Requirement of system-reservoir bound states for entanglement protection
Behzadi, N.; Ahansaz, B.; Faizi, E.; Kasani, H.
2018-03-01
In this work, a genuine mechanism for entanglement protection of a two- qubit system interacting with a dissipative common reservoir is investigated. Based on generating a bound state for the system-reservoir, we show that stronger bound state in the energy spectrum can be created by adding another non-interacting qubits into the reservoir. It turns out that obtaining higher degrees of boundedness in the energy spectrum leads to a better protection of two-qubit entanglement against the dissipative noises. Also, it is figured out that the formation of bound state not only exclusively determines the long-time entanglement protection, irrespective to the Markovian and non-Markovian dynamics, but also performs the same task for reservoirs with different spectral densities.
Analysis of pressure variation of fluid in bounded circular reservoirs ...
African Journals Online (AJOL)
The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. Keywords: Bounded circular reservoir, constant terminal rate, dimensionless variables, diffusivity equation, and Crank-Nicholson scheme.
Bounds on poloidal kinetic energy in plane layer convection
Tilgner, A.
2017-12-01
A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.
Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs
International Nuclear Information System (INIS)
thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati
2015-01-01
Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia
Controlling speedup in open quantum systems through manipulation of system-reservoir bound states
Behzadi, N.; Ahansaz, B.; Ektesabi, A.; Faizi, E.
2017-05-01
In this paper, we give a mechanism for controlling speedup of a single-qubit open quantum system by exclusively manipulating the system-reservoir bound states using additional noninteracting qubits. It is demonstrated that providing stronger bound states in the system-reservoir spectrum makes the single qubit evolve with higher speed. We examine the performance of the mechanism for different spectral densities such as Lorentzian and ohmic and find out the decisive role of bound states' manipulation in the speeding up of quantum evolution.
Analysis of pressure variation of fluid in bounded circular reservoirs ...
African Journals Online (AJOL)
The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. The result obtained from the analysis also shows the pressure variation outside wellbore of the same reservoir. It is important to note that ...
Life-time of the bound layer in nanocomposites
Zhao, Dan; Jestin, Jacques; Kumar, Sanat K.
2015-03-01
It is now well accepted that an effectively irreversibly adsorbed monolayer of polymer forms when a polymer melt is intimately mixed with nanoparticles, in the limit where their enthalpic interactions are favorable. This bound layer has been postulated as being a central player in many of the highly favorable properties that result from polymer based nanocomposite materials. We investigated well-defined nanocomposites formed with different combinations of deuterated and hydrogenated polymers (P2VP and PMMA) and silica nanoparticles. SANS, in conjunction with contrast variation, then provides a direct means of probing the structure of the bound layer as a core-shell and its exchange kinetics with bulk (unbound) chains with annealing time and temperature. SAXS directly provides information on the particle-particle partial structure factor and particle dispersion. Thermodynamic equilibrium of the bound layer is reached around one day at 150 °C while its exchange life time is ~ one hour at 180 °C.
Relative influence of deposition and diagenesis on carbonate reservoir layering
Energy Technology Data Exchange (ETDEWEB)
Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)
2008-07-01
The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)
Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs
Agarwalla, Bijay Kumar; Jiang, Jian-Hua; Segal, Dvira
2017-09-01
We derive an efficiency bound for continuous quantum heat engines absorbing heat from squeezed thermal reservoirs. Our approach relies on a full-counting statistics description of nonequilibrium transport and it is not limited to the framework of irreversible thermodynamics. Our result, a generalized Carnot efficiency bound, is valid beyond the small-squeezing and high-temperature limit. Our findings are embodied in a prototype three-terminal quantum photoelectric engine where a qubit converts heat absorbed from a squeezed thermal reservoir into electrical power. We demonstrate that in the quantum regime, the efficiency can be greatly amplified by squeezing. From the fluctuation relation, we further receive other operational measures in linear response, for example, the universal maximum power efficiency bound.
Well test analysis of horizontal wells in a two-layered reservoir ...
African Journals Online (AJOL)
reservoir drained from each layer by a horizontal well. Reservoir mathematical model are derived for each layer so that analysis can be done strictly for each layered reservoir. Procedures for obtaining all the directional permeabilities, wellbore skin, degree of crossflow and individual layers average pressures are discussed ...
pressure distribution in a layered reservoir with gas-cap and bottom
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... pressure derivatives, interlayer cross flow, heterogeneity, reservoir characterization, pressure distribution, dimensionless pressure. 1. Introduction. Oil production from a layered reservoir with a top gas cap and bottom water acting simultaneously poses serious challenges of rate and pressure monitoring.
Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2012-01-01
An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method....... An asymptotic analysis is applied to a system of 2D flow equations for incompressible fluids at high-anisotropy ratios, but low to moderate gravity ratios, which corresponds to the most often found reservoir conditions. The 2D Buckley–Leverett problem is reduced to a system of 1D parabolic equations...
Induced migration of fines during waterflooding in communicating layer-cake reservoirs
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander
2011-01-01
The effects of fines migration induced by injection of water with a different salinity than the reservoir brine are incorporated into the upscaling model for waterflooding in a layer cake reservoir with good communication between the layers. Mobilization and re-capturing of the reservoir fines may...... give rise to reduction of the permeability in water swept zones, which subsequently leads to the diversion of water flow from the initially more permeable layers to the less permeable ones. As a result, the displacement is more even, the water cut at the producer is decreased, and the oil recovery...... to more crossflow between layers and lowers the water sweep efficiency. However, this ratio facilitates the fluid diversion caused by the fines migration, leading to a more efficient enhanced oil recovery. The positive contribution from the mobility ratio to the increased oil recovery due to fines...
Directory of Open Access Journals (Sweden)
Guang Yang
2017-03-01
Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions
Estimating Deliverability in Multi-Layered Gas Reservoirs Using Artificial Intelligence
Al-Arfaj, Malik Khalid
In this research, an artificial intelligence (AI) model has been created to estimate the production rate of each layer in a multi-layered gas reservoir using static properties such as those obtained from well logging, in addition to dynamic properties such as pressure. This approach will be helpful in several reservoir engineering applications, such as understanding layers' depletion, or targeting specific layers for workover. It could also be used for PLT analysis where the measured PLT values are compared to the expected values and a variance analysis could be performed. Data were collected from more than 100 wells in a certain reservoir spanning over four fields. They were combined in related input variables and fed to the AI model for learning purposes. To compare different AI methods, the data were fed to 5 methods, namely ANFIS, MLP, RBF, SVM, and GRNN, and results were optimized for each method. Between the tested AI methods, SVM and GRNN performed best as shown by a low mean absolute percentage error and a very high correlation coefficient. This research shows promising use for AI methods in estimating production rate from each layer in a multi-layered gas reservoir.
Dynamics of hydrofracturing and permeability evolution in layered reservoirs
Directory of Open Access Journals (Sweden)
Irfan eGhani
2015-09-01
Full Text Available A coupled hydro-mechanical model is presented to model fluid driven fracturing in layered porous rocks. In the model the solid elastic continuum is described by a discrete element approach coupled with a fluid continuum grid that is used to solve Darcy based pressure diffusion. The model assumes poro-elasto-plastic effects and yields real time dynamic aspects of the fracturing and effective stress evolution under the influence of excess fluid pressure gradients. We show that the formation and propagation of hydrofractures are sensitive to mechanical and tectonic conditions of the system. In cases where elevated fluid pressure is the sole driving agent in a stable tectonic system, sealing layers induce permutations between the principal directions of the local stress tensor, which regulate the growth of vertical fractures and may result in irregular pattern formation or sub-horizontal failure below the seal. Stiffer layers tend to concentrate differential stresses and lead to vertical fracture growth, whereas the layer-contact tends to fracture if the strength of the neighboring rock is comparably high. If the system has remained under extension for a longer time period, the developed hydrofractures propagate by linking up confined tensile fractures in competent layers. This leads to the growth of large-scale normal faults in the layered systems, so that subsequently the effective permeability is highly variable over time and the faults drain the system. The simulation results are shown to be consistent with some of the field observations carried out in the Oman Mountains, where abnormal fluid pressure is reported to be a significant factor in the development of several generations of local and regional fracture and fault sets.
Optimal T$_c$ of cuprates: role of screening and reservoir layers
Raghu, S.; Thomale, R.; Geballe, T. H.
2012-01-01
We explore the role of charge reservoir layers (CRLs) on the superconducting transition temperature of cuprate superconductors. Specifically, we study the effect of CRLs with efficient short distance dielectric screening coupled capacitively to copper oxide metallic layers. We argue that dielectric screening at short distances and at frequencies of the order of the superconducting gap, but small compared to the Fermi energy can significantly enhance T$_c$, the transition temperature of an unc...
Kanatani, Kentaro
2008-01-01
We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of ...
Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas
Houim, Ryan
2017-11-01
Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.
Deriving bounded tone with layered feet in Harmonic Serialism: The case of Saghala
Directory of Open Access Journals (Sweden)
Jeroen Breteler
2017-06-01
Full Text Available This paper proposes an approach to bounded tone shift and spread as found in Bantu languages. Its core intuition is that the bounding domain is delimited by foot structure. The approach uses layered foot representations to capture ternary phenomena, following Martinez-Paricio & Kager (2015. A set of licensing and structural constraints regulate tone-foot interactions. Harmonic Serialism is adopted as the grammatical framework, to allow for an account of opaque patterns (Prince & Smolensky 1993/2004; McCarthy 2010a. The present approach improves on previous accounts in two ways. Firstly, the size of the tonal bounding domain follows from independently motivated foot representations, rather than being stipulated in the constraint set. Secondly, the approach obviates the need for markedness constraints that refer to underlying structure, because all relevant lexical information is reflected in foot structures. The approach is demonstrated on Saghala (Patin 2009. Saghala shows both shift and spread in a trisyllabic domain. There are six tone patterns, dependent on the contact or near-contact of tones, and the position of word boundaries. An analysis is presented that accounts for all patterns. The success of the analysis shows that the foot-based approach is equipped to deal with a variety of bounded tone phenomena.
Maznev, A. A.; Every, A. G.
2018-01-01
We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In either case, BICs are represented by isolated points in the dispersion relations located within "leaky" branches. We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs whose velocity exceeds the longitudinal velocity of the substrate.
Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab
Energy Technology Data Exchange (ETDEWEB)
Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.; (Stanford-MED); (CH-Boston)
2009-06-17
Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.
Application of Layered Perforation Profile Control Technique to Low Permeable Reservoir
Wei, Sun
2018-01-01
it is difficult to satisfy the demand of profile control of complex well section and multi-layer reservoir by adopting the conventional profile control technology, therefore, a research is conducted on adjusting the injection production profile with layered perforating parameters optimization. i.e. in the case of coproduction for multi-layer, water absorption of each layer is adjusted by adjusting the perforating parameters, thus to balance the injection production profile of the whole well section, and ultimately enhance the oil displacement efficiency of water flooding. By applying the relationship between oil-water phase percolation theory/perforating damage and capacity, a mathematic model of adjusting the injection production profile with layered perforating parameters optimization, besides, perforating parameters optimization software is programmed. Different types of optimization design work are carried out according to different geological conditions and construction purposes by using the perforating optimization design software; furthermore, an application test is done for low permeable reservoir, and the water injection profile tends to be balanced significantly after perforation with optimized parameters, thereby getting a good application effect on site.
Directory of Open Access Journals (Sweden)
Haiyang Yu
2014-01-01
Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.
Gogoi, Indrani; Maity, Damodar
2006-10-01
The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.
Directory of Open Access Journals (Sweden)
Z. Li
2017-11-01
Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.
Mossop, A.; Fredrich, J. T.
2004-12-01
The extraction of fluids from porous rocks within the Earth's crust leads to localised volume strains. These in turn induce stress changes and displacements in the surrounding rock mass. The relationships between these processes are governed by the constitutive properties of the rocks. For the case of a poroelastic fluid reservoir in a linear-elastic matrix the mechanics are relatively well known and understood. In this study we extend these models by investigating the case of a contracting rock body (caused by declining pore pressure) embedded within a linear-elastic half space, but with the addition of a visco-elasto-plastic layer between the contracting reservoir and the free surface. The problem is of growing importance as the exploitation of hydrocarbon reservoirs beneath salt bodies occurs at ever greater depths in the deepwater Gulf of Mexico. This is because the creep properties of salt are strongly temperature dependent, so that as depths increase, and hence ambient temperatures, creep can occur at a rate that is impossible to ignore over the reservoir lifecycle. The models are explored using a finite element approach and make use of sophisticated salt constitutive models and large-deformation three-dimensional geomechanical simulation codes; the reservoir deformations are governed by either poro-elastic or cap plasticity constitutive laws. However, a general behaviour pattern can be observed: the visco-elasto-plastic salt layer tends to decouple the deformation fields from the free surface with stress and displacements accentuated below the salt. The magnitude of the increased horizontal displacements below the salt layer are relatively independent of the layer thickness. The accentuated vertical displacements though are more strongly dependent on the thickness of the salt layer. This work was performed at Sandia National Laboratories funded by the US DOE under Contract DE-AC04-94AL85000. Sandia is a multiprogam laboratory operated by Sandia Corporation
Directory of Open Access Journals (Sweden)
Omotayo Omosebi
2015-12-01
This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.
Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows
Qi, Di; Majda, Andrew J.
2018-04-01
Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.
DEFF Research Database (Denmark)
Lösche, M.; Erdelen, C.; Rump, E.
1994-01-01
The structure of monomolecular layers of the protein streptavidin, specifically bound to biotin-functionalized lipid monolayers at aqueous surfaces, has been characterized. Neutron and X-ray reflectivity measurements allowed an assessment of the organization of these self-assembled systems...... with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...
Use of stabilized bottom ash for bound layers of road pavements.
Toraldo, Emanuele; Saponaro, Sabrina; Careghini, Alessandro; Mariani, Edoardo
2013-05-30
This paper reports about the lab scale results obtained by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as aggregates in cement-bound mixes and asphalt concretes for road pavements. The investigation focused on SBA content. From the road construction point of view, performance related to compaction, volumetric and mechanical properties were assessed. The environmental aspects were investigated performing leaching tests. The results suggested that SBA satisfied the environmental Italian law for reuse of non-hazardous waste but affected significantly the stress-strain behavior of the final products. Therefore a maximum percentage of 10% was suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.
Garapati, N.; Randolph, J.; Saar, M. O.
2013-12-01
-Burman experiments resulting in 16 simulations for the seven parameters investigated. The reservoir is divided into 3-, 4-, or 5- layer systems with log-normal permeability distributions. We consider 10 sets of values for each case resulting in a total of 16x3x10 =480 simulations.We analyze the performance of the system to maximize the amount of heat energy extracted, minimize reservoir temperature depletion and maximize the CO2concentration in the produced fluid. Achieving the latter objective reduces power system problems as Welch and Boyle (GRC Trans. 2009) found that CO2 concentration should be >94% in the systems they investigated.
Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence
Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.
2018-04-01
Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.
Ma, Baiwen; Li, Wenjiang; Liu, Ruiping; Liu, Gang; Sun, Jingqiu; Liu, Huijuan; Qu, Jiuhui; van der Meer, Walter
2018-04-05
The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, adsorbents typically are only injected into the membrane tank once, resulting in a single dynamic protection layer and low removal efficiency over long-term operation. In addition, the granular adsorbents used can cause membrane surface damage. To overcome these disadvantages, we injected inexpensive and loose aluminum (Al)-based flocs directly into a membrane tank with bottom aeration in the presence of humic acid (HA) or raw water taken from the Miyun Reservoir (Beijing, China). Results showed that the flocs were well suspended in the membrane tank, and multiple dynamic floc protection layers were formed (sandwich-like) on the membrane surface with multiple batch injections. Higher frequency floc injections resulted in better floc utilization efficiency and less severe membrane fouling. With continuous injection, acid solutions demonstrated better performance in removing HA molecules, especially those with small molecular weight, and in alleviating membrane fouling compared with the use of high aeration rate or polyacrylamide injection. This was attributed to the small particle size, large specific surface area, and high zeta potential of the flocs. Additionally, excellent UF membrane performance was exhibited by reservoir water with continuous injection and acid solution. Based on the outstanding UF membrane performance, this innovative integrated filtration with loose Al-based flocs has great application potential for water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
pressure distribution in a layered reservoir with gas-cap and bottom
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... dimensionless pressure and dimensionless pressure derivative plots, respectively, when the effects ... effects of layering on pressure distribution of a two- ..... Journal of Pet. Tech., Oct. 1974, Page. 1178-1186. 2. Ehlig-Economides, C.A., and Joseph, J.A. A New. Test for Determination of Individual Layer ...
International Nuclear Information System (INIS)
Ferran Gozalvez, F. J.; Ferrer Gisbert, C.; Redon Santafe, M.; Perez Sanchez, M.; Torregrosa Solar, J. S.; Zapata Raboso, F. J.; Sanchez Romero, F. J.
2014-01-01
This text present the experience developed in a reservoir in Elche (Alicante). This communication explains the importance of the layer of support to prevent the punching. This phenomenon can occur in a reservoir that has a deficient layer of support. Also, the paper describes the requirements to be met by the support layer to perform its function. (Author)
International Nuclear Information System (INIS)
Zhao, Yukun; Wang, Shuai; Feng, Lungang; Li, Yufeng; Ding, Wen; Yun, Feng; Su, Xilin; Guo, Maofeng; Zhang, Ye
2016-01-01
In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted at 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm 2 .
Energy Technology Data Exchange (ETDEWEB)
Zhao, Yukun; Wang, Shuai; Feng, Lungang; Li, Yufeng; Ding, Wen [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Guo, Maofeng [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Zhang, Ye [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2016-03-14
In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted at 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.
Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.
Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F
2006-06-01
The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore.
Qing, Z.; Hui, F.; Piyuan, Y.; Li, L.; Fagen, P.; Yongzhen, Y.
2013-12-01
Based on the 1°x1° depth map of the low resistivity layers in upper mantle in China(1996), with the addition of magnetotelluric data from 1995 to 2010, we created the new map of the upper mantle low resistivity layers in China. The distribution of upper mantle low resistivity layers in China appears north-south zonation and west-east block, overall performance for the shallow in the east, deep in the west, shallow in the north and deep in the south. The depth of the upper mantle low resistivity layers can vary widely in China, the shallowest place which located in the northeast of Songliao basin is about 50 ~ 60 km; The deepest place is located in Changsha -Guilin area at where the deepest depth can be 230 km and the average depth can be 100 ~ 120 km. According to the distribution form of the the upper mantle low resistivity layers in China, 27 uplift zones have been divided. The extensional faults generated by the uplift of the upper mantle low resistivity layers is the main passageway of earth interior material and energy migrating to the upper crust, not only produce the hydrothermal deposit in petroliferous basin surrounding orogenic belt , but also brought oil and gas to the basins. Comparing the distribution of metallic ore with oil and gas fields in China, we have found that there are good correlations between the distribution of Mesozoic endogenous metallic ore deposit and the upper mantle low resistivity layers uplift and depression pattern in China, by about 70% of the metallic ore deposit are located in the the upper mantle low resistivity layers uplift areas, 20% of the metallic ore deposit are located in the gradient areas. In eastern China, most of the petroliferous basins are located in the upper mantle low resistivity layers areas, and most of the oil and gas field are above the uplift area or on the transitional zones of the edge; In Western China, most of the petroliferous basins are located in the mantle depression areas, the main oil and gas
Vukovich, F. M.; Fishman, J.; Browell, E. V.
1985-01-01
An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.
Energy Technology Data Exchange (ETDEWEB)
Ouattara, B; Khouzam, A; Mojtabi, A [Universite de Toulouse (France); INPT, UPS (France); IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse (France); Charrier-Mojtabi, M C, E-mail: bouattar@imft.fr, E-mail: akhouzam@imft.fr, E-mail: mojtabi@imft.fr, E-mail: cmojtabi@cict.fr [PHASE, EA 810, UFR PCA, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex (France)
2012-06-01
The aim of this study was to investigate the effect of conducting boundaries on the onset of convection in a binary fluid-saturated porous layer. The isotropic saturated porous layer is bounded by two impermeable but thermally conducting plates, subjected to a constant heat flux. These plates have identical conductivity. Moreover, the conductivity of the plates is generally different from the porous layer conductivity. The overall layer is of large extent in both horizontal directions. The problem is governed by seven dimensionless parameters, namely the normalized porosity of the medium {epsilon}, the ratio of plates over the porous layer thickness {delta} and their relative thermal conductivities ratio d, the separation ratio {delta}, the Lewis number Le and thermal Rayleigh number Ra. In this work, an analytical and numerical stability analysis is performed. The equilibrium solution is found to lose its stability via a stationary bifurcation or a Hopf bifurcation depending on the values of the dimensionless parameters. For the long-wavelength mode, the critical Rayleigh number is obtained as Ra{sub cs}=12(1+2d{delta} )/[1+{psi} (2d{delta}Le+Le+1)] and k{sub cs}=0 for {psi}> {psi} {sub uni}> 0. This work extends an earlier paper by Mojtabi and Rees (2011 Int. J. Heat Mass Transfer 54 293-301) who considered a configuration where the porous layer is saturated by a pure fluid.
Czech Academy of Sciences Publication Activity Database
Čech, Martin; Kubečka, Jan; Frouzová, Jaroslava; Draštík, Vladislav; Kratochvíl, Michal; Matěna, Josef; Hejzlar, Josef
2007-01-01
Roč. 70, č. 1 (2007), s. 141-154 ISSN 0022-1112 R&D Projects: GA AV ČR(CZ) IAA600170502; GA AV ČR(CZ) 1QS600170504; GA ČR(CZ) GA206/06/1371 Institutional research plan: CEZ:AV0Z60170517 Keywords : Slapy Reservoir * Orlík Reservoir * Perca fluviatilis * shoal * echosounder * Sonar5 Subject RIV: EG - Zoology Impact factor: 1.404, year: 2007
Ullien, Daniela; Thüne, Peter C; Jager, Wolter F; Sudhölter, Ernst J R; de Smet, Louis C P M
2014-09-28
4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2-7 nm, which indicate multilayer formation. Decreasing the diazonium salt concentration and the reaction time resulted in a smaller layer thickness, but did not prevent the formation of multilayers. It was demonstrated, mainly by X-ray photoelectron spectroscopy (XPS), that the diazonium salts not only react with the H-terminated Si surface, but also with electrografted phenyl groups via azo-bond formation. These azo bonds can be electrochemically reduced at Ered = -1.5 V, leading to the corresponding amino groups. This reduction resulted in a modest decrease in layer thickness, and did not yield monolayers. This indicates that other coupling reactions, notably a biphenyl coupling, induced by electrochemically produced phenyl radicals, take place as well. In addition to the azo functionalities, the nitro functionalities in electrografted layers of 4-NBD were independently reduced to amino functionalities at a lower potential (Ered = -2.1 V). The presence of amino functionalities on fully reduced layers, both from 4-NBD- and 4-BBD-modified Si, was shown by the presence of fluorine after reaction with trifluoroacetic anhydride (TFAA). This study shows that the electrochemical reduction of azo bonds generates amino functionalities on layers produced by electrografting of aryldiazonium derivatives. In this way multifunctional layers can be formed by employing functional aryldiazonium salts, which is believed to be very practical in the fabrication of sensor platforms, including those made of multi-array silicon nanowires.
Ullien, D.; Thüne, P.C.; Jager, W.F.; Sudhölter, E.J.R.; De Smet, L.C.P.M.
2014-01-01
4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2–7 nm, which indicate multilayer formation.
Directory of Open Access Journals (Sweden)
Chamanei S. Perera
2015-10-01
Full Text Available In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.
2018-03-01
Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.
Causal analysis of self-sustaining processes in the log-layer of wall-bounded turbulence
Lozano-Duran, Adrian; Bae, Hyunji Jane
2017-11-01
Despite the large amount of information provided by direct numerical simulations of turbulent flows, the underlying dynamics remain elusive even in the most simple and canonical configurations. Most standard methods used to investigate turbulence do not provide a clear causal inference between events, which is necessary to determine this dynamics, particularly in self-sustaning processes. In the present work, we examine the causal interactions between streaks and rolls in the logarithmic layer of minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. Streaks are represented by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocities. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear, which controls the dynamics and time-scales. The well-known lift-up effect is shown to be not a key ingredient in the causal network between shear, streaks and rolls. Funded by ERC Coturb Madrid Summer Program.
