoirs near the proposed uranium mining site.

    Science.gov (United States)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi; Selvaraj, Rajaram

    2017-06-01

    Ten sampling locations in Nagarjuna Sagar Dam have been selected to assess the suitability of the reservoir water for human consumption. The sediment, water, and fish samples were collected and analyzed for radionuclide ( 238 U, 232 Th, 210 Po, 226 Ra, 210 Pb) and physicochemical parameters like pH, TOC, total hardness, alkalinity, DO, cation exchange capacity, and particle size. The spatial variations among the radionuclides ( 238 U, 232 Th, 210 Po, 226 Ra, 210 Pb) in water and bottom sediments of Nagarjuna Sagar Dam were determined. The uranium concentration in the sediment and water was in BDL (water samples of the analyzed radionuclides are 238 U-10 Bq/l, 210 Po-0.1 Bq/l, 226 Ra-1 Bq/l, and 210 Pb-0.1 Bq/l. The radionuclides in our water samples were approximately 50 times far below the recommended limit. The ingestion of water and fish would not pose any significant radiological impact on health or cancer risk to the public, implicating that the fishes from Nagarjuna Sagar Dam reservoir are safe for human consumption except the fisherman community.

  15. Case history: recovery of the Bolivia-Brazil natural gas pipeline at the Vocoroca reservoir crossing Parana state; Caso historico: recuperacao da travessia do gasoduto Bolivia-Brazil no reservatorio da barragem de Vocoroca-Parana

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson Regis; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline - GASBOL - begins in the city of Santa Cruz of La Sierra, in Bolivia, arriving in Canoas (RS), in Brazil, traveling an extension of 3.150 Km. Of this total, 2.593 Km are in Brazilian soil. In the kilometer 526+500m of the south spread, GASBOL crosses the reservoir of the Vocoroca's dam (COPEL), which had its operational level reduced, in face of the station of the droughts that usually reaches the area in the months of March to September. The lowing of the reservoir caused the turn of the course of Fojo River (Sao Joaozinho River) to its natural quota, forming a waterfall, whose hydraulic gradient caused the removal of the sediment and part of the foundation soil, discovering the pipe that was with space free from approximately 13 m of length. This paper discusses the solution adopted, as well as the several details of the recovery project, besides geotechnical and hydraulic studies and the aspects of safety of the Gas Pipeline. (author)

  16. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Science.gov (United States)

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  17. Maqalika Reservoir: utilisation and sustainability of Maqalika Reservoir as a source of potable water supply for Maseru in Lesotho

    CSIR Research Space (South Africa)

    Letsie, M

    2008-07-01

    Full Text Available The storage of water in the Maqalika reservoir is gradually decreasing as sediment, carried by the natural catchment run-off, accumulates in the reservoir. Moreover, water pumped into the reservoir from the Caledon River (which is heavily sedimented...

  18. Seismic methods for the characterisation of reservoirs in developing old natural gas fields in Germany; 3D Seismische Verfahren zur Reservoircharakterisierung bei der Entwicklung alter Erdoelfelder in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, P.; Stahl, E.; Bischoff, R. [Preussag Energie GmbH, Lingen (Germany); Guderian, K.; Hasse, G.; Schmiermann, I. [BEB Erdoel und Erdgas GmbH, Hannover (Germany); Groot, P. de [De Groot-Bril Earth Sciences BV, Enschede (Netherlands)

    1998-12-31

    Two examples are chosen to describe the possiblities and limitations of using 3D seismic data for the interpretation of structures and the seismic characterisation of reservoirs. New techniques of seismic classification offer a great deal of possibilities, especially if - as in the case of Ruehme - there is a sufficiency of data from many borehole locations which enables the training of algorithms.(orig.) [Deutsch] Anhand zweier Beispiele wurden die Moeglichkeiten aber auch die Grenzen des Einsatzes 3D seismischer Daten bei der strukturellen Interpretation und der seismischen Reservoircharakterisierung aufgezeigt. Neuartige Techniken der seismischen Klassifizierung erweitern die Moeglichkeiten dabei betraechtlich, insbesondere, wenn - wie beim Beispiel Ruehme - durch die vielen Bohrlokationen ausreichend Daten zum Trainieren der Algorithmen zur Verfuegung stehen. (orig.)

  19. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  20. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  1. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  2. Decline traffic information system

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, K [Computer Sciences Corporation (CSC), Sydney (Australia)

    2007-09-06

    BHP Billion (BHPB) Cannington has experienced problems in regards to their traffic flow in the decline at the mine. The problems related to reports on near misses of vehicles moving towards each other in the decline. The decline is also to narrow for trucks to pass each other and the operators need to be aware of oncoming traffic in the decline to ensure they could take early evasive steps to ensure the rules of right of way in the decline are adhered to. BHPB Cannington requested CSC to conduct a problem analysis and to provide a solutions proposal to Cannington. The solution was put forward as an augmentation of their current safety procedures used with in the decline. During this phase of the project CSC developed a solutions architecture which involved the use of Active (Radio Frequency Identification) RFID tagging which will enable vehicle movement tracking on a real time basis after which the appropriate traffic movement can be relayed to the operators in the decline. The primary objective of the DTIS is to provide accurate information of traffic movement in the decline and present that information to the operators of the decline IN THE DECLINE upon which they would make their decisions. (orig.)

  3. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    Science.gov (United States)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  4. Reservoir effects in radiocarbon dating

    International Nuclear Information System (INIS)

    Head, M.J.

    1997-01-01

    Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where

  5. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  6. Growing with dinosaurs: natural products from the Cretaceous relict Metasequoia glyptostroboides Hu & Cheng?a molecular reservoir from the ancient world with potential in modern medicine

    OpenAIRE

    Juvik, Ole Johan; Nguyen, Xuan Hong Thy; Andersen, Heidi Lie; Fossen, Torgils

    2015-01-01

    After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides—a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954–201...

  7. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  8. Conventional natural gas resources of the Western Canada Sedimentary Basin

    International Nuclear Information System (INIS)

    Bowers, B.

    1999-01-01

    The use of decline curve analysis to analyse and extrapolate the production performance of oil and gas reservoirs was discussed. This mathematical analytical tool has been a valid method for estimating the conventional crude oil resources of the Western Canada Sedimentary Basin (WCSB). However, it has failed to provide a generally acceptable estimate of the conventional natural gas resources of the WCSB. This paper proposes solutions to this problem and provides an estimate of the conventional natural gas resources of the basin by statistical analysis of the declining finding rates. Although in the past, decline curve analysis did not reflect the declining finding rates of natural gas in the WCSB, the basin is now sufficiently developed that estimates of conventional natural gas resources can be made by this analytical tool. However, the analysis must take into account the acceleration of natural gas development drilling that has occurred over the lifetime of the basin. It was concluded that ultimate resources of conventional marketable natural gas of the WCSB estimated by decline analysis amount to 230 tcf. It was suggested that further research be done to explain why the Canadian Gas Potential Committee (CGPC) estimate for Alberta differs from the decline curve analysis method. 6 refs., 35 figs

  9. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  10. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  11. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  12. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus

    NARCIS (Netherlands)

    Suu-Ire, R. (Richard); L. Begeman (Lineke); A. Banyard (Ashley); A.C. Breed; C. Drosten (Christian); Eggerbauer, E. (Elisa); Freuling, C.M. (Conrad M.); Gibson, L. (Louise); Goharriz, H. (Hooman); D.L. Horton; Jennings, D. (Daisy); I.V. Kuzmin (Ivan); D.A. Marston (Denise); Ntiamoa-Baidu, Y. (Yaa); Riesle Sbarbaro, S. (Silke); Selden, D. (David); Wise, E.L. (Emma L.); Kuiken, T. (Thijs); A.R. Fooks (Anthony); T. Müller (Thomas); Wood, J.L.N. (James L. N.); A.A. Cunningham

    2018-01-01

    textabstractRabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no

  13. A strategy for low cost development of incremental oil in legacy reservoirs

    Science.gov (United States)

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  14. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  15. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  16. US Historic Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This programs derives a table of secular change in magnetic declination for a specified point in the conterminous United States. It utilizes the USD polynomial and...

  17. Kinbasket Reservoir and Upper Columbia River Kokanee spawner index 2005

    International Nuclear Information System (INIS)

    Manson, H.; Porto, L.

    2006-01-01

    The results of an escapement survey for tributaries to the Kinbasket Reservoir and the Upper Columbia River were provided. Two aerial surveys were conducted during October, 2005. The Kokanee were grouped in schools and summed in order to provide independent estimates. Otoliths of the fish were also extracted in order to determine their age. Results of the survey showed that an estimated 236,760 Kokanee fish were spawning within 11 index streams and rivers within the Kinbasket Reservoir drainage area. Mean fork length was estimated at 24.7 cm. While the Columbia River continues to be the most important Kokanee spawning location in the Kinbasket Reservoir drainage area, the 2005 Kokanee escapement index was the third lowest recorded since 1996. It was concluded that declining fish size and declining abundance may indicate reduced reservoir productivity. 5 refs., 1 tab., 4 figs

  18. Chinese culture and fertility decline.

    Science.gov (United States)

    Wu, C; Jia, S

    1992-01-01

    Coale has suggested that cultural factors exert a significant influence on fertility reduction; countries in the "Chinese cultural circle" would be the first to show fertility decline. In China, the view was that traditional Chinese culture contributed to increased population. This paper examines the nature of the relationship between Chinese culture and fertility. Attention was directed to a comparison of fertility rates of developing countries with strong Chinese cultural influence and of fertility within different regions of China. Discussion was followed by an explanation of the theoretical impact of Chinese culture on fertility and direct and indirect beliefs and practices that might either enhance or hinder fertility decline. Emigration to neighboring countries occurred after the Qing dynasty. Fertility after the 1950s declined markedly in Japan, Singapore, Hong Kong, South Korea, Taiwan, and mainland China: all countries within the Chinese cultural circle. Other countries within the Chinese circle which have higher fertility, yet lower fertility than other non-Chinese cultural countries, are Malaysia, Thailand, and Indonesia. Within China, regions with similar fertility patterns are identified as coastal regions, central plains, and mountainous and plateau regions. The Han ethnic group has lower fertility than that of ethnic minorities; regions with large Han populations have lower fertility. Overseas Chinese in East Asian countries also tend to have lower fertility than their host populations. Chinese culture consisted of the assimilation of other cultures over 5000 years. Fertility decline was dependent on the population's desire to limit reproduction, favorable social mechanisms, and availability of contraception: all factors related to economic development. Chinese culture affects fertility reduction by affecting reproductive views and social mechanisms directly, and indirectly through economics. Confucianism emphasizes collectivism, self

  19. First assessment of the ecological status of Karaoun reservoir, Lebanon

    International Nuclear Information System (INIS)

    Fadel, A.; Lemaire, B.; Vinc on Leite, B.; Tassin, B.; Amacha, N.; Slim, K.; Atoui, A.

    2014-01-01

    Many reservoirs have been constructed throughout the world during the 20th century, with many also suffering from eutrophication. The resulting increased phytoplankton biomass in reservoirs impairs their use. Except for Lake Kinneret, the environmental status of lakes and reservoirs in the Middle East is poorly documented. Karaoun reservoir, also known as Qaroun, Qaraoun or Qarun, is the largest water body in Lebanon, having been constructed for irrigation and hydropower production. This present study reviews Karaoun reservoir, including its characteristics, uses, water quality and phytoplankton succession, to assess the environmental status of the reservoir on the basis of the few existing previous publications about the reservoir. Since 2004, which is 39 years after its construction, the reservoir is considered to be hypereutrophic, with low phytoplankton biodiversity and regular blooms of toxic cyanobacteria. The nutrient and trace metal concentrations would not prevent use of the reservoir for a drinking water supply for Beirut, as is currently being planned, although not all the micropollutants in the lake were documented. Karaoun reservoir is compared to other monitored lakes and reservoirs around the Mediterranean Sea. They share annual toxic cyanobacteria blooms of Aphanizomenon ovalisporum and of Microcystis aeruginosa. The phytoplankton composition and succession of Karaoun reservoir is more similar to El Gergal reservoir (Spain) than nearby natural lakes such as Lake Kinneret (Israel) and Lake Trichonis (Greece). Phytoplankton diversity in Karaoun reservoir was the lowest, due to higher nutrient concentrations and a larger decrease in water level in the dry season. Karaoun reservoir represents an interesting example of the potential response of the phytoplankton community in other lakes and reservoirs during the drought periods expected to occur as a result of global climate change. (author)

  20. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  1. ECOLOGICAL BASES OF FORMATION OF THE LAND USE OF THE TERRITORIES OF THE NATURAL RESERVOIR FUND IN THE COMPOSITION OF ECOLOGICAL NETWORK OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Hetmanchik I.

    2017-11-01

    Full Text Available The article highlights ecological and economic measures on the formation of land use territories of the nature reserve fund within the ecological network of Ukraine, its current state and problems, as well as directions of improvement. These measures are directed towards the balanced provision of the needs of the population and sectors of the economy with land resources, rational use and protection of lands, preservation of landscape and biodiversity, creation of environmentally safe living conditions of the population and economic activity and protection of land from depletion, degradation and pollution.

  2. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  3. Growing with dinosaurs: natural products from the Cretaceous relict Metasequoia glyptostroboides Hu & Cheng-a molecular reservoir from the ancient world with potential in modern medicine.

    Science.gov (United States)

    Juvik, Ole Johan; Nguyen, Xuan Hong Thy; Andersen, Heidi Lie; Fossen, Torgils

    2016-01-01

    After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides -a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954-2014) with main focus on the compounds specific to this plant source. Studies on the biological activity of pure compounds and extracts derived from M. glyptostroboides are reviewed for the first time. The unique potential of M. glyptostroboides as a source of bioactive constituents is founded on the fact that the tree seems to have survived unchanged since the Cretaceous era. Since then, its molecular defense system has resisted the attacks of millions of generations of pathogens. In line with this, some recent landmarks in Metasequoia paleobotany are covered. Initial spectral analysis of recently discovered intact 53 million year old wood and amber of Metasequoia strongly indicate that the tree has remained unchanged for millions of years at the molecular level.

  4. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  5. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Jiangkun Zheng; Ge Sun; Wenhong Li; Xinxiao Yu; Chi Zhang; Yuanbo Gong; Lihua Tu

    2016-01-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate...

  6. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  7. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  8. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

    Science.gov (United States)

    Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W. H.; Navas, A.

    2014-09-01

    Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood

  9. Seismic response of concrete gravity dams with finite reservoir

    International Nuclear Information System (INIS)

    Baumber, T.; Ghobarah, A.