Li, Jian-hong; Pu, Jun-bing; Yuan, Dao-xian; Liu, Wen; Xiao, Qiong; Yu, Shi; Zhang Tao; Mo, Xue; Sun, Ping-an; Pan, Mou-cheng
2015-08-01
In order to understand the inorganic carbon cycle of the groundwater-fed reservoir in karst area, Dalongdong Reservoir, which is located at Shanglin County, Guangxi Zhuang Autonomous Region, China, was investigated from 12th to 20th July, 2014. Concentration of dissolved inorganic carbon (DIC), delta13C of DIC (delta13C(DIC)), partial CO2 pressure (pCO2) and CO2 flux across water-air interface were studied by observation in situ and high-resolution diel monitoring. Results show that: (1) DIC concentration and water pCO2 increased from upstream area to downstream area [DIC(average)): from 122.88 to 172.02 mg x L(-1), pCO2(average) : from 637.91 x 10(-6) to 1399.97 x 10(-6)], while delta13C(DIC) decreased from upstream area to downstream area [delta13C(DIC(average): from -4.34% per hundred to -6.97% per hundred] in the reservoir. (2) CO2 efflux across water-air interface varied from 7.11 to 335.54 mg x (m2 x h)(-1) with mean of 125.03 mg x (m2 x h)(-1) in Dalongdong reservoir surface-layer waters, which was the source of atmospheric CO2. CO2 effluxes across water-air interface in upstream area [mean 131.73 mg x (m2 x h)(-1)] and downstream area [mean 170.25 mg x (m2 x h)(-1)] were higher than that in middle area [mean 116.05 mg x (m2 x h))(-1)] in the reservoir. (3) Water pCO2 and CO2 efflux across water-air interface showed similar characteristics of diel variations, which decreased in daylight and increased in night and showed a negative correlation with chlorophyll a (Chla). Possible reasons of research results are found as follows: (1) DIC concentration, water pCO2 and delta13C(DIC) are influenced by biomass of phytoplankton, turbidity, conductivity, the depth of water and transparency, while CO2 efflux across water-air interface is controlled by both of biomass of phytoplankton and wind speed. (2) Photosynthesis, respiration and vertical motion of phytoplankton possibly affect diel variations of DIC cycle in the groundwater-fed reservoir in karst area.
Czech Academy of Sciences Publication Activity Database
Čech, Martin; Kubečka, Jan; Frouzová, Jaroslava; Draštík, Vladislav; Kratochvíl, Michal; Jarošík, Jiří
2007-01-01
Roč. 70, č. 4 (2007), s. 1109-1119 ISSN 0022-1112. [Annual Meeting of the American Fisheries Society /136/. Lake Placid, 10.09.2006-14.09.2006] R&D Projects: GA ČR(CZ) GA206/06/1371 Institutional research plan: CEZ:AV0Z60170517 Keywords : Orlík Reservoir * shoaling * echosounder * cyprinids * Perca fluviatilis * Sander lucioperca Subject RIV: EG - Zoology Impact factor: 1.404, year: 2007
Energy Technology Data Exchange (ETDEWEB)
Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)
2013-03-15
The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
International Nuclear Information System (INIS)
Mohammadi, Pedram Mosahebi; Noorzad, Asadollah; Rahimian, Mohammad; Omidvar, Babak
2009-01-01
Analysis of the dynamic response of a three-dimensional arch dam is conducted taking into account the effects of dam-reservoir and dam-foundation interactions. The Karaj arch-dam in Iran is considered as a case study. The dam, fluid, and foundation domains are treated as substructures and modeled with boundary elements. The foundation domain is assumed to be layered and infinite. This study focuses on the effect of geotechnical conditions on the dynamic response of the dam to harmonic P and S waves. Latest investigations show that the foundation flexibility leads to a reduction in the response through radiation of energy. In this research, it is shown that the effect of soil layers may cause amplification of response in some frequency ranges. This study emphasizes the necessity of comprehensive modeling for site effects to resolve such problems. Also, by identifying the bands of excitation frequencies to which the dam may be more sensitive, it helps in the selection of the most critical earthquake records (as random phenomena) to be used in time domain analysis. (author)
Gutiérrez-Rodríguez, A
2003-01-01
A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).
Energy Technology Data Exchange (ETDEWEB)
Ferran Gozalvez, F. J.; Ferrer Gisbert, C.; Redon Santafe, M.; Perez Sanchez, M.; Torregrosa Solar, J. S.; Zapata Raboso, F. J.; Sanchez Romero, F. J.
2014-02-01
This text present the experience developed in a reservoir in Elche (Alicante). This communication explains the importance of the layer of support to prevent the punching. This phenomenon can occur in a reservoir that has a deficient layer of support. Also, the paper describes the requirements to be met by the support layer to perform its function. (Author)
Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao
2017-10-01
Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however
International Nuclear Information System (INIS)
Satter, A.; Varnon, J.E.; Hoang, M.T.
1992-01-01
A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach
Long-term fate of hydrate-bearing reservoirs during and after production
Reagan, M. T.; Moridis, G. J.; Queiruga, A. F.
2016-12-01
Research into the development of feasible production strategies from gas hydrate reservoirs has largely assumed that such reservoirs are bounded by impermeable layers and free of connectivity to faults or fractures. Coupled flow-geomechnical studies have investgated wellbore and overburden stability during production, but have not answered questions about the post-production evolution of such reservoirs. This study investigates, via reservoir simulation, the possibility and potential consequences of uncontrolled gas release during production from hydrates by any of the known dissociation methods (with an emphasis on depressurization). We investigate the possibility of the free gas created by hydrate dissociation escaping along permeable faults, permeable boundaries, or other pathways adjacent to or intercepting the hydrate reservoir. We also investigate the long-term fate and transport of free gas upon the cessation of production operations in both in the presence and absence of permeable features. This work answers questions about the long-term fate of hydrate-bearing sediments, including (a) whether the cessation of production will be followed by considerable hydrate dissociation that lingers for a substantial time, (b) the potential for hydrate reformation after production to be a hazard-mitigating process, (c) the effect of common reservoir parameters and the buoyancy of the released gas on its transport through the subsurface, and (d) the possibility of significant gas emergence at environmentally sensitive locations.
Amirov, Elnur
2016-04-01
Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible
Effect of reservoir heterogeneity on air injection performance in a light oil reservoir
Directory of Open Access Journals (Sweden)
Hu Jia
2018-03-01
Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well
NYC Reservoirs Watershed Areas (HUC 12)
U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...
Mohri, Mehryar; Rostamizadeh, Afshin
2013-01-01
We present a brief survey of existing mistake bounds and introduce novel bounds for the Perceptron or the kernel Perceptron algorithm. Our novel bounds generalize beyond standard margin-loss type bounds, allow for any convex and Lipschitz loss function, and admit a very simple proof.
Circuit lower bounds in bounded arithmetics
Czech Academy of Sciences Publication Activity Database
Pich, Ján
2015-01-01
Roč. 166, č. 1 (2015), s. 29-45 ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007214000888
Data Compression of Hydrocarbon Reservoir Simulation Grids
Chavez, Gustavo Ivan
2015-05-28
A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.
Cyanobacteria species identified in the Weija and Kpong reservoirs ...
African Journals Online (AJOL)
The Kpong and Weija reservoirs supply drinking water to Accra, Ghana. This study was conducted to identify the cyanobacteria present in these reservoirs and to ascertain whether current treatment processes remove whole cyanobacteria cells from the drinking water produced. Cyanotoxins are mostly cell bound and could ...
Chipofya, V. H.; Matapa, E. J.
This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.
Energy Technology Data Exchange (ETDEWEB)
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz
2015-10-01
Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs.
analysis of pressure variation of fluid in bounded circular reservoirs
African Journals Online (AJOL)
user
chosen for PD should be at least quadratic in D r so that there are no terms in eq. 20 that are identically zero. Since the primary variable is simply the function itself, the Lagrange family of interpolation functions is admissible. We proposed that D. P is the approximation over a typical finite element domain by the expression:.
The Alphabet Soup of HIV Reservoir Markers.
Sharaf, Radwa R; Li, Jonathan Z
2017-04-01
Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
International Nuclear Information System (INIS)
Inoue, J.; Ohtaka, K.
2004-01-01
We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results
Reservoir effects in radiocarbon dating
International Nuclear Information System (INIS)
Head, M.J.
1997-01-01
Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where
Electromagnetic Heating Methods for Heavy Oil Reservoirs
International Nuclear Information System (INIS)
Sahni, A.; Kumar, M.; Knapp, R.B.
2000-01-01
The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (DMM), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots. The bounds exploit the structure of the system and the height of the sparse (or toric) re...
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...
Uniqueness of bounded observables
Energy Technology Data Exchange (ETDEWEB)
Navara, M. [Czech Technical Univ., Praha (Czech Republic). Dept. of Math.
1995-09-01
By an application of a new construction technique we construct a {sigma}-orthomodular lattice with a strongly order-determining set of states and two bounded observables whose expectations are equal at each state. This answers negatively the uniqueness problem for bounded observables, formulated by S. Gudder. (orig.).
Quantum Bounded Symmetric Domains
Vaksman, L. L.
2008-01-01
This is Leonid Vaksman's monograph "Quantum bounded symmetric domains" (in Russian), preceded with an English translation of the table of contents and (a part) of the introduction. Quantum bounded symmetric domains are interesting from several points of view. In particular, they provide interesting examples for noncommutative complex analysis (i.e., the theory of subalgebras of C^*-algebars) initiated by W. Arveson.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
International Nuclear Information System (INIS)
Silva, S.S. De.
1990-01-01
At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop
Miranda, Leandro E.; Bettoli, Phillip William
2010-01-01
Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally
Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit
1998-01-01
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918
The pollution of the 'iron gate' reservoir
International Nuclear Information System (INIS)
Babic-Mladenovic, M.; Varga, S; Popovic, L.; Damjanovic, M.
2002-01-01
The paper presents the characteristics of the Iron Gate I (the Djerdap) Water Power and Navigational System, one of the largest in Europe (completed in 1972 by joint efforts of Yugoslavia and Romania). In this paper the attention is devoted to review of the sediment monitoring program and impacts of reservoir sedimentation, as well as to the investigations of water and sediment quality. Special consideration is paid to the issue of sediment pollution research needs. Namely, the hot spot of the 'Iron Gate' sedimentation represents a scarcely known pollution of sediment deposits. The present pollution probably is considerable, since the 'Iron Gate' reservoir drains about 577000 km 2 , with over 80 million inhabitants, and developed municipal and industrial infrastructure. Therefore, in the thirty-year reservoir life various types of sediment-bound pollutants entered and deposited within it. Especially severe incidents happened during 1999 (as a result of NATO bombing campaign) and 2000 (two accidental pollutions in the Tisza river catchment). The study of the 'Iron Gate' reservoir pollution should be prepared in order to enlighten the present state of reservoir sedimentation and pollution. The main objectives of the study are to enhance the government and public awareness of the present environmental state of the 'Iron Gate' reservoir and to serve as a baseline for all future actions. (author)
Determination of lower and upper bounds of predicted production from history-matched models
van Essen, G. M.; Kahrobaei, S.S.; van Oeveren, H.; van den Hof, P.M.J.; Jansen, J.D.
2016-01-01
We present a method to determine lower and upper bounds to the predicted production or any other economic objective from history-matched reservoir models. The method consists of two steps: 1) performing a traditional computer-assisted history match of a reservoir model with the objective to
Stream, Lake, and Reservoir Management.
Dai, Jingjing; Mei, Ying; Chang, Chein-Chi
2017-10-01
This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoir • Reservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.
Energy Technology Data Exchange (ETDEWEB)
1990-09-01
This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.
The Methane Hydrate Reservoir System
Flemings, P. B.; Liu, X.
2007-12-01
We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.
A Comparative Study of Reservoir Computing for Temporal Signal Processing
Goudarzi, Alireza; Banda, Peter; Lakin, Matthew R.; Teuscher, Christof; Stefanovic, Darko
2014-01-01
Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to tradit...
An experimental unification of reservoir computing methods.
Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D
2007-04-01
Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.
Impact of a Thermocline on Water Dynamics in Reservoirs – Dobczyce Reservoir Case
Directory of Open Access Journals (Sweden)
Hachaj Paweł S.
2017-06-01
Full Text Available While modeling water dynamics in dam reservoirs, it is usually assumed that the flow involves the whole water body. It is true for shallow reservoirs (up to several meters of depth but may be false for deeper ones. The possible presence of a thermocline creates an inactive bottom layer that does not move, causing all the discharge to be carried by the upper strata. This study compares the results of hydrodydynamic simulations performed for the whole reservoir to the ones carried out for the upper strata only. The validity of a non-stratified flow approximation is then discussed.
Reservoir pressure evolution model during exploration drilling
Directory of Open Access Journals (Sweden)
Korotaev B. A.
2017-03-01
Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.
Parity lifetime of bound states in a proximitized semiconductor nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas
2015-01-01
superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...
Energy Technology Data Exchange (ETDEWEB)
Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)
1996-07-01
Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.
Massive Galileon positivity bounds
de Rham, Claudia; Melville, Scott; Tolley, Andrew J.; Zhou, Shuang-Yong
2017-09-01
The EFT coefficients in any gapped, scalar, Lorentz invariant field theory must satisfy positivity requirements if there is to exist a local, analytic Wilsonian UV completion. We apply these bounds to the tree level scattering amplitudes for a massive Galileon. The addition of a mass term, which does not spoil the non-renormalization theorem of the Galileon and preserves the Galileon symmetry at loop level, is necessary to satisfy the lowest order positivity bound. We further show that a careful choice of successively higher derivative corrections are necessary to satisfy the higher order positivity bounds. There is then no obstruction to a local UV completion from considerations of tree level 2-to-2 scattering alone. To demonstrate this we give an explicit example of such a UV completion.
Moscariello, A.
2011-01-01
Sedimentology, log analysis, and high-resolution seismic data of the P01-FA structure, located in the western part of the Netherlands sector of the North Sea, were used to assess the correlatability and connectivity of the sand bodies, to unravel the complex internal reservoir architecture, and to
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
Hoyer, Paul
2017-05-01
Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.
Directory of Open Access Journals (Sweden)
Peter Carr
2017-11-01
Full Text Available Diffusions are widely used in finance due to their tractability. Driftless diffusions are needed to describe ratios of asset prices under a martingale measure. We provide a simple example of a tractable driftless diffusion which also has a bounded state space.
Proximity effect tunneling into virtual bound state alloys
International Nuclear Information System (INIS)
Tang, I.M.; Roongkkeadsakoon, S.
1984-01-01
The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...
African Journals Online (AJOL)
Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.
Dynamic reservoir well interaction
Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.
2004-01-01
In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady
Reservoir Engineering Management Program
Energy Technology Data Exchange (ETDEWEB)
Howard, J.H.; Schwarz, W.J.
1977-12-14
The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay
2013-01-01
-free information) which can be used to refresh the secret key. We believe that bounded tampering is a meaningful and interesting alternative to avoid known impossibility results and can provide important insights into the security of existing standard cryptographic schemes.......Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary...
Czech Academy of Sciences Publication Activity Database
Jůza, Tomáš; Čech, Martin; Kubečka, Jan; Vašek, Mojmír; Peterka, Jiří; Kratochvíl, Michal; Frouzová, Jaroslava; Matěna, Josef
2012-01-01
Roč. 123, July (2012), s. 21-25 ISSN 0165-7836 R&D Projects: GA ČR(CZ) GA206/06/1371; GA ČR(CZ) GP206/09/P266 Institutional support: RVO:60077344 Keywords : Římov Reservoir * percids avoidance reaction * ichthyoplankton trawl Subject RIV: EH - Ecology, Behaviour Impact factor: 1.695, year: 2012
Meyer, B. K.
In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.
Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport
Brandner, Kay; Hanazato, Taro; Saito, Keiji
2018-03-01
For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.
Sediment management for reservoir
International Nuclear Information System (INIS)
Rahman, A.
2005-01-01
All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)
Energy Technology Data Exchange (ETDEWEB)
Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01
An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.
Occurrence of organically bound tritium in the Mohelno lake system
Czech Academy of Sciences Publication Activity Database
Kořínková, Tereza; Světlík, Ivo; Fejgl, Michal; Povinec, P. P.; Šimek, Pavel; Tomášková, Lenka
2016-01-01
Roč. 307, č. 3 (2016), s. 2295-2299 ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : Mohelno reservoir * Dukovany nuclear power plant * Tissue free water tritium * Non-exchangeable organically bound tritium Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.282, year: 2016
Steinberg, Peter
2008-06-01
Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli–......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report
Energy Technology Data Exchange (ETDEWEB)
Kelkar, M.
1995-02-01
This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.
Energy Technology Data Exchange (ETDEWEB)
James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges
2002-10-30
Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah
Optimising reservoir operation
DEFF Research Database (Denmark)
Ngo, Long le
Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...... driftsstrategier kan erstattes af optimale strategier baseret på den nyeste udvikling indenfor computer-baserede beregninger. Hovedbidraget i afhandlingen er udviklingen af et beregningssystem, hvori en simuleringsmodel er koblet til en model for optimering af nogle udvalgte beslutningsvariable, der i særlig grad...
Geothermal reservoir engineering
Grant, Malcolm Alister
2011-01-01
As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo
Energy Technology Data Exchange (ETDEWEB)
Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael
1992-01-01
This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
unconventional natural gas reservoirs
International Nuclear Information System (INIS)
Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P
2009-01-01
This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.
Parallel reservoir simulator computations
International Nuclear Information System (INIS)
Hemanth-Kumar, K.; Young, L.C.
1995-01-01
The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90
Simulating oil recovery during CO{sub 2} sequestration into a mature oil reservoir
Energy Technology Data Exchange (ETDEWEB)
Pamukcu, Y.Z. [Oklahoma Univ., Norman, OK (United States); Gumrah, F. [Middle East Technical Univ., Ankara (Turkey)
2007-07-01
The advantages of sequestering carbon dioxide (CO{sub 2}) into depleted oil reservoirs were discussed with particular reference to the Kartaltepe Field in southeast Turkey. Geologic sequestration is gaining interest as an option to dispose large amount of CO{sub 2} safely and economically for long-term periods. This emerging technology to reduce large amounts of CO{sub 2} released into the atmosphere involves the capture of CO{sub 2} from hydrocarbon emissions, transportation of compressed CO{sub 2} from the source to the field, and injection and storage of CO{sub 2} into the subsurface. While CO{sub 2} injection into oil reservoirs has been in practice for enhanced oil recovery (EOR) purposes for more than 35 years, this paper focused on how to maximize oil recovery with the minimum quantity of CO{sub 2} and sequestering the maximum amount of CO{sub 2}. The Kartaltepe Field which has been in production since 1982, consists of alternating layers of sands and shales deposited in deltaic and marine carbonates to form a faulted anticline structure extending over an area of 2.70 km by 0.75 km. The light crude is produced from a carbonate formation at an average depth of 1930 m to 1950 m. The primary drive mechanism is water drive. The reservoir is a heterogeneous reef composed of two distinct carbonate formations. The upper formation is limestone with an average porosity of 5 per cent and average permeability of 0.06 md. The lower formation is dolomite with an average porosity of 25 per cent, and average permeability of 60 md. The reservoir shape is anticline, and it is bounded by faults and underlain by an aquifer. Reservoir rock and fluid data were evaluated and merged into CMG/STARS simulator. History matching was done with production data to verify the results of the simulator with field data. Once a good match was obtained, different scenarios were simulated. The results showed that CO{sub 2} injection can increase oil recovery. However, it was determined that
Weber, M; Rinke, K; Hipsey, M R; Boehrer, B
2017-07-15
Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kucera, Antonin; Slaman, Theodore A.
2007-01-01
We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in Δ02 T-degrees for which there is a low T-upper bound.
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Tight bounds for break minimization
Brouwer, Andries E.; Post, Gerhard F.; Woeginger, Gerhard
We consider round-robin sports tournaments with n teams and n − 1 rounds. We construct an infinite family of opponent schedules for which every home-away assignment induces at least 1/4 n(n−2) breaks. This construction establishes a matching lower bound for a corresponding upper bound from the
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...
Metabolism of organically bound tritium
International Nuclear Information System (INIS)
Travis, C.C.
1984-01-01
The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables
APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION
Energy Technology Data Exchange (ETDEWEB)
Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant
2000-03-01
Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones
Work reservoirs in thermodynamics
Anacleto, Joaquim
2010-05-01
We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.
Bound Chains of Tilted Dipoles in Layered Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2012-01-01
Ultracold polar molecules in multilayered systems have been experimentally realized very recently. While experiments study these systems almost exclusively through their chemical reactivity, the outlook for creating and manipulating exotic few- and many-body physics in dipolar systems is fascinat...
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance
Santiago, C. J. S.; Solatpour, R.; Kantzas, A.
2017-12-01
The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing
Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs
Directory of Open Access Journals (Sweden)
Yutian Luo
2017-01-01
Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.
Ray-based stochastic inversion of pre-stack seismic data for improved reservoir characterisation
van der Burg, D.W.
2007-01-01
To estimate rock and pore-fluid properties of oil and gas reservoirs in the subsurface, techniques can be used that invert seismic data. Hereby, the detailed information about the reservoir that is available at well locations, such as the thickness and porosity of individual layers, is extrapolated
On functions of bounded semivariation
Czech Academy of Sciences Publication Activity Database
Monteiro, Giselle Antunes
2015-01-01
Roč. 40, č. 2 (2015), s. 233-276 ISSN 0147-1937 Institutional support: RVO:67985840 Keywords : semivariation * functions of bounded variation * regulated functions Subject RIV: BA - General Mathematics http://projecteuclid.org/euclid. rae /1491271216
Computational Lower Bounds Using Diagonalization
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...
Enhanced activities of organically bound tritium in biota samples.
Svetlik, I; Fejgl, M; Malátová, I; Tomaskova, L
2014-11-01
A pilot study aimed on possible occurrence of elevated activity of non-exchangable organically bound tritium (NE-OBT) in biota was performed. The first results showed a significant surplus of NE-OBT activity in biota of the valley of Mohelno reservoir and Jihlava river. The liquid releases of HTO from the nuclear power plant Dukovany is the source of tritium in this area. This area can be a source of various types of natural samples for future studies of tritium pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
Landslide susceptibility zonation in part of Tehri reservoir region ...
Indian Academy of Sciences (India)
A comprehensive study for the identification of landslide susceptible zones using landslide frequency ratio and fuzzy logic in GIS environment is presented for Tehri reservoir rim region (Uttarakhand, India). Temporal remote sensing data was used to prepare important landslide causative factor layers and landslide ...
Effects of acid leaching aluminum from reservoir bottom sediment ...
African Journals Online (AJOL)
user
2011-03-14
Mar 14, 2011 ... The acid leaching method was originally used to extract gold from gold ore in mineral processing. ... chlorite ore (Arienzo et al., 2001) within the reservoir sediment in a layered silicate with a structure of 2:1:1, .... Adsorption of aluminium by a latosol as affected by phosphate and glutamic acid. Environ. Geol.
Water in the Martian Crust Locked in Hydrated Minerals: A Significant Planetary Reservoir of Water
Mustard, J. F.
2017-10-01
Calculations for a reservoir of water locked in hydrated minerals is estimated to range from a low of < 20 m global equivalent layer to approximately 1 km for the high end. This is sufficient to strongly impact surface geomorphic processes.
TROPHIC STATE OF SMALL RETENTION RESERVOIRS IN PODLASIE VOIVODESHIP
Directory of Open Access Journals (Sweden)
Joanna Szczykowska
2017-09-01
Full Text Available The study was carried out using water samples from two small retention reservoirs located in the communes: Czarna Białostocka and Turośń Kościelna in Podlaskie Voivodeship. The main tasks of both reservoirs are to improve the water balance by means of regulating the levels and water outflow. Three characteristic measurement and control points were selected on both reservoirs in accordance to the water flow in the longitudinal section. The first and third points were located near the inflow and outflow of water, while the second in the middle of the reservoirs. Samples of water for the study were collected from the surface layer of the shore zone of the reservoirs once a month from March 2015 to February 2017 (water from two hydrological years was analyzed. Water samples were subject to determination of total phosphorus, total nitrogen, and chlorophyll “a” concentrations, as well as turbidity. Contamination of the water reservoirs with biogenic compounds is a common problem and at the same time difficult to eliminate due to the scattered nature of external sources of pollution, especially in the case of agricultural catchments, as well as the inflow of untreated sewage from areas directly adjacent to the reservoirs. Based on achieved results, high values of TSI (TN, TSI (TP, TSI (Chl, and overall TSI, clearly indicate the progressive degradation of water quality in analyzed reservoirs. Appearing water blooms due to the mass development of phytoplankton adversely affect the quality of water in the reservoirs and biochemical processes occurring both in water and bottom sediments, are conditioned by progressive eutrophication.
Geothermal reservoir management
Energy Technology Data Exchange (ETDEWEB)
Scherer, C.R.; Golabi, K.
1978-02-01
The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.
Optimal bounds on dissipation in stress driven flow
Tang, W.; Caulfield, C. P.; Young, W. R.
2003-11-01
We calculate the optimal upper and lower bounds, subject to the assumption of streamwise invariance, on the long-time-averaged mechanical energy dissipation rate ɛ within the flow of an incompressible viscous fluid of constant kinematic viscosity ν and depth h that is driven by a constant stress τ, defining an appropriate Grashof number G=τ h^2/ν^2. We show that ɛ ≤ τ^2/ν, i.e. the dissipation is bounded above by the dissipation associated with the laminar solution u=τ z hat ^x/ν. By using the the variational background method, (due to Constantin, Doering, and Hopf) and numerical continuation, we also generate the best possible rigorous lower bounds on the dissipation for arbitrary Grashof numbers. As G arrow ∞, we show that the dissipation is bounded below by ɛm = O(τ^3/2/h), with a numerical coefficient that we identify explicitly. The associated bounding solution has thin boundary layers at the top and bottom of the fluid layer with a deep intermediate region of weak shear.
Advances in photonic reservoir computing
Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.
2017-05-01
We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.
Encapsulated microsensors for reservoir interrogation
Energy Technology Data Exchange (ETDEWEB)
Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.
2016-03-08
In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.
PICO: An Object-Oriented Framework for Branch and Bound
Energy Technology Data Exchange (ETDEWEB)
ECKSTEIN,JONATHAN; HART,WILLIAM E.; PHILLIPS,CYNTHIA A.
2000-12-01
This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.
Ginanjar, W. C. B.; Haris, A.; Riyanto, A.
2017-07-01
This study is aimed to analyze the mechanism of hydrocarbons trapping in the field on a relatively new play in the Bintuni basin particularly Steenkool formation. The first well in this field has been drilled with a shallow target in the Steenkool formation and the drilling is managed to find new gas reserves in the shale-sandstone layer. In the structure of this gas discovery, there is the potential barrier for compartmentalization that draws attention to analyze how the patterns of structural of fault become a part of reservoir compartment. In order to measure the risk associated with prospects on a field bounded by faults, it is important to understand the processes that contribute to fault seal. The method of Fault Seal Analysis (FSA) is one of the methods used for the analysis of the nature of a fault whether the fault is sealing or leaking the fluid flow in the reservoir. Trapping systems that are limited by faults play an important role in creating a trap of hydrocarbon. The ability of a fault to seal fluid is quantitatively reflected by the value of Shale Gouge Ratio (SGR). SGR is the calculation of the amount of fine-grained material that fills fault plane (fault gouge) as a result of the movement mechanism of fault. The result of this study is a valuable resource for the systematic evaluation of the analysis of hydrocarbon prospects in the field.
Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue
2015-11-01
Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2
Simulation bounds for system availability
International Nuclear Information System (INIS)
Tietjen, G.L.; Waller, R.A.
1976-01-01
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Unitarity bound for gluon shadowing
International Nuclear Information System (INIS)
Kopeliovich, B. Z.; Levin, E.; Potashnikova, I. K.; Schmidt, Ivan
2009-01-01
Although at small Bjorken x gluons originated from different nucleons in a nucleus overlap in the longitudinal direction, most of them are still well separated in the transverse plane and therefore cannot fuse. For this reason the gluon density in nuclei cannot drop at small x below a certain bottom bound, which we evaluated in a model independent manner assuming the maximal strength of gluon fusion. We also calculated gluon shadowing in the saturated regime using the Balitsky-Kovchegov equation and found the nuclear ratio to be well above the unitarity bound. The recently updated analysis of parton distributions in nuclei, including BNL Relativistic Heavy Ion Collider (RHIC) data on high-p T hadron production at forward rapidities, led to strong gluon shadowing. Such strong shadowing and therefore the interpretation of the nuclear modification of the p T spectra in dA collisions at RHIC seem to be inconsistent with this unitarity bound.
Surface-bound states in nanodiamonds
Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel
2017-05-01
We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.
Bounds for nonlocality distillation protocols
International Nuclear Information System (INIS)
Forster, Manuel
2011-01-01
Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.
Space-bounded communication complexity
DEFF Research Database (Denmark)
Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.
2013-01-01
In the past thirty years, Communication Complexity has emerged as a foundational tool to proving lower bounds in many areas of computer science. Its power comes from its generality, but this generality comes at a price---no superlinear communication lower bound is possible, since a player may...... communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory...
Bound entanglement and local realism
International Nuclear Information System (INIS)
Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr
2002-01-01
We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Yalcin, Erdal; Schröder, Philipp
2010-01-01
WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...
Reservoir Simulations of Low-Temperature Geothermal Reservoirs
Bedre, Madhur Ganesh
The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at
Strontium 90 in silts of the Dnieper cascade water reservoirs
International Nuclear Information System (INIS)
Romanenko, V.D.; Kuz'menko, M.I.; Matvienko, L.P.; Klenus, V.G.; Nasvit, O.I.
1989-01-01
The change of strontium-90 content in water and silts of the Dnieper cascade water reservoirs was analyzed. It was shown, that decrease of strontium-90 content in water in time connected basically with ion exchange adsorption of strontium-90 by residues. A high sorption ability of residues made it possible for radioisotopes to reduce sharply their concentration along depth of soils. The highest concentration of radioisotopes was in the upper layers, enriched by silt. It was ascertained, that strontium-90 migration along depth of residues took place rapidly in the Kiev's water reservoir. Down the cascade strontium-90 content reduced in lower layers of residues as well as in upper layers. 4 tabs
Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs.
Directory of Open Access Journals (Sweden)
Matthew G Blango
Full Text Available Intracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC, which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI, are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI. Following invasion of the terminally differentiated superficial layer of epithelial cells that line the bladder lumen, UPEC can multiply and disseminate, eventually establishing reservoirs within underlying immature host cells. If given access, UPEC can invade the superficial and immature bladder cells equally well. As infected immature host cells differentiate and migrate towards the apical surface of the bladder, UPEC can reinitiate growth and discharge into the bladder lumen. By inducing the exfoliation of the superficial layers of the urothelium, chitosan stimulates rapid regenerative processes and the reactivation and efflux of quiescent intracellular UPEC reservoirs. When combined with antibiotics, chitosan treatment significantly reduces bacterial loads within the bladder and may therefore be of therapeutic value to individuals with chronic, recurrent UTIs.
A review of reservoir desiltation
DEFF Research Database (Denmark)
Brandt, Anders
2000-01-01
physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation......physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation...
Reservoir sedimentation; a literature survey
Sloff, C.J.
1991-01-01
A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on
FRACTURED PETROLEUM RESERVOIRS
Energy Technology Data Exchange (ETDEWEB)
Abbas Firoozabadi
1999-06-11
The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly
Reservoir engineering and hydrogeology
International Nuclear Information System (INIS)
Anon.
1983-01-01
Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects
DEFF Research Database (Denmark)
Fabricius, Ida Lykke
basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... 50% calcite, leaving the remaining internal surface to the fine grained silica and clay. The high specific surface of these components causes clay- and silica rich intervals to have high irreducible water saturation. Although chalks typically are found to be water wet, chalk with mixed wettability...... stabilizes chemically by recrystallization. This process requires energy and is promoted by temperature. This recrystallization in principle does not influence porosity, but only specific surface, which decreases during recrystallization, causing permeability to increase. The central North Sea is a warm...
Pacifiers: a microbial reservoir.
Comina, Elodie; Marion, Karine; Renaud, François N R; Dore, Jeanne; Bergeron, Emmanuelle; Freney, Jean
2006-12-01
The permanent contact between the nipple part of pacifiers and the oral microflora offers ideal conditions for the development of biofilms. This study assessed the microbial contamination on the surface of 25 used pacifier nipples provided by day-care centers. Nine were made of silicone and 16 were made of latex. The biofilm was quantified using direct staining and microscopic observations followed by scraping and microorganism counting. The presence of a biofilm was confirmed on 80% of the pacifier nipples studied. This biofilm was mature for 36% of them. Latex pacifier nipples were more contaminated than silicone ones. The two main genera isolated were Staphylococcus and Candida. Our results confirm that nipples can be seen as potential reservoirs of infections. However, pacifiers do have some advantages; in particular, the potential protection they afford against sudden infant death syndrome. Strict rules of hygiene and an efficient antibiofilm cleaning protocol should be established to answer the worries of parents concerning the safety of pacifiers.
Advances in photonic reservoir computing
Directory of Open Access Journals (Sweden)
Van der Sande Guy
2017-05-01
Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.
Entropy Bounds and Field Equations
Directory of Open Access Journals (Sweden)
Alessandro Pesci
2015-08-01
Full Text Available For general metric theories of gravity, we compare the approach that describes/derives the field equations of gravity as a thermodynamic identity with the one which looks at them from entropy bounds. The comparison is made through the consideration of the matter entropy flux across (Rindler horizons, studied by making use of the notion of a limiting thermodynamic scale l* of matter, previously introduced in the context of entropy bounds. In doing this: (i a bound for the entropy of any lump of matter with a given energy-momentum tensor Tab is considered, in terms of a quantity, which is independent of the theory of gravity that we use; this quantity is the variation of the Clausius entropy of a suitable horizon when the element of matter crosses it; (ii by making use of the equations of motion of the theory, the same quantity is then expressed as the variation of Wald’s entropy of that horizon (and this leads to a generalized form of the generalized covariant entropy bound, applicable to general diffeomorphism-invariant theories of gravity; and (iii a notion of l* for horizons, as well as an expression for it, is given.
Bounded Densities and Their Derivatives
DEFF Research Database (Denmark)
Kozine, Igor; Krymsky, V.
2009-01-01
This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...
Semiclassical bounds in magnetic bottles
Czech Academy of Sciences Publication Activity Database
Barseghyan, Diana; Exner, Pavel; Kovařík, H.; Weidl, T.
2016-01-01
Roč. 28, č. 1 (2016), s. 1650002 ISSN 0129-055X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : magnetic Laplacian * discrete spectrum * eigenvalue bounds Subject RIV: BE - Theoretical Physics Impact factor: 1.426, year: 2016
Positivity bounds for Sivers functions
International Nuclear Information System (INIS)
Kang Zhongbo; Soffer, Jacques
2011-01-01
We generalize a positivity constraint derived initially for parity-conserving processes to the parity-violating ones, and use it to derive non-trivial bounds on several Sivers functions, entering in the theoretical description of single spin asymmetry for various processes.
Moderate deviations for bounded subsequences
Directory of Open Access Journals (Sweden)
George Stoica
2006-01-01
Full Text Available We study Davis' series of moderate deviations probabilities for Lp-bounded sequences of random variables (p>2. A certain subseries therein is convergent for the same range of parameters as in the case of martingale difference or i.i.d. sequences.
Pieter Paul Rubens, "Prometheus Bound."
Shoemaker, Marla K.
1986-01-01
Provides a full-color reproduction of Pieter Paul Rubens' painting, "Prometheus Bound," and a lesson plan for using it with students in grades 10 through 12. The goal of the lesson is to introduce students to the techniques of design and execution used by Rubens. (JDH)
Upward Bound: In the Beginning.
Groutt, John; Hill, Calvin
2001-01-01
Describes the early history of the Upward Bound program, including the role of President Johnson's vision, the Task Force on Poverty, the Office of Economic Opportunity, and Community Action Programs; influences on the development of the program; establishment of the program's administrative structure; pilot programs; and early problems leading to…
A Functional Calculus for Quotient Bounded Operators
Directory of Open Access Journals (Sweden)
Sorin Mirel Stoian
2006-12-01
Full Text Available If (X, P is a sequentially locally convex space, then a quotient bounded operator T beloging to QP is regular (in the sense of Waelbroeck if and only if it is a bounded element (in the sense of Allan of algebra QP. The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra QP.
Gravity observations for hydrocarbon reservoir monitoring
Glegola, M.A.
2013-01-01
In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The
Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.
Energy Technology Data Exchange (ETDEWEB)
Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)
2006-11-01
The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging
Well testing in gas hydrate reservoirs
Kome, Melvin Njumbe
2015-01-01
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...
Sediment Characteristics of Tennessee Streams and Reservoirs
National Research Council Canada - National Science Library
Trimble, Stanley W; Carey, William P
1984-01-01
Suspended-sediment and reservoir sedimentation data have been analyzed to determine sediment yields and transport characteristics of Tennessee streams Data from 31 reservoirs plus suspended-sediment...
Changes to the Bakomi Reservoir
Directory of Open Access Journals (Sweden)
Kubinský Daniel
2014-08-01
Full Text Available This article is focused on the analysis and evaluation of the changes of the bottom of the Bakomi reservoir, the total volume of the reservoir, ecosystems, as well as changes in the riparian zone of the Bakomi reservoir (situated in the central Slovakia. Changes of the water component of the reservoir were subject to the deposition by erosion-sedimentation processes, and were identifed on the basis of a comparison of the present relief of the bottom of reservoir obtained from feld measurements (in 2011 with the relief measurements of the bottom obtained from the 1971 historical maps, (i.e. over a period of 40 years. Changes of landscape structures of the riparian zone have been mapped for the time period of 1949–2013; these changes have been identifed with the analysis of ortophotomaps and the feld survey. There has been a signifcant rise of disturbed shores with low herb grassland. Over a period of 40 years, there has been a deposition of 667 m3 of sediments. The results showed that there were no signifcant changes in the local ecosystems of the Bakomi reservoir in comparison to the other reservoirs in the vicinity of Banská Štiavnica.
TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION
Energy Technology Data Exchange (ETDEWEB)
Lam, P.S.; Morgan, M.J
2005-11-10
The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.
Energy Technology Data Exchange (ETDEWEB)
Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)
2013-08-01
A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.
Energy Technology Data Exchange (ETDEWEB)
Nole, Michael [University of Texas at Austin; Daigle, Hugh [University of Texas at Austin; Mohanty, Kishore [University of Texas at Austin; Cook, Ann [Ohio State University; Hillman, Jess [Ohio State University
2015-12-15
We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane being supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis
Nonlinear behaviors of a bounded electron beam-plasma system
International Nuclear Information System (INIS)
Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke
1985-01-01
Nonlinear developments of a bounded electron beam-plasma system including stationary electrons are investigated experimentally. A stable double layer is formed as a result of ion trapping in a growing negative potential dip induced by the Pierce instability above the current regime of the Buneman instability. In the in-between regime of the Buneman and Pierce instabilities, energetic ions are observed. This effective ion heating is caused by ion detrapping due to double-layer disruption, being consistent with computer simulation. (author)
A reservoir simulation approach for modeling of naturally fractured reservoirs
Directory of Open Access Journals (Sweden)
H. Mohammadi
2012-12-01
Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.
Reservoir description and development of a mature oil field
Energy Technology Data Exchange (ETDEWEB)
Demiral, B.; Gumrah, F.; Okandan, E.
2001-02-01
The Mishovdag oil field is located in the southwest of Baku, Azerbaijan. The sandstone reservoirs consisting of five middle Pliocene age Horizons I, II, III, IV, and XII provide 40% of total oil production from the Sirvan oil field region. The reservoir trap is an anticline, and its size is approximately 15 x 5 km. Since its discovery in 1956, 516 wells had been drilled and 198 of them are still producing from successive layers of sandstone formations. This study was conducted to describe Horizon I of Block-9, prepare input data for a modeling study, and suggest development scenarios for this block. From this point of view, it was aimed to properly describe the reservoir properties with the use of core and, mainly, well log data. In this respect, these data set were evaluated to define the reservoir. According to field reports, seven producing layers were present in Horizon I of Block-9. From the results of further analysis on well logs, it was recognized that the reported seven layers were not continuous within Block-9 so, for modeling studies, these sandstone layers could be grouped under three main sand layers, namely, S1, S2, and S3, that were separated by two clay zones. The results of the modeling study showed that oil production was mainly from level S3 and level S1 was less swept by water injection. The oil saturation distribution at three levels at the end of 39 years of production indicated that there was still recoverable oil in levels S1 and S2. No free gas could be observed in any of the levels because the pressure maintenance provided by water injection caused free gas to redissolve in oil. (author)
Computer simulation of bounded plasmas
International Nuclear Information System (INIS)
Lawson, W.S.
1987-01-01
The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail
Bounded Rationality in Transposition Processes
DEFF Research Database (Denmark)
Vollaard, Hans; Martinsen, Dorte Sindbjerg
2014-01-01
Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first that con......Studies explaining the timeliness and correctness of the transposition of EU directives into national legislation have provided rather inconclusive findings. They do not offer a clear-cut prediction concerning the transposition of the patients’ rights directive, which is one of the first...... that concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...
2013-03-26
...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...
Directory of Open Access Journals (Sweden)
Niculae Iulian TEODORESCU
2008-06-01
Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.
Complexity Bounds for Quantum Computation
2007-06-22
iently thanin lassi al omputation, onstru tion of small ir uits whi h an arry out phase estimation, show-ing that the quantum ontent of strong...on lower bounds for omputing parity or fanout using onstant or log depth quantum ir uits, quantum simulations of lassi al ir uit elements and...lasses, su h as thresh-old and mod fun tions, and the general relationships between quantum omplexity lasses and orre-sponding lassi al lasses
Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing.
Teasdale, M D; van Doorn, N L; Fiddyment, S; Webb, C C; O'Connor, T; Hofreiter, M; Collins, M J; Bradley, D G
2015-01-19
Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock.
Construction of a carbonate reservoir model using pressure transient data : field case study
Energy Technology Data Exchange (ETDEWEB)
Taheri, S. [Petro-Iran, (Iran, Islamic Republic of); Ghanizadeh, M. [Tehran Energy, (Iran, Islamic Republic of); Haghighi, M. [Tehran Univ., (Iran, Islamic Republic of)
2004-07-01
Pressure transient data was integrated with other reservoir information to create a geological model of a carbonate reservoir in the Salaman offshore field in Iran. The model was created using seismic and well log data as well as the interpretation of 99 well tests performed in this field. Several features such as sealing faults, aquifer, fracturing and layering systems were observed. Two faults were identified in the northern part of the reservoir. The distance between the major fault and well number 27 was less than predicted from seismic data. An active aquifer and minor fault were also identified near well number 6. A fracture system was identified around well number 22. Most well tests showed communication between different layers of the reservoirs, suggesting interconnected layers in terms of geology. All calculated permeabilities from the well tests were found to be significantly higher than those from core analysis, suggesting that discrete fractures exist throughout the reservoir. The northern region of the reservoir has the highest permeability values and the lowest values are observed in the central part of the reservoir. 18 refs., 6 figs.
Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.
1985-01-01
Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1
Understanding the True Stimulated Reservoir Volume in Shale Reservoirs
Hussain, Maaruf
2017-06-06
Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to
The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions
Energy Technology Data Exchange (ETDEWEB)
LORENZ,JOHN C.
2000-12-08
Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.
Inflow forecasting using Artificial Neural Networks for reservoir operation
Directory of Open Access Journals (Sweden)
C. Chiamsathit
2016-05-01
Full Text Available In this study, multi-layer perceptron (MLP artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1 inflow known and assumed to be the historic (Type A; (2 inflow known and assumed to be the forecast (Type F; (3 inflow known and assumed to be the historic mean for month (Type M; and (4 inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N. Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.
Chickamauga reservoir embayment study - 1990
Energy Technology Data Exchange (ETDEWEB)
Meinert, D.L.; Butkus, S.R.; McDonough, T.A.
1992-12-01
The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.
Phenomenology of tremor-like signals observed over hydrocarbon reservoirs
Dangel, S.; Schaepman, M. E.; Stoll, E. P.; Carniel, R.; Barzandji, O.; Rode, E.-D.; Singer, J. M.
2003-11-01
We have observed narrow-band, low-frequency (1.5-4 Hz, amplitude 0.01-10 μm/s) tremor signals on the surface over hydrocarbon reservoirs (oil, gas and water multiphase fluid systems in porous media) at currently 15 sites worldwide. These 'hydrocarbon tremors' possess remarkably similar spectral and signal structure characteristics, pointing to a common source mechanism, even though the depth (some hundreds to several thousands of meters), specific fluid content (oil, gas, gas condensate of different compositions and combinations) and reservoir rock type (such as sandstone, carbonates, etc.) for each of those sites are quite different. About half of the sites are fully explored or even developed and producing fields, and hard quantitative data on the reservoirs are available (well data, reservoir monitoring data, seismic surveys, etc.). The other areas are essentially either explored prospect areas where we did not have access to hard reservoir data or (in only one case) areas where no exploration wells have been drilled at all. The tremor signal itself was observed over ALL locations investigated so far. The signals weaken at the rim of the reservoirs and are not observed outside the reservoir area. There is a strong correlation of the tremor power with the thickness of the hydrocarbon-bearing layers ('pay zone thickness') determined by borehole log measurements. The overall correlation between surface tremor measurements and accessible subsurface well data is higher than 90%. The phenomenological comparison of hydrocarbon tremor signals with volcanic tremor signals from Stromboli and Arenal volcanoes using both conventional spectral analysis tools and non-linear dynamics methods reveals fundamental similarities between those two phenomena as well as their close relation to bandpass filtered noise. Nevertheless, the specific signal sources are expected to be different for volcanoes and hydrocarbon reservoirs. Using the currently available data we present possible
Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report
Energy Technology Data Exchange (ETDEWEB)
Kelkar, M.
1992-09-01
This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.
The algebras of bounded and essentially bounded Lebesgue measurable functions
Directory of Open Access Journals (Sweden)
Mortini Raymond
2017-04-01
Full Text Available Let X be a set in ℝn with positive Lebesgue measure. It is well known that the spectrum of the algebra L∞(X of (equivalence classes of essentially bounded, complex-valued, measurable functions on X is an extremely disconnected compact Hausdorff space.We show, by elementary methods, that the spectrum M of the algebra ℒb(X, ℂ of all bounded measurable functions on X is not extremely disconnected, though totally disconnected. Let ∆ = { δx : x ∈ X} be the set of point evaluations and let g be the Gelfand topology on M. Then (∆, g is homeomorphic to (X, Τdis,where Tdis is the discrete topology. Moreover, ∆ is a dense subset of the spectrum M of ℒb(X, ℂ. Finally, the hull h(I, (which is homeomorphic to M(L∞(X, of the ideal of all functions in ℒb(X, ℂ vanishing almost everywhere on X is a nowhere dense and extremely disconnected subset of the Corona M \\ ∆ of ℒb(X, ℂ.
Petroleum reservoir data for testing simulation models
Energy Technology Data Exchange (ETDEWEB)
Lloyd, J.M.; Harrison, W.
1980-09-01
This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.
Stabilization of bottom sediments from Rzeszowski Reservoir
Directory of Open Access Journals (Sweden)
Koś Karolina
2015-06-01
Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.
Voronoi Diagrams Without Bounding Boxes
Sang, E. T. K.
2015-10-01
We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).
Sensitivity analysis using probability bounding
International Nuclear Information System (INIS)
Ferson, Scott; Troy Tucker, W.
2006-01-01
Probability bounds analysis (PBA) provides analysts a convenient means to characterize the neighborhood of possible results that would be obtained from plausible alternative inputs in probabilistic calculations. We show the relationship between PBA and the methods of interval analysis and probabilistic uncertainty analysis from which it is jointly derived, and indicate how the method can be used to assess the quality of probabilistic models such as those developed in Monte Carlo simulations for risk analyses. We also illustrate how a sensitivity analysis can be conducted within a PBA by pinching inputs to precise distributions or real values
Gravity observations for hydrocarbon reservoir monitoring
Glegola, M.A.
2013-01-01
In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The added value of gravity data for reservoir monitoring and characterization is analyzed within closed-loop reservoir management concept. Synthetic 2D and 3D numerical experiments are performed where var...
Determining Normal-Distribution Tolerance Bounds Graphically
Mezzacappa, M. A.
1983-01-01
Graphical method requires calculations and table lookup. Distribution established from only three points: mean upper and lower confidence bounds and lower confidence bound of standard deviation. Method requires only few calculations with simple equations. Graphical procedure establishes best-fit line for measured data and bounds for selected confidence level and any distribution percentile.
Observational Bounds on Cosmic Doomsday
Energy Technology Data Exchange (ETDEWEB)
Shmakova, Marina
2003-07-11
Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t{sub c} {approx} 10{sup 10}-10{sup 11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V({phi}) = V{sub 0}(1 + {alpha}{phi}). This model can describe the present stage of acceleration of the universe if {alpha} is small enough. However, eventually the field {phi} rolls down, V({phi}) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t{sub c} {approx_equal} 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the ''doomsday'' time to tc 40 billion years at the 95% confidence level.