    1992-01-01

    In most previous analyses of dam responses to earthquake ground motion, the upstream reservoir is assumed to be infinite in length and completely straight. The meandering nature of the river system, however, results in the creation of a finite length reservoir upstream of the dam structure. A study was carried out to examine the effects of the finite length of the reservoir on the dynamic behavior of the monolith. The effect of excitation of the far end of the boundary on the monolith's response is also of interest. The dam-foundation-reservoir system is modelled using a sub-structuring approach. The analysis is conducted in the frequency domain and utilizes the finite element technique. The water in the reservoir is assumed to be compressible, inviscid, and irrotational. The upstream reservoir is assumed to have a rectangular cross-section. It was found that the finite length reservoir assumption results in supplementary response peaks in the monolith's response. The finite reservoir length allows the reservoir to resonate both in horizontal and vertical directions. The magnitude and spacing of these supplementary response peaks are dependent on the length of the reservoir. The phase of the ground motion which affects the far end boundary of the reservoir was also found to have a significant effect on the dam monolith's response. 8 refs., 5 figs

  10. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  11. Decline and infiltrated lung

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Arboleda Casas, Felipe; Duarte, Monica; Triana Harker, Ricardo

    2001-01-01

    The paper describes the decline and infiltrated lung in a patient of 45 years, with diagnosis of arthritis rheumatoid from the 43 years, asymptomatic, without treatment, married, of the 15 to the 35 years of 3 to 10 cigarettes daily, she refers of 7 months of evolution episodes of moderate dyspnoea with exercises and dry cough with occasional mucous expectoration between others

  12. Fault-controlled advective, diffusive, and eruptive CO 2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    Science.gov (United States)

    Jung, Na-Hyun

    This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The

  13. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  14. Frameworks for amending reservoir water management

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  15. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  16. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  17. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  18. Mercury and methylmercury in reservoirs in Indiana

    Science.gov (United States)

    Risch, Martin R.; Fredericksen, Amanda L.

    2015-01-01

    Mercury (Hg) is an element that occurs naturally, but evidence suggests that human activities have resulted in increased amounts being released to the atmosphere and land surface. When Hg is converted to methylmercury (MeHg) in aquatic ecosystems, MeHg accumulates and increases in the food web so that some fish contain levels which pose a health risk to humans and wildlife that consume these fish. Reservoirs unlike natural lakes, are a part of river systems that are managed for flood control. Data compiled and interpreted for six flood-control reservoirs in Indiana showed a relation between Hg transport, MeHg formation in water, and MeHg in fish that was influenced by physical, chemical, and biological differences among the reservoirs. Existing information precludes a uniform comparison of Hg and MeHg in all reservoirs in the State, but factors and conditions were identified that can indicate where and when Hg and MeHg levels in reservoirs could be highest.

  19. Decline and conservation of bumble bees.

    Science.gov (United States)

    Goulson, D; Lye, G C; Darvill, B

    2008-01-01

    Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.

  20. Is racial prejudice declining in Britain?

    Science.gov (United States)

    Ford, Robert

    2008-12-01

    This article employs two previously neglected indicators of racial prejudice from the British Social Attitudes surveys to examine the social distribution of prejudices against black and Asian Britons. Three hypotheses are proposed and tested: that racial prejudice is declining in Britain; that this decline is principally generational in nature; and that greater prejudice is shown towards more culturally distinct Asian minorities than black minorities. Strong evidence is found for the first two hypotheses, with evidence of an overall decline in prejudice and of a sharp decline in prejudices among generations who have grown up since mass black and Asian immigration began in the 1950s. Little evidence is found for the third hypothesis: British reactions towards black and Asian minorities are broadly similar suggesting racial differences may still be the main factor prompting white hostility to British minorities.

  1. Exponential rate of convergence in current reservoirs

    OpenAIRE

    De Masi, Anna; Presutti, Errico; Tsagkarogiannis, Dimitrios; Vares, Maria Eulalia

    2015-01-01

    In this paper, we consider a family of interacting particle systems on $[-N,N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.

  2. The glaciogenic reservoir analogue studies project (GRASP)

    DEFF Research Database (Denmark)

    Moscariello, A.; Moreau, Julien; Vegt, P. van der

    in Quaternary glaciated areas and their nature and sediment composition is critical to drive a sustainable production strategy and assess their vulnerability. Seismic resolution however, often limits the understanding of channel valleys morphology, 3D geometry and internal reservoir distribution, thus...

  3. The fertility decline in Kenya.

    Science.gov (United States)

    Robinson, W C; Harbison, S F

    1995-01-01

    In Sub-Saharan Africa Kenya is a prime example of a country experiencing a rapid decline in fertility and greater contraceptive prevalence. These changes have occurred since 1980 when fertility was high at 8.0 children per woman. In 1993 the total fertility rate (TFR) was 5.4, and the growth rate declined to about 2.0%. This transition is swifter than any country in contemporary Asia or historical Europe. The likely projection for Kenya is attainment of replacement level fertility during the 2020s and a leveling of population at about 100 million persons. Fertility has declined the most in urban areas and central and eastern regions. Bongaarts' proximate determinants (TFR, total marital fertility rate, total natural marital fertility rate, and total fecundity) are reduced to the proportion of currently married women using contraception, the proportion in lactational nonfecund status, and the proportion currently married. Actual fertility change is accounted for by total fertility change of 3.0 children. Lactational infecundability accounts for 0.5 potential births, and changes in marital fertility account for 1.0 reduced births per woman. About 70% of fertility reduction is accounted for by contraception and abortion. During 1977-78 80% of fertility control was due to lactational nonfecundity, 10% to nonmarriage, and 10% to contraception. In 1993 lactational nonfecundity accounted for 50% of the reduction, nonmarriage for 20%, and abortion about 30%. Future fertility is expected to be dependent on contraceptive prevalence. Kenya has experienced the Coale paradigm of preconditions necessary for demographic transition (willing, ready, and able). High fertility in Africa is not intractable. Creating the change in attitudes that leads to readiness is linked to education, health, and exposure to modernizing media and urban lifestyles. The public sector family planning program in Kenya has created the opportunity for access and availability of contraception. The key

  4. Drivers and moderators of business decline

    Directory of Open Access Journals (Sweden)

    Marius Pretorius

    2010-12-01

    Full Text Available Purpose: Reports of business failure elicit various reactions, while research in this domain often appears to be limited by a lack of access to information about failure and by the negativity that surrounds it. Those who have experienced failure do not readily talk about it, or they disappear from the radar screen of researchers. Yet failure is preceded by decline which, when focused on strategically, can reduce eventual failures if early action is taken. The main purpose of this study is to develop a conceptual framework or typology of the drivers and moderators of business decline. Design/methodology/approach: After applying the "grounded theory" approach to the academic literature on decline and failure, a conceptual framework for the variables that drive and moderate business decline is proposed. Findings: The study proposes that decline has three core drivers, three peripheral drivers and four moderators. The core drivers identified are: resource munificence; leadership as origin; and causality (strategic versus operational origin of decline. The three peripheral drivers are: unique preconditions; continuous decisions impact; and extremes dichotomy. The study describes four moderators of the drivers: life cycle stage; stakeholder perspective; quantitative versus qualitative nature of signs and causes; and finally the age and size effects. Research limitations/implications: The proposed conceptual framework is based on literature only, although it has found support during discussions with practitioners. It is proposed to readers of this journal for scrutiny and validation. Practical implications: Strategists need to understand what drives decline in order to act timeously; practitioners who have an insight into the moderators with their impacts could make better decisions in response to decline in organisations and possibly avoid business failure. Originality/Value: Understanding business decline is still a huge theoretical challenge, which

  5. Rate transient analysis for homogeneous and heterogeneous gas reservoirs using the TDS technique

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Sanchez, Jairo Andres; Cantillo, Jose Humberto

    2008-01-01

    In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as decline curve analysis under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the fingerprint characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology

  6. A New Comprehensive Approach for Predicting Injectivity Decline during Waterflooding

    DEFF Research Database (Denmark)

    Yuan, Hao; Nielsen, Sidsel Marie; Shapiro, Alexander

    Injectivity decline during sea waterflooding or produced water re-injection is widely observed in North Sea, Gulf of Mexico and Campos Basin fields. The formation damage occurs mainly due to the deposition of suspended solids around injectors and the build-up the external filter cakes in the well...... bores. The ability to predict injectivity decline accurately is of great importance for project designs and water management. A comprehensive model that incorporates a variety of factors influencing the process is desirable for the prediction. In this paper, a new comprehensive approach for predicting...... injectivity decline during water flooding is proposed. The deep bed filtration is described by novel stochastic random walk equations. The injectivity decline model takes into account the reservoir heterogeneity and the distribution of solid particles by sizes. It also accounts for the later formation...

  7. Decline in breast cancer mortality

    DEFF Research Database (Denmark)

    Njor, Sisse Helle; Schwartz, Walter; Blichert-Toft, Mogens

    2015-01-01

    OBJECTIVES: When estimating the decline in breast cancer mortality attributable to screening, the challenge is to provide valid comparison groups and to distinguish the screening effect from other effects. In Funen, Denmark, multidisciplinary breast cancer management teams started before screening...... was introduced; both activities came later in the rest of Denmark. Because Denmark had national protocols for breast cancer treatment, but hardly any opportunistic screening, Funen formed a "natural experiment", providing valid comparison groups and enabling the separation of the effect of screening from other...... factors. METHODS: Using Poisson regression we compared the observed breast cancer mortality rate in Funen after implementation of screening with the expected rate without screening. The latter was estimated from breast cancer mortality in the rest of Denmark controlled for historical differences between...

  8. Declining national park visitation: An economic analysis

    Science.gov (United States)

    Thomas H. Stevens; Thomas A. More; Marla. Markowski-Lindsay

    2014-01-01

    Visitation to the major nature-based national parks has been declining. This paper specifies an econometric model that estimates the relative impact of consumer incomes, travel costs, entry fees and other factors on per capita attendance from 1993 to 2010. Results suggest that entrance fees have had a statistically significant but small impact on per capita attendance...

  9. Natural CO{sub 2} migrations in the South-Eastern Basin of France: implications for the CO{sub 2} storage in sedimentary formations; Contribution a la connaissance des migrations de CO{sub 2} naturel dans le Bassin du Sud-Est de la France: enseignements pour le stockage geologique du CO{sub 2} dans les reservoirs sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Rubert, Y.

    2009-03-15

    Study of natural CO{sub 2} analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO{sub 2} storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO{sub 2} migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO{sub 2}-leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO{sub 2}-enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO{sub 2} did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO{sub 2} leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  10. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  11. Global Carbon Reservoir Oxidative Ratios

    Science.gov (United States)

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  12. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  13. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... of diverse marine biota; and for direct use (such as firewood, charcoal, and construction material)—all of which benefit the sustainability of local communities. However, for many mangrove areas of the world, unsustainable resource utilization and the profit orientation of communities have often led to rapid...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...

  14. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  15. Gradients in Catostomid assemblages along a reservoir cascade

    Science.gov (United States)

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  16. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  17. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs

    Directory of Open Access Journals (Sweden)

    Gao Li

    2017-07-01

    Full Text Available The damages of different drilling modes to reservoirs are different in types and degrees. In this paper, the geologic characteristics and types of such damages were analyzed. Then, based on the relationship between reservoir pressure and bottom hole flowing pressure corresponding to different drilling modes, the experimental procedures on reservoir damages in three drilling modes (e.g. gas drilling, liquid-based underbalanced drilling and overbalanced drilling were designed. Finally, damage simulation experiments were conducted on the tight sandstone reservoir cores of the Jurassic Ahe Fm in the Tarim Basin and Triassic Xujiahe Fm in the central Sichuan Basin. It is shown that the underbalanced drilling is beneficial to reservoir protection because of its less damage on reservoir permeability, but it is, to some extent, sensitive to the stress and the empirical formula of stress sensitivity coefficient is obtained; and that the overbalanced drilling has more reservoir damages due to the invasion of solid and liquid phases. After the water saturation of cores rises to the irreducible water saturation, the decline of gas logging permeability speeds up and the damage degree of water lock increases. It is concluded that the laboratory experiment results of reservoir damage are accordant with the reservoir damage characteristics in actual drilling conditions. Therefore, this method reflects accurately the reservoir damage characteristics and can be used as a new experimental evaluation method on reservoir damage in different drilling modes.

  18. Potential implementation of reservoir computing models based on magnetic skyrmions

    Science.gov (United States)

    Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin

    2018-05-01

    Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.

  19. A reservoir morphology database for the conterminous United States

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-13

    The U.S. Geological Survey, in cooperation with the Reservoir Fisheries Habitat Partnership, combined multiple national databases to create one comprehensive national reservoir database and to calculate new morphological metrics for 3,828 reservoirs. These new metrics include, but are not limited to, shoreline development index, index of basin permanence, development of volume, and other descriptive metrics based on established morphometric formulas. The new database also contains modeled chemical and physical metrics. Because of the nature of the existing databases used to compile the Reservoir Morphology Database and the inherent missing data, some metrics were not populated. One comprehensive database will assist water-resource managers in their understanding of local reservoir morphology and water chemistry characteristics throughout the continental United States.

  20. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  1. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    , and the best reservoir properties are typically found in mudstone intervals. Chalk mudstones vary a lot though. The best mudstones are purely calcitic, well sorted and may have been redeposited by traction currents. Other mudstones are rich in very fine grained silica, which takes up pore space and thus...... basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... have hardly any stylolites and can have porosity above 40% or even 50% and thus also have relatively high permeability. Such intervals have the problem though, that increasing effective stress caused by hydrocarbon production results in mechanical compaction and overall subsidence. Most other chalk...

  2. Work reservoirs in thermodynamics

    International Nuclear Information System (INIS)

    Anacleto, Joaquim

    2010-01-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  3. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  4. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions

  5. Decline of functional capacity in healthy aging workers

    NARCIS (Netherlands)

    Soer, Remko; Brouwer, Sandra; Geertzen, Jan H; van der Schans, Cees; Groothoff, Johan W.; Reneman, Michiel F

    2012-01-01

    OBJECTIVES: (1) To study the natural decline in functional capacity (FC) of healthy aging workers; (2) to compare FC to categories of workload; and (3) to study the differences in decline between men and women. DESIGN: Cross-sectional design. SETTING: A rehabilitation center at a university medical

  6. Agricultural Decline and Access to Food in Ghana.

    Science.gov (United States)

    Tabatabai, Hamid

    1988-01-01

    Examines the causes and impacts of agricultural decline in Ghana. Presents a macroeconomic overview and discusses the nature of decline. Emphasizes the roles of prices and migration. Examines changes in incomes and access to food as both a result and a cause of poor performance in agriculture. (CH)

  7. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  8. Geothermal reservoir assessment manual; 1984-1992 nendo chinetsu choryusou hyoka shuhou manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    A geothermal reservoir assessment manual was prepared for the promotion of the development of geothermal power generation, based on the results of the 'geothermal reservoir assessment technique development project' implemented during the fiscal 1984-1992 period and on the results of surveys conducted in Japan and abroad. Of the geothermal systems generally classified into the steam dominant type and the hot water dominant type, encounters with the steam dominant type are but seldom reported. This manual therefore covers the hot water dominant type only. In addition to the explanation of the basic concept and the outline of geothermal reservoirs, the manual carries data necessary for reservoir assessment; geological and geophysical data analyses; geochemistry in reservoir assessment; data of underground logging and of fuming; conceptual models; simulators and models for reservoir simulation; natural-state simulation, history-matching simulation, and reservoir behavior predicting simulation; case history (modeling of a geothermal reservoir prior to exploitation), references, and so forth. (NEDO)

  9. Reservoir shorelines : a methodology for evaluating operational impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, M.; Braund-Read, J.; Musgrave, B. [BC Hydro, Burnaby, BC (Canada)

    2009-07-01

    BC Hydro has been operating hydroelectric facilities for over a century in British Columbia. The integrity and stability of the shorelines and slopes bordering hydroelectric reservoirs is affected by changing water levels in the reservoir, natural processes of flooding, wind and wave action and modification of groundwater levels. Establishing setbacks landward of the shoreline are needed in order to protect useable shoreline property that may be at risk of flooding, erosion or instability due to reservoir operations. Many of the reservoirs in British Columbia are situated in steep, glaciated valleys with diverse geological, geomorphological and climatic conditions and a variety of eroding shorelines. As such, geotechnical studies are needed to determine the operational impacts on reservoir shorelines. Since the 1960s BC Hydro has been developing a methodology for evaluating reservoir impacts and determining the land around the reservoir perimeter that should remain as a right of way for operations while safeguarding waterfront development. The methodology was modified in the 1990s to include geomorphological and geological processes. However, uncertainties in the methodology still exist due to limited understanding of key issues such as rates of erosion and shoreline regression, immaturity of present day reservoir shorelines and impacts of climate change. 11 refs., 1 tab., 7 figs.