Quantum bounds on Bell inequalities
Pál, Károly F.; Vértesi, Tamás
2009-02-01
We have determined the maximum quantum violation of 241 tight bipartite Bell inequalities with up to five two-outcome measurement settings per party by constructing the appropriate measurement operators in up to six-dimensional complex and eight-dimensional real-component Hilbert spaces using numerical optimization. Out of these inequalities 129 have been introduced here. In 43 cases higher-dimensional component spaces gave larger violation than qubits, and in three occasions the maximum was achieved with six-dimensional spaces. We have also calculated upper bounds on these Bell inequalities using a method proposed recently. For all but 20 inequalities the best solution found matched the upper bound. Surprisingly, the simplest inequality of the set examined, with only three measurement settings per party, was not among them, despite the high dimensionality of the Hilbert space considered. We also computed detection threshold efficiencies for the maximally entangled qubit pair. These could be lowered in several instances if degenerate measurements were also allowed.
Optimal model of radiocarbon residence time in exchange reservoir
International Nuclear Information System (INIS)
Dergachev, V.A.
1977-01-01
Radiocarbon content variations in the earth atmosphere were studied using a mathematical model. The so-called exchange reservoir was considered consisting of layers, and the radiocarbon exchange rate at the interfaces between these layers was supposed to be constant. The process of 14 C mixing and exchange in a dynamic system is described by a system of nonhomogeneous 1st order differential equations. The model also accounts for the change in rate of radiocarbon formation in the earth atmosphere due to cosmic and geophysical effects (solar activity, solar cycle, etc.). (J.P.)
Reservoir-induced seismicity at Castanhao reservoir, NE Brazil
Nunes, B.; do Nascimento, A.; Ferreira, J.; Bezerra, F.
2012-04-01
Our case study - the Castanhão reservoir - is located in NE Brazil on crystalline rock at the Borborema Province. The Borborema Province is a major Proterozoic-Archean terrain formed as a consequence of convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. This reservoir is a 60 m high earth-filled dam, which can store up to 4.5 billion m3 of water. The construction begun in 1990 and finished in October 2003.The first identified reservoir-induced events occurred in 2003, when the water level was still low. The water reached the spillway for the first time in January 2004 and, after that, an increase in seismicity occured. The present study shows the results of a campaign done in the period from November 19th, 2009 to December 31th, 2010 at the Castanhão reservoir. We deployed six three-component digital seismographic station network around one of the areas of the reservoir. We analyzed a total of 77 events which were recorded in at least four stations. To determine hypocenters and time origin, we used HYPO71 program (Lee & Lahr, 1975) assuming a half-space model with following parameters: VP= 5.95 km/s and VP/VS=1.73. We also performed a relocation of these events using HYPODD (Waldhauser & Ellsworth, 2000) programme. The input data used we used were catalogue data, with all absolute times. The results from the spatio-temporal suggest that different clusters at different areas and depths are triggered at different times due to a mixture of: i - pore pressure increase due to diffusion and ii - increase of pore pressure due to the reservoir load.
Energy Technology Data Exchange (ETDEWEB)
Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.
1981-01-01
Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.
EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA
Energy Technology Data Exchange (ETDEWEB)
Mohan Kelkar
2003-10-01
increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow
Holography, Dimensional Reduction and the Bekenstein Bound
Bak, Dongsu; Yee, Ho-Ung
2004-04-01
We consider dimensional reduction of the lightlike holography of the covariant entropy bound from D+1 dimensional geometry of M × S1 to the D dimensional geometry M. With a warping factor, the local Bekenstein bound in D+1 dimensions leads to a more refined form of the bound from the D dimensional view point. With this new local Bekenstein bound, it is quite possible to saturate the lightlike holography even with nonvanishing expansion rate. With a Kaluza-Klein gauge field, the dimensional reduction implies a stronger bound where the energy momentum tensor contribution is replaced by the energy momentum tensor with the electromagnetic contribution subtracted.
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface
Nanostructures and dynamics of macromolecules bound to attractive filler surfaces
Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi
We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.
3D Geostatistical Modeling and Uncertainty Analysis in a Carbonate Reservoir, SW Iran
Directory of Open Access Journals (Sweden)
Mohammad Reza Kamali
2013-01-01
Full Text Available The aim of geostatistical reservoir characterization is to utilize wide variety of data, in different scales and accuracies, to construct reservoir models which are able to represent geological heterogeneities and also quantifying uncertainties by producing numbers of equiprobable models. Since all geostatistical methods used in estimation of reservoir parameters are inaccurate, modeling of “estimation error” in form of uncertainty analysis is very important. In this paper, the definition of Sequential Gaussian Simulation has been reviewed and construction of stochastic models based on it has been discussed. Subsequently ranking and uncertainty quantification of those stochastically populated equiprobable models and sensitivity study of modeled properties have been presented. Consequently, the application of sensitivity analysis on stochastic models of reservoir horizons, petrophysical properties, and stochastic oil-water contacts, also their effect on reserve, clearly shows any alteration in the reservoir geometry has significant effect on the oil in place. The studied reservoir is located at carbonate sequences of Sarvak Formation, Zagros, Iran; it comprises three layers. The first one which is located beneath the cap rock contains the largest portion of the reserve and other layers just hold little oil. Simulations show that average porosity and water saturation of the reservoir is about 20% and 52%, respectively.
Capacity Bounds for Parallel Optical Wireless Channels
Chaaban, Anas
2016-01-01
A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.
Energy Technology Data Exchange (ETDEWEB)
None
1998-01-01
Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.
Cloud computing and Reservoir project
International Nuclear Information System (INIS)
Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.
2009-01-01
The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.
On order bounded subsets of locally solid Riesz spaces | Hong ...
African Journals Online (AJOL)
In a topological Riesz space there are two types of bounded subsets: order bounded subsets and topologically bounded subsets. It is natural to ask (1) whether an order bounded subset is topologically bounded and (2) whether a topologically bounded subset is order bounded. A classical result gives a partial answer to (1) ...
VORONOI DIAGRAMS WITHOUT BOUNDING BOXES
Directory of Open Access Journals (Sweden)
E. T. K. Sang
2015-10-01
Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.
Cosmological bounds on neutrino statistics
de Salas, P. F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N.
2018-03-01
We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2σ.
Fundamental Bounds on MIMO Antennas
Ehrenborg, Casimir; Gustafsson, Mats
2018-01-01
Antenna current optimization is often used to analyze the optimal performance of antennas. Antenna performance can be quantified in e.g., minimum Q-factor and efficiency. The performance of MIMO antennas is more involved and, in general, a single parameter is not sufficient to quantify it. Here, the capacity of an idealized channel is used as the main performance quantity. An optimization problem in the current distribution for optimal capacity, measured in spectral efficiency, given a fixed Q-factor and efficiency is formulated as a semi-definite optimization problem. A model order reduction based on characteristic and energy modes is employed to improve the computational efficiency. The performance bound is illustrated by solving the optimization problem numerically for rectangular plates and spherical shells.
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
DEFF Research Database (Denmark)
Brandt, Anders; Swenning, Joar
1999-01-01
Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...
Energy Technology Data Exchange (ETDEWEB)
P. K. Pande
1998-10-29
Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency
SIRIU RESERVOIR, BUZAU RIVER (ROMANIA
Directory of Open Access Journals (Sweden)
Daniel Constantin DIACONU
2008-06-01
Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
DEFF Research Database (Denmark)
Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.
2003-01-01
This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...... bounds within this class of composites. A comparison of the computational results with the globally optimal bounds given via rank-N layered composites illustrates the behaviour for tension and shear load situations, as well as the importance of considering the shape of the basic unit cell as part...
Reservoir Sedimentation Based on Uncertainty Analysis
Directory of Open Access Journals (Sweden)
Farhad Imanshoar
2014-01-01
Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.
Impact of Fish Farming on Phosphorus in Reservoir Sediments.
Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How
2015-11-18
Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.
Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs
Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng
2017-04-01
Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal
Data assimilation in reservoir management
Rommelse, J.R.
2009-01-01
The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed
Reservoirs in the United States
Harbeck, G. Earl
1948-01-01
Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/ Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/ Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.
Reasons for reservoir effect variability
DEFF Research Database (Denmark)
Philippsen, Bente
2013-01-01
, aquatic plants and fish from the rivers Alster and Trave range between zero and about 3,000 radiocarbon years. The reservoir age of water DIC depends to a large extent on the origin of the water and is for example correlated with precipitation amounts. These short-term variations are smoothed out in water...
Bound anionic states of adenine
Energy Technology Data Exchange (ETDEWEB)
Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H
2007-03-20
Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Reservoir Cathode for Electric Space Propulsion Project
National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...
49 CFR 236.792 - Reservoir, equalizing.
2010-10-01
... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of the equalizing piston chamber of the automatic brake valve, to provide uniform service reductions in brake pipe...
Dissolved methane in Indian freshwater reservoirs
Digital Repository Service at National Institute of Oceanography (India)
Narvenkar, G.; Naqvi, S.W.A.; Kurian, S.; Shenoy, D.M.; Pratihary, A.K.; Naik, H.; Patil, S.; Sarkar, A.; Gauns, M.
Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian...
Investigation of diffusivity coefficient of Asmari reservoir by well test analysis
Energy Technology Data Exchange (ETDEWEB)
Shadizadeh, S.R. [Petroleum Univ. of Technology, Tehran (Iran, Islamic Republic of); Amiri, M.; Zaferanieh, M. [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)
2007-07-01
One of the greatest challenges facing petroleum engineers is to characterize the physical nature of subterranean reservoirs from which crude oil is produced. The quality of reservoir description determines the results of numerical simulations of reservoir performance. The ways by which information can be obtained include seismic and geological studies; well drilling data; well pressure testing; and analysis of reservoir performance through history matching. This paper presented the results of a study in which the Asmari field in southern onshore Iran was characterized. The field went into production in 1970. To date, a total of 39 wells have been completed in the Asmari and Bangestan groups of this field. Pan System software was used in this study to analyze the well test data. Parameters such as permeability, skin factor, wellbore storage, average reservoir pressure, diffusivity coefficient and productivity index are calculated for each well. In particular, the diffusivity coefficient for the Asmari sedimentary layer was determined. This dimensionless reservoir parameter is a ratio of a medium's capacity for transmissibility of fluid to capacity. Diffusivity offers a quantitative measure for the rate of response during transient fluid flow. All available information such as petrophysical data, PVT data, production data and pressure build up data of the completed wells in Asmari formation were collected. Twenty one data tests were then analyzed. A correlation between productivity index and the diffusivity coefficient for the Asmari formation was subsequently obtained. It was concluded that permeability is one of the most important parameter in reservoir engineering calculations. Different completion of well number 1 showed that the diffusivity coefficient and productivity index of carbonate layer is less than in the sandstone layer. It was determined that the western part of the reservoir is suitable for drilling new wells.13 refs., 5 tabs., 7 figs.
Directory of Open Access Journals (Sweden)
Shudong Zhang
2015-12-01
Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.
Bounded elements in Locally C*-algebras
International Nuclear Information System (INIS)
El Harti, Rachid
2001-09-01
In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)
Boundedly UC spaces: characterisations and preservation | Jain ...
African Journals Online (AJOL)
A metric space (X, d) is called a boundedly UC space if every closed and bounded subset of X is a UC space. A metric space (X, d) is called a UC space if each real-valued continuous function on (X, d) is uniformly continuous. In this paper, we study twenty-two equivalent conditions for a metric space to be a boundedly UC ...
Bounded cohomology of discrete groups
Frigerio, Roberto
2017-01-01
The author manages a near perfect equilibrium between necessary technicalities (always well motivated) and geometric intuition, leading the readers from the first simple definition to the most striking applications of the theory in 13 very pleasant chapters. This book can serve as an ideal textbook for a graduate topics course on the subject and become the much-needed standard reference on Gromov's beautiful theory. -Michelle Bucher The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate student...
Reservoir characterization of the Snorre Field
Gjestvang, Jørgen
2016-01-01
Master's thesis in Petroleum engineering The fluvial sandstone in the Snorre field consists of braided to meander streams deposited in arid and in humid climate that show a clear differences in the sedimentology and reservoir properties, especially the silt content in large part of the reservoir which decrease the reservoir properties and water saturation. The heterogeneity of these fluvial formations combined with the faulting history makes this reservoir highly complex with many local an...
Reservoir resistivity characterization incorporating flow dynamics
Arango, Santiago
2016-04-07
Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.
Some Improved Nonperturbative Bounds for Fermionic Expansions
Energy Technology Data Exchange (ETDEWEB)
Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)
2016-06-15
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.
Vulnerable Derivatives and Good Deal Bounds
DEFF Research Database (Denmark)
Murgoci, Agatha
2013-01-01
a new restriction in the arbitrage free model by setting upper bounds on the Sharpe ratios (SRs) of the assets. The potential prices that are eliminated represent unreasonably good deals. The constraint on the SR translates into a constraint on the stochastic discount factor. Thus, tight pricing bounds......We price vulnerable derivatives – i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modelled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...... in a consistent way. Finally, we numerically analyse the behaviour of the good deal pricing bounds....
Exploitation of subsea gas hydrate reservoirs
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2016-04-01
Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.
Modifications of the Bekenstein Bound from Dimensional Reduction of Covariant Entropy Bound
Yee, Ho-Ung
2005-12-01
We consider dimensional reduction of the covariant entropy bound from D + 1 dimensional geometry of M × S1 to the D dimensional geometry M. With a warping factor, the local Bekenstein bound in D + 1 dimensions leads to a more refined form of the local Bekenstein bound from the D dimensional view point. With this new local Bekenstein bound, it is possible to saturate the lightlike holography bound even with nonvanishing expansion rate. With a Kaluza-Klein gauge field, the dimensional reduction implies a stronger bound where the energy momentum tensor contribution is replaced by the energy momentum tensor with the electromagnetic contribution subtracted.
Tenth workshop on geothermal reservoir engineering: proceedings
Energy Technology Data Exchange (ETDEWEB)
1985-01-22
The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)
32 CFR 644.4 - Reservoir Projects.
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir Projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...
Energy Technology Data Exchange (ETDEWEB)
Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi
2001-08-07
This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.
Energy Technology Data Exchange (ETDEWEB)
F. Jerry Lucia
2002-01-31
This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock
Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez
2017-04-01
Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.
Energy Technology Data Exchange (ETDEWEB)
Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.
2001-03-28
This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.
4. International reservoir characterization technical conference
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-04-01
This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.
Reservoir microseismicity at the Ekofisk Oil Field
Energy Technology Data Exchange (ETDEWEB)
Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysical, Inc., Santa Fe, NM (United States); Albright, J.N. [Los Alamos National Lab., NM (United States); Boade, R.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Dangerfield, J.; Landa, G.H. [Phillips Petroleum Co., Tananger (Norway)
1994-07-01
A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.
Smart Waterflooding in Carbonate Reservoirs
DEFF Research Database (Denmark)
Zahid, Adeel
During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...... that a heavy oil (that with a large fraction of heavy components) exhibited viscosity reduction in contact with brine, while a light crude oil exhibited emulsion formation. Most of reported high salinity waterflooding studies were carried out with outcrop chalk core plugs, and by performing spontaneous...
Production Optimization of Oil Reservoirs
DEFF Research Database (Denmark)
Völcker, Carsten
With an increasing demand for oil and diculties in nding new major oil elds, research on methods to improve oil recovery from existing elds is more necessary now than ever. The subject of this thesis is to construct ecient numerical methods for simulation and optimization of oil recovery...... programming (SQP) with line-search and BFGS approximations of the Hessian, and the adjoint method for ecient computation of the gradients. We demonstrate that the application of NMPC for optimal control of smart-wells has the potential to increase the economic value of an oil reservoir....... with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...
Multilevel techniques for Reservoir Simulation
DEFF Research Database (Denmark)
Christensen, Max la Cour
for both variational upscaling and the construction of linear solvers. In particular, it is found to be beneficial (or even necessary) to apply an AMGe based multigrid solver to solve the upscaled problems. It is found that the AMGe upscaling changes the spectral properties of the matrix, which renders...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...
Isoperimetric upper bounds for the first eigenvalue
Indian Academy of Sciences (India)
[5] Buser P and Karcher H, Gromov's almost flat manifolds, Société mathématique de. France (1981). [6] Grosjean J F, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific. J. Math. 206 (2002) 93–112. [7] Heintze Ernst, Extinsic upper bounds for λ1, Math. Ann. 280 (1988) 389–402.
No-arbitrage bounds for financial scenarios
DEFF Research Database (Denmark)
Geyer, Alois; Hanke, Michael; Weissensteiner, Alex
2014-01-01
We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial applications. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities...
On the range of completely bounded maps
Directory of Open Access Journals (Sweden)
Richard I. Loebl
1978-01-01
Full Text Available It is shown that if every bounded linear map from a C*-algebra α to a von Neumann algebra β is completely bounded, then either α is finite-dimensional or β⫅⊗Mn, where is a commutative von Neumann algebra and Mn is the algebra of n×n complex matrices.
Bound constrained quadratic programming via piecewise
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.
1999-01-01
We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...
Stacked spheres and lower bound theorem
Indian Academy of Sciences (India)
BASUDEB DATTA
2011-11-20
Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...
Exponential Lower Bounds For Policy Iteration
Fearnley, John
2010-01-01
We study policy iteration for infinite-horizon Markov decision processes. It has recently been shown policy iteration style algorithms have exponential lower bounds in a two player game setting. We extend these lower bounds to Markov decision processes with the total reward and average-reward optimality criteria.
Upper Bounds on Numerical Approximation Errors
DEFF Research Database (Denmark)
Raahauge, Peter
2004-01-01
This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function...
Bounds in the location-allocation problem
DEFF Research Database (Denmark)
Juel, Henrik
1981-01-01
Develops a family of stronger lower bounds on the objective function value of the location-allocation problem. Solution methods proposed to solve problems in location-allocation; Efforts to develop a more efficient bound solution procedure; Determination of the locations of the sources....
New bounds for multi-dimensional packing
S. Seiden; R. van Stee (Rob)
2001-01-01
textabstractNew upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The
Impedance, zero energy wavefunction, and bound states
Martin, A
1977-01-01
The authors show that for the three-dimensional Schrodinger equation without spherical symmetry the existence of a bound state is related to the impossibility of solving a certain equation; it is further shown that some general conditions for the absence of bound states are readily obtained from this property. (13 refs).
Conductivity bound from dirty black holes
Energy Technology Data Exchange (ETDEWEB)
Bitaghsir Fadafan, Kazem, E-mail: bitaghsir@shahroodut.ac.ir
2016-11-10
We propose a lower bound of the dc electrical conductivity in strongly disordered, strongly interacting quantum field theories using holography. We study linear response of black holes with broken translational symmetry in Einstein–Maxwell-dilaton theories of gravity. Using the generalized Stokes equations at the horizon, we derive the lower bound of the electrical conductivity for the dual two dimensional disordered field theory.
MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR
Directory of Open Access Journals (Sweden)
M. A. Salmanov
2017-01-01
Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall.
New bounds on isotropic Lorentz violation
International Nuclear Information System (INIS)
Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc
2006-01-01
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD
Energy Technology Data Exchange (ETDEWEB)
Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others
1997-08-01
Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Energy Technology Data Exchange (ETDEWEB)
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-12-01
We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.
Reservoir Model Information System: REMIS
Lee, Sang Yun; Lee, Kwang-Wu; Rhee, Taehyun; Neumann, Ulrich
2009-01-01
We describe a novel data visualization framework named Reservoir Model Information System (REMIS) for the display of complex and multi-dimensional data sets in oil reservoirs. It is aimed at facilitating visual exploration and analysis of data sets as well as user collaboration in an easier way. Our framework consists of two main modules: the data access point module and the data visualization module. For the data access point module, the Phrase-Driven Grammar System (PDGS) is adopted for helping users facilitate the visualization of data. It integrates data source applications and external visualization tools and allows users to formulate data query and visualization descriptions by selecting graphical icons in a menu or on a map with step-by-step visual guidance. For the data visualization module, we implemented our first prototype of an interactive volume viewer named REMVR to classify and to visualize geo-spatial specific data sets. By combining PDGS and REMVR, REMIS assists users better in describing visualizations and exploring data so that they can easily find desired data and explore interesting or meaningful relationships including trends and exceptions in oil reservoir model data.
Wu, Kongyou; Paton, Douglas; Zha, Ming
2013-03-01
Tectonic movements formed several unconformities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weathering, leaching, and onlap. At the same time, the structural body may be divided into three layers, including upper layer, mid layer, and lower layer. The upper layer with good primary porosity serves as the hydrocarbon migration system, and also accumulates the hydrocarbon. The mid layer with compactness and ductility can play a role as cap rock, the strength of which increases with depth. The lower layer with good secondary porosity due to weathering and leaching can form the stratigraphic truncation traps. A typical stratigraphic reservoir lying in the unconformity between the Jurassic and Triassic in the north-west margin of the Junggar basin was meticulously analyzed in order to reveal the key controlling factors. The results showed that the hydrocarbon distribution in the stratigraphic onlap reservoirs was controlled by the onlap line, the hydrocarbon distribution in the stratigraphic truncation reservoirs was confined by the truncation line, and the mid layer acted as the key sealing rock. So a conclusion was drawn that "two lines (onlap line and truncation line) and a body (unconformity structural body)" control the formation and distribution of stratigraphic reservoirs.
Bound-free Spectra for Diatomic Molecules
Schwenke, David W.
2012-01-01
It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.
The use of chemical tracers to water injection processes applied on Romanian reservoirs
Directory of Open Access Journals (Sweden)
Zecheru M.
2013-05-01
Full Text Available The hydrocarbon reservoirs are extremely complex, each reservoir having its own identity. Reservoirs heterogeneity (mainly regarding the layered ones frequently results in low recovery efficiencies, both under the primary regime and when different agents are injected from the surface. EOR processes efficiency depends on how detailed the reservoir is known and on the information related to fluids flow through reservoir. There are certain analyzes, investigations and tests providing good knowledge about the reservoir. The tracer tests are among them, being frequently used to water injection processes. Depending on the method used, IWTT (Interwell tracer test, SWTT (Single-Well Tracer Test, TWTT (Two-Well Tracer Test, information are obtained as related to: the setting of the preferential flow path of the injected fluid, the identification of water channels, evidencing the geological barriers, determining the residual oil saturation, around the well bore or along the tracer's path between two wells. This paper is focused on ICPT Câmpina efforts related to the use of the chemical tracers to the water injection processes applied to the oil reservoirs of Romania. It describes the usual tracers and the methods used to detect them in the reaction wells. Up to now, more than 50 tests with IWTT tracers have been performed on-site and this work presents some of their results.
Potosi Reservoir Modeling; History and Recommendations
Energy Technology Data Exchange (ETDEWEB)
Smith, Valerie; Leetaru, Hannes
2014-09-30
: - Data acquisition to identify the vugs permeability, distribution, and interconnectivity could be considered to perform a more rigorous evaluation of the Potosi Formation injectivity and capacity. This could be achieved by performing an injection test on a vugular interval to determine the vugs permeability, and an interference test between wells to evaluate the local vugs extent and interconnectivity. - A thorough study of the available FMI data may reveal specifics on estimating the vug to matrix ratio. This estimate could be used to further condition the porosity distribution. Porosity logs alone might underestimate the formation’s porosity associated with vugs. Porosity mapping derived from the seismic inversion could also be used in the succeeding task to characterize the lateral porosity distribution within the reservoir. This could involve the geobody methodology previously attempted in 2010. With or without seismic inversion porosity mapping, it is worth exploring whether increased lateral heterogeneity plays a significant role in Potosi injectivity. Investigations on vugular, dolomitic outcrops suggest that there may be significantly greater lateral heterogeneity than what has been modeled here. - The FMI data also reveals the presence of and helps describe open fractures. The presence of fractures will further enhance the formation’s permeability. The task of leveraging this data in the geomodeling effort still remains. Under the best of circumstances, this data describing open fractures may be combined with seismic attributes to delineate fracture corridors. Fracture modeling would certainly add another layer of sophistication to the model. Its contribution and applicability remain to be explored. - Facies modeling within the Potosi has yet to be thoroughly addressed. The carbonates during the time of deposition are believed to be regionally extensive. However, it may be worth delineating the reservoir with other regional wells or modern day analogues to
Directory of Open Access Journals (Sweden)
Jong-Yun Choi
2014-10-01
Full Text Available In empirical studies, Cladocera is commonly utilized as a primary food source for predators such as fish, thus, predator avoidance are important strategies to sustain their population in freshwater ecosystems. In this study, we tested the hypothesis that water depth is an important factor in determining the spatial distribution of Diaphanosoma brachyurum Liévin, 1848 in response to fish predation. Quarterly monitoring was implemented at three water layers (i.e., water surface and middle and bottom layers in 21 reservoirs located in the southeastern part of South Korea. D. brachyurum individuals were frequently observed at the study sites and exhibited different spatial patterns of distribution in accordance with the maximum depth of the reservoirs. In the reservoirs with a maximum depth of more than 6 m, high densities of D. brachyurum were observed in the bottom layers; however, in the shallower reservoirs (maximum depth <6 m, D. brachyurum were concentrated in the surface layer. Moreover, during additional surveys, we observed a trend in which D. brachyurum densities increased as the maximum depth or macrophyte biomass increased. Gut contents analysis revealed that predatory fishes in each reservoir frequently consumed D. brachyurum; however, the consumption rate abruptly decreased in reservoirs where the maximum depth was more than 11 m or in the shallow reservoirs supporting a macrophyte bed. Interestingly, the reservoirs more than 11-m depth supported high densities of D. brachyurum in the bottom layer and in the surface macrophyte bed. Based on these results, reservoirs with a maximum depth of more than 11 m or those with a macrophyte bed may provide a refuge for D. brachyurum to avoid fish predation. Compared with other cladoceran species, D. brachyurum readily exploits various types of refugia (in this study, the deep layer or surface macrophyte bed, which may help explain why this species is abundant in various types of reservoirs.
Challenges of reservoir properties and production history matching in a CHOPS reservoir study
Energy Technology Data Exchange (ETDEWEB)
Alam, Mahbub [Department of Geoscience, University of Calgary (Canada)
2011-07-01
In order to meet increasing world energy demand, wells have to be drilled within very thin reservoir beds. This paper, we present one of the solutions for optimizing the reservoir characterization. Reservoir characterization is the process between the discovery of a property and the reservoir management phase. Principal data for reservoir modeling are: 4D Seismic interpretation, wireline log interpretation, core analysis, and petrophysical analysis. Reservoir conditions, perforation and completion technology are the key issues to the production rate of cold production. Reservoir modeling intends to minimize the risk factor, maximize production, and help determine the location for infill drillings. Cold heavy oil production with sand (CHOPS) is a method for enhancing primary production from heavy oil reservoirs. Gravitational forces, natural fluid pressure gradients and foamy oil flow phenomena are the major driving forces of the CHOPS mechanism. Finally, Reservoir characterization allows better understanding of permeability and porosity prediction.
An experimental study of tracers for labelling of injection gas in oil reservoirs
International Nuclear Information System (INIS)
Dugstad, Oe.
1992-01-01
This work demonstrates the feasibility of the PMCP and PMCH as tracers in field experiments. These compounds have properties which make them as well suited for well to well studies as the more common tracers CH 3 T and 85 Kr. In an injection project carried out at the Gullfaks field in the North Sea the two PFCs verified communication between wells. This implies communication between different geological layers in the reservoir and also communication across faults within the same layers. Laboratory studies carried out have focused on the retention of the tracers in dynamic flooding experiments under conditions comparable with those in the petroleum reservoirs. Simultaneous injection of a variety of tracers has shown individual variations in tracer retention which are caused by important reservoir parameters as fluid saturation and rock properties. By proper design of field injection programs the tracers response may therefore be used to estimate fluid saturation if actual rock properties are known. 45 refs., 20 figs., 13 tabs
Optimal bounds on the buoyancy flux in stably stratified Couette flow
Caulfield, C. P.; Tang, W.; Plasting, S. C.
2003-11-01
We calculate the best possible rigorous upper bound, subject to the assumption of streamwise invariance, on the long-time-averaged buoyancy flux within the flow of an incompressible viscous fluid between two infinite parallel plates, which are driven at different constant velocities, and maintained at different constant (stable) temperatures. We use the variational "background method", (due to Constantin, Doering, and Hopf) and numerical continuation to generate the best possible rigorous bounds at arbitrary Reynolds numbers, bulk Richardson numbers and Prandtl numbers. As Re arrow ∞, the upper bound on the buoyancy flux scales with the mechanical energy dissipation rate alone, with a scaling factor that we determine explicitly. Independently of the overall stratification, boundary layers are predicted to develop where the local gradient Richardson number becomes small, enabling significant mixing, with mixing efficiency for the bounding solutions that asymptotically approaches 1/3.
Process interpretation of current entropic bounds
Nardini, Cesare; Touchette, Hugo
2018-01-01
We show for Markov diffusion processes that the quadratic entropic bound, recently derived for the rate functions of nonequilibrium currents, can be seen as being produced by an effective process that creates current fluctuations in a sub-optimal way by modifying only the non-reversible part of the drift or force of the process considered while keeping its reversible part constant. This provides a clear interpretation of the bound in terms of a physical process, which explains, among other things, its relation to the fluctuation relation, linear response, and reversible limits. The existence of more general quadratic bounds, and related uncertainty relations, for physical quantities other than currents is also discussed.
Lower bound for the nuclear kinetic energy
Energy Technology Data Exchange (ETDEWEB)
Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Galvez, F.J. (Granada Univ. (Spain). Dept. de Fisica Teorica)
1985-06-27
We argue that the kinetic energy of a many-fermion system is bounded from below by Kqsup(-2/3)A sup(5/3) /
Remarks on Bousso's covariant entropy bound
Mayo, A E
2002-01-01
Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.
Quasi-bound states in continuum
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio
2007-08-01
We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)
Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, M.S.
The present study deals with the modeling of transient temperature distribution in a heterogeneous geothermal reservoir in response to the injection-production process. The heterogeneous geothermal aquifer considered here is a confined aquifer with homogeneous layers of finite length and overlain
Are Geotehrmal Reservoirs Stressed Out?
Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.
2017-12-01
Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the
Nonlinear Multigrid for Reservoir Simulation
DEFF Research Database (Denmark)
Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter
2016-01-01
modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...
A reservoir trap for antiprotons
Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan
2015-01-01
We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.
Tight Bounds for Distributed Functional Monitoring
DEFF Research Database (Denmark)
Woodruff, David P.; Zhang, Qin
2011-01-01
$, our bound resolves their main open question. Our lower bounds are based on new direct sum theorems for approximate majority, and yield significant improvements to problems in the data stream model, improving the bound for estimating $F_p, p > 2,$ in $t$ passes from $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{2/p......} t))$ to $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{4/p} t))$, giving the first bound for estimating $F_0$ in $t$ passes of $\\Omega(1/(\\eps^2 t))$ bits of space that does not use the gap-hamming problem, and showing a distribution for the gap-hamming problem with high external information cost or super-polynomial......We resolve several fundamental questions in the area of distributed functional monitoring, initiated by Cormode, Muthukrishnan, and Yi (SODA, 2008). In this model there are $k$ sites each tracking their input and communicating with a central coordinator that continuously maintain an approximate...
Numerical Bounds on the Price of Anarchy
Directory of Open Access Journals (Sweden)
Louis de Grange
2017-01-01
Full Text Available Theoretical upper bounds for price of anarchy have been calculated in previous studies. We present an empirical analysis for the price of anarchy for congested transportation networks; different network sizes and demand levels are considered for each network. We obtain a maximum price of anarchy for the cases studied, which is notably lower than the theoretical bounds reported in the literature. This result should be carefully considered in the design and implementation of road pricing mechanisms for cities.
Learning Intelligent Dialogs for Bounding Box Annotation
Konyushkova, Ksenia; Uijlings, Jasper; Lampert, Christoph; Ferrari, Vittorio
2017-01-01
We introduce Intelligent Annotation Dialogs for bounding box annotation. We train an agent to automatically choose a sequence of actions for a human annotator to produce a bounding box in a minimal amount of time. Specifically, we consider two actions: box verification [37], where the annotator verifies a box generated by an object detector, and manual box drawing. We explore two kinds of agents, one based on predicting the probability that a box will be positively verified, and the other bas...
New Spectral Features from Bound Dark Matter
DEFF Research Database (Denmark)
Catena, Riccardo; Kouvaris, Chris
2016-01-01
We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....
Error Bounds: Necessary and Sufficient Conditions
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Kruger, A.Y.; Fabian, Marián; Henrion, R.
2010-01-01
Roč. 18, č. 2 (2010), s. 121-149 ISSN 1877-0533 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z10190503 Keywords : Error bounds * Calmness * Subdifferential * Slope Subject RIV: BA - General Mathematics Impact factor: 0.333, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/outrata-error bounds necessary and sufficient conditions.pdf
Generalized surface tension bounds in vacuum decay
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
Development of gas and gas condensate reservoirs
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-01
In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.
Stretch due to Penile Prosthesis Reservoir Migration
Directory of Open Access Journals (Sweden)
E. Baten
2016-03-01
Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.
Global Reservoir and Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01
National Aeronautics and Space Administration — The Global Reservoir and Dam (GRanD) Database, Version 1.1 contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of 6,197...
Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Michael Batzle
2006-04-30
During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and
Mahapatra, Sailendra Nath
the study area and is scattered in the western-central portion. The shallower one originates in southwestern corner below the Top Temblor unconformity shifts towards ESE-SE with depth, and runs nearly parallel to the Top Temblor unconformity. It cuts across the Valv unconformity in central part creating a channel incision, and follows the Buttonbed unconformity towards the north. The investigation segmented the reservoir into channels, non-channel bearing, and unconformity-bounded subunits which will allow the operator to improve steam injection and optimize placement of oil producing infill wells.
Fracture characterization in a deep geothermal reservoir
Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten
2017-04-01
At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified
Local Refinement of the Super Element Model of Oil Reservoir
Directory of Open Access Journals (Sweden)
A.B. Mazo
2017-12-01
Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir
International Nuclear Information System (INIS)
Okumura, Hiroshi; Yamamoto, Atsushi; Inagaki, Masayo; Yamanishi, Hirokuni; Itoh, Tetsuo
2015-01-01
The authors studied optimal methods against the Cs contamination of agricultural reservoirs outside the evacuation zones, which had been contaminated by the accident of Fukushima Daiichi Nuclear Power Station. As a result of measurements at three points of a small reservoir, the highest radioactivity value was 16.8 Bq/g, with a higher value at bank part and bottom mud. The possibility is considered that the bank part held an organic layer with accumulated Cs, and the bottom mud had litters and clay soil that adsorbed Ce. The distribution of Cs was fluctuated depending on the environment of reservoirs, with the effects of the influx of sediment, influx of litters, and landform of catchment areas. In the 'Technical manual on measures against radioactive materials at reservoirs,' published by the Ministry of Agriculture, Forestry and Fisheries, three decontamination methods for reservoirs have been taken up: (1) removal of mud, (2) fixation of bottom mud, and (3) improvement of water intake method. The method (1) and (2) alone cannot cope with re-contamination from water catchment areas. As a countermeasure for recontamination after decontamination, it is good to install a headrace channel, slope, retaining part, etc. at the pond bottom, to increase the efficiency of the recollection and immobilization of Ce. The felling of neighboring trees, litter collection in peripheral areas, and covering measures for the surface layer in the vicinity are essential. (A.O.)
Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data
Lee, Myung Woong; Collett, Timothy S.
2011-01-01
High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.
Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.
2017-11-01
The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.
The Role and Behavior of Exsolved Volatiles in Magma Reservoirs
Edmonds, M.; Woods, A.
2016-12-01
There is an abundance of evidence for complex, vertically protracted and frequently recharged magma reservoirs in a range of tectonic settings. Geophysical evidence suggests that vertically protracted mushy zones with liquid-rich regions may extend throughout much of the crust and even beyond the Moho. Geochemical evidence suggests that magma mixing, as well as extensive fractional crystallization, dominates the differentiation of crystal-rich magmas. These magmas may reside for long timescales close to their solidus temperatures in the crust before being recharged by mafic magmas, which supply heat and volatiles. The volatile budgets and gas emissions associated with eruptions from these long-lived reservoirs typically show that there is an abundance of magmatic vapor emitted, far above that expected from syn-eruptive degassing of the erupted, crystal-rich intermediate or evolved melts. Eruptions are often associated with muted ground deformation, far less than expected to account for the volumes erupted, suggesting a compressible magma. Breccia pipes in a number of mafic layered intrusion settings, thought to be the expression of diatreme-like volcanism, testify to the importance of gas overpressure in slowly crystallizing magmas. These observations are all consistent with the existence of a substantial fraction of exsolved magmatic vapor throughout much of the upper crustal zones of the magma reservoir, which holds much of the sulfur, as well as carbon dioxide, chlorine and metal species. Reconstruction of the distribution and form of this exsolved vapor phase is a challenge, as there is little geochemical record in the erupted rocks, beyond that which may be established from melt inclusion studies. The most promising approach to understand the distribution and role of exsolved vapor in magma reservoir dynamics is through analogue experiments, which have yielded valuable insights into the role of crystals in modulating gas storage and flow in the plutonic and
Directory of Open Access Journals (Sweden)
Sri Legowo
2009-11-01
Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.
Multiobjective reservoir operating rules based on cascade reservoir input variable selection method
Yang, Guang; Guo, Shenglian; Liu, Pan; Li, Liping; Xu, Chongyu
2017-04-01
The input variable selection in multiobjective cascade reservoir operation is an important and difficult task. To address this problem, this study proposes the cascade reservoir input variable selection (CIS) method that searches for the most valuable input variables for decision making in multiple-objectivity cascade reservoir operations. From a case study of Hanjiang cascade reservoirs in China, we derive reservoir operating rules based on the combination of CIS and Gaussian radial basis functions (RBFs) methods and optimize the rules through Pareto-archived dynamically dimensioned search (PA-DDS) with two objectives: to maximize both power generation and water supply. We select the most effective input variables and evaluate their impacts on cascade reservoir operations. From the simulated trajectories of reservoir water level, power generation, and water supply, we analyze the multiobjective operating rules with several input variables. The results demonstrate that the CIS method performs well in the selection of input variables for the cascade reservoir operation, and the RBFs method can fully express the nonlinear operating rules for cascade reservoirs. We conclude that the CIS method is an effective and stable approach to identifying the most valuable information from a large number of candidate input variables. While the reservoir storage state is the most valuable information for the Hanjiang cascade reservoir multiobjective operation, the reservoir inflow is the most effective input variable for the single-objective operation of Danjiangkou.
Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir
Chen, L.
2017-12-01
Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization
Thermal Internal Boundary Layer characteristics at a tropical coastal ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
10th Symposium on Acoustic Remote Sensing, Auckland,. NZ, 26th Nov–1st Dec. Mursch-Radlgruber E, Neff W D, Rengarajan G, Russel. C 1997 Shallow mixed layer during drainage condition along the front range; 12th AMS Symposium on Bound- ary Layer and Turbulence, July 28 – August 1, Vancou- ver, Canada.
Error bounds from extra precise iterative refinement
Energy Technology Data Exchange (ETDEWEB)
Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason
2005-02-07
We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.
Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.
Cabrera, M E; Casas, J A; Delgado, A
2012-01-13
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.
Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield
Energy Technology Data Exchange (ETDEWEB)
Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)
1997-08-01
These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.
Controlling factors of volcanic hydrocarbon reservoirs in Bohai Bay Basin, China
Directory of Open Access Journals (Sweden)
Chun Yang
2017-12-01
Full Text Available Volcanic hydrocarbon reservoirs are developed in the Mesozoic and Cenozoic strata in Bohai Bay Basin in China. There is more than one hundred million tons of proven oil reserves in the said reservoir. They performed different actors for oil and gas accumulation in the basin. Faults controlled the distribution and accumulation of oil and gas related to volcanic rocks in Bohai Bay Basin. Not to mention, the zone near the faults is favorable for the development of good reservoirs. Volcanic rocks and volcanism can serve several roles during the course of hydrocarbon generation and accumulation. Volcanism can promote hydrocarbon generation from source rocks. Simultaneously, volcanic activity can damage petroleum reservoirs. Volcanic rocks can be both the reservoirs and the cap-rocks or obscured layer in the basin. The occurrence of volcanic rocks in source rocks can form fractures more easily compared to that in sandstones. Finally, volcanic rocks also control the distribution of mantle-derived CO2 gas reservoirs in the basin.
International Nuclear Information System (INIS)
Yose, L.A.
2004-01-01
A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)
Matthews, S.; Lovell, M.; Davies, S. J.; Pritchard, T.; Sirju, C.; Abdelkarim, A.
2012-12-01
includes a capillary bound water porosity component, is used. The novel approach attempts to better address this assumption through incorporation of NMR porosity data which distinguishes between bound water and free (movable) fluid components of porosity. The simplistic approach to heterolithic sandstone sedimentology, with poor linkage between petrophysical and sedimentological analyses and ignorance of model caveats, compounds petroacoustic modelling issues. This research uses a single well dataset comprising a log suite including NMR and OBMI data, together with extensive core data including core-NMR, SEM images and detailed sedimentological analysis. Integration of log and core data enables better insight to the key sedimentological properties influencing reservoir elastic properties. This approach improves understanding of key sedimentological properties affecting acoustic propagation in heterolithic sandstones and in turn provides better models for describing these important reservoirs. This contributes to enhanced seismic data interpretation of reservoir properties, including fluid saturations, during exploration and development phases.
Yutkin, Maxim P.
2017-08-25
Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of
An index of reservoir habitat impairment
Miranda, L.E.; Hunt, K.M.
2011-01-01
Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.
Water resources review: Wheeler Reservoir, 1990
Energy Technology Data Exchange (ETDEWEB)
Wallus, R.; Cox, J.P.
1990-09-01
Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.
Time-lapse seismic within reservoir engineering
Oldenziel, T.
2003-01-01
Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves
Monitoring programme of water reservoir Grliste
International Nuclear Information System (INIS)
Vuckovic, M; Milenkovic, P.; Lukic, D.
2002-01-01
The quality of surface waters is a very important problem incorporated in the environment protection, especially in water resources. The Timok border-land hasn't got sufficient underground and surface waters. This is certificated by the International Association for Water Resource. That was reason for building the water reservoir 'Grliste'. Drinking water from water reservoir 'Grliste' supplies Zajecar and the surroundings. (author)
49 CFR 393.50 - Reservoirs required.
2010-10-01
... depressing the brake pedal or treadle valve to the limit of its travel. (c) Safeguarding of air and vacuum... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... driver to make a full service brake application with the engine stopped without depleting the air...
Geothermal reservoir insurance study. Final report
Energy Technology Data Exchange (ETDEWEB)
1981-10-09
The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.
Ichthyofauna of the reservoirs of Central Vietnam
Directory of Open Access Journals (Sweden)
I. A. Stolbunov
2012-01-01
Full Text Available Species composition, distribution and abundance of fish in the pelagic and littoral zone of four reservoirs of Central Vietnam (Suoi Chau, Kam Lam, Da Ban and Suoi Dau were studied first. According to the research data the fish community of the reservoirs is represented by 43 species of 19 fish families.
Zooplankton of the Zaporiz’ke Reservoir
Directory of Open Access Journals (Sweden)
T. V. Mykolaichuk
2006-01-01
Full Text Available The paper is devoted to zooplankton species composition in the Zaporiz’ke Reservoir. The greatest species diversity was found in the macrophyte communities of the upper reservoir’s littoral, but the least zooplankton diversity – in the pelagic zone of the lower reservoir.
Carbon emission from global hydroelectric reservoirs revisited.
Li, Siyue; Zhang, Quanfa
2014-12-01
Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.
Incorporating EM Inversion into Reservoir Monitoring
Wirianto, M.; Mulder, W.A.; Slob, E.C.
2012-01-01
In the application of controlled source electromagnetics for reservoir monitoring on land, the timelapse signal measured with a surface-to-surface acquisition can reveal the lateral extent on the surface of resistivity changes at depth in a hydrocarbon reservoir under production. However, a direct
Multiscale ensemble filtering for reservoir engineering applications
Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.
2009-01-01
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique
Economics of Developing Hot Stratigraphic Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore
2014-09-01
Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.
1992-01-14
Mathematical Sciences Institute. Ithaca, NY: Cornell. Guckenheimer, J. & Labouriau, 1. 1990. Bifurcation of the Hodgkin - Huxley equations: a new vt.vist. In...olm es -____ II_ John Guckenheimer Avwi tI.,,ti 1it y ’odes ,Av9L! an.,I/or Dist Special •D L 2 Narrative Philip Holmes is continuing to study the...not localized in spae like the structur observed in the turbulent baft y layer. Wavelet bases, having compact support, seem much more appropriate. J
The freshwater reservoir effect in radiocarbon dating
DEFF Research Database (Denmark)
Philippsen, Bente
2013-01-01
effect on radiocarbon dating in an estuarine environment is examined. Here, freshwater influence causes reservoir ages to vary between 250 and 700 14C years during the period 5400 BC - AD 700. The examples in this study show clearly that the freshwater reservoir effect can seriously corrupt radiocarbon......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...
Better Bounds on Online Unit Clustering
Ehmsen, Martin R.; Larsen, Kim S.
Unit Clustering is the problem of dividing a set of points from a metric space into a minimal number of subsets such that the points in each subset are enclosable by a unit ball. We continue work initiated by Chan and Zarrabi-Zadeh on determining the competitive ratio of the online version of this problem. For the one-dimensional case, we develop a deterministic algorithm, improving the best known upper bound of 7/4 by Epstein and van Stee to 5/3. This narrows the gap to the best known lower bound of 8/5 to only 1/15. Our algorithm automatically leads to improvements in all higher dimensions as well. Finally, we strengthen the deterministic lower bound in two dimensions and higher from 2 to 13/6.
Experimental bounds on sterile neutrino mixing angles
Ruchayskiy, Oleg
2012-01-01
We derive bounds on the mixing between the left-chiral ("active") and the right-chiral ("sterile") neutrinos, provided from the combination of neutrino oscillation data and direct experimental searches for sterile neutrinos. We demonstrate that the mixing of sterile neutrinos with any flavour can be significantly suppressed, provided that the angle theta_13 is non-zero. This means that the lower bounds on sterile neutrino lifetime, coming from the negative results of direct experimental searches can be relaxed (by as much as the order of magnitude at some masses). We also demonstrate that the results of the negative searches of sterile neutrinos with PS191 and CHARM experiments are not applicable directly to the see-saw models. The reinterpretation of these results provides up to the order of magnitude stronger bounds on sterile neutrino lifetime than previously discussed in the literature. We discuss the implications of our results for the Neutrino Minimal Standard Model (the NuMSM).
Bounded Gaps between Products of Special Primes
Directory of Open Access Journals (Sweden)
Ping Ngai Chung
2014-03-01
Full Text Available In their breakthrough paper in 2006, Goldston, Graham, Pintz and Yıldırım proved several results about bounded gaps between products of two distinct primes. Frank Thorne expanded on this result, proving bounded gaps in the set of square-free numbers with r prime factors for any r ≥ 2, all of which are in a given set of primes. His results yield applications to the divisibility of class numbers and the triviality of ranks of elliptic curves. In this paper, we relax the condition on the number of prime factors and prove an analogous result using a modified approach. We then revisit Thorne’s applications and give a better bound in each case.
Properties of Water Bound in Hydrogels
Directory of Open Access Journals (Sweden)
Vladimir M. Gun’ko
2017-10-01
Full Text Available In this review, the importance of water in hydrogel (HG properties and structure is analyzed. A variety of methods such as 1H NMR (nuclear magnetic resonance, DSC (differential scanning calorimetry, XRD (X-ray powder diffraction, dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.
Yukawa Bound States and Their LHC Phenomenology
Directory of Open Access Journals (Sweden)
Enkhbat Tsedenbaljir
2013-01-01
Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.
Some practical aspects of reservoir management
Energy Technology Data Exchange (ETDEWEB)
Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)
1996-09-01
The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.
Reservoir Identification: Parameter Characterization or Feature Classification
Cao, J.
2017-12-01
The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601
Bound state properties of ABC -stacked trilayer graphene quantum dots
International Nuclear Information System (INIS)
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-01-01
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett . 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs. (paper)
Reservoir management under geological uncertainty using fast model update
Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.
2015-01-01
Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU
Creed, Peter A.; Patton, Wendy; Hood, Michelle
2010-01-01
We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…
Causality, joint measurement and Tsirelson's bound
International Nuclear Information System (INIS)
Choudhary, Sujit K.; Kar, Guruprasad; Kunkri, Samir; Rahaman, Ramij
2007-01-01
Tsirelson showed that 2√(2) is the maximum value that CHSH expression can take for quantum correlations [B.S. Tsirelson, Lett. Math. Phys. 4 (1980) 93]. This bound simply follows from the algebra of observables. Recently by exploiting the physical structure of quantum mechanics like unitarity and linearity, Buhrman and Massar [H. Buhrman, S. Massar, Phys. Rev. A 72 (2005) 052103] have established that violation of Tsirelson's bound in quantum mechanics will imply signalling. We prove the same with the help of realistic joint measurement in quantum mechanics and a Bell's inequality which has been derived under the assumption of existence of joint measurement and no signalling condition
G-frames with bounded linear operators
Xiao, Xiang-chun; Zhu, Yu-can; Shu, Zhi-biao; Ding, Ming-ling
2015-01-01
In this paper, we introduce the more general g-frame which is called a $K$-g-frame by combining a g-frame with a bounded linear operator $K$ in a Hilbert space. We give several equivalent characterizations for $K$-g-frames and discuss the stability of perturbation for $K$-g-frames. We also investigate the relationship between a $K$-g-frame and the range of the bounded linear operator $K$. In the end, we give two sufficient conditions for the remainder of a $K$-g-frame after an erasure to stil...