  10. Pareja limno-reservoir (Guadalajara, Spain): environmental and hydrologic aspects

    International Nuclear Information System (INIS)

    Molina Navarro, E.; Martinez Perez, S.; Sastre Merlin, A.

    2010-01-01

    The construction of small reservoir on the edge of large ones is an innovative idea designed to counteract some of the negative impacts caused by the construction and use of reservoirs. The denomination Limno-reservoirs is proposed here, as these water bodies are created to maintain a natural lake dynamics. Pareja's limno-reservoir is among the first limno-reservoirs in Spain, and its construction raises some questions about hydrological viability and siltation risk. The proposition of the methodologies to solve them and the evaluation of the first results is the aim of this study. A detailed water balance makes possible to affirm that, in a firs approach, the limno-reservoir is viable from the hydrological point of view, because the Ompolveda basin -Tajo's tributary at Entrepenas reservoir- has enough water resources to guarantee the permanence of the water body, even during dry years. To assess the siltation risk, a soil loss observation network will be monitoring the Ompolveda basin for the next three years to evaluate the net erosion in the watershed and the sediment delivery to the reservoir. (Author)

  11. Diffuser Operations at Spring Hollow Reservoir

    OpenAIRE

    Gantzer, Paul Anthony

    2002-01-01

    Stratification is a natural occurrence in deep lakes and reservoirs. This phenomenon results in two distinct layers, the warmer, less dense epilimnion on top and the colder, denser, hypolimnion on the bottom. The epilimnion remains saturated with dissolved oxygen (DO) from mass transfer with the atmosphere, while the hypolimnion continues to undergo oxygen-depleting processes. During seasons of high oxygen demand the hypolimnion often becomes anoxic and results in the release of compounds,...

  12. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  13. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China

    International Nuclear Information System (INIS)

    Feng Xinbin; Jiang Hongmei; Qiu Guangle; Yan Haiyu; Li Guanghui; Li Zhonggen

    2009-01-01

    From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km -2 for DF Reservoir, and 489.2 g km -2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km -2 yr -1 , yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km -2 yr -1 , yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs. - Reservoirs are the sink of total mercury but source of methylmercury to the aquatic systems.

  14. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  15. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  16. Net greenhouse gas emissions at Eastmain-1 reservoir, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Alain; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul; Demarty, Maud; Garneau, Michelle; Helie, Jean-Francois; Pelletier, Luc; Prairie, Yves; Roulet, Nigel; Strachan, Ian; Teodoru, Cristian

    2010-09-15

    The growing concern regarding the long-term contribution of freshwater reservoirs to atmospheric greenhouse gases (GHG), led Hydro-Quebec, to study net GHG emissions from Eastmain 1 reservoir, which are the emissions related to the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period. This large study was realized in collaboration with University du Quebec a Montreal, McGill University and Environnement IIlimite Inc. This is a world premiere and the net GHG emissions of EM-1 will be presented in details.

  17. Altering Reservoir Wettability to Improve Production from Single Wells

    Energy Technology Data Exchange (ETDEWEB)

    W. W. Weiss

    2006-09-30

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field

  18. Reservoir-host amplification of disease impact in an endangered amphibian.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  19. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  20. Mobility decline in old age

    DEFF Research Database (Denmark)

    Rantakokko, Merja; Mänty, Minna Regina; Rantanen, Taina

    2013-01-01

    Mobility is important for community independence. With increasing age, underlying pathologies, genetic vulnerabilities, physiological and sensory impairments, and environmental barriers increase the risk for mobility decline. Understanding how mobility declines is paramount to finding ways...... to promote mobility in old age....

  1. Additional pest surveyed: hickory decline

    Science.gov (United States)

    Jennifer Juzwik; Ji-Hyun. Park

    2011-01-01

    A five year investigation of the cause of rapid crown decline and mortality of bitternut hickory was concluded in September 2011. Results of a series of related studies found that multiple cankers and xylem (the water conducting tissue) dysfunction caused by Ceratocystis smalleyi are correlated with rapid crown decline typical of a limited vascular...

  2. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  3. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  4. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  5. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  6. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    Energy Technology Data Exchange (ETDEWEB)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  7. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  8. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  9. The decline of North American freshwater fishes

    Science.gov (United States)

    Walsh, Stephen J.; Jelks, Howard L.; Burkhead, Noel M.

    2009-01-01

    North America has a broad array of freshwater ecosystems because of the continent's complex geography and geological history. Within a multitude of habitats—that include streams, large rivers, natural lakes, springs, and wetlands—rich assemblages of fishes reside, representing diverse taxonomic groups with unique ecological requirements. They face an unprecedented conservation crisis.1 In the last few decades, the proportion of inland fishes of North America, which are considered imperiled or extinct, increased from 20 to 40%.2 Although extinctions have occurred, many species and populations are declining in range size and abundance. The fish biota of the continent as a whole remains diverse; however, we can take action to stem any further declines.

  10. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  11. Cognitive decline affects diabetic women

    Directory of Open Access Journals (Sweden)

    Perzyński Adam

    2016-12-01

    Full Text Available Introduction: DM provokes peripheral complications and changes in central nervous system. Central changes in the course of diabetes mellitus (DM include changes in brain tissue structure, electrophysiological abnormalities but also disturbances in neurotransmission leading to cognitive decline.

  12. Reservoirs and human well being: new challenges for evaluating impacts and benefits in the neotropics

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available As in many other continents, neotropical ecosystems are impacted by the construction of reservoirs. These artificial ecosystems change considerably the natural terrestrial and aquatic ecosystems and their biodiversity. The multiple uses of reservoirs promote benefits for the human beings in terms of economic development, income, jobs and employment. Services of reservoirs are important assets for the regional ecosystem. Evaluation of ecosystem services produced by artificial reservoirs, are new challenges to the understanding of the cost/benefit relationships of reservoir construction in the neotropics. Regulating and other services promoted by reservoirs lead to new trends for "green technology" and the implementation of ecohydrological and ecotechnological developments. This approach can be utilized with better success as a substitute for the usual impact/benefit evaluation of the reservoirs. Better and diversified services can be achieved with "green technology" applied to the construction.

  13. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  14. Gas sealing efficiency of cap rocks. Pt. 1: Experimental investigations in pelitic sediment rocks. - Pt. 2: Geochemical investigations on redistribution of volatile hydrocarbons in the overburden of natural gas reservoirs; Gas sealing efficiency of cap rocks. T. 1: Experimentelle Untersuchungen in pelitischen Sedimentgesteinen. - T.2: Geochemische Untersuchungen zur Umverteilung leichtfluechtiger Kohlenwasserstoffe in den Deckschichten von Erdgaslagerstaetten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Leythaeuser; Konstanty, J.; Pankalla, F.; Schwark, L.; Krooss, B.M.; Ehrlich, R.; Schloemer, S.

    1997-09-01

    New methods and concepts for the assessment of sealing properties of cap rocks above natural gas reservoirs and of the migration behaviour of low molecular-weight hydrocarbons in sedimentary basins were developed and tested. The experimental work comprised the systematic assesment of gas transport parameters on representative samples of pelitic rocks at elevated pressure and temperature conditions, and the characterization of their sealing efficiency as cap rocks overlying hydrocarbon accumulations. Geochemical case histories were carried out to analyse the distribution of low molecular-weight hydrocarbons in the overburden of known natural gas reservoirs in NW Germany. The results were interpreted with respect to the sealing efficiency of individual cap rock lithologies and the type and extent of gas losses. (orig.) [Deutsch] Zur Beurteilung der Abdichtungseigenschaften von Caprocks ueber Gaslagerstaetten und des Migrationsverhaltens niedrigmolekularer Kohlenwasserstoffe in Sedimentbecken wurden neue Methoden und Konzepte entwickelt und angewendet. In experimentellen Arbeiten erfolgte die systematische Bestimmung von Gas-Transportparametern an repraesentativen Proben pelitischer Gesteine unter erhoehten Druck- und Temperaturbedingungen und die Charakterisierung ihrer Abdichtungseffizienz als Deckschicht ueber Kohlenwasserstofflagerstaetten. In geochemischen Fallstudien wurde die Verteilung niedrigmolekularer Kohlenwasserstoffe in den Deckschichten ueber bekannten Erdgaslagerstaetten in NW-Deutschland analysiert und im Hinblick auf die Abdichtungseffizienz einzelner Caprock-Lithologien bzw. Art und Ausmass von Gasverlusten interpretiert. (orig.)

  15. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  16. Parallels in amphibian and bat declines from pathogenic fungi.

    Science.gov (United States)

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  17. TROPHIC STATE OF SMALL RETENTION RESERVOIRS IN PODLASIE VOIVODESHIP

    Directory of Open Access Journals (Sweden)

    Joanna Szczykowska

    2017-09-01

    Full Text Available The study was carried out using water samples from two small retention reservoirs located in the communes: Czarna Białostocka and Turośń Kościelna in Podlaskie Voivodeship. The main tasks of both reservoirs are to improve the water balance by means of regulating the levels and water outflow. Three characteristic measurement and control points were selected on both reservoirs in accordance to the water flow in the longitudinal section. The first and third points were located near the inflow and outflow of water, while the second in the middle of the reservoirs. Samples of water for the study were collected from the surface layer of the shore zone of the reservoirs once a month from March 2015 to February 2017 (water from two hydrological years was analyzed. Water samples were subject to determination of total phosphorus, total nitrogen, and chlorophyll “a” concentrations, as well as turbidity. Contamination of the water reservoirs with biogenic compounds is a common problem and at the same time difficult to eliminate due to the scattered nature of external sources of pollution, especially in the case of agricultural catchments, as well as the inflow of untreated sewage from areas directly adjacent to the reservoirs. Based on achieved results, high values of TSI (TN, TSI (TP, TSI (Chl, and overall TSI, clearly indicate the progressive degradation of water quality in analyzed reservoirs. Appearing water blooms due to the mass development of phytoplankton adversely affect the quality of water in the reservoirs and biochemical processes occurring both in water and bottom sediments, are conditioned by progressive eutrophication.

  18. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  19. Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-10-01

    Full Text Available Breakthroughs have been made in natural gas exploration in Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin, recently. However, there are disputes with regard to the genetic mechanisms of natural gas reservoirs. The development law of asphalts in the Sinian reservoirs may play an extremely important role in the study of the relationships between palaeo oil and gas reservoirs. Accordingly, researches were conducted on the features and development patterns of asphalts in the Sinian reservoirs in this area. The following research results were obtained. (1 Asphalts in the Sinian reservoirs were developed after the important hydrothermal event in the Sichuan Basin, namely the well-known Emei Taphrogeny in the mid-late Permian Period. (2 Distribution of asphalts is related to palaeo oil reservoirs under the control of palaeo-structures of Indosinian-Yanshanian Period, when the palaeo-structures contained high content of asphalts in the high positions of the palaeo-uplift. (3 Large-scale oil and gas accumulations in the Sinian reservoirs occurred in the Indosinian-Yanshanian Period to generate the Leshan-Ziyang and Gaoshiti-Moxi-Guang'an palaeo oil reservoirs. Cracking of crude oil in the major parts of these palaeo oil reservoirs controlled the development of the present natural gas reservoirs. (4 The development of asphalts in the Sinian reservoirs indicates that hydrocarbons in the Dengying Formation originated from Cambrian source rocks and natural gas accumulated in the Sinian reservoirs are products of late-stage cracking of the Sinian reservoirs. (5 The Sinian palaeo-structures of Indosinian-Yanshanian Period in the Sichuan Basin are favorable regions for the development of the Sinian reservoirs, where discoveries and exploration practices will play an important role in the era of Sinian natural gas development in China.

  20. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  1. Optimization In Searching Daily Rule Curve At Mosul Regulating Reservoir, North Iraq Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-05-01

    Full Text Available To obtain optimal operating rules for storage reservoirs, large numbers of simulation and optimization models have been developed over the past several decades, which vary significantly in their mechanisms and applications. Rule curves are guidelines for long term reservoir operation. An efficient technique is required to find the optimal rule curves that can mitigate water shortage in long term operation. The investigation of developed Genetic Algorithm (GA technique, which is an optimization approach base on the mechanics of natural selection, derived from the theory of natural evolution, was carried out to through the application to predict the daily rule curve of  Mosul regulating reservoir in Iraq.  Record daily inflows, outflow, water level in the reservoir for 19 year (1986-1990 and (1994-2007 were used in the developed model for assessing the optimal reservoir operation. The objective function is set to minimize the annual sum of squared deviation from the desired downstream release and desired storage volume in the reservoir. The decision variables are releases, storage volume, water level and outlet (demand from the reservoir. The results of the GA model gave a good agreement during the comparison with the actual rule curve and the designed rating curve of the reservoir. The simulated result shows that GA-derived policies are promising and competitive and can be effectively used for daily reservoir operation in addition to the rational monthly operation and predicting also rating curve of reservoirs.

  2. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  3. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  4. Transient pressure and productivity analysis in carbonate geothermal reservoirs with changing external boundary flux

    Directory of Open Access Journals (Sweden)

    Wang Dongying

    2017-01-01

    Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary flux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary flux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary flux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.

  5. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  6. With Prudhoe Bay in decline

    International Nuclear Information System (INIS)

    Davis, J.M.; Pollock, J.R.

    1992-01-01

    Almost every day, it seems, someone is mentioning Prudhoe Bay---its development activities, the direction of its oil production, and more recently its decline rate. Almost as frequently, someone is mentioning the number of companies abandoning exploration in Alaska. The state faces a double-edged dilemma: decline of its most important oil field and a diminished effort to find a replacement for the lost production. ARCO has seen the Prudhoe Bay decline coming for some time and has been planning for it. We have reduced staff, and ARCO and BP Exploration are finding cost-effective ways to work more closely together through such vehicles as shared services. At the same time, ARCO is continuing its high level of Alaskan exploration. This article will assess the future of Prudhoe Bay from a technical perspective, review ARCO's exploration plans for Alaska, and suggest what the state can do to encourage other companies to invest in this crucial producing region and exploratory frontier

  7. Reservoirs of Non-baumannii Acinetobacter Species

    Science.gov (United States)

    Al Atrouni, Ahmad; Joly-Guillou, Marie-Laure; Hamze, Monzer; Kempf, Marie

    2016-01-01

    Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years. PMID:26870013

  8. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  9. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  10. The Characteristics of Spanish Reservoirs

    National Research Council Canada - National Science Library

    Armengol, J; Merce, R

    2003-01-01

    Sau Reservoir was first filled in 1963 in a middle stretch of the Ter River, as part of a multi-use scheme, including hydroelectric power, agricultural irrigation, domestic and industrial water supply...

  11. The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects

    Science.gov (United States)

    Alves, Eduardo Q.; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher

    2018-03-01

    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.

  12. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  13. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  14. Strong families and declining fertility

    NARCIS (Netherlands)

    Hilevych, Yuliya

    2016-01-01

    This dissertation focuses on the role of family and social relationships in individuals’ reproductive careers during the fertility decline in Soviet Ukraine from around 1950 to 1975. These three decades after the Second World War signified the end of the First Demographic Transition in Ukraine

  15. French Wines on the Decline?:

    DEFF Research Database (Denmark)

    Steiner, Bodo

    2004-01-01

    French wines, differentiated by geographic origin, served for many decades as a basis for the French success in the British wine market. However in the early 1990s, market share began to decline. This article explores the values that market participants placed on labelling information on French...

  16. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  17. A new biostratigraphical tool for reservoir characterisation and well correlation in permo-carboniferous sandstones

    NARCIS (Netherlands)

    Garming, J.F.L.; Cremer, H.; Verreussel, R.M.C.H.; Guasti, E.; Abbink, O.A.

    2010-01-01

    Permo-Carboniferous sandstones are important reservoir rocks for natural gas in the Southern North Sea basin. This is a mature area which makes tools for reservoir characterization and well to well correlation important for field optimalisation and ongoing exploration activities. Within the

  18. Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach

    NARCIS (Netherlands)

    Mendonca, R.; Kosten, S.; Sobek, S.; Cole, J.J.; Bastos, A.C.; Albuquerque, A.L.; Cardoso, S.J.; Roland, F.

    2014-01-01

    Artificial reservoirs likely accumulate more carbon than natural lakes due to their unusually high sedimentation rates. Nevertheless, the actual magnitude of carbon accumulating in reservoirs is poorly known due to a lack of whole-system studies of carbon burial. We determined the organic carbon

  19. Dynamics of fluctuations of Cs-137 contents in the bottom sediment in limnetic dam reservoir Goczalkowice

    International Nuclear Information System (INIS)

    Kwapulinski, J.; Majchrzyk, H.; Kalita, T.; Miroslawski, J.

    1986-01-01

    The results of 137 Cs studies in bottom sediment in the Goczalkowice reservoir are presented. The determined coefficients of aquatic migration, difusion in bottom sediment and water in vertical section confirm zonal nature of 137 Cs occurrance and accumulation in the reservoir. 5 refs., 1 fig., 6 tabs. (author)

  20. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  1. Detection of Giardia intestinalis in water samples collected from natural water reservoirs and wells in northern and north-eastern Poland using LAMP, real-time PCR and nested PCR.

    Science.gov (United States)

    Lass, Anna; Szostakowska, Beata; Korzeniewski, Krzysztof; Karanis, Panagiotis

    2017-10-01

    Giardia intestinalis is a protozoan parasite, transmitted to humans and animals by the faecal-oral route, mainly through contaminated water and food. Knowledge about the distribution of this parasite in surface water in Poland is fragmentary and incomplete. Accordingly, 36 environmental water samples taken from surface water reservoirs and wells were collected in Pomerania and Warmia-Masuria provinces, Poland. The 50 L samples were filtered and subsequently analysed with three molecular detection methods: loop-mediated isothermal amplification (LAMP), real-time polymerase chain reaction (real-time PCR) and nested PCR. Of the samples examined, Giardia DNA was found in 15 (42%) samples with the use of LAMP; in 12 (33%) of these samples, Giardia DNA from this parasite was also detected using real-time PCR; and in 9 (25%) using nested PCR. Sequencing of selected positive samples confirmed that the PCR products were fragments of the Giardia intestinalis small subunit rRNA gene. Genotyping using multiplex real-time PCR indicated the presence of assemblages A and B, with the latter predominating. The results indicate that surface water in Poland, as well as water taken from surface wells, may be a source of Giardia strains which are potentially pathogenic for humans. It was also demonstrated that LAMP assay is more sensitive than the other two molecular assays.

  2. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  3. Evaluation of infiltrations from Yeso reservoir, using no conventional techniques

    International Nuclear Information System (INIS)

    Grilli D-F, Alejandro; Espinoza F, Diana; Olavarria R, Jose M.; Pollastri J, Alberto; Aguirre D, Evelyn; Moya V, Pedro

    1997-01-01

    The aim of this work was to measure with the aid of natural isotope technique the speed flow of the water filtrating from Yeso reservoir. The hydrochemistry and temperature of water has also proved to be an excellent tracer and has allowed the identification of the infiltration zone of an important fraction of the seepage

  4. Comparison of pressure transient response in intensely and sparsely fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johns, R.T.

    1989-04-01

    A comprehensive analytical model is presented to study the pressure transient behavior of a naturally fractured reservoir with a continuous matrix block size distribution. Geologically realistic probability density functions of matrix block size are used to represent reservoirs of varying fracture intensity and uniformity. Transient interporosity flow is assumed and interporosity skin is incorporated. Drawdown and interference pressure transient tests are investigated. The results show distinctions in the pressure response from intensely and sparsely fractured reservoirs in the absence of interporosity skin. Also, uniformly and nonuniformly fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture intensity. The pressure response in a nonuniformly fractured reservoir with large block size variability, approaches a nonfractured (homogeneous) reservoir response. Type curves are developed to estimate matrix block size variability and the degree of fracture intensity from drawdown and interference well tests.

  5. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  6. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  7. Energy consumption declined in 1993

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On presenting the energy consumption figures for 1993 the Minister for Economic Affairs of Baden-Wuerttemberg Dieter Spoeri (SPD) spoke of the eternal task of saving energy. In his view the slight decline in energy consumption from 1992 to 1993 should not be interpreted as a greater willingness to save energy; its main cause is rather to be seen in the course of the economy. According to estimations, total energy consumption fell 0.5% and electricity consumption 1.0% from 1992 to 1993. The economy on the other hand, still a decisive factor in energy consumption, is estimated to have declined 3% during that period. In the ten years from 1983 to 1993 total energy consumption in the Land rose an average annual 1.8% while electricity consumption kept astride with the economy with an average annual rise 2.7%, he said. (orig./HP) [de

  8. Cardiovascular Prevention of Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Monsuez

    2011-01-01

    Full Text Available Midlife cardiovascular risk factors, including diabetes, hypertension, dyslipemia, and an unhealthy lifestyle, have been linked to subsequent incidence, delay of onset, and progression rate of Alzheimer disease and vascular dementia. Conversely, optimal treatment of cardiovascular risk factors prevents and slows down age-related cognitive disorders. The impact of antihypertensive therapy on cognitive outcome in patients with hypertension was assessed in large trials which demonstrated a reduction in progression of MRI white matter hyperintensities, in cognitive decline and in incidence of dementia. Large-scale database correlated statin use and reduction in the incidence of dementia, mainly in patients with documented atherosclerosis, but clinical trials failed to reach similar conclusions. Whether a multitargeted intervention would substantially improve protection, quality of life, and reduce medical cost expenditures in patients with lower risk profile has not been ascertained. This would require appropriately designed trials targeting large populations and focusing on cognitive decline as a primary outcome endpoint.

  9. Are our forests declining. Why

    International Nuclear Information System (INIS)

    Leygonie, R.

    1991-01-01

    This article first presents the historical background of recent events popularized under the names: acid rains, forests declines. The first major crisis was soil and lake acidifications in Scandinavian countries, then a fast forest decay, first in Germany, in the early eighties, then in a number of European countries, including France. These phenomena were attributed to atmospheric pollutions, essentially acidic pollution. The consequences were drastic legislations in Germany, then the European Directive on large combustion plants (November 1988). Another consequence was the UNECE Convention on long range transport of pollutants (1979). Observations in the field on tree declines (loss of needles or leaves, abnormal yellowings, soil studies, etc.) and laboratory experiments showed that causes are very complex, involving the low quality of soils, abnormal droughts, presence of pollutants in atmosphere, mainly ozone [fr

  10. Cognitive decline in Parkinson disease

    Science.gov (United States)

    Aarsland, Dag; Creese, Byron; Politis, Marios; Chaudhuri, K. Ray; ffytche, Dominic H.; Weintraub, Daniel; Ballard, Clive

    2017-01-01

    Dementia is a frequent problem encountered in advanced stages of Parkinson disease (PD). In recent years, research has focused on the pre-dementia stages of cognitive impairment in PD, including mild cognitive impairment (MCI). Several longitudinal studies have shown that MCI is a harbinger of dementia in PD, although the course is variable, and stabilization of cognition — or even reversal to normal cognition — is not uncommon. In addition to limbic and cortical spread of Lewy pathology, several other mechanisms are likely to contribute to cognitive decline in PD, and a variety of biomarker studies, some using novel structural and functional imaging techniques, have documented in vivo brain changes associated with cognitive impairment. The evidence consistently suggests that low cerebrospinal fluid levels of amyloid-β42, a marker of comorbid Alzheimer disease (AD), predict future cognitive decline and dementia in PD. Emerging genetic evidence indicates that in addition to the APOE*ε4 allele (an established risk factor for AD), GBA mutations and SCNA mutations and triplications are associated with cognitive decline in PD, whereas the findings are mixed for MAPT polymorphisms. Cognitive enhancing medications have some effect in PD dementia, but no convincing evidence that progression from MCI to dementia can be delayed or prevented is available, although cognitive training has shown promising results. PMID:28257128

  11. RIS and reservoirs in the NW and central Himalayan foothills

    International Nuclear Information System (INIS)

    Agrawal, R.C.

    1989-02-01

    There are nine (impounded) and three (under construction) tall (height exceeding 100 m) and large (capacity exceeding 1 km 3 ) reservoirs located in the northwestern and central Himalayan foothills. Natural earthquakes having magnitude greater than 7 have occurred in their vicinity in the past but there are no reports of reservoir associated seismic activity from a few of these sites which are under seismic surveillance following the guidelines of Indian Standard IS: 4967-1968. Case study of monitoring the seismicity around one site points to the need for rewriting the Standard. Reasons for non-occurrence of RIS in this seismically active environment are discussed. (author). 18 refs, 4 figs, 3 tabs

  12. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs; TOPICAL

    International Nuclear Information System (INIS)

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-01-01

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs

  13. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  14. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    The subject of this thesis is the development, application and study of novel multilevel methods for the acceleration and improvement of reservoir simulation techniques. The motivation for addressing this topic is a need for more accurate predictions of porous media flow and the ability to carry...... Full Approximation Scheme) • Variational (Galerkin) upscaling • Linear solvers and preconditioners First, a nonlinear multigrid scheme in the form of the Full Approximation Scheme (FAS) is implemented and studied for a 3D three-phase compressible rock/fluids immiscible reservoir simulator...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...

  15. Characteristics of phytoplankton in Lake Karachay, a storage reservoir of medium-level radioactive waste.

    Science.gov (United States)

    Atamanyuk, Natalia I; Osipov, Denis I; Tryapitsina, Galina A; Deryabina, Larisa V; Stukalov, Pavel M; Ivanov, Ivan A; Pryakhin, Evgeny A

    2012-07-01

    The status of the phytoplankton community in Lake Karachay, a storage reservoir of liquid medium-level radioactive waste from the Mayak Production Association, Chelyabinsk Region, Russia, is reviewed. In 2010, the concentration of Sr in water of this reservoir was found to be 6.5 × 10(6) Bq L, the concentration of 137Cs was 1.6 × 10(7) Bq L, and total alpha activity amounted to 3.0 × 10(3) Bq L. An increased level of nitrates was observed in the reservoir-4.4 g L. It has been demonstrated that in this reservoir under the conditions of the maximum contamination levels known for aquatic ecosystems in the entire biosphere, a phytoplankton community exists that has a pronounced decline in species diversity, almost to the extent of a monoculture of widely-spread thread eurytopic cyanobacteria Geitlerinema amphibium.

  16. Decline of clear-water rotifer populations in a reservoir: the role of resource limitation

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Seďa, Jaromír

    2005-01-01

    Roč. 546, č. 1 (2005), s. 509-518 ISSN 0018-8158 Institutional research plan: CEZ:AV0Z60660521 Keywords : resource limitation * rotifers * birth rate Subject RIV: EH - Ecology, Behaviour Impact factor: 0.978, year: 2005

  17. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  18. Biofouling on Reservoir in Sea Water

    Science.gov (United States)

    Yoon, H.; Eom, C.; Kong, M.; Park, Y.; Chung, K.; Kim, B.

    2011-12-01

    The organisms which take part in marine biofouling are primarily the attached or sessile forms occurring naturally in the shallower water along the coast [1]. This is mainly because only those organisms with the ability to adapt to the new situations created by man can adhere firmly enough to avoid being washed off. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm communities formed on the reservoir polymer surfaces were tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. To confirm microbial and formation of biofilm on adsorbents was done CLSM (Multi-photon Confocal Laser Scanning Microscope system) analysis. Microbial identified using 16S rRNA. Experiment results, five species which are Vibrio sp., Pseudoalteromonas, Marinomonas, Sulfitobacter, and Alteromonas discovered to reservoir formed biofouling. There are some microorganism cause fouling and there are the others control fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim. Prog. Org. Coat. 50, (2004) p.75-104.

  19. Formation evaluation in liquid-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Dougherty, E.E.; Handy, L.L.

    1981-04-01

    Studies relative to some formation evaluation aspects of geothermal reservoirs are reported. The particular reservoirs considered were the liquid dominated type with a lithology of the sedimentary nature. Specific problems of interest included the resistivity behavior of brines and rocks at elevated temperatures and studies on the feasibility of using the well log resistivity data to obtain estimates of reservoir permeability. Several papers summarizing the results of these studies were presented at various technical meetings for rapid dissemination of the results to potential users. These papers together with a summary of data most recently generated are included. A brief review of the research findings precedes the technical papers. Separate abstracts were prepared for four papers. Five papers were abstracted previously for EDB.

  20. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  1. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  2. Advances in complex reservoir evaluation based on geophysical well logs

    Energy Technology Data Exchange (ETDEWEB)

    Fertl, W.H.; Sinha, A.K. (Western Atlas International, Inc., Houston, TX (USA)); McDougall, J.G. (Western Atlas Canada Ltd., Calgary, AB (Canada))

    1988-09-01

    The matrix of reservoirs having complex lithologies, cause different density, neutron, and acoustic responses. Therefore the lithologies and effective porosity of reservoirs can be determined by using various crossplot techniques on data collected from two of these logs. The Complex Reservoir Analysis program (CRA) computes lithology, porosity, water saturation and relative permeabilities in formations with interbedded limestone, dolomite, and anhydrite. Porosity options include crossplot and individual log response techniques. Corrections for light hydrocarbons were applied. In solving for porosity and mineral volumes, sand, limestone, dolomite, and anhydrite lines were defined on either density/neutron or neutron/acoustic crossplots. Four additional mineral lines were specified. Incorporation of Pe data from the Z-Densilog provided a significant advance in evaluating complex reservoirs via the Z-CRA analysis. The classic reservoir evaluation program CLASS, was used to perform both minerals and shaly evaluation based on density, neutron, resistivity, and natural gamma ray spectral measurements. Computations included total and effective porosities, fluid saturation distribution based on the Wasman-Smits model, productivity indices, and volume and distribution of clay minerals. Additional computed formation parameters included log-derived cation exchange capacity and hydrogen index of dry clay matrix to determine the type and amount of smectite, illite and chlorite/kaolinite present. Canadian field experiences was used to illustrate and support the techniques described. 11 refs., 11 figs., 6 tabs.