Quantum Kolmogorov complexity and bounded quantum memory
Miyadera, Takayuki
2011-04-01
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Quantum Kolmogorov complexity and bounded quantum memory
International Nuclear Information System (INIS)
Miyadera, Takayuki
2011-01-01
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Learning within bounds and dream sleep
Geszti, T.; Pazmandi, F.
1987-12-01
In a bounded-synapses version of Hopfield's model (1984) for neural networks the quasienergy of a given memory, which is approximately equal to the depth of the corresponding energy well is calculated exactly by treating the change of a synaptic strength on learning as a random walk within bounds. Attractors corresponding to stored memories are found to be considerably flattened before serious retrieval errors arise. This allows dream sleep to be interpreted as random recall and relearning of fresh strong memories, in order to stack them on top of weak incidental memory imprints of a day.
Quantum Kolmogorov Complexity and Bounded Quantum Memory
Miyadera, Takayuki
2011-01-01
In this study, the effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob by using a bounded quantum memory and an unbounded classical memory estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty princip...
Violation of Energy Bounds in Designer Gravity
Hertog, T
2007-01-01
We continue our study of the stability of designer gravity theories, where one considers anti-de Sitter gravity coupled to certain tachyonic scalars with boundary conditions defined by a smooth function W. It has recently been argued there is a lower bound on the conserved energy in terms of the global minimum of W, if the scalar potential arises from a superpotential P and the scalar reaches an extremum of P at infinity. We show, however, there are superpotentials for which these bounds do not hold.
Bound states in curved quantum waveguides
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1987-01-01
We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)
Finding Maximal Pairs with Bounded Gap
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.
1999-01-01
. In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....
Girard, A; Merchie, B; Maïsterrena, B
1991-03-15
An artificial-membrane-bound glycerokinase chosen as a membrane-bound two-substrate-enzyme model has been used to separate two unequal compartments of a specially designed diffusion cell. An interesting feature is the asymmetry of compartments and the existence of a diffusion layer adjacent to only one face of the enzymic membrane. In such a situation the apparent enzyme activity and the product distribution in the system have been studied versus all the possibilities of combination of ATP and glycerol supply. Our approach has lead us to differentiate two different roles played by a diffusion layer adjacent to a permeable enzymic membrane. Depending on the spatial origin of the enzymic substrates (i.e. from which compartment they derive), the diffusion layer can play either the role of a passive additional resistance to that of the membrane or the role of a third compartment in which the reaction product can partially accumulate before splitting on both parts of the membrane. Our results mainly demonstrate that a membrane-bound enzyme activity and the resulting product distribution occurring in a compartmentalized system may be regulated by the cumulative effect due to the asymmetry in volumes of the compartments, the presence of a diffusion layer and the different possibilities of substrate supply. With the topography studied, which is close to that reported for many 'in vivo' situations, the product may be diffused lead to vectorial metabolism processes.
Effects of general relativity on glitch amplitudes and pulsar mass upper bounds
Antonelli, M.; Montoli, A.; Pizzochero, P. M.
2018-04-01
Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that enhances the differential rotation of the internal neutron superfluid, making it possible to freeze some amount of angular momentum which eventually can be released, thus causing a pulsar glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-rotation approximation, consistently with the stratified structure of the star. We thus provide a relativistic generalization of a previous Newtonian model that was recently used to estimate upper bounds on the masses of glitching pulsars. We find that the effect of general relativity on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large glitchers obtained from observations of their maximum recorded event differ by less than a few percent from those calculated within the relativistic framework. This work can also serve as a basis to construct more sophisticated models of angular momentum reservoir in a relativistic context: in particular, we present two alternative scenarios for macroscopically rigid and slack pinned vortex lines, and we generalize the Feynman-Onsager relation to the case when both entrainment coupling between the fluids and a strong axisymmetric gravitational field are present.
Top-Down, Intelligent Reservoir Model
Mohaghegh, Shahab
2010-05-01
Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum
Stochastic Reservoir Characterization Constrained by Seismic Data
Energy Technology Data Exchange (ETDEWEB)
Eide, Alfhild Lien
1999-07-01
In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.
Scattering theory methods for bound state problems
International Nuclear Information System (INIS)
Raphael, R.B.; Tobocman, W.
1978-01-01
For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)
Computational Lower Bounds Using Diagonalization-II
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Computational Lower Bounds Using Diagonalization - II. M V Panduranga Rao. General Article Volume 15 Issue 4 April 2010 pp 337-346 ... Keywords. Diagonalization; time–hierarchy theorem; relativization; Baker–Gill–Solovay theorem.
Bounds on Gromov hyperbolicity constant in graphs
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 122; Issue 1. Bounds on Gromov Hyperbolicity Constant in Graphs. José M Rodríguez José M Sigarreta. Volume 122 ... Spain; Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No. 54 Col. Garita, 39650 Acalpulco Gro., Mexico ...
Bogomol'nyi bounds for cosmic strings
International Nuclear Information System (INIS)
Comtet, A.; Gibbons, G.W.; Cambridge Univ.
1987-09-01
We establish Bogomol'nyi inequalities for the deficit angle of some cylindrically symmetric asymptotically local flat (CALF) spacetimes containing cosmic strings. These results prove the stability against arbitrary cylindrical deformations of those configurations which saturate the bound. Such configurations satisfy first order equations which can, in some cases, be solved exactly
Bounded Rationality of Generalized Abstract Fuzzy Economies
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available By using a nonlinear scalarization technique, the bounded rationality model M for generalized abstract fuzzy economies in finite continuous spaces is established. Furthermore, by using the model M, some new theorems for structural stability and robustness to (λ,ϵ-equilibria of generalized abstract fuzzy economies are proved.
Theoretical Bounds of Direct Binary Search Halftoning.
Liao, Jan-Ray
2015-11-01
Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.
Monotonicity and bounds on Bessel functions
Directory of Open Access Journals (Sweden)
Larry Landau
2000-07-01
Full Text Available survey my recent results on monotonicity with respect to order of general Bessel functions, which follow from a new identity and lead to best possible uniform bounds. Application may be made to the "spreading of the wave packet" for a free quantum particle on a lattice and to estimates for perturbative expansions.
Threshold Circuit Lower Bounds on Cryptographic Functions
E. Kiltz (Eike); H.U. Simon
2005-01-01
textabstractIn this work, we are interested in non-trivial upper bounds on the spectral norm of binary matrices $M$ from {-1, 1} $^{N × N}$. It is known that the distributed Boolean function represented by $M$ is hard to compute in various restricted models of computation if the spectral norm is
Reflection Phenomena in Underground Pumped Storage Reservoirs
Directory of Open Access Journals (Sweden)
Elena Pummer
2018-04-01
Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.
The quality of zero bounds for complex polynomials.
Dehmer, Matthias; Tsoy, Yury Robertovich
2012-01-01
In this paper, we evaluate the quality of zero bounds on the moduli of univariate complex polynomials. We select classical and recently developed bounds and evaluate their quality by using several sets of complex polynomials. As the quality of priori bounds has not been investigated thoroughly, our results can be useful to find optimal bounds to locate the zeros of complex polynomials.
Katterbauer, Klemens
2014-01-01
Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting
The freshwater reservoir effect in radiocarbon dating
DEFF Research Database (Denmark)
Philippsen, Bente
case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....
Bounds on fluid permeability for viscous flow through porous media
International Nuclear Information System (INIS)
Berryman, J.G.
1985-01-01
General properties of variational bounds on Darcy's constant for slow viscous flow through porous media are studied. The bounds are also evaluated numerically for the penetrable sphere model. The bound of Doi depending on two-point correlations and the analytical bound of Weissberg and Prager give comparable results in the low density limit but the analytical bound is superior for higher densities. Prager's bound depending on three-point correlation functions is worse than the analytical bound at low densities but better (although comparable to it) at high densities. A procedure for methodically improving Prager's three point bound is presented. By introducing a Gaussian trial function, the three-point bound is improved by an order of magnitude for moderate values of porosity. The new bounds are comparable in magnitude to the Kozeny--Carman empirical relation for porous materials
Gasbuggy reservoir evaluation - 1969 report
International Nuclear Information System (INIS)
Atkinson, C.H.; Ward, Don C.; Lemon, R.F.
1970-01-01
The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)
Analytical determination of low velocity layer in 4-D hydrocarbon ...
African Journals Online (AJOL)
Generally, Seismic reflection surveys are done in the oil sectors to determine commercially viable hydrocarbon reservoirs but in most cases reflection records are obscured by wave behaviours in weathering layer. Hence, Up-hole refraction surveys are carried out in 3-D and 4-D prospects with a view to delineating the ...
The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.
Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V
2017-01-01
The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Belyaev, Vladimir; Aseeva, Elena; Golosov, Valentin
2015-04-01
Reconstruction of the basin-scale sediment budget and associated particle-bound pollutants redistribution was carried out within the upper part of the Chern River basin (133 km2). It involved application of integrated approach based on use of several independent techniques. The study river basin is located on the border between the Orel and Kursk Regions of the Central European Russia nearby the Mikhailovskiy opencast iron ore mine and processing plant, which are believed to be the main local sources of air-borne pollutants. In addition, the basin was contaminated by radionuclide fallout after the Chernobyl accident in 1986. Combination of geomorphic, geochemical, soil survey and geodetic methods has allowed authors to evaluate dynamics of sediment and contaminants redistribution for the last 50 years (since the beginning of a mining activity) within the upper part of the basin upstream from the reservoir, located in the middle reach of the main valley. Main techniques applied were field description of soil or sediment sections, the 137Cs radioactive tracer (for estimation average soil loss rates from eroding cultivated hillslopes and for reconstruction of accumulation rates and sediment microstratigraphy for deposition locations such as main river floodplain and bottoms of small dry valleys), chemical analysis (content of selected heavy metals and As - both in mobile forms by atomic absorption spectroscopy and total by X-ray fluorescence spectrometry, organic C content, pH), geomorphic and detailed geodetic survey of selected key sections of the Chern River floodplain, calculation of average soil erosion rates for cultivated area of the studied part of the basin by the empirical model. In addition, two detailed bottom sediment cores were taken from the reservoir bottom which intercepts practically all the sediment delivered from the upper part of the basin. Integrating the obtained data, it has been found out that substantial changes of the sediment budget took
Volume 4: Characterization of representative reservoirs -- Gulf of Mexico field, U-8 reservoir
Energy Technology Data Exchange (ETDEWEB)
Koperna, G.J. Jr.; Johnson, H.R. [BDM Federal, Inc., McLean, VA (United States); Salamy, S.P.; Reeves, T.K. [BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sawyer, W.K. [Mathematical and Computer Services, Inc., Danville, VA (United States); Kimbrell, W.C.; Schenewerk, P.A. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Petroleum Engineering
1998-07-01
A reservoir study was performed using a publicly available black oil simulator to history match and predict the performance of a Gulf of Mexico reservoir. The first objective of this simulation study was to validate the Black Oil Applied Simulation Tool version three for personal computers (BOAST3-PC) model to ensure the integrity of the simulation runs. Once validation was completed, a field history match for the Gulf of Mexico U-8 oil reservoir was attempted. A verbal agreement was reached with the operator of this reservoir to blindcode the name and location of the reservoir. In return, the operator supplied data and assistance in regards to the technical aspects of the research. On the basis of the best history match, different secondary recovery techniques were simulated as a predictive study for enhancing the reservoir productivity.
Zooplankton assemblage of Oyun Reservoir, Offa, Nigeria.
Mustapha, Moshood K
2009-12-01
The influence of physico-chemical properties of Oyun Reservoir, Offa, Nigeria (a shallow tropical African reservoir) on its zooplankton composition and abundance were investigated at three stations for two years between January 2002 and December 2003. Diversity is not high: only three groups of zooplankton were found: Rotifera with eight genera; and Cladocera and Copepoda with three genera each. Rotifera dominated numerically (71.02%), followed by Cladocera (16.45%) and Copepoda (12.53%). The zooplankton was more prevalent during the rainy season, and there were variations in the composition and abundance along the reservoir continuum. Factors such as temperature, nutrients, food availability, shape and hydrodynamics of the reservoir, as well as reproductive strategies of the organisms, strongly influence the generic composition and population density of zooplankton. Prevention of ecological deterioration of the water body would greatly should result in a more productive water body, rich in zooplankton and with better fisheries.
Hydrological ensemble predictions for reservoir inflow management
Zalachori, Ioanna; Ramos, Maria-Helena; Garçon, Rémy; Gailhard, Joel
2013-04-01
Hydrologic forecasting is a topic of special importance for a variety of users with different purposes. It concerns operational hydrologists interested in forecasting hazardous events (eg., floods and droughts) for early warning and prevention, as well as planners and managers searching to optimize the management of water resources systems at different space-time scales. The general aim of this study is to investigate the benefits of using hydrological ensemble predictions for reservoir inflow management. Ensemble weather forecasts are used as input to a hydrologic forecasting model and daily ensemble streamflow forecasts are generated up to a lead time of 7 days. Forecasts are then integrated into a heuristic decision model for reservoir management procedures. Performance is evaluated in terms of potential gain in energy production. The sensitivity of the results to various reservoir characteristics and future streamflow scenarios is assessed. A set of 11 catchments in France is used to illustrate the added value of ensemble streamflow forecasts for reservoir management.
Measuring the latent reservoir in vivo
Massanella, Marta; Richman, Douglas D.
2016-01-01
Current efforts toward achieving a cure for HIV are focused on developing strategies to eliminate latently infected CD4+ T cells, which represent the major barrier to virus eradication. Sensitive, precise, and practical assays that can reliably characterize and measure this HIV reservoir and can reliably measure the impact of a candidate treatment strategy are essential. PCR-based procedures for detecting integrated HIV DNA will overestimate the size of the reservoir by detecting replication-incompetent proviruses; however, viral outgrowth assays underestimate the size of the reservoir. Here, we describe the attributes and limitations of current procedures for measuring the HIV reservoir. Characterizing their relative merits will require rigorous evaluation of their performance characteristics (sensitivity, specificity, reproducibility, etc.) and their relationship to the results of clinical studies. PMID:26829625
Assembling evidence for identifying reservoirs of infection
Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon
2014-01-01
Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.
The glaciogenic reservoir analogue studies project (GRASP)
DEFF Research Database (Denmark)
Moscariello, A.; Moreau, Julien; Vegt, P. van der
Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...
Influence of strong perturbations on wall-bounded flows
Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.
2018-01-01
Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is
Energy Technology Data Exchange (ETDEWEB)
Locke, C.D.; Salamy, S.P.
1991-09-01
In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.
Energy Technology Data Exchange (ETDEWEB)
Locke, C.D.; Salamy, S.P.
1991-09-01
In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.
Flow of a stream through a reservoir
International Nuclear Information System (INIS)
Sauerwein, K.
1967-01-01
If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than
Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India
Kurian, S.; Roy, R.; Repeta, D. J.; Gauns, M.; Shenoy, D. M.; Suresh, T.; Sarkar, A.; Narvenkar, G.; Johnson, C. G.; Naqvi, S. W. A.
2012-07-01
Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m-2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m-2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light). This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S provides a suitable biogeochemical environment for them to flourish.
Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.
2017-12-01
The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.
Directory of Open Access Journals (Sweden)
Aneta Sulborska
2012-12-01
Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.
Energy Technology Data Exchange (ETDEWEB)
Kerans, C.; Lucia, F.J.; Senger, R.K.; Fogg, G.E.; Nance, H.S.; Hovorka, S.D.
1993-07-01
The primary objective of this research is to develop methods for better describing the three-dimensional geometry of carbonate reservoir flow units as related to conventional or enhanced recovery of oil. San Andres and Grayburg reservoirs were selected for study because of the 13 Bbbl of remaining mobile oil and 17 Bbbl of residual oil in these reservoirs. The key data base is provided by detailed characterization of geologic facies and rock permeability in reservior-scale outcrops of the Permian San Andres Formation in the Guadalupe Mountains of New Mexico. Emphasis is placed on developing an outcrop analog for San Andres strata that can be used as (1) a guide to interpreting the regional and local geologic framework of the subsurface reservoirs (2) a data source illustrating the scales and patterns of variability of rock-fabric facies and petrophysical properties, particularly in lateral dimension, and on scales that cannot be studied during subsurface reservoir characterization. The research approach taken to achieve these objectives utilizes the integration of geologic description, geostatistical techniques, and reservoir flow simulation experiments. Results from this research show that the spatial distribution of facies relative to the waterflood direction can significantly affect how the reservoir produces. Bypassing of unswept oil occurs due to cross flow of injected water from high permeability zones into lower permeability zones were high permeability zones terminate. An area of unswept oil develops because of the slower advance of the water-injection front in the lower permeability zones. When the injection pattern is reversed, the cross-flow effect changes due to the different arrangements of rock-fabric flow units relative to the flow of injected water, and the sweep efficiency is significantly different. Flow across low-permeability mudstones occurs showing that these layers do not necessarily represent flow barriers.
Oil reservoir properties estimation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)
1997-02-01
This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.
Computation of wall bounded flows with heat transfer in the framework of SRS approaches
Gritskevich, M. S.; Garbaruk, A. V.; Menter, F. R.
2014-12-01
A detailed assessment of Scale Adaptive Simulation (SAS) and Improved Delayed Detached Eddy Simulation (IDDES) is performed for prediction of heat transfer for several wall bounded flow. For that purpose a zero pressure gradient boundary layer, a backward facing step, and a thermal mixing in a T-Junction test cases are considered. The results, obtained with the use of ANSYS-FLUENT, show that both approaches are capable to predict both mean and RMS velocity and temperature with sufficient accuracy.
Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration
Pozorski, Jacek
2017-01-01
The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.
Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field
Energy Technology Data Exchange (ETDEWEB)
Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)
1997-08-01
Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.
Li, Q.; Shao, S.; Kang, R.; Liu, K.
2003-12-01
The diabase is a typical igneous rock, which intrude the oil-bearing mudstone and form potential reservoir. As an example of Luo151 igneous rock in Zhanhua Seg, Eastern China, we studied the diabase reservoir in detail, including petrologic analysis, reservoir anisotropy and geological modeling. Four lithofacies zones are divided according to analyzing petrology, texture and structureœªwhich comprise carbonaceous slate, hornfels containing cordierite and grammite, border subfacies and central subfacies, and the petrologic types include carbonaceous slate, hornfels, and diabases. The diabase construction is divided into grammite hornfels micropore and diabase porous-fracture type reservoirs. The mudstone layers in Third Member of Shahejie Formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as the pathways for oil and gas migration. The invasive time was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming.
Development of extra-heavy oil reservoirs in block MPE-3 in the Orinoco Belt, Venezuela
Energy Technology Data Exchange (ETDEWEB)
Zhang, S.; Xu, G.; Liu, D.; Liu, Y.; Yang, J. [CNPC America Ltd., Caracas (Venezuela); Reina, E.; Serna, C.; Torres, A.; Salazar, O. [PDVSA, Caracas (Venezuela)
2008-07-01
This paper described development plans for an extra heavy oil reservoir in Venezuela. The reservoir was principally comprised of non-consolidated sandstones. Development plans were based on an initial reservoir description that used detailed subdivisions and correlations, accurate reservoir seismic-structural interpretations, lithographical analyses and seismic-petrophysical inversions. The analyses were used to develop a detailed geological model which served as a guide for horizontal well drilling in the region. The plan was made with consideration of the geological features and the extra heavy oil reservoir characteristics in the region. The technology was implemented in the MPE-3 block of a heavy oil field in Venezuela. A high quality 3-D simulation tool was used to separate the block into several different sections. Main productions layers were developed simultaneously in order to reduce costs. As a result of the model, the development included 3D horizontal well cluster drilling, advanced low-rate washout coring and core cooling techniques, and sand control using electric submersible pump and progressive cavity pumps. It was concluded that 95 wells are now achieving production rates of 123,500 barrels per day, and have achieved an additional $2 billion in income per year. 12 refs., 3 tabs., 9 figs.
Directory of Open Access Journals (Sweden)
Bogusław Michalec
2015-08-01
Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-04-01
This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.
Yin, Xin-An; Yang, Zhi-Feng; Petts, Geoffrey E.; Kondolf, G. Mathias
2014-05-01
Riverine ecosystem protection requires the maintenance of natural flow and sediment regimes downstream from dams. In reservoir management schedules this requirement should be integrated with sedimentation control and human water supply. However, traditional eco-friendly reservoir operating methods have usually only considered the natural flow regime. This paper seeks to develop a reservoir operating method that accounts for both the natural flow and sediment regimes as well as optimizing the water supply allocations. Herein, reservoir water level (RWL), sediment-occupied ratio of reservoir volume (SOR) and rate of change of SOR (RCSOR) are adopted as three triggers of a drawdown-flushing-based sediment management policy. Two different groups of reservoir operating rule curves (RORCs) are designed for sediment-flushing and non-sediment-flushing years, and the three triggers, RWL, SOR and RCSOR, are used to change the “static” RORCs to “dynamic” ones. The approach is applied to the Wangkuai Reservoir, China to test its effectiveness. This shows that the approach can improve the flexibility of reservoir operators to balance the reservoir management, water supply management and the flow and sediment needs of the downstream riverine ecosystem.
Water in chalk reservoirs: 'friend or foe?'
International Nuclear Information System (INIS)
Hjuler, Morten Leth
2004-01-01
Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively
Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection
International Nuclear Information System (INIS)
Grooms, Ian; Whitehead, Jared P
2015-01-01
The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)
Bounded rational choice behaviour: applications in transport
DEFF Research Database (Denmark)
Jensen, Anders Fjendbo
2016-01-01
Even though the theory of rational behaviour has been challenged for almost 100 years, the dominant approach within the field of transport has been based upon the assumptions of neoclassical economics that we live in a world of rational decision makers who always have perfect knowledge and aim to...... and limited processing may occur due to time constraints, low involvement in the decision at hand, relying on habits or the task requiring too high a mental effort....... to maximise some subjective measure. Where other fields, for example within the social sciences and psychology, have made serious efforts to explore alternative models derived from principles of bounded rationality, this direction has begun to take speed within transport applications only recently. Bounded...
Entropic bounds between two thermal equilibrium states
López-Saldívar, Julio A.; Castaños, Octavio; Man'ko, Margarita A.; Man'ko, Vladimir I.
2018-02-01
The positivity conditions of the relative entropy between two thermal equilibrium states ρ̂1 and ρ̂2 are used to obtain upper and lower bounds for the subtraction of their entropies, the Helmholtz potential and the Gibbs potential of the two systems. These limits are expressed in terms of the mean values of the Hamiltonians, number operator, and temperature of the different systems. In particular, we discuss these limits for molecules that can be represented in terms of the Franck-Condon coefficients. We emphasize the case where the Hamiltonians belong to the same system at two different times t and t'. Finally, these bounds are obtained for a general qubit system and for the harmonic oscillator with a time-dependent frequency at two different times.
Asymptotic Sharpness of Bounds on Hypertrees
Directory of Open Access Journals (Sweden)
Lin Yi
2017-08-01
Full Text Available The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most (nk−1$\\left( {\\matrix{n \\cr {k - 1} } } \\right$ edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Nemytskii operator on generalized bounded variation space
Directory of Open Access Journals (Sweden)
René Erlín Castillo
2014-06-01
Full Text Available In this paper we show that if the Nemytskii operator maps the (φ, α-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α-bounded variation space such that f(t, y = g(ty + h(t for all t ∈ [a, b], y ∈ R. Resumen. En este artículo demostramos que si el operador de Nemytskii lleva el espacio de variación (φ, α-acotada en sí mismo, y satisface cierta condición de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio de variación (φ, α-acotada tal que f(t, y = g(ty + h(t para todo t ∈ [a, b], y ∈ R.
Spectral singularities and zero energy bound states
Energy Technology Data Exchange (ETDEWEB)
Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2011-08-15
Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)
Optimal Bounds in Parametric LTL Games
Directory of Open Access Journals (Sweden)
Martin Zimmermann
2011-06-01
Full Text Available We consider graph games of infinite duration with winning conditions in parameterized linear temporal logic, where the temporal operators are equipped with variables for time bounds. In model checking such specifications were introduced as "PLTL" by Alur et al. and (in a different version called "PROMPT-LTL" by Kupferman et al.. We present an algorithm to determine optimal variable valuations that allow a player to win a game. Furthermore, we show how to determine whether a player wins a game with respect to some, infinitely many, or all valuations. All our algorithms run in doubly-exponential time; so, adding bounded temporal operators does not increase the complexity compared to solving plain LTL games.