  3. World oil prices flat to declining

    International Nuclear Information System (INIS)

    Adelman, M.A.

    1993-01-01

    A forecast is presented of the likely trends in world oil prices over the short to medium term. A historical background is presented of the OPEC cartel and its role in influencing oil prices. The incentives and disincentives for OPEC to raise prices, and the tensions within the cartel are explored. Slower demand growth and the expansion of natural gas are expected to put downward pressure on oil prices, which are currently artificially high. The impacts of high taxes on development and exploration are examined, and it is shown that state ownership poses an obstacle to improved performance. Threats of price decline are expected to continue to lead to threats of hasty, or even violent action on the part of OPEC members, as happened in 1990. Privatization and tax codes designed to skim rent are positive trends

  4. Prevention of Reservoir Interior Discoloration

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, K.F.

    2001-04-03

    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  5. Nonlinear Multigrid for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter

    2016-01-01

    efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  6. [Hematophagous bats as reservoirs of rabies].

    Science.gov (United States)

    Scheffer, Karin Corrêa; Iamamoto, Keila; Asano, Karen Miyuki; Mori, Enio; Estevez Garcia, Andrea Isabel; Achkar, Samira M; Fahl, Williande Oliveira

    2014-04-01

    Rabies continues to be a challenge for public health authorities and a constraint to the livestock industry in Latin America. Wild and domestic canines and vampire bats are the main transmitter species and reservoirs of the disease. Currently, variations observed in the epidemiological profile of rabies, where the species of hematophagous bat Desmodus rotundus constitutes the main transmitting species. Over the years, knowledge has accumulated about the ecology, biology and behavior of this species and the natural history of rabies, which should lead to continuous development of methods of population control of d. Rotundus as well as prevention and diagnostic tools for rabies. Ecological relationships of this species with other hematophagous and non-hematophagous bats is unknown, and there is much room for improvement in reporting systems and surveillance, as well as creating greater awareness among the farming community. Understanding the impact of human-induced environmental changes on the rabies virus in bats should be cause for further investigation. This will require a combination of field studies with mathematical models and new diagnostic tools. This review aims to present the most relevant issues on the role of hematophagous bats as reservoirs and transmitters of the rabies virus.

  7. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  8. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  9. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Hitzman; S.A. Bailey

    2000-01-01

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated from produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.

  10. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  11. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part I: Impact of Salinity, Initial pH and Initial Zn(II Concentration in Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available The sorption of inorganic elements on carbonate minerals is well known in strictly controlled conditions which limit the impact of other phenomena such as dissolution and/or precipitation. In this study, we evidence the behavior of Zn(II (initially in solution and two trace elements, Mn(II and Sr(II (released by carbonate dissolution in the context of a leakage from a CO2 storage site. The initial pH chosen are either equal to the pH of the water-CO2 equilibrium (~ 2.98 or equal to the pH of the water-CO2-calcite system (~ 4.8 in CO2 storage conditions. From this initial influx of liquid, saturated or not with respect to calcite, the batch experiments evolve freely to their equilibrium, as it would occur in a natural context after a perturbation. The batch experiments are carried out on two natural carbonates (from Lavoux and St-Emilion with PCO2 = 10−3.5 bar, with different initial conditions ([Zn(II]i from 10−4 to 10−6 M, either with pure water or 100 g/L NaCl brine. The equilibrium regarding calcite dissolution is confirmed in all experiments, while the zinc sorption evidenced does not always correspond to the two-step mechanism described in the literature. A preferential sorption of about 10% of the concentration is evidenced for Mn(II in aqueous experiments, while Sr(II is more sorbed in saline conditions. This study also shows that this preferential sorption, depending on the salinity, is independent of the natural carbonate considered. Then, the simulations carried out with PHREEQC show that experiments and simulations match well concerning the equilibrium of dissolution and the sole zinc sorption, with log KZn(II ~ 2 in pure water and close to 4 in high salinity conditions. When the simulations were possible, the log K values for Mn(II and Sr(II were much different from those in the literature obtained by sorption in controlled conditions. It is shown that a new conceptual model regarding multiple Trace Elements (TE sorption is

  12. 49 CFR 236.792 - Reservoir, equalizing.

    Science.gov (United States)

    2010-10-01

    ... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of the equalizing piston chamber of the automatic brake valve, to provide uniform service reductions in brake pipe...

  13. Forest declines: Some perspectives on linking processes and patterns

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1992-01-01

    The regional decline in vigor of some species of forest trees has become an important component in the ecological, aesthetic, and economic criteria by which the costs of anthropogenic pollution are weighed. Because declines are often complex and virtually never without significant natural environmental modifiers, determining the role of specific anthropogenic stresses in initiating or enhancing the rate and direction of change in forest condition represents a significant research challenge. Separation of primary mechanisms that point to principal causes from secondary responses that result from internal feedbacks and the milieu of modifying agents is a critical issue in diagnosing forest decline. Air pollutant stress may have its most significant effects on forest processes by accelerating or amplifying natural stresses. Studies of changes in forest metabolic processes have played an important role in evaluating the role of air pollution in four regional forest declines that are the focus of this paper. The decline of ponderosa pine in the San Bernardino Mountains of California, Norway spruce and silver fir in Europe, loblolly and shortleaf pine in the Southeastern United States, and red spruce in the Eastern Appalachian Mountains provide case studies in which physiological responses to air pollutants under field and laboratory conditions have provided important analytical tools for assessing likely causes. These tools are most effective when both mechanistic explanations and larger scale patterns of response are evaluated in an iterative feedback loop that examines plausible mechanisms and patterns of response at levels ranging from cell membranes to plant populations

  14. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  15. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  16. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  17. Who fears and who welcomes population decline?

    Directory of Open Access Journals (Sweden)

    Hendrik P. Van Dalen

    2011-08-01

    Full Text Available European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment as well as material welfare losses (tax increases, economic stagnation. In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline.

  18. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  19. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs

    Directory of Open Access Journals (Sweden)

    Sharon V. R. Epps

    2013-11-01

    Full Text Available Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions.

  20. Are snake populations in widespread decline?

    OpenAIRE

    Reading, C. J.; Luiselli, L. M.; Akani, G. C.; Bonnet, X.; Amori, G.; Ballouard, J. M.; Filippi, E.; Naulleau, G.; Pearson, D.; Rugiero, L.

    2010-01-01

    Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined ...

  1. Altered Reproductive Function and Amphibian Declines

    OpenAIRE

    Gallipeau, Sherrie

    2014-01-01

    Agrochemical exposure is one of the factors that contributes to worldwide amphibian declines. Most studies that examine agrochemicals and amphibian declines focus on toxicity. However, declines are more likely caused by the sub-lethal effects of agrochemical exposure. Past emphases on the lethal effects of agrochemical exposure have overshadowed the contribution of decreased recruitment in amphibian declines. Additionally, studies that examine agrochemicals and reproductive function tend to f...

  2. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    HEC-RAS model were obtained for the conditions before and after the construction of the Karkheh Reservoir Dam and then it was reviewed and analyzed. Results and Discussion: By exploiting the Karkheh Reservoir Dam, the river flow was changed from the natural condition to the regulatory situation. The results indicate that the river flow was considerably declined because the regulatory effect of the reservoir dam which has contributed to the great alternations at hydraulic parameters of the river. For example, the mean annual discharge of the Karkheh River shows 44pecent reduction during the time period of simulating (after the dam construction in comparison with the natural river flow before construction of reservoir dam in PayePol hydrometric station. Flow velocity of Karkheh River is influenced by discharge, slope of the river channel and geometry of cross section. By increasing the river flow, the flow velocity has increased and there is a significant difference between pre and post-dam condition at the mean velocity of river flow in different sections. The flow area is directly influenced by river discharge and there is a significant difference in the maximum defined discharge before and after dam construction. The width of water surface is a parameter of the geometric situation of the river cross section that also shows the maximum width of the cross sections, passing discharge through the desired cross section. Since Karkheh River has a relatively large water surface width, it has a high wetted perimeter. For this reason, the Karkheh river hydraulic radius is usually low. The significant reduction of all these quantities is for reduction of flow rate by construction of Karkheh Reservoir Dam. Studying the water surface profiles represents reduction of water level in the longitudinal profile of Karkheh River and water level of hydrometric stations by construction of the Karkheh Reservoir Dam. Also, due to the reduction of the discharge in the downstream of Karkheh

  4. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  5. Development and application of 3-D fractal reservoir model based on collage theorem

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.K.; Kim, K.S.; Sung, W.M. [Hanyang Univ., Seoul (Korea, Republic of)

    1995-04-30

    Reservoir characterization is the essential process to accurately evaluate the reservoir and has been conducted by geostatistical method, SRA algorithm, and etc. The characterized distribution of heterogeneous property by these methods shows randomly distributed phenomena, and does not present anomalous shape of property variation at discontinued space as compared with the observed shape in nature. This study proposed a new algorithm of fractal concept based on collage theorem, which can virtually present not only geometric shape of irregular and anomalous pore structures or coastlines, but also property variation for discontinuously observed data. With a basis of fractal concept, three dimensional fractal reservoir model was developed to more accurately characterize the heterogeneous reservoir. We performed analysis of pre-predictable hypothetically observed permeability data by using the fractal reservoir model. From the results, we can recognize that permeability distributions in the areal view or the cross-sectional view were consistent with the observed data. (author). 8 refs., 1 tab., 6 figs.

  6. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiangxian; Zheng, Guodong, E-mail: gdzhbj@mail.iggcas.ac.cn; Xu, Wang [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Liang, Minliang [Chinese Academy of Geological Sciences, Institute of Geomechanics, Key Lab of Shale Oil and Gas Geological Survey (China); Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Shozugawa, Katsumi; Matsuo, Motoyuki [The University of Tokyo, Graduate School of Arts and Sciences (Japan)

    2016-12-15

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  7. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  8. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  9. MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2017-01-01

    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  10. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  11. Williston Reservoir raising - environmental overview

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This preliminary environmental overview report was prepared by B.C. Hydro in June 1987 and revised in July 1988 as an initial assessment of a possible 1.5 m (5 ft.) raise in the Williston Reservoir maximum normal level. The enviromental overview study and the associated engineering and property studies were undertaken to provide information for a decision on whether to initiate more detailed studies. Overview studies are based mainly on available reports, mapping and field data, supplemented by limited site reconnaissance and, in this case, input from key agencies and groups. The lack of adequate mapping of areas which could be affected by reservoir raising did not permit definitive conclusion to be reached. This mapping will be done over the next year to complete the overview assessment. This document covers the impact assessment of socio-economic factors, forestry, reservoir clearing, heritage, recreation, aquatic resources, and wilflife. Further studies in each of these areas are also included. 54 refs., 11 figs., 8 tabs.

  12. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2016-09-01

    Full Text Available Natural gas hydrates, crystalline solids whose gas molecules are so compressed that they are denser than a typical fluid hydrocarbon, have extensive applications in the areas of climate change and the energy crisis. The hydrate deposit located in the Shenhu Area on the continental slope of the South China Sea is regarded as the most promising target for gas hydrate exploration in China. Samples taken at drilling site SH2 have indicated a high abundance of methane hydrate reserves in clay sediments. In the last few decades, with its relatively low energy cost, the depressurization gas recovery method has been generally regarded as technically feasible and the most promising one. For the purpose of a better acquaintance with the feasible field operational factors and processes which control the production behavior of a real 3D geological CH4-hydrate deposit, it is urgent to figure out the effects of the parameters such as well type, well spacing, bottom hole pressure, and perforation intervals on methane recovery. One years’ numerical simulation results show that under the condition of 3000 kPa constant bottom hole pressure, 1000 m well spacing, perforation in higher intervals and with one horizontal well, the daily peak gas rate can reach 4325.02 m3 and the cumulative gas volume is 1.291 × 106 m3. What’s more, some new knowledge and its explanation of the curve tendency and evolution for the production process are provided. Technically, one factor at a time design (OFAT and an orthogonal design were used in the simulation to investigate which factors dominate the productivity ability and which is the most sensitive one. The results indicated that the order of effects of the factors on gas yield was perforation interval > bottom hole pressure > well spacing.

  13. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  14. Natural gas productive capacity for the lower 48 states, 1982--1993

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity and project this capacity for 1992 and 1993, based upon historical production data through 1991. Productive capacity is the volume of gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions excluding restrictions imposed by pipeline capacity, contracts, or regulatory bodies. For decades, natural gas supplies and productive capacity have been adequate, although in the 1970's the capacity surplus was small because of market structure (both interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand together with increased drilling led to a large surplus of natural gas capacity. After 1986, this large surplus began to decline as demand for gas increased, gas prices dropped, and gas well completions dropped sharply. In late December 1989, this surplus decline, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. This study indicates that monthly productive capacity will drop sharply during the 1992-1993 period. In the low gas price, low drilling case, gas productive capacity and estimated production demand will be roughly equal in December 1993. In base and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1993 in the lower 48 States. Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations. Beyond 1993, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  15. Influence of watershed activities on the water quality and fish assemblages of a tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-09-01

    Agricultural and fisheries activities around the watershed of an African tropical reservoir (Oyun reservoir, Offa, Nigeria) were found to contribute significantly to water quality deterioration of the dam axis of the reservoir, leading to eutrophication of that part of the reservoir. This is evident from the high amount of nitrate (6.4 mg/l), phosphate (2.2 mg/l) and sulphate (16.9 mg/l) in the water body which was higher than most other reservoirs in Nigeria. These nutrients originate in fertilizer run-offs from nearby farmlands and were found in higher concentrations in the rainy season which is usually the peak of agricultural activities in the locality. The eutrophication was more pronounced on the dam axis because it is the point of greatest human contact where pressure and run-off of sediments were high. The eutrophication altered the food web cycle which consequently affected the fish species composition and abundance with the dominance of cichlids (planktivorous group) and decline of some species in the fish population. Best management practices (BMP) to control and reduce the eutrophication and improve water quality and fish assemblages should be adopted and adapted to suit the situation in the reservoir.

  16. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  17. Geothermal reservoir assessment manual; 1984-1992 nendo chinetsu choryusou hyoka shuhou manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    A geothermal reservoir assessment manual was prepared for the promotion of the development of geothermal power generation, based on the results of the 'geothermal reservoir assessment technique development project' implemented during the fiscal 1984-1992 period and on the results of surveys conducted in Japan and abroad. Of the geothermal systems generally classified into the steam dominant type and the hot water dominant type, encounters with the steam dominant type are but seldom reported. This manual therefore covers the hot water dominant type only. In addition to the explanation of the basic concept and the outline of geothermal reservoirs, the manual carries data necessary for reservoir assessment; geological and geophysical data analyses; geochemistry in reservoir assessment; data of underground logging and of fuming; conceptual models; simulators and models for reservoir simulation; natural-state simulation, history-matching simulation, and reservoir behavior predicting simulation; case history (modeling of a geothermal reservoir prior to exploitation), references, and so forth. (NEDO)

  18. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  19. Particle retention in porous media: Applications to water injectivity decline

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, Kjell Erik

    1998-12-31

    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  20. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-05-01

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  1. Removal of iron and manganese by artificial destratification in a tropical climate (Upper Layang Reservoir, Malaysia).

    Science.gov (United States)

    Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S

    2002-01-01

    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.

  2. [Number of bacteria and features of their activity in hypersaline reservoirs of the Crimea].

    Science.gov (United States)

    Dobrynin, E G

    1979-01-01

    The incidence of bacteria, their biomass production, and heterotrophic assimilation of CO2 by bacterioplankton were studied in the Crimean hypersaline water reservoirs from May to October of 1974. The total incidence of bacteria in the natural brine of these reservoirs varied from 20 to 70 x 10(6) cells per 1 ml. Such a high bacterial number may be caused by the combined action of water evaporation which increased the concentration of bacterial cells and active growth of microflora. Low values of bacterial production and heterotrophic CO2 assimilation should be attributed to weak activity of microflora in the reservoirs.

  3. Are Geotehrmal Reservoirs Stressed Out?

    Science.gov (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  4. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  5. Generation of hybrid meshes for the simulation of petroleum reservoirs; Generation de maillages hybrides pour la simulation de reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Balaven-Clermidy, S.

    2001-12-01

    Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)

  6. Evaluation of invasions and declines of submersed aquatic macrophytes

    Science.gov (United States)

    Chambers, P.A.; Barko, J.W.; Smith, C.S.

    1993-01-01

    During the past 60 yr, sightings of aquatic macrophyte species in geographic regions where they had previously not been found have occurred with increasing frequency, apparently due to both greater dispersal of the plants as a result of human activities as well as better documentation of plant distribution. Intercontinental invasions, such as Myriophyllum spicatum and Hydrilla into North America, Elodea canadensis into Europe and Elodea nuttallii, Egeria densa and Cabomba caroliniana into Japan, have generally been well documented. However, the spread of an exotic species across a continent after its initial introduction (e.g., Potamogeton crispus in North America) or the expansion of a species native to a continent into hitherto unexploited territory (e.g.,the expansion of the North American native Myriophyllum heterophyllum into New England) have received little attention. Natural declines in aquatic macrophyte communities have also received little scientific study although there are many accounts of macrophyte declines. The best-documented example comes from the marine literature where extensive declines of eelgrass (Zostera) occurred in the 1930s along the Atlantic coast due to a pathogenic marine slime mold (''wasting disease''). The aim of this workshop was to identify examples of invasions or natural declines of aquatic macrophyte species throughout the world and assess the importance of environmental factors in their control. Forty-five scientists and aquatic plant managers from ten countries participated in the workshop. Eleven of the participants contributed written evaluations of species invasions and declines in their geo-graphic region. These were distributed to registered participants prior to the meeting and served as the starting-point of workshop discussions. To address the topics raised in the working papers, the participants divided into four working groups to evaluate: 1. Environmental controls of species invasions. 2. Biotic controls of species

  7. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  8. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  9. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  10. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  11. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  12. Dropping dead: causes and consequences of vulture population declines worldwide.

    Science.gov (United States)

    Ogada, Darcy L; Keesing, Felicia; Virani, Munir Z

    2012-02-01

    Vultures are nature's most successful scavengers, and they provide an array of ecological, economic, and cultural services. As the only known obligate scavengers, vultures are uniquely adapted to a scavenging lifestyle. Vultures' unique adaptations include soaring flight, keen eyesight, and extremely low pH levels in their stomachs. Presently, 14 of 23 (61%) vulture species worldwide are threatened with extinction, and the most rapid declines have occurred in the vulture-rich regions of Asia and Africa. The reasons for the population declines are varied, but poisoning or human persecution, or both, feature in the list of nearly every declining species. Deliberate poisoning of carnivores is likely the most widespread cause of vulture poisoning. In Asia, Gyps vultures have declined by >95% due to poisoning by the veterinary drug diclofenac, which was banned by regional governments in 2006. Human persecution of vultures has occurred for centuries, and shooting and deliberate poisoning are the most widely practiced activities. Ecological consequences of vulture declines include changes in community composition of scavengers at carcasses and an increased potential for disease transmission between mammalian scavengers at carcasses. There have been cultural and economic costs of vulture declines as well, particularly in Asia. In the wake of catastrophic vulture declines in Asia, regional governments, the international scientific and donor communities, and the media have given the crisis substantial attention. Even though the Asian vulture crisis focused attention on the plight of vultures worldwide, the situation for African vultures has received relatively little attention especially given the similar levels of population decline. While the Asian crisis has been largely linked to poisoning by diclofenac, vulture population declines in Africa have numerous causes, which have made conserving existing populations more difficult. And in Africa there has been little

  13. The Decline of Coral Reefs: a Political Economy Approach

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    Coral reefs provide economic services like job, food and tourism. Yet, within the past decades, there has been an overwhelming decline in the vitality of coral reefs and their ecosystem. Scientist have not be able to set the record straight regarding their scientific argument on biodiversity and ecological wealth of natural environment. Therefore, actions to recover coral reefs from destruction have proved futile. This paper will analyze the economical values, economic valuation, socioeconomi...

  14. The Decline of Violence is Surely a Good Thing

    OpenAIRE

    Bill Philips

    2013-01-01

    Despite the widespread belief that the world grows increasingly violent, Steven Pinker's 2011 volume The Better Angels of Our Nature convincingly argues that the opposite is true. Tracing the history of humanity from its origins to the present day, Pinker shows how violence has declined, and that strong, stable government is the principal reason for this happening. The book briefly touches on the way literature may play a part in the reduction of violence through the transmission of empathy –...

  15. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  16. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    Science.gov (United States)

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is

  17. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    Science.gov (United States)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  18. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.

    Science.gov (United States)

    Marcelino, A A; Santos, M A; Xavier, V L; Bezerra, C S; Silva, C R O; Amorim, M A; Rodrigues, R P; Rogerio, J P

    2015-05-01

    The role of greenhouse gas emissions from freshwater reservoirs and their contribution to increase greenhouse gas concentrations in the atmosphere is currently under discussion in many parts of the world. We studied CO2 and CH4 diffusive fluxes from two large neotropical hydropower reservoirs with different climate conditions. We used floating closed-chambers to estimate diffusive fluxes of these gaseous species. Sampling campaigns showed that the reservoirs studied were sources of greenhouse gases to the atmosphere. In the Serra da Mesa Reservoir, the CH4 emissions ranged from 0.530 to 396.96 mg.m(-2).d(-1) and CO2 emissions ranged from -1,738.33 to 11,166.61 mg.m(-2).d(-1) and in Três Marias Reservoir the CH4 fluxes ranged 0.720 to 2,578.03 mg.m(-2).d(-1) and CO2 emission ranged from -3,037.80 to 11,516.64 to mg.m(-2).d(-1). There were no statistically significant differences of CH4 fluxes between the reservoirs, but CO2 fluxes from the two reservoirs studied were significantly different. The CO2 emissions measured over the periods studied in Serra da Mesa showed some seasonality with distinctions between the wet and dry transition season. In Três Marias Reservoir the CO2 fluxes showed no seasonal variability. In both reservoirs, CH4 emissions showed a tendency to increase during the study periods but this was not statistically significant. These results contributed to increase knowledge about the magnitude of CO2 and CH4 emission in hydroelectric reservoirs, however due to natural variability of the data future sampling campaigns will be needed to better elucidate the seasonal influences on the fluxes of greenhouse gases.

  19. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Mokrov, Yu.G.; Tryapitsina, G.A.; Ivanov, I.A.; Osipov, D.I.; Atamanyuk, N.I.; Deryabina, L.V.; Shaposhnikova, I.A.; Shishkina, E.A.; Obvintseva, N.A.; Egoreichenkov, E.A.; Styazhkina, E.V.; Osipova, O.F.; Mogilnikova, N.I.; Andreev, S.S.; Tarasov, O.V.; Geras'kin, S.A.; Trapeznikov, A.V.; Akleyev, A.V.

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for 90 Sr and 137 Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007–2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. - Highlights: • The current state of storage reservoirs of liquid radioactive waste of the Mayak Production Association is presented. • Radionuclides contents in water and sediments of the reservoirs of Mayak PA are presented. • The status of the major ecological groups of hydrobionts of the given reservoirs is described.

  20. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    Science.gov (United States)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop

  1. Muon Tomography of Deep Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain H.; Kouzes, Richard T.

    2016-12-31

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since the velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.

  2. Smart waterflooding in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, A.

    2012-02-15

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior in porous media. The main conclusion of most previous studies was that it is the rock wettability alteration towards more water wetting condition that helps improving the oil recovery. In the first step of this project, we focused on verifying this conclusion. Coreflooding experiments were carried out using Stevens Klint outcrop chalk core plugs with brines without sulfate, as well as brines containing sulfate in different concentrations. The effects of temperature, injection rate, crude oil composition and different sulfate concentrations on the total oil recovery and the recovery rate were investigated. Experimental results clearly indicate improvement of the oil recovery without wettability alteration. At the second step of this project, we studied crude oil/brine interactions under different temperatures, pressures and salinity conditions in order to understand mechanisms behind the high salinity waterflooding. Our results show, in particular that sulfate ions may help decreasing the crude oil viscosity or formation of, seemingly, an emulsion phase between sulfate-enriched brine and oil at high temperature and pressure. Experimental results indicate that crude oils interact differently with the same brine solutions regarding phase behavior and viscosity measurements. This difference is attributed to the difference in composition of the different crude oils. More experiments

  3. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  4. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  5. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens; Hoteit, Ibrahim

    2014-01-01

    process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase

  6. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  7. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China.

    Science.gov (United States)

    Li, Yan; Zhang, Qi-Bin

    2017-01-01

    Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites.

  9. History of Tree Growth Declines Recorded in Old Trees at Two Sacred Sites in Northern China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-11-01

    Full Text Available Old forests are an important component in sacred sites, yet they are at risk of growth decline from ongoing global warming and increased human activities. Growth decline, characterized by chronic loss of tree vigor, is not a recent phenomenon. Knowledge of past occurrence of declines is useful for preparing conservation plans because it helps understand if present day forests are outside the natural range of variation in tree health. We report a dendroecological study of growth decline events in the past two centuries at two sacred sites, Hengshan and Wutaishan, in Shanxi province of northern China. Tree rings collected at both sites show distinct periods of declining growth evident as narrow rings. These occurred in the 1830s in both sites, in the 1920s in Wutaishan and in the 2000s in Hengshan. By comparing the pattern of grow declines at the two sites, we hypothesize that resistance of tree growth to external disturbances is forest size dependent, and increased human activity might be a factor additional to climatic droughts in causing the recent strong growth decline at Hengshan Park. Despite these past declines, the forests at both sites have high resilience to disturbances as evidenced by the ability of trees to recover their growth rates to levels comparable to the pre-decline period. Managers should consider reducing fragmentation and restoring natural habitat of old forests, especially in areas on dry sites.

  10. Understanding creep in sandstone reservoirs – theoretical deformation mechanism maps for pressure solution in granular materials

    NARCIS (Netherlands)

    Hangx, Suzanne; Spiers, Christopher

    Subsurface exploitation of the Earth’s natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are

  11. Development of a national, dynamic reservoir-sedimentation database

    Science.gov (United States)

    Gray, J.R.; Bernard, J.M.; Stewart, D.W.; McFaul, E.J.; Laurent, K.W.; Schwarz, G.E.; Stinson, J.T.; Jonas, M.M.; Randle, T.J.; Webb, J.W.

    2010-01-01

    The importance of dependable, long-term water supplies, coupled with the need to quantify rates of capacity loss of the Nation’s re servoirs due to sediment deposition, were the most compelling reasons for developing the REServoir- SEDimentation survey information (RESSED) database and website. Created under the auspices of the Advisory Committee on Water Information’s Subcommittee on Sedimenta ion by the U.S. Geological Survey and the Natural Resources Conservation Service, the RESSED database is the most comprehensive compilation of data from reservoir bathymetric and dry-basin surveys in the United States. As of March 2010, the database, which contains data compiled on the 1950s vintage Soil Conservation Service’s Form SCS-34 data sheets, contained results from 6,616 surveys on 1,823 reservoirs in the United States and two surveys on one reservoir in Puerto Rico. The data span the period 1755–1997, with 95 percent of the surveys performed from 1930–1990. The reservoir surface areas range from sub-hectare-scale farm ponds to 658 km2 Lake Powell. The data in the RESSED database can be useful for a number of purposes, including calculating changes in reservoir-storage characteristics, quantifying sediment budgets, and estimating erosion rates in a reservoir’s watershed. The March 2010 version of the RESSED database has a number of deficiencies, including a cryptic and out-of-date database architecture; some geospatial inaccuracies (although most have been corrected); other data errors; an inability to store all data in a readily retrievable manner; and an inability to store all data types that currently exist. Perhaps most importantly, the March 2010 version of RESSED database provides no publically available means to submit new data and corrections to existing data. To address these and other deficiencies, the Subcommittee on Sedimentation, through the U.S. Geological Survey and the U.S. Army Corps of Engineers, began a collaborative project in

  12. Impoundment effects in the population of Auchenipterus osteomystax (Siluriformes: Auchenipteridae: a Neotropical reservoir case

    Directory of Open Access Journals (Sweden)

    Elcio Barili

    2012-06-01

    Full Text Available New impoundments provide opportunities to check whether species that present enough feeding flexibility in natural conditions may take advantage of this situation and, without reproductive restriction, can occupy the most conspicuous habitat in a large reservoir (open areas and present higher success in the colonization of the new environment. We examined variations in the abundance and feeding of A. osteomystax in two environments, one natural (Sinha Mariana floodplain lake and one dammed (Manso Reservoir, during two periods: the first year after the filling phase and three years later. Our goal was to evaluate the occupation of the new hábitat (Manso Reservoir, by this species, as well as to test the hypothesis that in the reservoir, unlike the natural environment, there are remarkable changes in diet between the periods. Fish were sampled monthly in the floodplain lake and in the reservoir during two annual periods using gillnets. To evaluate the differences in abundance of A. osteomystax we employed the Kruskal -Wallis test, and the diet analysis was carried out using frequency of occurrence and volumetric methods. Temporal differences in the diet were tested by Kruskal-Wallis test using the scores from a detrended correspondence analysis. A. osteomystax was significantly more abundant in the floodplain lake, where the captures were higher than in the reservoir in almost all months analyzed, and significant variations in abundance between the two periods were not recorded in either the reservoir or the floodplain lake. The diet variation between the two periods, which had a time lag of three years between them, was much less pronounced in the natural environment, where the resource availability is essentially regulated by seasonality. Thus, our hypothesis was accepted; that is, the interannual variations in the diet of A. osteomystax are more relevant in an artificial environment than in a natural one. Rev. Biol. Trop. 60 (2: 699-708. Epub

  13. NIDI scenario. Strong population decline in China

    OpenAIRE

    de Beer, J.A.A.