Optima and bounds for irreversible thermodynamic processes
International Nuclear Information System (INIS)
Hoffmann, K.H.
1990-01-01
In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method
A holographic bound for D3-brane
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)
2017-06-15
In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)
Entanglement detection with bounded reference frames
International Nuclear Information System (INIS)
Costa, Fabio; Brukner, Caslav; Harrigan, Nicholas; Rudolph, Terry
2009-01-01
Quantum experiments usually assume the existence of perfect, classical reference frames (RFs), which allow for the specification of measurement settings (e.g. orientation of the Stern-Gerlach magnet in spin measurements) with arbitrary precision. If the RFs are 'bounded' (i.e. quantum systems themselves, having a finite number of degrees of freedom), only limited precision can be attained. Using spin coherent states as bounded RFs, we have found the minimum size needed for them to violate local realism for entangled spin systems. For composite systems of spin 1/2 particles, RFs of very small size are sufficient for the violation; however, to see this violation for macroscopic entangled spins, the size of the RF must be at least quadratically larger than that of the spins. The unavailability of such RFs gives a possible explanation for the non-observance of violation of local realism in everyday experience.
Modelling of Hydropower Reservoir Variables for Energy Generation ...
African Journals Online (AJOL)
Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...
Bounding probabilistic safety assessment probabilities by reality
International Nuclear Information System (INIS)
Fragola, J.R.; Shooman, M.L.
1991-01-01
The investigation of the failure in systems where failure is a rare event makes the continual comparisons between the developed probabilities and empirical evidence difficult. The comparison of the predictions of rare event risk assessments with historical reality is essential to prevent probabilistic safety assessment (PSA) predictions from drifting into fantasy. One approach to performing such comparisons is to search out and assign probabilities to natural events which, while extremely rare, have a basis in the history of natural phenomena or human activities. For example the Segovian aqueduct and some of the Roman fortresses in Spain have existed for several millennia and in many cases show no physical signs of earthquake damage. This evidence could be used to bound the probability of earthquakes above a certain magnitude to less than 10 -3 per year. On the other hand, there is evidence that some repetitive actions can be performed with extremely low historical probabilities when operators are properly trained and motivated, and sufficient warning indicators are provided. The point is not that low probability estimates are impossible, but continual reassessment of the analysis assumptions, and a bounding of the analysis predictions by historical reality. This paper reviews the probabilistic predictions of PSA in this light, attempts to develop, in a general way, the limits which can be historically established and the consequent bounds that these limits place upon the predictions, and illustrates the methodology used in computing such limits. Further, the paper discusses the use of empirical evidence and the requirement for disciplined systematic approaches within the bounds of reality and the associated impact on PSA probabilistic estimates
Maximum Bounded Rooted-Tree Packing Problem
Kerivin, Herve; Leblet, Jimmy; Simon, Gwendal; Zhou, Fen
2011-01-01
Given a graph and a root, the Maximum Bounded Rooted-Tree Packing (MBRTP) problem aims at finding K rooted-trees that span the largest subset of vertices, when each vertex has a limited outdegree. This problem is motivated by peer-to-peer streaming overlays in under-provisioned systems. We prove that the MBRTP problem is NP-complete. We present two polynomial-time algorithms that computes an optimal solution on complete graphs and trees respectively.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Multipartite secret key distillation and bound entanglement
International Nuclear Information System (INIS)
Augusiak, Remigiusz; Horodecki, Pawel
2009-01-01
Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.
Exact BPS bound for noncommutative baby Skyrmions
Energy Technology Data Exchange (ETDEWEB)
Domrin, Andrei, E-mail: domrin@mi.ras.ru [Department of Mathematics and Mechanics, Moscow State University, Leninskie gory, 119992, GSP-2, Moscow (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Linares, Román, E-mail: lirr@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México D.F. (Mexico); Maceda, Marco, E-mail: mmac@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México D.F. (Mexico)
2013-11-25
The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory.
Isoperimetric upper bounds for the first eigenvalue
Indian Academy of Sciences (India)
eigenvalue of M was given in terms of the integral of the first eigenvalue of the geodesic spheres centred at the centre of gravity of M. For precious statements, see [10]. In this paper, we obtain isoperimetric upper bounds for the first eigenvalue λ1(M) of a hypersurface M in M(κ). We refer to [2] and [8] for the basic Riemannian ...
New approach to calculate bound state eigenvalues
International Nuclear Information System (INIS)
Gerck, E.; Gallas, J.A.C.
1983-01-01
A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt
Bounds on scalar leptoquarks from Z physics
Mizukoshi, J K; González-Garciá, M Concepción; Mizukoshi, J K; Eboli, O J P; Gonzalez-Garcia, M C
1995-01-01
We analyse the constraints on scalar leptoquarks coming from radiative corrections to Z physics. We perform a global fitting to the LEP data including the contributions of the most general effective Lagrangian for scalar leptoquarks, which exhibits the SU(2)_L \\times U(1)_Y gauge invariance. We show that the bounds on leptoquarks that couple to the top quark are much stronger than the ones obtained from low energy experiments.
Recent advances in bound state quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1977-06-01
Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented
The organically bound tritium: an analyst vision
International Nuclear Information System (INIS)
Ansoborlo, E.; Baglan, N.
2009-01-01
The authors report the work of a work group on tritium analysis. They recall the different physical forms of tritium: gas (HT, hydrogen-tritium), water vapour (HTO or tritiated water) or methane (CH3T), but also in organic compounds (OBT, organically bound tritium) which are either exchangeable or non-exchangeable. They evoke measurement techniques and methods, notably to determine the tritium volume activity. They discuss the possibilities to analyse and distinguish exchangeable and non-exchangeable OBTs
A sorting network in bounded arithmetic
Czech Academy of Sciences Publication Activity Database
Jeřábek, Emil
2011-01-01
Roč. 162, č. 4 (2011), s. 341-355 ISSN 0168-0072 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * sorting network * proof complexity * monotone sequent calculus Subject RIV: BA - General Mathematics Impact factor: 0.450, year: 2011 http://www.sciencedirect.com/science/article/pii/S0168007210001272
EXPLICIT LOWER BOUNDS FOR LINEAR FORMS
DEFF Research Database (Denmark)
Leppälä, Kalle
2016-01-01
Let I be the field of rational numbers or an imaginary quadratic field and Z(I) its ring of integers. We study some general lemmas that produce lower bounds vertical bar B-0 + B-1 theta(1) +... + B-r theta(r)vertical bar >= 1/max{vertical bar B-1 vertical bar,...,vertical bar B-r vertical bar}(mu...
Bounded solutions and wavefronts for discrete dynamics
Czech Academy of Sciences Publication Activity Database
Malaguti, L.; Řehák, Pavel; Taddei, V.
2004-01-01
Roč. 47, - (2004), s. 1079-1094 ISSN 0898-1221 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * bounded solution * discrete travelling waves Subject RIV: BA - General Mathematics Impact factor: 0.431, year: 2004
Longhi Games, Internal Reservoirs, and Cumulate Porosity
Morse, S. A.
2009-05-01
Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for
On the Holographic Bound in Newtonian Cosmology
Directory of Open Access Journals (Sweden)
José M. Isidro
2018-01-01
Full Text Available The holographic principle sets an upper bound on the total (Boltzmann entropy content of the Universe at around 10 123 k B ( k B being Boltzmann’s constant. In this work we point out the existence of a remarkable duality between nonrelativistic quantum mechanics on the one hand, and Newtonian cosmology on the other. Specifically, nonrelativistic quantum mechanics has a quantum probability fluid that exactly mimics the behaviour of the cosmological fluid, the latter considered in the Newtonian approximation. One proves that the equations governing the cosmological fluid (the Euler equation and the continuity equation become the very equations that govern the quantum probability fluid after applying the Madelung transformation to the Schroedinger wavefunction. Under the assumption that gravitational equipotential surfaces can be identified with isoentropic surfaces, this model allows for a simple computation of the gravitational entropy of a Newtonian Universe. In a first approximation, we model the cosmological fluid as the quantum probability fluid of free Schroedinger waves. We find that this model Universe saturates the holographic bound. As a second approximation, we include the Hubble expansion of the galaxies. The corresponding Schroedinger waves lead to a value of the entropy lying three orders of magnitude below the holographic bound. Current work on a fully relativistic extension of our present model can be expected to yield results in even better agreement with empirical estimates of the entropy of the Universe.
Bounded Target Cascading in Hierarchical Design Optimization
Directory of Open Access Journals (Sweden)
Xiaoling Zhang
2014-06-01
Full Text Available For large scale systems, as a hierarchical multilevel decomposed design optimization method, analytical target cascading coordinates the inconsistency between the assigned targets and response in each level by a weighted-sum formulation. To avoid the problems associated with the weighting coefficients, single objective functions in the hierarchical design optimization are formulated by a bounded target cascading method in this paper. In the BTC method, a single objective optimization problem is formulated in the system level, and two kinds of coordination constraints are added: one is bound constraint for the design points based on the response from each subsystem level and the other is linear equality constraint for the common variables based on their sensitivities with respect to each subsystem. In each subsystem level, the deviation with target for design point is minimized in the objective function, and the common variables are constrained by target bounds. Therefore, in the BTC method, the targets are coordinated based on the optimization iteration information in the hierarchical design problem and the performance of the subsystems, and BTC method will converge to the global optimum efficiently. Finally, comparisons of the results from BTC method and the weighted-sum analytical target cascading method are presented and discussed.
Environmental Status of Kam’yanske Reservoir (Ukraine
Directory of Open Access Journals (Sweden)
Sharamok Tetyana
2017-09-01
Full Text Available Environmental status of Kam’yanske reservoir (47°55′51.6″N 33°46′08.4″E as one of the small water bodies belonging to southeast Ukraine was investigated. The integrated environmental assessment based on the quality indices of salt content, trophic–saprobiological indicators and specific toxic water indicators of Kam’yanske reservoir are characterised as ‘satisfactory’ and ‘slightly polluted’. Defined bottom accumulation coefficient (BAC shows continuing heavy metals enlargement in the upper layer of the bottom sediments and chronic pollution in ecosystem. The content of heavy metals in the muscles of industrial fish in the researched pond did not exceed maximal allowed concentration (MAC for fish as food according to Ukrainian standards. Accumulation of heavy metals in fish was due to the peculiarities of their ways of nutrition and existing. The total contents of heavy metals in common carp was almost twice as large compared to other fish. The maximum accumulation rates set for fish muscles of essential elements – zinc and iron.
DEFF Research Database (Denmark)
Codas, Andrés; Hanssen, Kristian G.; Foss, Bjarne
2017-01-01
. In this work, we propose a new formulation for robust optimization of reservoir well controls. It is inspired by the multiple shooting (MS) method which permits a broad range of parallelization opportunities and output constraint handling. This formulation exploits coherent risk measures, a concept...... traditionally used in finance, to bound the risk on constraint violation. We propose a reduced sequential quadratic programming (rSQP) algorithm to solve the underlying optimization problem. This algorithm exploits the structure of the coherent risk measures, thus a large set of constraints are solved within...... sub-problems. Moreover, a variable elimination procedure allows solving the optimization problem in a reduced space and an iterative active-set method helps to handle a large set of inequality constraints. Finally, we demonstrate the application of constraints to bound the risk of water production...
An environmental data base for all Hydro-Quebec reservoirs
International Nuclear Information System (INIS)
Demers, C.
1988-01-01
Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs
Water column attenuation coefficient estimations in Alqueva reservoir
Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele
2017-04-01
The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.
Research program on fractured petroleum reservoirs. Final report, January 1, 1996--December 31, 1996
Energy Technology Data Exchange (ETDEWEB)
Firoozabadi, A.
1997-05-01
Multiphase flow in fractured porous media is a complex problem. While the study of single phase flow in a fractured or a layered medium can be pursued by some kind of averaging process, there is no meaning to averaging two-phase flow when capillarity is an active force. For a two-layer system comprised of high and low permeable layers, the performance of gas-oil gravity can be less efficient than the homogeneous low permeable medium. On the other hand, heterogeneity may enhance water imbibition due to capillarity. Due to the above and various other complexities, current tools for predicting the performance of fractured hydrocarbon reservoirs are not reliable. Based on the research work carried out at the Reservoir Engineering Research Institute, and some other Institutions, a good deal of progress has been made in recent years. But still we are a long way from good predictive reservoir models. In this final report, we summarize some of our achievements in the understanding of multiphase flow in fractured media. Since some of the features of two-phase flow in fractured and layered many are similar due to the capillary forces, the work includes progress in both types of media. There are some basic issues of flow in both fractured and unfractured media that are currently unresolved. These issues include: (1) new phase formation such as the formation of liquid phase in gas condensate reservoirs, and gas phase formation in solution gas drive process and (2) composition variation due to thermal convection and diffusion processes. In the following, a brief summary of our findings in the last three years during the course of the project is presented.
On the Feng-Rao bound for generalized hamming weights
DEFF Research Database (Denmark)
Geil, Hans Olav; Thommesen, Christian
2006-01-01
The Feng-Rao bound gives good estimates of the minimum distance of a large class of codes. In this work we are concerned with the problem of how to extend the Feng-Rao bound so that it deals with all the generalized Hamming weights. The problem was solved by Heijnen and Pellikaan in [7] for a large...... establish the connection to the Shibuya-Sakaniwa bound for generalized Hamming weights ([15], [16], [17], [18], [19] and [20]). More precisely we show that the Shibuya-Sakaniwa bound is a consequence of the extended Feng-Rao bound. In particular the extended Feng-Rao bound gives always at least as good...
On the Feng-Rao bound for generalized Hamming weights
DEFF Research Database (Denmark)
Geil, Olav; Thommesen, Christian
2005-01-01
The Feng-Rao bound gives good estimates of the minimum distance of a large class of codes. In this work we are concerned with the problem of how to extend the Feng-Rao bound so that it deals with all the generalized Hamming weights. The problem was solved by Heijnen and Pellikaan in [7] for a large...... establish the connection to the Shibuya-Sakaniwa bound for generalized Hamming weights ([15], [16], [17], [18], [19] and [20]). More precisely we show that the Shibuya-Sakaniwa bound is a consequence of the extended Feng-Rao bound. In particular the extended Feng-Rao bound gives always at least as good...
Layering and Ordering in Electrochemical Double Layers
Energy Technology Data Exchange (ETDEWEB)
Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
2018-02-26
Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.
Energy Technology Data Exchange (ETDEWEB)
Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-04-19
The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.
Zhao, Ling; Xia, Huifen
2018-01-01
The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.
Upper Hiwassee River Basin reservoirs 1989 water quality assessment
International Nuclear Information System (INIS)
Fehring, J.P.
1991-08-01
The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters
Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.
Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E
2018-02-02
Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.
Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits
Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.
2015-01-01
Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks
Energy Technology Data Exchange (ETDEWEB)
Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.
2001-08-15
Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.
Energy Technology Data Exchange (ETDEWEB)
Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce
2000-03-16
The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.
Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M
2016-11-01
The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.
Katterbauer, Klemens
2015-04-01
Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.
Energy Technology Data Exchange (ETDEWEB)
Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.
1999-04-28
The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.
Wu, H.; Pollyea, R.
2017-12-01
Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω screening tool for qualitative assessment of reservoir performance.
Saturation distributions in heavy oil reservoirs
Staten, Joshua Todd
Models that describe conventional reservoirs can be used to explore the possibility of heavier-than-water oil. Steam-assisted gravity drainage (SAGD) is a common process in reservoirs with extra heavy oils (oil sands). In some cases, oil that is heavier than water is present in these reservoirs. The segregation of oil and water may cause issues for recovery. It is important to understand the initial saturation distribution of oil and water for proper design of injection. It was found through simulation that the heavy oil would pool towards the bottom of a heavy oil reservoir with water remaining on top of the oil. With capillary pressure, the heavy oil and water will form a transition zone. The extent of the transition zone is dependent on the density gradient of the oil, the density difference between the oil and water, and the slope of the capillary pressure saturation profile. This finding influences the positioning of production piping in steam-assisted gravity drainage (SAGD) as well as possible geological pooling areas for recovery. The possibility of a water zone between oil zones increases the risk of missing oil in the reservoir when drilling or perforating.
Model based management of a reservoir system
Energy Technology Data Exchange (ETDEWEB)
Scharaw, B.; Westerhoff, T. [Fraunhofer IITB, Ilmenau (Germany). Anwendungszentrum Systemtechnik; Puta, H.; Wernstedt, J. [Technische Univ. Ilmenau (Germany)
2000-07-01
The main goals of reservoir management systems consist of prevention against flood water damages, the catchment of raw water and keeping all of the quality parameters within their limits besides controlling the water flows. In consideration of these goals a system model of the complete reservoir system Ohra-Schmalwasser-Tambach Dietharz was developed. This model has been used to develop optimized strategies for minimization of raw water production cost, for maximization of electrical energy production and to cover flood situations, as well. Therefore a proper forecast of the inflow to the reservoir from the catchment areas (especially flooding rivers) and the biological processes in the reservoir is important. The forecast model for the inflow to the reservoir is based on the catchment area model of Lorent and Gevers. It uses area precipitation, water supply from the snow cover, evapotranspiration and soil wetness data to calculate the amount of flow in rivers. The other aim of the project is to ensure the raw water quality using quality models, as well. Then a quality driven raw water supply will be possible. (orig.)
Mechanisms of HIV persistence in HIV reservoirs.
Mzingwane, Mayibongwe L; Tiemessen, Caroline T
2017-03-01
The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.
Mercury and methylmercury in reservoirs in Indiana
Risch, Martin R.; Fredericksen, Amanda L.
2015-01-01
Mercury (Hg) is an element that occurs naturally, but evidence suggests that human activities have resulted in increased amounts being released to the atmosphere and land surface. When Hg is converted to methylmercury (MeHg) in aquatic ecosystems, MeHg accumulates and increases in the food web so that some fish contain levels which pose a health risk to humans and wildlife that consume these fish. Reservoirs unlike natural lakes, are a part of river systems that are managed for flood control. Data compiled and interpreted for six flood-control reservoirs in Indiana showed a relation between Hg transport, MeHg formation in water, and MeHg in fish that was influenced by physical, chemical, and biological differences among the reservoirs. Existing information precludes a uniform comparison of Hg and MeHg in all reservoirs in the State, but factors and conditions were identified that can indicate where and when Hg and MeHg levels in reservoirs could be highest.
Physical modelling of the Akkajaure reservoir
Directory of Open Access Journals (Sweden)
J. Sahlberg
2003-01-01
Full Text Available This paper describes the seasonal temperature development in the Akkajaure reservoir, one of the largest Swedish reservoirs. It lies in the headwaters of the river Lulealven in northern Sweden; it is 60 km long and 5 km wide with a maximum depth of 92 m. The maximum allowed variation in surface water level is 30 m. The temperature field in the reservoir is important for many biochemical processes. A one-dimensional lake model of the Akkajaure reservoir is developed from a lake model by Sahlberg (1983 and 1988. The dynamic eddy viscosity is calculated by a two equation turbulence model, a k–ε model and the hypolimnic eddy diffusivity formulation which is a function of the stability frequency (Hondzo et al., 1993. A comparison between calculated and measured temperature profiles showed a maximum discrepancy of 0.5–1.0°C over the period 1999-2002. Except for a few days in summer, the water temperature is vertically homogeneous. Over that period of years, a weak stratification of temperature occurred on only one to two weeks a year on different dates in July and August. This will have biological consequences. Keywords: temperature profile,reservoir, 1-D lake model, stratification, Sweden
Integral cesium reservoir: Design and transient operation
Smith, Joe N., Jr.; Horner, M. Harlan; Begg, Lester L.; Wrobleski, William J.
An electrically heated thermionic converter has been designed built and successfully tested in air. One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient.
Tracing fluid flow in geothermal reservoirs
Energy Technology Data Exchange (ETDEWEB)
Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)
1997-12-31
A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.
Energy Technology Data Exchange (ETDEWEB)
Pande, P.K.
1995-09-12
At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.
Williams, Marshall L.; Etheridge, Alexandra B.
2013-01-01
of flow. The reservoir tended to gain water from seepage of groundwater in the early spring months (March–May), while seepage losses to groundwater from the reservoir occurred in the drier months (June–October). Net monthly seepage rates, as computed by the water-budget method, varied greatly. Reservoir gains from seepage ranged from 0.2 to 59.4 acre-feet per month, while reservoir losses to seepage ranged from 1.6 and 26.8 acre-feet per month. An analysis of seepage meter estimates and segmented-Darcy estimates qualitatively supports the seasonal patterns in seepage provided by the water-budget calculations, except that they tended to be much smaller in magnitude. This suggests that actual seepage might be smaller than those estimates made by the water-budget method. Although the results of all three methods indicate that there is some water loss from the reservoir to groundwater, the seepage losses may be due to rewetting of unsaturated near-shore soils, possible replenishment of a perched aquifer, or both, rather than through percolation to the local aquifer that lies 130 feet below the reservoir. A lithologic log from an adjacent well indicates the existence of a clay lithology that is well correlated to the original reservoir’s base elevation. If the clay lithologic unit extends beneath the reservoir basin underlying the fine-grain reservoir bed sediments, the clay layer should act as an effective barrier to reservoir seepage to the local aquifer, which would explain the low seepage loss estimates calculated in this study.
The S-matrix for systems with bound states
Ruijgrok, Th.W.
A unitary S-matrix is defined for a system of three particles, two of which can form a bound state. It is shown how for elastic scattering the polarization of the bound state must be taken into account.
Bound values for Hall conductivity of heterogeneous medium under ...
Indian Academy of Sciences (India)
- ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...
Bolke, E.L.; Waddell, Kidd M.
1975-01-01
The major tributaries to Flaming Gorge Reservoir contribute an average of about 97 percent of the total streamflow and 82 percent of the total load of dissolved solids. The Green River is the largest tributary, and for the 1957-72 water years it contributed 81 percent of the total streamflow and 70 percent of the total load of dissolved solids. The principal constituents in the tributary streamflow are calcium and sulfate during periods of lowest flow and calcium and bicarbonate during periods of highest flow.Flaming Gorge Dam was closed in November 1962, and the most significant load changes of chemical constituents due to the net effect of inflow, outflow, leaching, and chemical precipitation in the reservoir have been load changes of sulfate and bicarbonate. The average increase of dissolved load of sulfate in the reservoir for the 1969-72 water years was 110,000 tons (99,790 t) per year, which was 40,000 tons (36,287 t) per year less than for the 1963-66 water years. The average decrease of dissolved load of bicarbonate in the reservoir for 1969-72 was 40,000 tons (36,287 t) per year, which was the same as the decrease for 1963-66.Anaerobic conditions were observed in the deep, uncirculated part of the reservoir near the dam during the 1971 and 1972 water years, and anaerobic or near-anaerobic conditions were observed near the confluence of the Blacks Fork and Green River during the summers of 1971 and 1972.The water in Flaming Gorge Reservoir is in three distinct layers, and the upper two layers (the epilimnion and the metalimnion) mixed twice during each of the 1971-72 water years. The two circulation periods were in the spring and fall. The water in the deepest layer (the hypolimnion) did not mix with the waters of the upper zones because the density difference was too great and because the deep, narrow shape of the basin probably inhibits mixing.The depletion of flow in the Green River downstream from Flaming Gorge Dam between closure of the dam and the end
The bound fraction of young star clusters
Brinkmann, Nina; Banerjee, Sambaran; Motwani, Bhawna; Kroupa, Pavel
2017-04-01
Context. The residual gas within newly formed star clusters is expelled through stellar feedback on timescales ≲ 1 Myr. The subsequent expansion of the cluster results in an unbinding of a fraction of stars, before the remaining cluster members can re-virialize and form a surviving cluster. Aims: We investigate the bound fraction after gas expulsion as a function of initial cluster mass in stars Mecl and gauge the influence of primordial mass segregation, stellar evolution and the tidal field at solar distance. We also assess the impact of the star-formation efficiency ɛSFE and gas expulsion velocity vg. Methods: We perform N-body simulations using Sverre Aarseth's NBODY7 code, starting with compact clusters in their embedded phase and approximate the gas expulsion by means of an exponentially depleting external gravitational field. We follow the process of re-virialization through detailed monitoring of different Lagrange radii over several Myr, examining initial half-mass radii of 0.1 pc, 0.3 pc and 0.5 pc and Mecl usually ranging from 5 × 103M⊙ to 5 × 104M⊙. Results: The strong impact of the relation between the gas expulsion timescale and the crossing time means that clusters with the same initial core density can have very different bound fractions. The adopted ɛSFE = 0.33 in the cluster volume results in a distinct sensitivity to vg over a wide mass range, while a variation of ɛSFE can make the cluster robust to the rapidly decreasing external potential. We confirm that primordial mass segregation leads to a smaller bound fraction, its influence possibly decreasing with mass. Stellar evolution has a higher impact on lower mass clusters, but heating through dynamical friction could expand the cluster to a similar extent. The examined clusters expand well within their tidal radii and would survive gas expulsion even in a strong tidal field.