    2016-01-01

    United Nations projections assume that by the end of this century one third of the world population will live in India, China or Nigeria. While population growth in India will slow down and the population size of China will decline, population growth in Nigeria will accelerate. A new NIDI scenario projects less population growth in Nigeria and sharp population decline in China.

  14. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  15. Are snake populations in widespread decline?

    Science.gov (United States)

    Reading, C J; Luiselli, L M; Akani, G C; Bonnet, X; Amori, G; Ballouard, J M; Filippi, E; Naulleau, G; Pearson, D; Rugiero, L

    2010-12-23

    Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined sharply over the same relatively short period of time with five remaining stable and one showing signs of a marginal increase. Although the causes of these declines are currently unknown, we suspect that they are multi-faceted (such as habitat quality deterioration, prey availability), and with a common cause, e.g. global climate change, at their root.

  16. What we know and don't know about amphibian declines in the West

    Science.gov (United States)

    Corn, Paul Stephen

    1994-01-01

    The problem of declining amphibian species is thought to be particularly acute in western North America, but there are many gaps in our knowledge. Although several declines have been well-documented, other declines are anecdotal or hypothesized. Most documented declines are of ranid frogs or toads (Bufo). Species from montane habitats and those occurring in California have been best studied. Status of many desert species is unknown. Habitat destruction and introduced predators are the most common threats to amphibian populations. Some declines may represent natural variation in population size. Causes have not been determined for several cases where common species have declined over large areas. There are important considerations for ecosystem management, whether changes in amphibian populations are natural or caused by human activities. Causes for declines must be known so that management can be prescribed (or proscribed) to eliminate or minimize these causes. The natural variability of amphibian population numbers and the complexity of metapopulation structure emphasize the necessity of considering multiple temporal and spatial scales in ecosystem management. The decline of amphibian species throughout the world has received considerable recent attention (e.g., Blaustein and Wake 1990, Griffiths and Beebee 1992, Yoffe 1992). Much of this attention derives from a workshop held in February, 1990 on declining amphibians sponsored by the National Research Council Board (NRC) on Biology in Irvine, California (Barinaga 1990, Borchelt 1990). Because of media attention in the aftermath of this conference, it is a popular perception that amphibian declines are a new phenomenon that herpetologists have been slow to recognize (Griffiths and Beebee 1992, Quammen 1993). However, concern about amphibian populations in the United States dates back over 20 years. Beginning in the 1960s, a large, well-documented decline of northern leopard frogs (Rana pipiens) occurred in the

  17. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  18. Has spring snowpack declined in the Washington Cascades?

    Directory of Open Access Journals (Sweden)

    P. Mote

    2008-02-01

    Full Text Available Our best estimates of 1 April snow water equivalent (SWE in the Cascade Mountains of Washington State indicate a substantial (roughly 15–35% decline from mid-century to 2006, with larger declines at low elevations and smaller declines or increases at high elevations. This range of values includes estimates from observations and hydrologic modeling, reflects a range of starting points between about 1930 and 1970 and also reflects uncertainties about sampling. The most important sampling issue springs from the fact that half the 1 April SWE in the Cascades is found below about 1240 m, altitudes at which sampling was poor before 1945. Separating the influences of temperature and precipitation on 1 April SWE in several ways, it is clear that long-term trends are dominated by trends in temperature, whereas variability in precipitation adds "noise" to the time series. Consideration of spatial and temporal patterns of change rules out natural variations like the Pacific Decadal Oscillation as the sole cause of the decline. Regional warming has clearly played a role, but it is not yet possible to quantify how much of that regional warming is related to greenhouse gas emissions.

  19. Integrating Data of Different Types and Different Supports into Reservoir Models Construction de modèles de réservoir contraints par des données de natures différentes et caractéristiques d’échelles différentes

    Directory of Open Access Journals (Sweden)

    Le Ravalec M.

    2012-11-01

    Full Text Available In this paper, we focus on the joint integration of production and 4-D inverted seismic data into reservoir models. These data correspond to different types and different scales. Therefore, we developed two-scale simulation workflows making it possible to incorporate data at the right scale. This issue also emphasized the need for adapting traditional history-matching methodologies. For instance, the formulation of the objective function and the development of customized parameterization techniques turned out to be two key factors controlling the efficiency of the matching process. Two application examples are presented. The first one is a small-size synthetic field case. It aims to build a set of reservoir models respecting either production data only or both production and 4-D seismic-related data. It is shown that the incorporation of 4-D seismic-related data in addition to production data into reservoir models contributes to reduce the uncertainty in production forecasts. The second example is a field in the North Sea offshore Norway operated by Statoil. It stresses difficulties in conditioning reservoir models to both real production and 4-D inverted seismic data among the very large number of uncertain parameters to handle and the comparison of real noisy data with numerical responses. Cet article présente une méthodologie permettant d’élaborer des modèles de réservoir contraints à la fois par des données de production et des attributs sismiques 4-D. Ces données sont de natures très différentes et caractérisent des échelles tout aussi différentes. Leur intégration à l’échelle appropriée dans des modèles de réservoir a nécessité le développement d’une chaîne de simulation faisant intervenir deux échelles, ce qui nous a amené à adapter les techniques classiques de calage d’historique. Par exemple, il s’est avéré important de revoir la formulation de la fonction objectif pour mieux quantifier l

  20. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    Science.gov (United States)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth

  1. Seasonal Variations in Relative Weight of Lake Trout (Salvelinus namaycush), Kokanee Salmon (Oncorhynchus nerka), Rainbow Trout (Onocorhynchus mykiss), and Brown Trout (Salmo trutta) in Blue Mesa Reservoir, Colorado

    OpenAIRE

    Midas, Madeline; Williams, Asia; Cooper, Cindy; Courtney, Michael

    2013-01-01

    Blue Mesa Reservoir is the largest body of water in Colorado and is located on the western slope of the Rocky Mountains at an elevation of 7520 feet. Blue Mesa Reservoir contains recreationally important populations of lake trout (Salvelinus namaycush), kokanee salmon (Oncorhynchus nerka), rainbow trout (Onocorhynchus mykiss), and brown trout (Salmo trutta). A management challenge in recent years has been the overpopulation of lake trout, which has led to a steep decline in abundance of kokan...

  2. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    brine solutions regarding phase behavior and viscosity measurements. This difference is attributed to the difference in composition of the different crude oils. More experiments are carried out in order to understand mechanisms of the crude oil viscosity reduction and emulsion formation. We observed...... with and without aging. The total oil recovery, recovery rate and interaction mechanisms of ions with rock were studied for different injected fluids under different temperatures and wettability conditions. Experimental results demonstrate that the oil recovery mechanism under high salinity seawater flooding...... phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs, besides the mechanism of the rock wettability alteration. * Crude oil/brine interaction study suggests that viscosity reduction for crude oil in contact with brine...

  3. Reservoirs talk to pressure recorders

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1968-02-01

    Keeping pace with increased demand for efficiency in secondary recovery schemes is the widening use of downhole tools charged with supplying data before and during the operation of the projects. One of the most important of these is the pressure recorder. This highly sensitive instrument, housed in a tough, slim steel case and lowered by drill pipe or cable, accurately measures the pressure of its downhole environment. This information is instantly available at the surface whenever a pressure reading is required. Typical applications of surface recorders often contribute are: (1) production practices such as checking surface and subsurface equipment, and special lifting problems; (2) well conditions including regular productivity indices, data observations and for interference studies; (3) secondary recovery projects, in both producing and injection wells; and (4) reservoir conditions where oil-water contacts and damaged zones need close attention.

  4. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...... the uid ow. We discretize the the two-phase ow model spatially using the nite volume method (FVM), and we use the two point ux approximation (TPFA) and the single-point upstream (SPU) scheme for computing the uxes. We propose a new formulation of the differential equation system that arise...... as a consequence of the spatial discretization of the two-phase ow model. Upon discretization in time, the proposed equation system ensures the mass conserving property of the two-phase ow model. For the solution of the spatially discretized two-phase ow model, we develop mass conserving explicit singly diagonally...

  5. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  6. Zooplankton of the Zaporiz’ke Reservoir

    Directory of Open Access Journals (Sweden)

    T. V. Mykolaichuk

    2006-01-01

    Full Text Available The paper is devoted to zooplankton species composition in the Zaporiz’ke Reservoir. The greatest species diversity was found in the macrophyte communities of the upper reservoir’s littoral, but the least zooplankton diversity – in the pelagic zone of the lower reservoir.

  7. Estimating Western U.S. Reservoir Sedimentation

    Science.gov (United States)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  8. Ichthyofauna of the reservoirs of Central Vietnam

    Directory of Open Access Journals (Sweden)

    I. A. Stolbunov

    2012-01-01

    Full Text Available Species composition, distribution and abundance of fish in the pelagic and littoral zone of four reservoirs of Central Vietnam (Suoi Chau, Kam Lam, Da Ban and Suoi Dau were studied first. According to the research data the fish community of the reservoirs is represented by 43 species of 19 fish families.

  9. Monitoring programme of water reservoir Grliste

    International Nuclear Information System (INIS)

    Vuckovic, M; Milenkovic, P.; Lukic, D.

    2002-01-01

    The quality of surface waters is a very important problem incorporated in the environment protection, especially in water resources. The Timok border-land hasn't got sufficient underground and surface waters. This is certificated by the International Association for Water Resource. That was reason for building the water reservoir 'Grliste'. Drinking water from water reservoir 'Grliste' supplies Zajecar and the surroundings. (author)

  10. Geothermal reservoir insurance study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-09

    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  11. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  12. Two-year decline in vision but not hearing is associated with memory decline in very old adults in a population-based sample.

    Science.gov (United States)

    Anstey, K J; Luszcz, M A; Sanchez, L

    2001-01-01

    Recent cross-sectional research in cognitive aging has demonstrated a robust association between visual acuity, auditory thresholds and cognitive performance in old age. However, the nature of the association is still unclear, particularly with respect to whether sensory and cognitive function are causally related. This study aimed to determine whether marked declines in performance on screening measures of either visual acuity or auditory thresholds have an effect on cognitive decline over 2 years. The sample from the Australian Longitudinal Study of Ageing (n = 2,087) were assessed in 1992 and 1994 on measures of sensory and cognitive function as part of a larger clinical assessment. A quasi-experimental design involving comparison of extreme groups using repeated measures MANCOVA with age as a covariate was used. Group performance on measures of hearing, memory, verbal ability and processing speed declined significantly. Decline in visual acuity had a significant effect on memory decline, but not on decline in verbal ability or processing speed. Decline in hearing was not associated with decline in any cognitive domain. The common association between visual acuity, auditory thresholds and cognitive function observed in cross-sectional studies appears to be disassociated in longitudinal studies. Copyright 2001 S. Karger AG, Basel

  13. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  14. Differential accumulation and distribution of natural gas and its main controlling factors in the Sinian Dengying Fm, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shugen Liu

    2015-01-01

    Full Text Available In order to disclose the genetic relationship between the hydrocarbon reservoirs and the transformation mechanism between ancient and modern gas reservoirs in the Sinian Dengying Fm in the Sichuan Basin, by using the drilling data, and geologic, geophysical and geochemical methods together, the differential accumulation and distribution of natural gas and its main controlling factors in this study area were identified following the idea of corroborating macroscopic, mesoscopic and microscopic results each other. The results demonstrate as follows. (1 The crude oil in the paleo-oil reservoirs of the Dengying Fm cracked into gas to form the early overpressure paleo-gas reservoirs 100 Ma. From 100 Ma to 20 Ma, the constant uplifting of the Sichuan Basin coupled with the shift of structural highs and the initial occurrence of Weiyuan anticline caused the adjustment of the early overpressure paleo-gas reservoirs into the late overpressure paleo-gas reservoirs. (2 With the increase of uplifting magnitude since 20 Ma, the formations overlying the Dengying Fm in Weiyuan structure experienced rapid erosion, resulting in decline of the caprock sealing ability and damage to the preservation conditions. Therefore, the natural gas in the Dengying Fm started to leak and dissipate from the eroded window of the Lower Triassic Jialingjiang Fm located on the top of the Weiyuan anticline, which is the beginning of the differential accumulation and dissipation of the natural gas in the Dengying Fm across the Sichuan Basin. During the process of the differential accumulation and dissipation, the gas below the spill point of the structural gas traps in Ziyang, Jinshi and Longnüsi–Moxi–Anpingdian–Gaoshiti areas migrated to the Weiyuan anticline along the unconformity of the Dengying Fm, and dissipated through the eroded window of the Jialingjiang Fm on the top of the Weiyuan anticline, resulting in a transformation of abnormal high pressure of gas reservoir

  15. Early-Transition Output Decline Revisited

    Directory of Open Access Journals (Sweden)

    Crt Kostevc

    2016-05-01

    Full Text Available In this paper we revisit the issue of aggregate output decline that took place in the early transition period. We propose an alternative explanation of output decline that is applicable to Central- and Eastern-European countries. In the first part of the paper we develop a simple dynamic general equilibrium model that builds on work by Gomulka and Lane (2001. In particular, we consider price liberalization, interpreted as elimination of distortionary taxation, as a trigger of the output decline. We show that price liberalization in interaction with heterogeneous adjustment costs and non-employment benefits lead to aggregate output decline and surge in wage inequality. While these patterns are consistent with actual dynamics in CEE countries, this model cannot generate output decline in all sectors. Instead sectors that were initially taxed even exhibit output growth. Thus, in the second part we consider an alternative general equilibrium model with only one production sector and two types of labor and distortion in a form of wage compression during the socialist era. The trigger for labor mobility and consequently output decline is wage liberalization. Assuming heterogeneity of workers in terms of adjustment costs and non-employment benefits can explain output decline in all industries.

  16. Study on the enhancement of hydrocarbon recovery by characterization of the reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Tae-Jin; Kwak, Young-Hoon; Huh, Dae-Gee [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    The reservoir geochemistry is to understand the origin of these heterogeneities and distributions of the bitumens within the reservoir and to use them not only for exploration but for the development of the petroleums. Methods and principles of the reservoir geochemistry, which are applicable to the petroleum exploration and development, are reviewed in the study. In addition, a case study was carried out on the gas, condensate, water and bitumen samples in the reservoir, taken from the Haenam, Pohang areas and the Ulleung Basin offshore Korea. Mineral geothermometers were studied to estimate the thermal history in sedimentary basins and successfully applied to the Korean onshore and offshore basins. The opal silica-to-quartz transformation was investigated in the Pohang basin as a geothermometer. In Korean basins, the smectite-to-illite changes indicate that smectite and illite can act as the geothermometer to estimate the thermal history of the basins. The albitization reaction was also considered as a temperature indicator. Naturally fractured reservoir is an important source of oil and gas throughout the world. The properties of matrix and fracture are the key parameters in predicting the performances of naturally fractured reservoirs. A new laboratory equipment has been designed and constructed by pressure pulse method to determine the properties, which are (1) the porosity of matrix, (2) the permeability of matrix, (3) the effective width of the fractures, and the permeability of the fractures. (author). 97 refs.