Ionically Bound Peroxidase from Peach Fruit
Directory of Open Access Journals (Sweden)
Neves Valdir Augusto
2002-01-01
Full Text Available Soluble, ionically bound peroxidase (POD and polyphenoloxidase (PPO were extracted from the pulp of peach fruit during ripening at 20°C. Ionically bound form was purified 6.1-fold by DEAE-cellulose and Sephadex G-100 chromatography. The purified enzyme showed only one peak of activity on Sephadex G-100 and PAGE revealed that the enzyme was purified by the procedures adopted. The purified enzyme showed a molecular weight of 29000 Da, maximum activity at pH 5.0 and at 40ºC. The calculated apparent activation energy (Ea for the reaction was10.04 kcal/mol. The enzyme was heat-labile in the temperature range of 60 to 75ºC with a fast inactivation at 75ºC. Measurement of residual activity showed a stabilizing effect of sucrose at various temperature/sugar concentrations (0, 10, 20 %, w/w, with an activation energy (Ea for inactivation increasing with sucrose concentration from 0 to 20% (w/w. The Km and Vmax values were 9.35 and 15.38 mM for 0-dianisidine and H2O2, respectively. The bound enzyme was inhibited competitively by ferulic, caffeic and protocatechuic acids with different values of Ki,. L-cysteine, p-coumaric and indolacetic acid and Fe++ also inhibited the enzyme but at a lower grade. N-ethylmaleimide and p-CMB were not effective to inhibit the enzyme demonstrating the non-essentiality of SH groups.
DIVERSITY OF THE TSI INDICATORS OF THE MIDDLE-FOREST SMALL RETENTION RESERVOIR
Directory of Open Access Journals (Sweden)
Joanna Szczykowska
2015-11-01
Full Text Available Article describes studies on the trophic status which were carried out using the water samples from the small retention reservoir Topiło located in especially valuable natural forests of Puszcza Białowieska. In order to assess the degree of Topiło reservoir contamination, three measurement and control points were selected for testing, which were situated near the inflow (point No. 1 and outflow (point No. 3 of river Perebel, as well as in the middle part of the reservoir (point No. 2. The selection and placement of measurement and control points on the reservoir was dictated by the ability to capture changes in the study object. Tests of water samples collected from the surface layer of the coastal zone, were carried out once a month during the period from April 2007 to March 2014. The following determinations in collected water samples were performed: total nitrogen, total phosphorus, chlorophyll “a”, and turbidity. The trophic level of Topiło reservoir was also assessed according to the concentration criteria and based on the trophic status indices (TSI calculated after Carlson’s as well as Kratzer and Brezonik’s. Given the annual average value of overall trophic level (Trophic Status Index, the dominant role of the TSI (TP during all years of research attracts some attention. The TSI index values ranged within 78.3–80.26, which allowed to classify the water of Topiło reservoir as hypertrophic. The research indicates an advanced and constantly progressive degradation of water quality in Topiło reservoir. Values of TSI (Chl were in the range of 49.2–77.35 and therefore water status in winter can be defined as eutrophic indicating the hypertrophy in remaining periods under study. Additional investments planned for advance reclamation treatments should be necessarily taken into consideration at the stage of planning and design of new small water retention reservoirs. Topiło reservoir requires modernization and reclamation, it
Bound states in a strong magnetic field
International Nuclear Information System (INIS)
Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.
2013-01-01
We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.
BOUND PERIODICAL HOLDINGS BATTELLE - NORTHWEST LIBRARY
Energy Technology Data Exchange (ETDEWEB)
None
1967-05-01
This report lists the bound periodicals in the Technical Library at the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. It was prepared from a computer program and is arranged in two parts. Part one is an alphabetical list of journals by title; part two is an arrangement of the journals by subject. The list headings are self-explanatory, with the exception of the title code, which is necessary in the machine processing. The listing is complete through June, 1966 and updates an earlier publication issued in March, 1965.
Andreev bound states. Some quasiclassical reflections
Energy Technology Data Exchange (ETDEWEB)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Tracking objects with the bounded irregular pyramid
Marfil Robles, Rebeca
2006-01-01
En esta tesis se propone un sistema de seguimiento de objetos basados en un nuevo método de representación y localización del objetivo. Se trata de realizar el seguimiento de objetos no rígidos en tiempo real, sin utilizar ningún modelo previo de los objetos a seguir. Para conseguir esto, se propone un nuevo modelo para caracterizar la apariencia del objeto basado en una máscara o template. Este modelo utiliza una nueva estructura piramidal, denominada Bounded Irregular Pyramid (BIP), p...
Uniformly bounded representations of the Lorentz groups
International Nuclear Information System (INIS)
Brega, A.O.
1982-01-01
For the Lorentz group G = SO/sub e/(n + 1, 1)(ngreater than or equal to 2) the author constructs a family of uniformly bounded representations by means of analytically continuing a certain normalization of the unitary principal series. The method the author uses relies on an analysis of various operators under a Mellin transform and extends earlier work of E.N. Wilson. In a series of papers Kunze and Stein initiated the theory of uniformly bounded representations of semisimple Lie groups; the starting point is the unitary principal series T(sigma,s) obtained in a certain subgroup M of G and a purely imaginary number s. From there Kunze and Stein constructed families of representations R(sigma,s) depending analytically on a parameter s in a domain D of C containing the imaginary axis which are unitarily equilvalent to T(sigma,s) for s contained in the set of imaginary numbers and whose operator norms are uniformly bounded for each s in D. In the case of the Lorentz groups SO/sub e/(n + 1, 1)(ngreater than or equal to2) and the trivial representation 1 of M, E.N. Wilson obtained such a family R(1,s) for the domain D = [s contained in the set of C: absolute value Re(s) Vertical Bar2]. For this domain D and for any representation sigma of M the author provides a family R(sigma,s) of uniformly bounded representations analytically continuing T(sigma,s), thereby generalizing Wilson's work. The author has also investigated certain symmetry properties of the representations R(sigma,s) under the action of the Weyl group. The trivial representation is Weyl group invariant and the family R(1,s) obtained by Wilson satisfies R(1,s) = R(1,-s) reflecting this. Obtained was the analogous result R(sigma,s) = R(sigma,-s) for some well known representations sigma that are Weyl group invariant. This involves the explicit computation of certain constants arising in the Fourier transforms of intertwining operators
Bounds for the System Reliability Function.
1985-05-01
RD-RIGS 529 SOUNDS FOR THE SYSTEN RELIABILITY FUNCTION(UD RIZONm i UNIV TUCSON DEPT OF MATHENATICS J 0 SNANTHIKUNAR NAY 85 AFOSR-AS RFOSR-84-6295... compute R. Except in some special cases [e.g. Agrawal and Satyanarayana (1984), Provan and Ball (1984), and Shanthikumar (1982, 1984)], the problem...bounds get tighter as m increases and give the exact unreallbility when m - n + 1. This allows one to progressively compute A,,At+I, ... , until a desired
Score Bounded Monte-Carlo Tree Search
Cazenave, Tristan; Saffidine, Abdallah
Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explore. We apply our algorithm to solving Seki in the game of Go and to Connect Four.
Fermionic bound states in distinct kinklike backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)
2017-04-15
This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)
Persistence-Based Branch Misprediction Bounds for WCET Analysis
DEFF Research Database (Denmark)
Puffitsch, Wolfgang
2015-01-01
Branch prediction is an important feature of pipelined processors to achieve high performance. However, it can lead to overly pessimistic worst-case execution time (WCET) bounds when being modeled too conservatively. This paper presents bounds on the number of branch mispredictions for local...... linear programming formulations of the WCET problem. An evaluation on a number of benchmarks shows that with these bounds, dynamic branch prediction does not necessarily lead to higher WCET bounds than static prediction schemes....
A Beta-Beta Achievability Bound with Applications
Yang, Wei; Collins, Austin; Durisi, Giuseppe; Polyanskiy, Yury; Poor, H. Vincent
2016-01-01
A channel coding achievability bound expressed in terms of the ratio between two Neyman-Pearson $\\beta$ functions is proposed. This bound is the dual of a converse bound established earlier by Polyanskiy and Verd\\'{u} (2014). The new bound turns out to simplify considerably the analysis in situations where the channel output distribution is not a product distribution, for example due to a cost constraint or a structural constraint (such as orthogonality or constant composition) on the channel...
Distinguishing Majorana bound states and Andreev bound states with microwave spectra
Zhang, Zhen-Tao
2018-04-01
Majorana fermions are a fascinating and not yet confirmed quasiparticles in condensed matter physics. Here we propose using microwave spectra to distinguish Majorana bound states (MBSs) from topological trivial Andreev bound states. By numerically calculating the transmission and Zeeman field dependence of the many-body excitation spectrum of a 1D Josephson junction, we find that the two kinds of bound states have distinct responses to variations in the related parameters. Furthermore, the singular behaviors of the MBSs spectrum could be attributed to the robust fractional Josephson coupling and nonlocality of MBSs. Our results provide a feasible method to verify the existence of MBSs and could accelerate its application to topological quantum computation.
Candidate for laser cooling of a negative ion: observations of bound-bound transitions in La(-).
Walter, C W; Gibson, N D; Matyas, D J; Crocker, C; Dungan, K A; Matola, B R; Rohlén, J
2014-08-08
Despite the tremendous advances in laser cooling of neutral atoms and positive ions, no negatively charged ion has been directly laser cooled. The negative ion of lanthanum, La(-), has been proposed as the best candidate for laser cooling of any atomic anion [ and , Phys. Rev. A 81, 032503 (2010)]. Tunable infrared laser photodetachment spectroscopy is used to measure the bound-state structure of La(-), revealing a spectrum of unprecedented richness with multiple bound-bound electric dipole transitions. The potential laser-cooling transition ((3)F(2)(e)→(3)D(1)(o)) is identified and its excitation energy is measured. The results confirm that La^{-} is a very promising negative ion for laser-cooling applications.
Layers of Cold Dipolar Molecules in the Harmonic Approximation
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used...... to adjust this effective interaction. To model the intra-layer repulsion of the polar molecules, we introduce a repulsive inter-molecule potential that can be parametrically varied. Single chains containing one molecule in each layer, as well as multi-chain structures in many layers are discussed...... and their energies and radii determined. We extract the normal modes of the various systems as measures of their volatility and eventually of instability, and compare our findings to the excitations in crystals. We find modes that can be classified as either chains vibrating in phase or as layers vibrating against...
Lower Bound of Energy-Latency Tradeoff of Opportunistic Routing in Multihop Networks
Directory of Open Access Journals (Sweden)
Gorce Jean-Marie
2011-01-01
Full Text Available Opportunistic networking aims at exploiting sporadic radio links to improve the connectivity of multihop networks and to foster data transmissions. The broadcast nature of wireless channels is an important feature that can be exploited to improve transmissions by using several potential receivers. Opportunistic relaying is thus the first brick for opportunistic networking. However, the advantage of opportunistic relaying may be degraded due to energy increase related to having multiple active receivers. This paper proposes a thorough analysis of opportunistic relaying efficiency under different realistic radio channel conditions. The study is intended to find the best tradeoff between two objectives: energy and latency minimizations, with a hard reliability constraint. We derive an optimal bound, namely, the Pareto front of the related optimization problem, which offers a good insight into the benefits of opportunistic routings compared with classical multihop routing schemes. Meanwhile, the lower bound provides a framework to optimize the parameters at the physical layer, MAC layer, and routing layer from the viewpoint of cross layer during the design or planning phase of a network.
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...
Reservoir characterization and enhanced oil recovery research
Energy Technology Data Exchange (ETDEWEB)
Lake, L.W.; Pope, G.A.; Schechter, R.S.
1992-03-01
The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.
Greenhouse gas emissions from hydroelectric reservoirs
International Nuclear Information System (INIS)
Rosa, L.P.; Schaeffer, R.
1994-01-01
In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming
The glaciogenic reservoir analogue studies project (GRASP)
DEFF Research Database (Denmark)
Moscariello, A.; Moreau, Julien; Vegt, P. van der
increasing the risk associated with developing effectively these reservoirs. Therefore a analogue-based predictive stratigraphical and sedimentological model can help to steer drilling strategy and reduce uncertainties and associated risks. For this purpose the GRASP joint industry programme was established......Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...... in Quaternary glaciated areas and their nature and sediment composition is critical to drive a sustainable production strategy and assess their vulnerability. Seismic resolution however, often limits the understanding of channel valleys morphology, 3D geometry and internal reservoir distribution, thus...
Mechanical Testing Development for Reservoir Forgings
Energy Technology Data Exchange (ETDEWEB)
Wenski, E.G.
2000-05-22
The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.
Bounding the number of remarkable values via Jouanolou's theorem
Chèze , Guillaume
2015-01-01
In this article we bound the number of remarkable values of a polynomial vector field. The proof is short and based on Jouanolou's theorem about rational first integrals of planar polynomial derivations. Our bound is given in term of the size of a Newton polygon associated to the vector field. We prove that this bound is almost reached.
Bounding the number of remarkable values via Jouanolou's theorem
Chèze, Guillaume
2015-05-01
In this article we bound the number of remarkable values of a polynomial vector field. The proof is short and based on Jouanolou's theorem about rational first integrals of planar polynomial derivations. Our bound is given in term of the size of a Newton polygon associated to the vector field. We prove that this bound is almost reached.
Bound values for Hall conductivity of heterogeneous medium under ...
Indian Academy of Sciences (India)
Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.
Bounds in the generalized Weber problem under locational uncertainty
DEFF Research Database (Denmark)
Juel, Henrik
1981-01-01
An existing analysis of the bounds on the Weber problem solution under uncertainty is incorrect. For the generalized problem with arbitrary measures of distance, we give easily computable ranges on the bounds and state the conditions under which the exact values of the bounds can be found...... with little computational effort. Numerical examples illustrate the analysis....
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Bounds for regularity and coregularity of graded modules
Indian Academy of Sciences (India)
In the notations that follow, we introduce some bounding functions which were defined by Brodmann, Matteotti, and Minh in [6]. In case the local base ring (R0, m0) was Artinian, they obtained some bounds for regularity and coregularity of graded modules in terms of these functions. Notation 2.4. (A) To establish the bounds ...
Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer
International Nuclear Information System (INIS)
Liu, Jiansheng; Wang, Lijun; Lu, Yanyan; He, Shitang
2013-01-01
A theoretical method is developed for analyzing Love waves in a structure with a viscoelastic guiding layer bounded on a piezoelectric substrate. The dispersion equation previously derived for piezoelectric Love waves propagating in the layered structure with an elastic layer is adopted for analyzing a structure with a viscoelastic layer. A Maxwell–Weichert model is introduced to describe the shear stiffness of a polymeric material. Newton’s method is employed for the numerical calculation. The dispersion equation for piezoelectric–elastic Love waves is proved suitable for solving a structure with a viscoelastic layer on a piezoelectric substrate. The theoretical results indicate that the propagation velocity of the Love wave is mainly decided by the shear stiffness of the guiding layer, whereas the propagation loss is approximately proportional to its viscosity. A detailed experimental study was conducted on a Love wave delay line fabricated on an ST-90° X quartz substrate and overlaid with various thicknesses of SU-8 guiding layers. A tail-raising caused by the viscosity of the guiding layer existed in both the calculated and the measured propagation velocities. The calculated insertion loss of the Love wave delay lines was in good agreement with the measured results. The method and the results presented in this paper are beneficial to the design of Love wave sensors with a viscoelastic guiding layer. (paper)
Characterization of oil and gas reservoir heterogeneity
Energy Technology Data Exchange (ETDEWEB)
Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.
1992-10-01
Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.
Monitoring of magnetic EOR fluids in reservoir under production by using the electromagnetic method
KIM, S.; Min, D. J.; Moon, S.; Kim, W. K.; Shin, Y.
2014-12-01
To increase the amount of oil and gas extracted during production, some techniques like EOR (Enhanced Oil Recovery) are applied by injecting some materials such as water and CO2. Recently, there are some researches for injecting magnetic nanoparticles with fluids during EOR. The size of particle is nano-scale, which can prevent particles from adhering to the pores of reservoir. The main purpose of injecting magnetic nanoparticles is to monitor movement or distribution of EOR fluids. To monitor the injected magnetic EOR fluids in the reservoir, CSEM (controlled source electromagnetic method) can be the most optimized geophysical method among various geophysical monitoring methods. Depending on the reservoir circumstances, we can control the electric or magnetic sources to monitor reservoir during oil or gas production. In this study, we perform numerical simulation of CSEM for 3D horizontal-layered models assuming a reservoir under production. We suppose that there are two wells: one is for the controlled source; the other is for the receiver. By changing the distribution, movement and magnetization of EOR fluids, we compare the electric or magnetic fields recorded at the receiver. Maxwell's equations are the governing equation of CSEM and are approximated by using the edge-based finite-element method. Direct solver is applied to solve the linear equations. Because injected magnetic nanoparticle changes the conductivity of EOR fluid, there is high contrast of conductivity of reservoir. This high contrast of conductivity induces secondary electric or magnetic fields that are recorded at the receiver well. We compare these recorded secondary fields generated by various movement or distribution of magnetic EOR fluid. Acknowledgements This work was supported by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea, by the "Civil Military Technology Cooperation Center", and by the International
Analytic quantum bounds on Bell inequalities
International Nuclear Information System (INIS)
Filipp, S.; Svozil, K.
2005-01-01
Full text: Can realism be combined with the quantum world? An important tool to investigate in this question are Bell's inequalities and violations thereof - they represent a cornerstone of our present understanding of quantum mechanics and therefore the description of nature. Here we present a simple algebraic method to calculate violations for any measurement arrangements that are maximal in the sense that quantum mechanics does not allow a stronger violation. Having two or more polarization analyzers available and a source producing photon-pairs in arbitrary polarization states Bell-type inequalities tell us which probabilities for measuring the polarization in particular directions are viable in a deterministic theory. Quantum mechanics does not obey these rules, but yields a violation of these inequalities. The questions is to what extent the inequalities are violated. Making use of a min-max principle analytical expressions can be found for the 'fine structure' of the maximal violations of arbitrary Bell-like inequalities, i. e. the upper bound reachable by any state when the analyzers measure in given directions. Knowing these bounds is useful for experimental tests of the validity of quantum mechanics and can serve as a prerequisite to answer the even more pressing question, why no stronger violation has been observed until now. (author)
Bounds for phylogenetic network space metrics.
Francis, Andrew; Huber, Katharina T; Moulton, Vincent; Wu, Taoyang
2018-04-01
Phylogenetic networks are a generalization of phylogenetic trees that allow for representation of reticulate evolution. Recently, a space of unrooted phylogenetic networks was introduced, where such a network is a connected graph in which every vertex has degree 1 or 3 and whose leaf-set is a fixed set X of taxa. This space, denoted [Formula: see text], is defined in terms of two operations on networks-the nearest neighbor interchange and triangle operations-which can be used to transform any network with leaf set X into any other network with that leaf set. In particular, it gives rise to a metric d on [Formula: see text] which is given by the smallest number of operations required to transform one network in [Formula: see text] into another in [Formula: see text]. The metric generalizes the well-known NNI-metric on phylogenetic trees which has been intensively studied in the literature. In this paper, we derive a bound for the metric d as well as a related metric [Formula: see text] which arises when restricting d to the subset of [Formula: see text] consisting of all networks with [Formula: see text] vertices, [Formula: see text]. We also introduce two new metrics on networks-the SPR and TBR metrics-which generalize the metrics on phylogenetic trees with the same name and give bounds for these new metrics. We expect our results to eventually have applications to the development and understanding of network search algorithms.
Generalized bounds for convex multistage stochastic programs
Künzi, H; Fandel, G; Trockel, W; Basile, A; Drexl, A; Dawid, H; Inderfurth, K; Kürsten, W; Schittko, U
2005-01-01
This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1...
On Aharonov-Casher bound states
Energy Technology Data Exchange (ETDEWEB)
Silva, E.O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil); Andrade, F.M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Filgueiras, C. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, PB (Brazil); Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2013-04-15
In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the {nabla}.E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem. (orig.)
Characterization of bound residues in plants
International Nuclear Information System (INIS)
Stratton, G.D. Jr.; Wheeler, W.B.
1986-01-01
The characterization of unextractable (or 'bound') pesticide residues in plants can be difficult owing to the insoluble nature of the pesticide-plant complex. An unextractable residue can be defined as material derived from the applied pesticide which remains in the plant matrix after exhaustive organic solvent extraction. Experiments with a variety of pesticide classes in plants indicate that the level of unextractable residue varies with the plant species, the pesticide and the exposure time of the plant to the pesticide. Methods used in attempts to release 'bound' residues from solvent-extracted plant tissues include acid hydrolyses, enzymatic treatments and techniques of high-temperature distillation. These methods solubilize or release varying amounts of unextractable material; the amounts depend on the pesticide and on the extent to which the plant fibre is degraded. In experiments using radiolabelled dieldrin (1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-exo-1, 4-endo-5,6-dimethanonaphthalene), carbofuran (2,3-dihydro-2, 2-dimethylbenzofuran-7-yl methylcarbamate) and permethrin ([3-phenoxybenzyl(+-)-3-(2, 2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate]) in radishes, portions of the unextractable material solubilized by the above methods were identified as parent compound and/or closely related metabolites. The bioavailability and toxicological significance of unextractable pesticide residues need to be evaluated. (author)
Phenomenological bounds in inclusive neutrino interactions
International Nuclear Information System (INIS)
Aubrecht, G.J. II; Takasugi, E.; Tanaka, K.
1975-01-01
Using expressions for the ν and anti ν charged and neutral current cross sections and the electroproduction structure function integral and positivity requirements of the sea contribution, bounds are obtained on sigma/sup anti nu N//sigma/sup anti nu N/, and sigma/sup anti nu N//sub nc//sigma/sup nu N//sub nc/ in the standard model. A bound on sigma/sup anti nu N//sigma/sup nu N/ obtained with a V + A term anti p'γ/sub mu/(1-γ 5 )n is used to rule out such a term in the current. A plot of sigma/sup nu N//sub nc/ + sigma/sup anti nu N//sub nc/ versus sigma/sup nu N//sub nc/ - sigma/sup anti nu N//sub nc/ is introduced to analyze the neutral current data. A new relation connecting moments of y and y distributions at a particular point y/sub n/ for ν and anti ν interactions is found. The results do not depend on the neutral current data
Freshwater reservoir effect variability in Northern Germany
DEFF Research Database (Denmark)
Philippsen, B.; Heinemeier, J.
2013-01-01
The freshwater reservoir effect is a potential problem when radiocarbon dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. The reservoir age in hardwater rivers can be up to several thousand years and may be highly variable. Accurate 14C dating of f...... that can also be expected for the past. This knowledge will be applied to the dating of food crusts on pottery from the Mesolithic sites Kayhude at the Alster River and Schlamersdorf at the Trave River, both in Schleswig-Holstein, northern Germany....
Pressure Transient Analysis of Dual Fractal Reservoir
Directory of Open Access Journals (Sweden)
Xiao-Hua Tan
2013-01-01
Full Text Available A dual fractal reservoir transient flow model was created by embedding a fracture system simulated by a tree-shaped fractal network into a matrix system simulated by fractal porous media. The dimensionless bottom hole pressure model was created using the Laplace transform and Stehfest numerical inversion methods. According to the model's solution, the bilogarithmic type curves of the dual fractal reservoirs are illustrated, and the influence of different fractal factors on pressure transient responses is discussed. This semianalytical model provides a practical and reliable method for empirical applications.
Controls on Cementation in a Chalk Reservoir
DEFF Research Database (Denmark)
Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.
In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot’s coefficient and water saturation cannot be extended for Biot’s coefficient and porosity, a correlation is also identified between the two, implying...
Nonlinearities in reservoir engineering: Enhancing quantum correlations
Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi
2017-12-01
There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.
Characterization of oil and gas reservoir heterogeneity
Energy Technology Data Exchange (ETDEWEB)
1991-01-01
The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.
Chalk reservoirs of the North Sea
International Nuclear Information System (INIS)
Hardman, R.F.P.
1982-01-01
The amount of clay in the chalk, whether primary or secondary, is the factor of greatest importance in determining whether chalk has the capability of forming a reservoir rock or not. It has been empirically observed that the less the clay content the better the resevoir and as has been remarked earlier, the amount of clay in the Chalk can be closely correlated with sea level. changes. Where other factors are either absent or of only minor importance, the effect of clay is most clearly seen. A good example is well N-2 in Danish waters. It is concluded that in N-2 clay is the dominant control on reservoir quality. (EG)