  17. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...

  18. Reservoir model for the Alameda Central waterflood

    Energy Technology Data Exchange (ETDEWEB)

    Randall, T E

    1968-01-01

    The basic approach used in developing the model to characterize the Alameda Central Unit Waterflood assumes continuity of the reservoir mechanics with time. The past performance was analyzed to describe the reservoir and future performance was assumed to follow the established patterns. To develop a mathematical picture of the Alameda Central Unit reservoir, a two-dimensional single-phase steady-state model was used in conjunction with material balance calculations, real-time conversion methods and oil-water interface advance calculations. The model was developed to optimize water injection allocation, determine the configuration of the frontal advance and evaluate the success of the waterflood. The model also provides a basis for continuing review and revision of the basic concepts of reservoir operation. The results of the reservoir study have confirmed the apparent lack of permeability orientation in the pool and indicate that the waterflood is progressing better than originally anticipated.

  19. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir.

    Science.gov (United States)

    Bernardo, Julio Werner Yoshioka; Mannich, Michael; Hilgert, Stephan; Fernandes, Cristovão Vicente Scapulatempo; Bleninger, Tobias

    2017-09-01

    Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m[Formula: see text] and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.

  20. Real-time reservoir operation considering non-stationary inflow prediction

    Science.gov (United States)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  1. Proposition d'explication de la formation d'hydrogène sulfuré dans les stockages souterrains de gaz naturel par réduction des sulfures minéraux de la roche magasin Proposed Explanation of Hydrogen-Sulfide Formation in Underground Natural-Gas Storage Structures by Reduction of Mineral Sulfides in the Reservoir Rock.

    Directory of Open Access Journals (Sweden)

    Bourgeois J. P.

    2006-11-01

    Full Text Available La formation d'hydrogène sulfuré dans les structures de stockage peu expliquer autrement que par l'action de bactéries sulfato-réductrices. La contenue dans la roche magasin constitue une source de sulfures capable d'alimenter en H2S le gaz naturel. La réduction de la pyrite en sulfures du type Fe 1-x S et l'équilibre de dissolution précipitation, lié principalement à la pression de CO2, dans les structures stockages, constituent un processus de formation d'H2S capable d'expliquer tativement et quantitativement les phénomènes observés sur le terrain. Un modèle simplifié de stockage reprend ce schéma et teste la sensibililté de la teneur en H2S à la valeur des paramètres physiques et chimiques définissant le stockage. Cette étude permet de proposer un certain nombre d'actions susceptibles de limiter la formation d'H2S et d'orienter les choix futurs du couple gaz naturel - structures de stockage. The formation of hydrogen sulfide in storage structures can be explained otherwise thon by the action of sulfate-reducing bacteria. The pyrite contained in the reservoir rock makes up a source of sulfides capable of supplying the natural gas with H2S.Reduction of pyrite ta sulfides of the Fe,-,S type and the dissolution precipitation equilibrium, linked mainly ta C02 pressure in storage structures, make up an H2S for-mation process capable of qualitatively and quantitatively explained phenomena observed in the field.A simplified storage model reflects this scheme and can be used ta test the sensi-tivity of the H2S content ta the value of the physical and chemical parameters defining the storage structure.This investigation can be used to propose various means of action (sable ta "mit H2S formation and ta guide future choices of natural gas/storage-structure pairs.

  2. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2017-03-01

    Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions

  3. How the fluctuations of water levels affect populations of invasive bivalve Corbicula fluminea (Müller, 1774 in a Neotropical reservoir?

    Directory of Open Access Journals (Sweden)

    LRP. Paschoal

    Full Text Available Corbicula fluminea is an invasive bivalve responsible for several environmental and financial problems around the globe. Despite the invasive potential of this species, it suffers certain restrictions in lentic environments due to natural phenomena that significantly affect its population structure (e.g. water column fluctuation and sunlight exposure. The present study addresses how temporal decline of the water level in a Neotropical reservoir and exposure to sunlight affect the population structure of C. fluminea. Samplings were carried out twice in the reservoir of Furnas Hydroelectric Power Station (HPS (Minas Gerais, Brazil, in 2011 and 2012. Population density, spatial distribution and mean shell length of C. fluminea were estimated for each year after sampling in 51 quadrats (0.0625m2 placed on three transects at different distances along the reservoir margins (0, 10 and 20 m from a fixed-point. We observed a predominance of C. fluminea in both years, with a simultaneous gradual decrease in density and richness of native species in the sampling area. Significant differences in density of C. fluminea were registered at different distances from the margin, and are related to the temporal variability of physical conditions of the sediment and water in these environments. We also registered a trend toward an increase in the density and aggregation of C. fluminea as we moved away from the margin, due to the greater stability of these areas (>10 m. The mean shell length of C. fluminea showed significant difference between the distinct distances from the margin and during the years, as well as the interaction of these factors (Distances vs.Years. These results were associated with the reproductive and invasive capacity of this species. This study reveals that these temporal events (especially water column fluctuation may cause alterations in density, spatial distribution and mean shell length of C. fluminea and the composition of the native

  4. The Alphabet Soup of HIV Reservoir Markers.

    Science.gov (United States)

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  5. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  6. The decline of hysterectomy for benign disease.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Hysterectomy is one of the most common gynaecological surgical procedures performed but there appears to be a decline in the performance of this procedure in Ireland in recent times. We set out to establish the extent of the decline of hysterectomy and to explore possible explanations. Data for hysterectomy for benign disease from Ireland was obtained from the Hospital In-Patient Enquiry Scheme (HIPE) section of the Economic and Social Research Institute for the years 1999 to 2006. The total number of hysterectomies performed for benign disease showed a consistent decline during this time. There was a 36% reduction in the number of abdominal hysterectomy procedures performed.

  7. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.

    2015-01-01

    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU

  8. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  9. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    Science.gov (United States)

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  10. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1997-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  11. The Decline of Violence is Surely a Good Thing

    Directory of Open Access Journals (Sweden)

    Bill Philips

    2013-01-01

    Full Text Available Despite the widespread belief that the world grows increasingly violent, Steven Pinker's 2011 volume The Better Angels of Our Nature convincingly argues that the opposite is true. Tracing the history of humanity from its origins to the present day, Pinker shows how violence has declined, and that strong, stable government is the principal reason for this happening. The book briefly touches on the way literature may play a part in the reduction of violence through the transmission of empathy – the way in which stories about other people, even fictional people, teach us to comprehend more closely our fellow human beings. This article expands on Pinker's assertion and suggests that violence has also declined in literature, or become increasingly unacceptable to the point of rejection.

  12. HIV Persistence in Adipose Tissue Reservoirs.

    Science.gov (United States)

    Couturier, Jacob; Lewis, Dorothy E

    2018-02-01

    The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and

  13. Brain Metastases Treatment Worsens Cognitive Decline

    Science.gov (United States)

    In some patients with cancer that has spread to the brain, whole brain radiation following radiosurgery causes more severe cognitive decline and does not improve survival compared with radiosurgery alone, a new study has found.

  14. Predictors of combined cognitive and physical decline

    NARCIS (Netherlands)

    Atkinson, H.H.; Cesari, M.; Kritchevsky, S.B.; Penninx, B.W.J.H.; Fried, L.P.; Guralnik, J.M.; Williamson, J.D.

    2005-01-01

    OBJECTIVES: To determine the incidence and correlates of combined declines in cognitive and physical performance. DESIGN: Cohort study of community-dwelling older women with moderate to severe disability. SETTING: The community surrounding Baltimore, Maryland. PARTICIPANTS: Participants in the

  15. The Decline in America's Reputation: Why

    National Research Council Canada - National Science Library

    2008-01-01

    .... ( We are all Americans now. ) Since then, polls conducted by the U.S. Government and respected private firms have revealed a precipitous decline in favorability toward the United States and its foreign policy...

  16. Understanding Amphibian Declines Through Geographic Approaches

    Science.gov (United States)

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  17. The global financial crisis and neighborhood decline

    NARCIS (Netherlands)

    Zwiers, Merle; Bolt, Gideon; Van Ham, Maarten; Van Kempen, Ronald

    2016-01-01

    Neighborhood decline is a complex and multidimensional process. National and regional variations in economic and political structures (including varieties in national welfare state arrangements), combined with differences in neighborhood history, development, and population composition, make it

  18. The Management of Decline: An International Perspective.

    Science.gov (United States)

    Altbach, Philip G.

    1984-01-01

    The responses of higher education institutions in the United States, England, Australia, Canada, the Netherlands, and the rest of Western Europe to declining enrollments, changing financial support, fiscal problems, and changes in the professoriate and academic careers are compared. (MSE)

  19. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    Science.gov (United States)

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  20. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2016-01-01

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels

  1. Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Xiong, Yongliang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Repository Performance; Criscenti, Louise J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Ho, Tuan Ahn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Storage and Transportation Technology; Ilgen, Anastasia G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Matteo, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Kruichak, Jessica N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Mills, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geomechanics; Gordon, Margaret E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Materials, Devices and Energy Technologies; Akkutlu, Yucel [Texas A & M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2016-09-01

    The recent boom in shale gas production through hydrofracturing has reshaped the energy production landscape in the United States. Wellbore production rates vary greatly among the wells within a single field and decline rapidly with time, thus bring up a serious concern with the sustainability of shale gas production. Shale gas production starts with creating a fracture network by injecting a pressurized fluid in a wellbore. The induced fractures are then held open by proppant particles. During production, gas releases from the mudstone matrix, migrates to nearby fractures, and ultimately reaches a production wellbore. Given the relatively high permeability of the induced fractures, gas release and migration in low-permeability shale matrix is likely to be a limiting step for long-term wellbore production. Therefore, a clear understanding of the underlying mechanisms of methane disposition and release in shale matrix is crucial for the development of new technologies to maximize gas production and recovery. Shale is a natural nanocomposite material with distinct characteristics of nanometer-scale pore sizes, extremely low permeability, high clay contents, significant amounts of organic carbon, and large spatial heterogeneities. Our work has shown that nanopore confinement plays an important role in methane disposition and release in shale matrix. Using molecular simulations, we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~ 30 - 47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. The long-term production decline appears controlled by the second stage of gas release. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD

  2. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  3. Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia.

    Science.gov (United States)

    Syaripuddin, Khairunnisa; Kumar, Anjali; Sing, Kong-Wah; Halim, Muhammad-Rasul Abdullah; Nursyereen, Muhammad-Nasir; Wilson, John-James

    2014-09-01

    In large man-made reservoirs such as those resulting from hydroelectric dam construction, bacteria transform the relatively harmless inorganic mercury naturally present in soil and the submerged plant matter into toxic methylmercury. Methylmercury then enters food webs and can accumulate in organisms at higher trophic levels. Bats feeding on insects emerging from aquatic systems can show accumulation of mercury consumed through their insect prey. In this study, we investigated whether the concentration of mercury in the fur of insectivorous bat species was significantly higher than that in the fur of frugivorous bat species, sampled near hydroelectric reservoirs in Peninsular Malaysia. Bats were sampled at Temenggor Lake and Kenyir Lake and fur samples from the most abundant genera of the two feeding guilds-insectivorous (Hipposideros and Rhinolophus) and frugivorous (Cynopterus and Megaerops) were collected for mercury analysis. We found significantly higher concentrations of total mercury in the fur of insectivorous bats. Mercury concentrations also differed significantly between insectivorous bats sampled at the two sites, with bats from Kenyir Lake, the younger reservoir, showing higher mercury concentrations, and between the insectivorous genera, with Hipposideros bats showing higher mercury concentrations. Ten bats (H. cf. larvatus) sampled at Kenyir Lake had mercury concentrations approaching or exceeding 10 mg/kg, which is the threshold at which detrimental effects occur in humans, bats and mice.

  4. Climate-water quality relationships in Texas reservoirs

    Science.gov (United States)

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  5. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    Science.gov (United States)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (hydrocarbon recovery processes.

  6. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  7. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  8. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  9. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Wen J Wang

    Full Text Available Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak

  10. TRANSFER RESERVOIR AS A RAINWATER DRAINAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Robert Malmur

    2016-06-01

    Full Text Available Intensive rainfalls and snow melting often cause floods in protected areas and overflow the existing sewage systems. Such cases are particularly burdensome for the inhabitants and cause considerable physical losses. One of the possible constructional solutions to ensure the effective outflow of stormwater are transfer reservoirs located between the draining system and a receiver set discussed in this paper. If gravity outflow of sewage is impossible, the initial part of sewage volume is accumulated in the transfer reservoir and then it is transferred into the water receiver set. However, gravity discharge of sewage to the water receiver set occurs through transfer chambers in the transfer reservoir.

  11. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  12. Gasbuggy reservoir evaluation - 1969 report

    International Nuclear Information System (INIS)

    Atkinson, C.H.; Ward, Don C.; Lemon, R.F.

    1970-01-01

    The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)

  13. Gasbuggy reservoir evaluation - 1969 report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H; Ward, Don C [Bureau of Mines, U.S. Department of the Interior (United States); Lemon, R F [El Paso Natural Gas Company (United States)

    1970-05-01

    The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)

  14. Origin and Evolution of the Cometary Reservoirs

    Science.gov (United States)

    Dones, Luke; Brasser, Ramon; Kaib, Nathan; Rickman, Hans

    2015-12-01

    Comets have three known reservoirs: the roughly spherical Oort Cloud (for long-period comets), the flattened Kuiper Belt (for ecliptic comets), and, surprisingly, the asteroid belt (for main-belt comets). Comets in the Oort Cloud were thought to have formed in the region of the giant planets and then placed in quasi-stable orbits at distances of thousands or tens of thousands of AU through the gravitational effects of the planets and the Galaxy. The planets were long assumed to have formed in place. However, the giant planets may have undergone two episodes of migration. The first would have taken place in the first few million years of the Solar System, during or shortly after the formation of the giant planets, when gas was still present in the protoplanetary disk around the Sun. The Grand Tack (Walsh et al. in Nature 475:206-209, 2011) models how this stage of migration could explain the low mass of Mars and deplete, then repopulate the asteroid belt, with outer-belt asteroids originating between, and outside of, the orbits of the giant planets. The second stage of migration would have occurred later (possibly hundreds of millions of years later) due to interactions with a remnant disk of planetesimals, i.e., a massive ancestor of the Kuiper Belt. Safronov (Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, 1969) and Fernández and Ip (Icarus 58:109-120, 1984) proposed that the giant planets would have migrated as they interacted with leftover planetesimals; Jupiter would have moved slightly inward, while Saturn and (especially) Uranus and Neptune would have moved outward from the Sun. Malhotra (Nature 365:819-821, 1993) showed that Pluto's orbit in the 3:2 resonance with Neptune was a natural outcome if Neptune captured Pluto into resonance while it migrated outward. Building on this work, Tsiganis et al. (Nature 435:459-461, 2005) proposed the Nice model, in which the giant planets formed closer together than they are now, and

  15. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir

    Science.gov (United States)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu

    2017-11-01

    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  16. Earthquakes and depleted gas reservoirs: which comes first?

    Science.gov (United States)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2015-10-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.

  17. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty