WorldWideScience

Sample records for reserved leveraging biotechnology

  1. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  2. KNOWLEDGE CAPITAL, INTANGIBLE ASSETS, AND LEVERAGE: EVIDENCE FROM U.S. AGRICULTURAL BIOTECHNOLOGY FIRMS

    OpenAIRE

    Sporleder, Thomas L.; Moss, Leeann E.; Nickels, Lori A.

    2002-01-01

    Firms in general, and high technology firms such as biotechnology firms in particular, are both a set of assets in place and growth opportunities. This has important implications for managerial decision-making. Knowledge capital motivates exploitation of growth options, which affects firm cash flow. In turn, the level and volatility of firm cash flow influences firm financing decisions. Previous studies suggest that knowledge capital can influence both the location and capital structure of fi...

  3. Knowledge Capital, Intangible Assets, and Leverage: Evidence from U.S. Agricultural Biotechnology Firms

    OpenAIRE

    Sporleder, Thomas L.; Moss, Leeann E.

    2004-01-01

    Agricultural biotechnology firms are high technology companies. Firms in general, and high technology firms in particular, are a set of both assets in place and growth opportunities. This has important implications for managerial decision-making. Knowledge capital motivates exploitation of growth options, which affects firm cash flow. In turn, the level and volatility of firm cash flow influences firm financing decisions. Previous studies suggest that knowledge capital can influence both the ...

  4. Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  5. Biotechnology

    International Nuclear Information System (INIS)

    2011-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  6. Biotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  7. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  8. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  9. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    find that asset classes with embedded leverage offer low risk-adjusted returns and, in the cross-section, higher embedded leverage is associated with lower returns. A portfolio which is long low-embedded-leverage securities and short high-embedded-leverage securities earns large abnormal returns...

  10. Monitoring Leverage

    DEFF Research Database (Denmark)

    Geanakoplos, John; Heje Pedersen, Lasse

    2014-01-01

    measure of systemic risk. Indeed, systemic crises tend to erupt when highly leveraged economic agents are forced to deleverage, sending the economy into recession. We emphasize the importance of measuring both the average leverage on old loans (which captures the economy's vulnerability) and the leverage...... offered on new loans (which captures current credit conditions) since the economy enters a crisis when leverage on new loans is low and leverage on old loans is high. While leverage plays an important role in several economic models, the data on leverage is model-free and simply needs to be collected...

  11. Biotechnology 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  12. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  13. Biotechnology 2009

    International Nuclear Information System (INIS)

    2009-12-01

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  14. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  16. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  19. Leveraging the Reserve Component: Associating Active and Reserve Aviation Units

    Science.gov (United States)

    2013-03-01

    Challenges to Implementation Inertia is always an obstacle for organizational change, especially for large, bureaucratic organizations such as...the 82 RC under his or her jurisdiction to AD or retain the member on AD with the consent of the member under the authority of Sections 12301(d...of organizational equipment, and provides the control to develop, revise, or change equipment authorization inventory data. Also called TOA. (JP 1-02

  20. The Leverage Ratchet Effect

    OpenAIRE

    Anat R. Admati; Peter M. DeMarzo; Martin F. Hellwig; Paul Pfleiderer

    2013-01-01

    Shareholder-creditor conflicts can create leverage ratchet effects, resulting in inefficient capital structures. Once debt is in place, shareholders may inefficiently increase leverage but avoid reducing it no matter how beneficial leverage reduction might be to total firm value. We present conditions for an irrelevance result under which shareholders view asset sales, pure recapitalization and asset expansion with new equity as equally undesirable. We then analyze how seniority, asset hetero...

  1. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Leveraging Facebook to Brand Radiology.

    Science.gov (United States)

    Tso, Hilda H; Parikh, Jay R

    2018-03-30

    In the current health care climate, radiologists should consider developing their brand. Facebook is the market leader for social media networking in the United States. The authors describe how radiologists can leverage Facebook to develop and market organizational, group, and individual brands. The authors then address concerns related to the use of social media by radiologists. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Risks of Leveraged Products

    NARCIS (Netherlands)

    A. Di Cesare (Antonio)

    2012-01-01

    textabstractLeveraged investments have become a fundamental feature of modern economies. The new financial products allow people to take greater-than-usual exposures to risk factors. This thesis analyzes several different aspects of the risks involved by some frequently used leveraged products:

  4. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Current status of biotechnology in Slovakia.

    Science.gov (United States)

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Financing drug discovery via dynamic leverage.

    Science.gov (United States)

    Montazerhodjat, Vahid; Frishkopf, John J; Lo, Andrew W

    2016-03-01

    We extend the megafund concept for funding drug discovery to enable dynamic leverage in which the portfolio of candidate therapeutic assets is predominantly financed initially by equity, and debt is introduced gradually as assets mature and begin generating cash flows. Leverage is adjusted so as to maintain an approximately constant level of default risk throughout the life of the fund. Numerical simulations show that applying dynamic leverage to a small portfolio of orphan drug candidates can boost the return on equity almost twofold compared with securitization with a static capital structure. Dynamic leverage can also add significant value to comparable all-equity-financed portfolios, enhancing the return on equity without jeopardizing debt performance or increasing risk to equity investors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  9. Leveraging the geospatial advantage

    Science.gov (United States)

    Ben Butler; Andrew Bailey

    2013-01-01

    The Wildland Fire Decision Support System (WFDSS) web-based application leverages geospatial data to inform strategic decisions on wildland fires. A specialized data team, working within the Wildland Fire Management Research Development and Application group (WFM RD&A), assembles authoritative national-level data sets defining values to be protected. The use of...

  10. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  11. Development of health biotechnology in developing countries: can private-sector players be the prime movers?

    Science.gov (United States)

    Abuduxike, Gulifeiya; Aljunid, Syed Mohamed

    2012-01-01

    Health biotechnology has rapidly become vital in helping healthcare systems meet the needs of the poor in developing countries. This key industry also generates revenue and creates employment opportunities in these countries. To successfully develop biotechnology industries in developing nations, it is critical to understand and improve the system of health innovation, as well as the role of each innovative sector and the linkages between the sectors. Countries' science and technology capacities can be strengthened only if there are non-linear linkages and strong interrelations among players throughout the innovation process; these relationships generate and transfer knowledge related to commercialization of the innovative health products. The private sector is one of the main actors in healthcare innovation, contributing significantly to the development of health biotechnology via knowledge, expertise, resources and relationships to translate basic research and development into new commercial products and innovative processes. The role of the private sector has been increasingly recognized and emphasized by governments, agencies and international organizations. Many partnerships between the public and private sector have been established to leverage the potential of the private sector to produce more affordable healthcare products. Several developing countries that have been actively involved in health biotechnology are becoming the main players in this industry. The aim of this paper is to discuss the role of the private sector in health biotechnology development and to study its impact on health and economic growth through case studies in South Korea, India and Brazil. The paper also discussed the approaches by which the private sector can improve the health and economic status of the poor. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  13. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  15. Biotechnology : A Dutch perspective

    NARCIS (Netherlands)

    Van Apeldoorn, J.H.F.

    1981-01-01

    Biotechnology: a Dutch Perspective assesses the future potential of biotechnology in the Netherlands. It has been published in English because it is felt that the Dutch case could be of relevance to other industrialised nations. Although the report is aimed primarily at policy planners and decision

  16. Biotechnology Industry, 2006

    Science.gov (United States)

    2006-01-01

    for commercial or other purposes. Because it is a process resting on the understanding of genetics, proteomics , and life science, biotechnology has...Luhnow & Samor, 2006). Novel biotechnologies could bring down the costs of making ethanol. Iogen Corporation has genetically modified a fungus to

  17. Healthcare biotechnology in India

    OpenAIRE

    Srivastava, L. M.

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the r...

  18. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  19. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  20. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Leverage Aversion and Risk Parity

    DEFF Research Database (Denmark)

    Asness, Clifford; Frazzini, Andrea; Heje Pedersen, Lasse

    2012-01-01

    The authors show that leverage aversion changes the predictions of modern portfolio theory: Safer assets must offer higher risk-adjusted returns than riskier assets. Consuming the high risk-adjusted returns of safer assets requires leverage, creating an opportunity for investors with the ability...... to apply leverage. Risk parity portfolios exploit this opportunity by equalizing the risk allocation across asset classes, thus overweighting safer assets relative to their weight in the market portfolio....

  2. Leveraging organisational cultural capital

    Directory of Open Access Journals (Sweden)

    R Scheel

    2007-10-01

    Full Text Available Organisational culture discourse mandates a linear approach of diagnosis, measurement and gap analysis as standard practice in relation to most culture change initiatives. Therefore, a problem solving framework geared toward “fixing�? and/or realigning an organisation’s culture is usually prescribed. The traditional problem solving model seeks to identify gaps between current and desired organisational cultural states, inhibiting the discovery of an organisation’s unique values and strengths, namely its cultural capital. In pursuit of discovering and leveraging organisational cultural capital, a descriptive case study is used to show how an Appreciative Inquiry process can rejuvenate the spirit of an organisation as a system-wide inquiry mobilises a workforce toward a shared vision.

  3. Healthcare biotechnology in India.

    Science.gov (United States)

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  4. Biotechnology for energy

    International Nuclear Information System (INIS)

    Malik, K.A.; Naqvi, S.H.M.

    1991-01-01

    The present volume comprises paper presented and discussed in the symposium. The main purpose of this symposium was to collect researchers in the area of bioconversion of biomass into biofuels, petroleum biotechnology and biohydrometallurgy. This book has been divided into four main sections which includes molecular biology of biomass conversion, microbial conversion of biomass, petroleum biotechnology and biohydrometallurgy. It is becoming clear that biotechnology play a role in production and conservation of energy and can contribute to the overall energy situation. (A.B.)

  5. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  6. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  7. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  8. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary ... Assessment of microalgae-influenced biodeterioration of concrete structures · EMAIL FREE ... A study on 3-mercaptopyruvate sulphurtransferase (3-MST) produced under ...

  9. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  10. Biotechnological research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H J

    1982-01-01

    The current research possibilities in the expanding field of biotechnology in Europe are very briefly described. Remarks on research and development are limited to six topics: fermented food products; biomass production; product formation; bioreactors; waste-water treatment, environmental processes and methane formation; central research institutions. It is summarised that increased efforts at co-operation on all levels are vital for an improved development in the field of biotechnology throughout Europe.

  11. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    Science.gov (United States)

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  13. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  14. Leverage, Investment, and Firm Growth

    OpenAIRE

    Larry Lang; Eli Ofek; Rene M. Stulz

    1995-01-01

    We show that there is a negative relation between leverage and future growth at the firm level and, for diversified firms, at the segment level. Further, this negative relation between leverage and growth holds for firms with low Tobin's q, but not for high-q firms or firms in high-q industries. Therefore, leverage does not reduce growth for firms known to have good investment opportunities, but is negatively related to growth for firms whose growth opportunities are either not recognized by ...

  15. Stochastic volatility and leverage effect

    OpenAIRE

    Josep Perello; Jaume Masoliver

    2002-01-01

    We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated ...

  16. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  17. Biotechnology and human rights.

    Science.gov (United States)

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  18. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  19. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  20. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  1. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  2. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  3. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  4. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  5. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  6. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  7. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  8. Biotechnology: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, A.

    1985-04-01

    Rapidly occurring technological breakthroughs in the wake of numerous discoveries in different fields, such as biochemistry, genetic engineering as well as cellular and molecular biology as described in this paper have a variety of industrial applications, and forcasts covering these and various other fields have been made. The emerging bio-industry, covering diverse industries, such as chemical, food, pharmaceutical, etc., as well as the domains of health, environmental protection and abatement of pollution present challenging prospects. Several biotechnology processes relating to bioenergy, fermentation, waste transformation, vaccines, etc. are of particular interest to the developing countries. The 'functioning systems' resulting from the breakthrouth in genetic engineering, entailing extraordinary refinement of analytical techniques and technological progress, pose the challenging task of harnessing them to the advantage of mankind. Providing effective legal protection, conducive to the development of biotechnologies-their innovative process and technological change-is a matter of serious concern, involving practical and economical considerations. Several other issues and questions, such as risk prevention and management of potential dangers and hazards in genetic recombination operation by way of safety regulations and necessary guidelines, questions relating to the clinical trials of the interferons-the wonder drug-as well as questions of professional ethics are raised by biotechnologies. Industry-funded research in biotechnology, where scientific and commercial imperatives are interlocked, has for instance, its repercussions on the traditional thrust of university system, specially the sanctity of autonomy for basic research.

  9. Biotechnology--Biotechnical Systems.

    Science.gov (United States)

    Ruggles, Stanford

    1990-01-01

    The perspective of biotechnology and its development in the K-12 technology education curriculum are described. The content curriculum development and implications for activities are discussed. The difference between a curriculum focused on the activities of industry compared to one that addresses technology as it pervades all human endeavors is…

  10. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  11. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  12. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  13. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  14. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  15. Leverage points for sustainability transformation.

    Science.gov (United States)

    Abson, David J; Fischer, Joern; Leventon, Julia; Newig, Jens; Schomerus, Thomas; Vilsmaier, Ulli; von Wehrden, Henrik; Abernethy, Paivi; Ives, Christopher D; Jager, Nicolas W; Lang, Daniel J

    2017-02-01

    Despite substantial focus on sustainability issues in both science and politics, humanity remains on largely unsustainable development trajectories. Partly, this is due to the failure of sustainability science to engage with the root causes of unsustainability. Drawing on ideas by Donella Meadows, we argue that many sustainability interventions target highly tangible, but essentially weak, leverage points (i.e. using interventions that are easy, but have limited potential for transformational change). Thus, there is an urgent need to focus on less obvious but potentially far more powerful areas of intervention. We propose a research agenda inspired by systems thinking that focuses on transformational 'sustainability interventions', centred on three realms of leverage: reconnecting people to nature, restructuring institutions and rethinking how knowledge is created and used in pursuit of sustainability. The notion of leverage points has the potential to act as a boundary object for genuinely transformational sustainability science.

  16. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optical trapping for analytical biotechnology.

    Science.gov (United States)

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Oil and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yoshiaki

    1988-06-01

    The secondary oil recovery due to microorganisms and the production of useful substances from oil distillates using microorganisms are described as examples to solidify the relationship between oil and biotechnology. The secondary crude-oil recovery has been carried out due to the microorganism drive process, which includes the on-the-ground and underground processes. Although the microorganism drive process has been investigated for many years, the selection of the microorganisms is not completely established. Many uncertainties still remain regarding the technical and economic aspects. The single cell protein (SCP) is an example of industrial success in the production of useful substances from the oil. Rumania has produced SCP from normal paraffin and the U. K. from the methanol and the products are used as the protein source for animals. Remarkable progress in the functional efficiency of microorganisms is expected due to the biotechnology for both applications. (4 tabs)

  19. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  20. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  1. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  2. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  3. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  4. Practicing environmental biotechnology

    OpenAIRE

    Bruce E.Rittmann

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  5. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  6. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  7. The impact of plant biotechnology on food allergy.

    Science.gov (United States)

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  9. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  10. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  11. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Leverage, monetary policy, and firm investment

    OpenAIRE

    Charles X. Hu

    1999-01-01

    In this paper, I investigate whether the effects of monetary policy on firm investment can be transmitted through leverage. I find that monetary contractions reduce the growth of investment more for highly leveraged firms than for less leveraged firms. The results suggest that the board credit channel for monetary policy exists, and that it can operate through leverage, as adverse monetary shocks aggravate real debt burdens and raise the effective costs of investment.

  14. Leveraging electronic health records for clinical research.

    Science.gov (United States)

    Raman, Sudha R; Curtis, Lesley H; Temple, Robert; Andersson, Tomas; Ezekowitz, Justin; Ford, Ian; James, Stefan; Marsolo, Keith; Mirhaji, Parsa; Rocca, Mitra; Rothman, Russell L; Sethuraman, Barathi; Stockbridge, Norman; Terry, Sharon; Wasserman, Scott M; Peterson, Eric D; Hernandez, Adrian F

    2018-04-30

    Electronic health records (EHRs) can be a major tool in the quest to decrease costs and timelines of clinical trial research, generate better evidence for clinical decision making, and advance health care. Over the past decade, EHRs have increasingly offered opportunities to speed up, streamline, and enhance clinical research. EHRs offer a wide range of possible uses in clinical trials, including assisting with prestudy feasibility assessment, patient recruitment, and data capture in care delivery. To fully appreciate these opportunities, health care stakeholders must come together to face critical challenges in leveraging EHR data, including data quality/completeness, information security, stakeholder engagement, and increasing the scale of research infrastructure and related governance. Leaders from academia, government, industry, and professional societies representing patient, provider, researcher, industry, and regulator perspectives convened the Leveraging EHR for Clinical Research Now! Think Tank in Washington, DC (February 18-19, 2016), to identify barriers to using EHRs in clinical research and to generate potential solutions. Think tank members identified a broad range of issues surrounding the use of EHRs in research and proposed a variety of solutions. Recognizing the challenges, the participants identified the urgent need to look more deeply at previous efforts to use these data, share lessons learned, and develop a multidisciplinary agenda for best practices for using EHRs in clinical research. We report the proceedings from this think tank meeting in the following paper. Copyright © 2018 Elsevier, Inc. All rights reserved.

  15. Leverage effect in energy futures

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2014-01-01

    Roč. 45, č. 1 (2014), s. 1-9 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : energy commodities * leverage effect * volatility * long-term memory Subject RIV: AH - Economics Impact factor: 2.708, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433531.pdf

  16. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  17. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... 1Social Impact of Biotechnology Development in Malaysia Research ... purpose of this paper is to examine the ethical perception of modern ... and social benefits of modern biotechnology, consumer .... Company or organisation directly involved in the production of ...... Food safety battle: organic vs. biotech.

  18. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  19. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  20. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  1. Microalgal symbiosis in biotechnology.

    Science.gov (United States)

    Santos, Carla A; Reis, Alberto

    2014-07-01

    This review provides an analysis of recent published work on interactions between microorganisms, especially the ones involving mainly nutrient exchanges and at least with one microalga species. Examples of microbial partners are given, with a remark to the potential application of cultures of an autotroph and a heterotroph, which grow simultaneously, taking advantage of the complementary metabolisms. These are particularly interesting, either due to economic or sustainable aspects, and some applications have already reached the commercial stage of development. The added advantages of these symbiotic cultures are biomass, lipid, and other products productivity enhancement a better utilization of resources and the reduction or even elimination of process residues (including carbon dioxide and other greenhouse gases) to conduct an increasingly greener biotechnology. Among the several symbiotic partners referred, the microalgae and yeast cultures are the most used. The interaction between these two microorganisms shows how to enhance the lipid production for biodiesel purposes compared with separated (stand-alone) cultures.

  2. Biotechnological applications of transglutaminases.

    Science.gov (United States)

    Rachel, Natalie M; Pelletier, Joelle N

    2013-10-22

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

  3. Biotechnology in Turkey: an overview.

    Science.gov (United States)

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  4. On the irrelevance of the leverage effect

    OpenAIRE

    Nippel, Peter

    2001-01-01

    Financial leverage increases the expected return on equity. We show that this leverage effect is not only irrelevant for shareholders' present wealth but also for the return on their investments. This result is straightforward if we do not only look at the return on equity but at the return on shareholders' total wealth. Any relevance leverage may have is definitely due to market imperfections. These may simply cause differences in market access for firms and individuals or lead to agency pro...

  5. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  6. Leveraging Digital Innovation in Healthcare

    DEFF Research Database (Denmark)

    Brown, Carol V.; Jensen, Tina Blegind; Aanestad, Margun

    2014-01-01

    Harnessing digital innovations for healthcare delivery has raised high expectations as well as major concerns. Several countries across the globe have made progress in achieving three common goals of lower costs, higher quality, and increased patient access to healthcare services through...... investments in digital infrastructures. New technologies are leveraged to achieve widespread 24x7 disease management, patients’ wellbeing, home-based healthcare and other patient-centric service innovations. Yet, digital innovations in healthcare face barriers in terms of standardization, data privacy...... landscapes in selected countries. Then panelists with expertise in digital data streams, cloud, and mobile computing will present concrete examples of healthcare service innovations that have the potential to address one or more of the global goals. ECIS attendees are invited to join a debate about...

  7. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  8. World Biotechnology Leaders to Gather for Conference

    Science.gov (United States)

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  9. African Journal of Biotechnology: Submissions

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The African Journal of Biotechnology (AJB) (ISSN 1684-5315) provides rapid publication of .... Authors may still request (in advance) that the editorial board waive some of the handling fee ...

  10. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  11. COPASI and its applications in biotechnology.

    Science.gov (United States)

    Bergmann, Frank T; Hoops, Stefan; Klahn, Brian; Kummer, Ursula; Mendes, Pedro; Pahle, Jürgen; Sahle, Sven

    2017-11-10

    COPASI is software used for the creation, modification, simulation and computational analysis of kinetic models in various fields. It is open-source, available for all major platforms and provides a user-friendly graphical user interface, but is also controllable via the command line and scripting languages. These are likely reasons for its wide acceptance. We begin this review with a short introduction describing the general approaches and techniques used in computational modeling in the biosciences. Next we introduce the COPASI package, and its capabilities, before looking at typical applications of COPASI in biotechnology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Determinants of Leverage and Agency problems

    NARCIS (Netherlands)

    de Jong, A.; Dijk, R.

    1998-01-01

    In this paper we empirically investigate the determinants of leverage and agency problems and we examine the relationships between leverage and agency problems. As in Titman and Wessels (1988) we use structural equations modeling with latent variables. In contrast to Titman and Wessels (1988), who

  13. 17 CFR 31.6 - Registration of leverage commodities.

    Science.gov (United States)

    2010-04-01

    ... taking delivery to buy or sell the leverage commodity; (2) Explain the effect of such changes upon the... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Registration of leverage... LEVERAGE TRANSACTIONS § 31.6 Registration of leverage commodities. (a) Registration of leverage commodities...

  14. Strategy as stretch and leverage.

    Science.gov (United States)

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  16. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    Science.gov (United States)

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Management in biophotonics and biotechnologies

    Science.gov (United States)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  18. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  19. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  20. Leveraging Chaos in Continuous Thrust Trajectory Design

    Data.gov (United States)

    National Aeronautics and Space Administration — A trajectory design tool is sought to leverage chaos and nonlinear dynamics present in multi-body gravitational fields to design ultra-low energy transfer...

  1. Leveraging the Development of Inclusive and Sustainable ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nevertheless, the most vulnerable actors in the value chain still lack the capacity to ... They will identify and prioritize leverage points for ICT interventions that are ... IDRC is pleased to announce a new funding opportunity aimed at fostering ...

  2. The Profits–Leverage Puzzle Revisited

    OpenAIRE

    Murray Z. Frank; Vidhan K. Goyal

    2015-01-01

    The inverse relation between leverage and profitability is widely regarded as a serious defect of the trade-off theory. We show that the defect is not with the theory but with the use of a leverage ratio in which profitability affects both the numerator and the denominator. Profitability directly increases the value of equity. Firms do take the predicted offsetting actions. They issue debt and repurchase equity when profitability rises, and retire debt and issue equity when profitability fall...

  3. Corporate Leverage and Product Differentiation Strategy

    OpenAIRE

    Arping, Stefan; Lóránth, Gyöngyi

    2002-01-01

    This article develops a model of the interplay between corporate leverage and product differentiation strategy. Leverage improves managerial discipline, but it can also raise customer concerns about a vendor's long-term viability. We argue that customer concerns about firm viability will be particularly pronounced when products are highly differentiated from competitors' products. In this context, optimal product differentiation strategies solve a trade-off between softening price competition...

  4. Leverage and growth: effect of stock options

    OpenAIRE

    Francis, Bill; Hasan , Iftekhar; Sharma, Zenu

    2011-01-01

    This paper investigates the potential effects of stock options on managers’ investment decisions and therefore on a firm’s growth or, alternatively, on its leverage-growth relationship. To structure the analysis addressing this issue, the paper utilizes a framework establishing a negative relationship between leverage and the firm’s growth. However, in contrast to some of the existing results, the empirical analysis of manufacturing firms in this paper shows that the negative relationship bet...

  5. Hedge Ratios for short and leveraged ETFs

    Directory of Open Access Journals (Sweden)

    Leo Schubert

    2011-06-01

    Full Text Available Exchange Traded Funds (ETFs exist for stock-, bond- and commodity markets. In most cases the underlying of an ETF is an index. Fund management today uses the active and passive way to construct a portfolio. ETFs can be used for passive portfolio management. Then ETFs with positive leverage factors are preferred. In the frame of active portfolio also the ETFs with negative leverage factors can be applied for the hedge or cross hedge of a portfolio. These hedging possibilities will be analyzed in this paper. Short ETFs exist with different leverage factors. In Europe, the leverage factors 1 (e.g. ShortDAX ETF and 2 (e.g. DJ STOXX 600 Double Short are offered while in the financial markets of the United States factors from 1 to 4 can be found. To investigate the effect of the different leverage factors and other parameters Monte Carlo Simulation was used. The results show e.g. that higher leverage factors achieve higher profits as well as losses. In the case, that a bearish market is supposed, minimizing the variance of the hedge seem not to be until to get better hedging results, due to a very skewed return distribution of the hedge. The risk measure target-shortfall-probability confirms the use of the standard hedge weightings which depend only on the leverage factor. This characteristic remains, when a portfolio has to be hedged instead of the underlying index of the short ETF. For portfolios which have a low correlation with the index return should not be used high leverage factors for hedging, due to the higher volatility and target-shortfall-probability.

  6. BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA ...

    African Journals Online (AJOL)

    BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA. ... and capacity to innovate and patent new materials as well as enforce biosafety requirements. In order for countries to access biotechnology products or technologies, it will ...

  7. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov (United States)

    | Facsimile (617) 253-2400 | e-mail: bpec-www@mit.edu THERAPEUTIC GENE BIOTECHNOLOGY INDUSTRIAL CONSORTIUM Board (ICAB) in Therapeutic Gene Biotechnology. ICAB Member Representatives review our research progress

  8. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  9. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  10. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    on how to best manage the strategic interplay between biotechnology and diversity in ... Therefore, it is imperative that, in formulating a biotechnology ..... Acknowledgement, indicating the source of any financial support or personal assistance.

  11. Brief Note on the Development of Biotechnology

    OpenAIRE

    Karl Bayer

    2014-01-01

    Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, co...

  12. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  13. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  14. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  15. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  16. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  17. Biotechnology Process Engineering Center at MIT Home

    Science.gov (United States)

    has provided a focal point for biotechnology research and education at MIT. Prominent examples include the NIH Training Program in Biotechnology and the NIH Training Program in Genomics; both of these are -genomic biology. Another example is the new DuPont-MIT Alliance (DMA), focused on materials biotechnology

  18. Biotechnology: An Era of Hopes and Fears

    Science.gov (United States)

    2016-01-01

    Strategic Studies Quarterly ♦ Fall 2016 23 Biotechnology An Era of Hopes and Fears LTC Douglas R. Lewis, PhD, US Army Abstract Biotechnology ......ignored. The idea of advances in biotechnology increasing the biological weapons threat is not new. In 2003 an analysis of gene sequencing and

  19. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  20. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  1. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Scientific underpinnings of biotechnology regulatory frameworks.

    Science.gov (United States)

    Gleim, Savannah; Smyth, Stuart J

    2018-05-25

    Part of what is presently missing at domestic regulatory levels (and that is important at the international level as well) is a detailed understanding of what the rules of, and for, regulation should be, who the actors, stakeholders and major decision makers are and finally, how to get agreement about the rules. Greater insights into the system of rules that underpin regulatory frameworks for agri-food and biotechnology products in genetically modified (GM) crop- adopting nations will provide value by clarifying the evidence used to commercialize these technologies. This article examines the public documents available from Canada, the United States, the European Union and the Organisation for Economic Cooperation and Development regarding the development of regulatory risk assessment frameworks for products of biotechnology to determine what science grounds these frameworks. The documentation used to provide the initial structure to the existing regulatory frameworks identifies the linkages, connections and relationships that exist between science, risk assessment and regulatory policy. The relationship between risk and regulation has never been more critical to the commercialization of innovative agricultural products. Documenting the role of science-based risk assessment in regulations and how this has changed over the 20 years of experience in regulating GM crops will identify changes in the risk/regulation relationship. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. 17 CFR 31.15 - Reporting to leverage customers.

    Science.gov (United States)

    2010-04-01

    ... customers. 31.15 Section 31.15 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION LEVERAGE TRANSACTIONS § 31.15 Reporting to leverage customers. Each leverage transaction merchant shall furnish in writing directly to each leverage customer: (a) Promptly upon the repurchase, resale...

  5. A cross-sectional study of biotechnology awareness and teaching in European high schools.

    Science.gov (United States)

    Vanderschuren, Hervé; Heinzmann, Dominik; Faso, Carmen; Stupak, Martin; Arga, Kazim Yalçin; Hoerzer, Helen; Laizet, Yech'an; Leduchowska, Paulina; Silva, Nádia; Simková, Klára

    2010-12-31

    Undoubtedly, biotechnology has a tremendous impact on our daily lives. As a result of this and in parallel to the advancement of knowledge in this field of applied research, consumer awareness of the potential benefits and risks of this technology has steadily increased, leading to a thorough investigation of the public perception of biotechnology in the past years. Indeed, it has become clear that it is in the general interest of science and especially of applied research to inform the public of its advances. A promising next step is to strengthen biotechnology communication in scholastic institutions. In this paper, we investigate the perception of biotechnology in a specific target group, namely high-school students in the 16-20-year-old age range. We conducted a questionnaire-based survey on a total of 1410 students in six European countries to investigate students' perception, concern, scientific knowledge, and awareness. Our data revealed some unexpected patterns of acceptance and concern about biotechnology. Knowledge analysis indicated that pupils lack specific knowledge about biotechnological applications and their interest in biotechnology appeared to be linked to knowledge. Analysis of specific questions about teaching practices at schools suggests that a better targeted choice in media as vehicles for information together with selected speakers could be instrumental in increasing students' interest in science and more specifically in biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Biotechnology and the Mine of Tomorrow.

    Science.gov (United States)

    Dunbar, W Scott

    2017-01-01

    Biotechnology could provide many innovative alternatives for changing the way metals are obtained. Microbes have been used to dissolve metallic minerals and release metal ions into solution, from which pure metal can be obtained by electrolysis. Plants that accumulate metals in their roots and leaves have been used to concentrate metals, and mineral-binding peptides might be used to separate minerals. However, for billions of years microbes have been interacting with metals. Microbial communities in and near mineral sources are therefore a rich source of genetic information which could be used to create synthetic or modified microbiomes that concentrate metals. This would be a complete paradigm-change with enormous scope for transforming the way metals are obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  9. Biotechnological improvement of ornamental plants

    OpenAIRE

    Flavia Soledad Darqui; Laura Mabel Radonic; Horacio Esteban Hopp; Marisa Lopez Bilbao

    2017-01-01

    The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org), there are three ornamental species: carnation, rose and the Beijing University develo...

  10. Firm Leverage and the Financial Crisis

    OpenAIRE

    Fatih Altunok; Arif Oduncu

    2014-01-01

    The firm growth dynamics is an important topic since the growth performance of firms is the main source of the economic growth in countries. Generally, crises produce a sharp decline in firms’ growth and this leads to a decline in both the level of employment and the income of households. This paper focuses on the role of firm leverage on the growth performance of the firm during the global financial crisis. We investigate whether the firms that experienced a large leverage increase before th...

  11. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  12. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  13. Leveraging Relational Technology through Industry Partnerships.

    Science.gov (United States)

    Brush, Leonard M.; Schaller, Anthony J.

    1988-01-01

    Carnegie Mellon University has leveraged its technological expertise with database management systems (DBMS) into joint technological and developmental partnerships with DBMS and application software vendors. Carnegie's relational database strategy, the strategy of partnerships and how they were formed, and how the partnerships are doing are…

  14. Topics in Finance Part III--Leverage

    Science.gov (United States)

    Laux, Judy

    2010-01-01

    This article investigates operating and financial leverage from the perspective of the financial manager, accenting the relationships to stockholder wealth maximization (SWM), risk and return, and potential agency problems. It also covers some of the pertinent literature related specifically to the implications of operating and financial risk and…

  15. Equity Mispricing and Leverage Adjustment Costs

    NARCIS (Netherlands)

    Warr, R.S.; Elliott, W.B.; Koeter-Kant, J.; Oztekin, O.

    2012-01-01

    We find that equity mispricing impacts the speed at which firms adjust to their target leverage (TL) and does so in predictable ways depending on whether the firm is over- or underlevered. For example, firms that are above their TL and should therefore issue equity (or retire debt) adjust more

  16. The Complexity of Leveraging University Program Change

    Science.gov (United States)

    Crow, Gary M.; Arnold, Noelle Witherspoon; Reed, Cynthia J.; Shoho, Alan R.

    2012-01-01

    This article identifies four elements of complexity that influence how university educational leadership programs can leverage program change: faculty reward systems, faculty governance, institutional resources, and state-level influence on leadership preparation. Following the discussion of the elements of complexity, the article provides a…

  17. Leveraging e-learning in medical education.

    Science.gov (United States)

    Lewis, Kadriye O; Cidon, Michal J; Seto, Teresa L; Chen, Haiqin; Mahan, John D

    2014-07-01

    e-Learning has become a popular medium for delivering instruction in medical education. This innovative method of teaching offers unique learning opportunities for medical trainees. The purpose of this article is to define the present state of e-learning in pediatrics and how to best leverage e-learning for educational effectiveness and change in medical education. Through addressing under-examined and neglected areas in implementation strategies for e-learning, its usefulness in medical education can be expanded. This study used a systematic database review of published studies in the field of e-learning in pediatric training between 2003 and 2013. The search was conducted using educational and health databases: Scopus, ERIC, PubMed, and search engines Google and Hakia. A total of 72 reference articles were suitable for analysis. This review is supplemented by the use of "e-Learning Design Screening Questions" to define e-learning design and development in 10 randomly selected articles. Data analysis used template-based coding themes and counting of the categories using descriptive statistics.Our search for pediatric e-learning (using Google and Hakia) resulted in six well-defined resources designed to support the professional development of doctors, residents, and medical students. The majority of studies focused on instructional effectiveness and satisfaction. There were few studies about e-learning development, implementation, and needs assessments used to identify the institutional and learners' needs. Reviewed studies used various study designs, measurement tools, instructional time, and materials for e-learning interventions. e-Learning is a viable solution for medical educators faced with many challenges, including (1) promoting self-directed learning, (2) providing flexible learning opportunities that would offer continuous (24h/day/7 days a week) availability for learners, and (3) engaging learners through collaborative learning communities to gain

  18. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  20. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  1. Application of biotechnology to fossil fuels explored

    Energy Technology Data Exchange (ETDEWEB)

    Haggin, J

    1989-02-13

    A review is presented of the December 1988 symposium on coal, oil and gas biotechnology held in New Orleans, organised by the Institute of Gas Technology. Papers discussed include: opportunities for R D in desulfurization, coal gasification and environmental cleanup; an assessment of the economic constraints that new energy biotechnology must overcome; biotechnology research at EPRI; microbial conversion of coal; bioconversion of low rank coal; and bioremediation of ground containing PAHs. 2 figs.

  2. Biotechnology information service of the GDR

    Energy Technology Data Exchange (ETDEWEB)

    Poetzsch, E [Academy of Sciences, Berlin (Germany). Scientific Information Center

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs.

  3. Brief Note on the Development of Biotechnology

    Directory of Open Access Journals (Sweden)

    Karl Bayer

    2014-01-01

    Full Text Available Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, compliance with the recently published initiatives of the regulatory authorities to accelerate the approval process for the manufacturing of biopharmaceuticals can be gained.

  4. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  5. Biotechnology

    Science.gov (United States)

    2005-01-01

    again at their meeting in Malaysia in May 2005.96 Although the WTO dispute has not been settled, the EU has recently taken steps to open up trade...outlined.” Obesity , Fitness & Wellness Week, 16 October 2004, 321. Cohen, Bonner R, “Proving A Negative: The Precautionary Principle at Odds with...Life sciences company to acquire Shanghai- based Bio Asia,” Obesity , Fitness & Wellness Week, 15 January 2005, 910, <http://proquest.umi.com/pqdweb

  6. Forecasting volatility in the presence of Leverage Effect

    OpenAIRE

    Jean-Christophe Domenge; Rémi Rhodes; Vincent Vargas

    2010-01-01

    We define a simple and tractable method for adding the Leverage effect in general volatility predictions. As an application, we compare volatility predictions with and without Leverage on the SP500 Index during the period 2002-2010.

  7. Macroeconomic Dynamics of Assets, Leverage and Trust

    Science.gov (United States)

    Rozendaal, Jeroen C.; Malevergne, Yannick; Sornette, Didier

    A macroeconomic model based on the economic variables (i) assets, (ii) leverage (defined as debt over asset) and (iii) trust (defined as the maximum sustainable leverage) is proposed to investigate the role of credit in the dynamics of economic growth, and how credit may be associated with both economic performance and confidence. Our first notable finding is the mechanism of reward/penalty associated with patience, as quantified by the return on assets. In regular economies where the EBITA/Assets ratio is larger than the cost of debt, starting with a trust higher than leverage results in the highest long-term return on assets (which can be seen as a proxy for economic growth). Therefore, patient economies that first build trust and then increase leverage are positively rewarded. Our second main finding concerns a recommendation for the reaction of a central bank to an external shock that affects negatively the economic growth. We find that late policy intervention in the model economy results in the highest long-term return on assets. However, this comes at the cost of suffering longer from the crisis until the intervention occurs. The phenomenon that late intervention is most effective to attain a high long-term return on assets can be ascribed to the fact that postponing intervention allows trust to increase first, and it is most effective to intervene when trust is high. These results are derived from two fundamental assumptions underlying our model: (a) trust tends to increase when it is above leverage; (b) economic agents learn optimally to adjust debt for a given level of trust and amount of assets. Using a Markov Switching Model for the EBITA/Assets ratio, we have successfully calibrated our model to the empirical data of the return on equity of the EURO STOXX 50 for the time period 2000-2013. We find that dynamics of leverage and trust can be highly nonmonotonous with curved trajectories, as a result of the nonlinear coupling between the variables. This

  8. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  9. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  10. The Disciplining Role of Leverage in Dutch Firms

    NARCIS (Netherlands)

    de Jong, A.

    2001-01-01

    In this study we investigate the role of leverage in disciplining overinvestment problems.We measure the relationships between leverage, Tobin s q and corporate governance characteristics for Dutch listed firms.Besides, our empirical analysis tests for determinants of leverage from tax and

  11. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Leveraged Leasing in the Federal Sector.

    Science.gov (United States)

    1983-12-01

    entity obtains cash while the private investors can depreciate the property and obtain investment tax credits and other tax benefits. The costs are borne...lease from a common base point to familiarize the reader with the applicable portions of generally accepted accounting principles, GAAP , and how they...chapter identifies the differences between a basic lease and a leveraged lease in terms of structure and accounting requirements relative to GAAP

  13. Leverage Website Favicon to Detect Phishing Websites

    OpenAIRE

    Kang Leng Chiew; Jeffrey Soon-Fatt Choo; San Nah Sze; Kelvin S. C. Yong

    2018-01-01

    Phishing attack is a cybercrime that can lead to severe financial losses for Internet users and entrepreneurs. Typically, phishers are fond of using fuzzy techniques during the creation of a website. They confuse the victim by imitating the appearance and content of a legitimate website. In addition, many websites are vulnerable to phishing attacks, including financial institutions, social networks, e-commerce, and airline websites. This paper is an extension of our previous work that leverag...

  14. North Korea: Economic Leverage and Policy Analysis

    Science.gov (United States)

    2010-01-22

    although non- governmental groups do run operations in the DPRK in activities such as goat dairy farming and transportation. North -South Korean...Finance Minister Says “At Least” 34m US Dollars Sent to North Korea. Financial Times Information, Global News Wire—Asia Africa Intelligence Wire. June 6...CRS Report for Congress Prepared for Members and Committees of Congress North Korea: Economic Leverage and Policy Analysis Dick K

  15. Short-Selling, Leverage and Systemic Risk

    OpenAIRE

    Pais, Amelia; Stork, Philip A.

    2013-01-01

    During the Global Financial Crisis, regulators imposed short-selling bans to protect financial institutions. The rationale behind the bans was that “bear raids”, driven by short-sellers, would increase the individual and systemic risk of financial institutions, especially for institutions with high leverage. This study uses Extreme Value Theory to estimate the effect of short-selling on financial institutions’ individual and systemic risks in France, Italy and Spain; it also analyses the rela...

  16. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  17. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  18. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  19. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  20. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  1. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis.

  2. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... The use of biotechnology in various aspects of human endeavour have obviously created a great ... the already adopted biotechnologies are being improved upon with lesser demerits. ... potential to improve the quality and quantity of fish reared .... become easier with the development of artificial breeding.

  3. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  4. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  5. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  6. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    Science.gov (United States)

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis.

    Science.gov (United States)

    Zhang, Liu-Xia; Cao, Yi-Ren; Xiao, Hua; Liu, Xiao-Ping; Liu, Shao-Rong; Meng, Qing-Hua; Fan, Liu-Yin; Cao, Cheng-Xi

    2016-03-15

    In the present work we address a simple, rapid and quantitative analytical method for detection of different proteins present in biological samples. For this, we proposed the model of titration of double protein (TDP) and its relevant leverage theory relied on the retardation signal of chip moving reaction boundary electrophoresis (MRBE). The leverage principle showed that the product of the first protein content and its absolute retardation signal is equal to that of the second protein content and its absolute one. To manifest the model, we achieved theoretical self-evidence for the demonstration of the leverage principle at first. Then relevant experiments were conducted on the TDP-MRBE chip. The results revealed that (i) there was a leverage principle of retardation signal within the TDP of two pure proteins, and (ii) a lever also existed within these two complex protein samples, evidently demonstrating the validity of TDP model and leverage theory in MRBE chip. It was also showed that the proposed technique could provide a rapid and simple quantitative analysis of two protein samples in a mixture. Finally, we successfully applied the developed technique for the quantification of soymilk in adulterated infant formula. The TDP-MRBE opens up a new window for the detection of adulteration ratio of the poor food (milk) in blended high quality one. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  9. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  10. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  11. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  12. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  13. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  14. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    Science.gov (United States)

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Biotechnological challenges of bioartificial kidney engineering.

    Science.gov (United States)

    Jansen, J; Fedecostante, M; Wilmer, M J; van den Heuvel, L P; Hoenderop, J G; Masereeuw, R

    2014-11-15

    With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Importance of lactobacilli in food and feed biotechnology.

    Science.gov (United States)

    Giraffa, Giorgio; Chanishvili, Nina; Widyastuti, Yantyati

    2010-01-01

    The genus Lactobacillus is a heterogeneous group of lactic acid bacteria (LAB) with important implications in food fermentation. The ability to colonize a variety of habitats is a direct consequence of the wide metabolic versatility of this group of LAB. Consequently, lactobacilli have been used for decades in food preservation, as starters for dairy products, fermented vegetables, fish and sausages as well as silage inoculants. Lactobacilli have also been proposed as probiotics and microbial cell factories for the production of nutraceuticals. However, a wide range of applications of lactobacilli in food biotechnology remains potential, whereas a number of important strains still need to be discovered and characterized. This article provides an overview of the taxonomy of lactobacilli and describes four of the most significant case studies on the application of this group of LAB in food and feed biotechnology, including their use as probiotics, dairy starters, silage inoculants, and microbial cell factories. The importance of access to and exchange of biological material within and between different strain collections as a crucial step in expanding the range of different biotechnological applications of lactobacilli is also emphasized. (c) 2010 Elsevier Masson SAS. All rights reserved.

  17. Leverage and Deepening Business Cycle Skewness

    DEFF Research Database (Denmark)

    Jensen, Henrik; Petrella, Ivan; Ravn, Søren Hove

    2017-01-01

    We document that the U.S. economy has been characterized by an increasingly negative business cycle asymmetry over the last three decades. This finding can be explained by the concurrent increase in the financial leverage of households and firms. To support this view, we devise and estimate......, booms become progressively smoother and more prolonged than busts. We are therefore able to reconcile a more negatively skewed business cycle with the Great Moderation in cyclical volatility. Finally, in line with recent empirical evidence, financially-driven expansions lead to deeper contractions...

  18. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  19. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    Science.gov (United States)

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Microalgal lipids biochemistry and biotechnological perspectives.

    Science.gov (United States)

    Bellou, Stamatia; Baeshen, Mohammed N; Elazzazy, Ahmed M; Aggeli, Dimitra; Sayegh, Fotoon; Aggelis, George

    2014-12-01

    . Therefore, algal production systems need to be improved and harvesting systems need to be more effective in order for their industrial applications to become more competitive and economically viable. Besides, a reduction of the production cost of microalgal lipids can be achieved by combining lipid production with other commercial applications. The combined production of bioactive products and lipids, when possible, can support the commercial viability of both processes. Hydrophobic compounds can be extracted simultaneously with lipids and then purified, while hydrophilic compounds such as proteins and sugars may be extracted from the defatted biomass. The microalgae also have applications in environmental biotechnology since they can be used for bioremediation of wastewater and to monitor environmental toxicants. Algal biomass produced during wastewater treatment may be further valorized in the biofuel manufacture. It is anticipated that the high microalgal lipid potential will force research towards finding effective ways to manipulate biochemical pathways involved in lipid biosynthesis and towards cost effective algal cultivation and harvesting systems, as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  2. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  3. On risk, leverage and banks: do highly leveraged banks take on excessive risk?

    NARCIS (Netherlands)

    Koudstaal, M.; van Wijnbergen, S.

    2012-01-01

    This paper deals with the relation between excessive risk taking and capital structure in banks. Examining a quarterly dataset of U.S. banks between 1993 and 2010, we find that equity is valued higher when more risky portfolios are chosen when leverage is high, and that more risk taking has a

  4. Leveraging liquid dielectrophoresis for microfluidic applications

    International Nuclear Information System (INIS)

    Chugh, Dipankar; Kaler, Karan V I S

    2008-01-01

    Miniaturized fluidic systems have been developed in recent years and offer new and novel means of leveraging the domain of microfluidics for the development of micro-total analysis systems (μTAS). Initially, such systems employed closed microchannels in order to facilitate chip-based biochemical assays, requiring very small quantities of sample and/or reagents and furthermore providing rapid and low-cost analysis on a compact footprint. More recently, advancements in the domain of surface microfluidics have suggested that similar low volume sample handling and manipulation capabilities for bioassays can be attained by leveraging the phenomena of liquid dielectrophoresis and droplet dielectrophoresis (DEP), without the need for separate pumps or valves. Some of the key aspects of this surface microfluidic technology and its capabilities are discussed and highlighted in this paper. We, furthermore, examine the integration and utility of liquid DEP and droplet DEP in providing rapid and automated sample handling and manipulation capabilities on a compact chip-based platform

  5. The Impact of Biotechnology upon Pharmacy Education.

    Science.gov (United States)

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  6. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  7. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  8. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... In agriculture, gene cloning, an aspect of biotechnology has provided new ... which genetic engineering techniques are used to inactivate one or more ..... medicine, research regulatory agencies, ethics and legal experts in the ...

  9. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani ... technology is the application of indigenous and / or scientific knowledge to ... developing societies, with the exception of China and. Argentina, (James ...

  10. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-01-01

    produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology

  11. Agricultural biotechnology research and development in Ethiopia

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... Review. Agricultural biotechnology research and development in Ethiopia ... seed micropropagation, virus-cleaning ongoing, good progress. Garlic meristem ... large quantities of disease-free planting materials in short time.

  12. Biotechnology Education: A Multiple Instructional Strategies Approach.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  13. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Year: 2012 Innovative Young Biotechnologist Award ... Indian Institute of Science Education and Research, Mohali ... International Centre for Genetic Engineering and Biotechnology, New Delhi ... Institute of Microbial Technology, Chandigarh

  14. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... food; MABIC, Malaysian Biotechnology Information Centre. on public ... in Malaysia and provide linkage to several international website on modern ... scholars and university students) possess at least tertiary level of education ...

  15. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    countries cheaper and potentially easier to administer. Efficient sewage treatment ... developing countries, start-up funding for biotechnology companies is still very ... Business incubators are unique in stimulating spin-offs from universities and ...

  16. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  17. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  18. Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.

    Science.gov (United States)

    Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi

    2015-04-01

    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.

  19. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    OpenAIRE

    Bal-Prilipko L. V.; Leonova B. I.

    2014-01-01

    The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of spe...

  20. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  1. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  2. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  3. Comprehensive biotechnology education and rural economic development

    OpenAIRE

    Holmes, L.; Brooks, J.

    2006-01-01

    North Carolina is home to the third largest biotechnology industry in the United States. With over 200 companies involved in manufacturing, research, testing or services and growing at a rate of 12 % per year, this North Carolina industry is aggressively expanding its biotechnology efforts in all domains: pharmaceuticals, agriculture, environment, foods and energy. The North Carolina Department of Commerce along with other state and regional entities are developing strategies to attract new c...

  4. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  5. Ethics in biotechnology and biosecurity

    Directory of Open Access Journals (Sweden)

    S Jameel

    2011-01-01

    Full Text Available Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  6. Biology and biotechnology of Trichoderma.

    Science.gov (United States)

    Schuster, André; Schmoll, Monika

    2010-07-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  7. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  8. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  9. Ethics in biotechnology and biosecurity.

    Science.gov (United States)

    Jameel, S

    2011-01-01

    Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  10. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  11. The effect of leverage increases on real earnings management

    OpenAIRE

    Zagers-Mamedova, Irina

    2009-01-01

    textabstractMain subject of this paper is to understand whether there could be an incentive for managers to manipulate cash flow from operating activities (CFO) through the use of real earnings management (REM), in situations with increasing leverage. Based upon a study of Jelinek (2007) who researched the correlation between increasing levels of leverage and accrual earnings management, I developed my main hypothesis with respect to the effect of leverage increases on REM to influence CFO. R...

  12. Leveraging the national cyberinfrastructure for biomedical research.

    Science.gov (United States)

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  13. Leveraging Gaming Technology to Deliver Effective Training

    Science.gov (United States)

    Cimino, James D.

    2011-01-01

    The best way to engage a soldier is to present them with training content consistent with their learning preference. Blended Interactive Multimedia Instruction (IMI) can be used to leach soldiers what they need to do, how to do each step, and utilize a COTS game engine to actually practices the skills learned. Blended IMI provides an enjoyable experience for the soldier, thereby increasing retention rates and motivation while decreasing the time to subject mastery. And now mobile devices have emerged as an exciting new platform, literally placing the training into the soldier's hands. In this paper, we will discuss how we leveraged commercial game engine technology, tightly integrated with the Blended IMI, to train soldiers on both laptops and mobile devices. We will provide a recent case study of how this training is being utilized, benefits and student/instructor feedback.

  14. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  15. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  16. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  17. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  18. Clusters in Industrial Biotechnology and Bioeconomy: The Roles of the Public Sector.

    Science.gov (United States)

    Philp, Jim; Winickoff, David E

    2017-08-01

    Government policies across the world seek to create clusters of companies and other stakeholders that specialise in a particular technology to build an 'industrial ecosystem'. This article looks at some examples of clusters created specifically with industrial biotechnology in mind and examines measures for policymakers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of financial leverage on profitability of manufacturing ...

    African Journals Online (AJOL)

    The effect of financial leverage on profitability of manufacturing companies listed on the Ghana stock exchange. ... Journal of Business Research ... For many years many studies have focused on the effect of financial leverage on firm performance and yet there has been no specific result that can be generalized regarding ...

  20. 17 CFR 31.8 - Cover of leverage contracts.

    Science.gov (United States)

    2010-04-01

    ... receipt for two business days: Provided, however, That the amount of physical commodities subject to such... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Cover of leverage contracts. 31.8 Section 31.8 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION LEVERAGE...

  1. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  2. Biotechnology in Georgia for Various Applications

    International Nuclear Information System (INIS)

    Mosulishvili, L.; Tsibakhashvili, N.; Kirkesali, E.; Tsertsvadze, L.; Frontasyeva, M.; Pavlov, S.

    2008-01-01

    The results of collaborative work carried out in the field of biotechnology at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) (Dubna, Russia) jointly with scientists from Georgia are presented. Using instrumental neutron activation analysis (NAA), significant results were ontained in the following directions - medical biotechnology, environmental biotechnology and industrial biotechnology. In the biomedical experiments a blue-green alga Spirulina platensis biomass has been used as a matrix for the development of pharmaceutical substances containing such vitally important trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into Spirulina platensis biocomplexes retaining its protain composition and natural beneficial properties has been proved. The adsorption of such toxic metal as mercury by Spirulina platensis biomass in dynamics of growth has been studied also. NAA has been successfully applied to investigate the biotechnology of toxic Cr(VI) transformation into less toxic Cr(III) complexes by Cr(VI)-reducer bacteria isolated from polluted basalts in Georgia. This method was used to track accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance (ESR) spectrometry was employed. For the first time, the elemental composition of Cr(VI)-reducer bacteria has been studied using epithermal NAA. The natural organic mass of vegetal origin - peat - was applied as a source of microorganisms to study the bacterial leaching of some metals from lean ores, rocks and industrial wastes. (author)

  3. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  4. Distress risk and leverage puzzles: Evidence from Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Cheng Ho

    2016-05-01

    Full Text Available Financial distress has been invoked in the asset pricing literature to explain the anomalous patterns in the cross-section of stock returns. The risk of financial distress can be measured using indexes. George and Hwang (2010 suggest that leverage can explain the distress risk puzzle and that firms with high costs choose low leverage to reduce distress intensities and earn high returns. This study investigates whether this relationship exists in the Taiwan market. When examined separately, distress intensity is found to be negatively related to stock returns, but leverage is found to not be significantly related to stock returns. The results are the same when distress intensity and leverage are examined simultaneously. After assessing the robustness by using O-scores, distress risk puzzle is found to exist in the Taiwan market, but the leverage puzzle is not

  5. Risk evaluation in biotechnology of environment

    International Nuclear Information System (INIS)

    Mazaheri Asadi, M.

    2003-01-01

    It is the Era of technology and many countries are adjusting their economy with it. The research on biotechnology is done with a logarithmic rate at different technologies such as pharmacy, agriculture, environment, food, oil, and etc. The relevant research would result in the production of new materials which are released into the environment. In many developed countries biotechnology is regarded as a firm base for economic development and without doubt plays a determined role in humane wealth and well-being, but this technology should be sustainable and controllable. The producer and consumer of biotechnology must think deeply about this matter and take into account the health and sustain ability of earth and the environment. Evaluation of ecological impacts of micro- organisms and manipulated genetically organism should be considered in all countries of the world and such an activities should be regulated and controlled as it was don in Canada under the supervision of Dept

  6. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  7. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  8. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  9. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B; Pavlasova, E; Stejskalova, E

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  10. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  11. Biotechnology and the bioeconomy-Towards inclusive and sustainable industrial development.

    Science.gov (United States)

    Lokko, Yvonne; Heijde, Marc; Schebesta, Karl; Scholtès, Philippe; Van Montagu, Marc; Giacca, Mauro

    2018-01-25

    To transform developing and least developing countries into industrialised ones, biotechnology could be deployed along the value chain, to provide support to the development of the bio-based industries in such a way to ensure sustainability of the sector and to reduce negative environmental impacts that might otherwise occur. In agribusiness development, for instance, interventions could start from inputs and agricultural mechanization, modern processing technologies, packaging of perishable products, the promotion of food safety in the processing and regulatory environment; and interventions to improve competitiveness and productivity. Worth over USD 300 billion in revenue, the role of the biotechnology goes beyond industrial growth, since it provides opportunities for progress towards many of the UN sustainable development goals (SDGs). This paper reviews the status of industrial biotechnology as it relates to inclusive and sustainable industrial development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.

    Science.gov (United States)

    Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane

    2017-10-25

    The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    Science.gov (United States)

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biotechnological processes in the Canadian mining industry

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    Since the initiation of the Federal Government's National Strategy on Biotechnology in 1983, CANMET has coordinated the development of numerous biotechnological processes both for economical metal recovery and for the protection of the environment. This presentation will give a brief overview of the development of in-place, underground bacterial leaching of uranium, the development of in-situ bacterial leaching of copper and zinc, bio recovery of metallic selenium from smelter effluents, the degradation of an organic pollutant from a metal smelter and biological treatment of acidic mine drainage. (author)

  16. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  17. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Leverage Website Favicon to Detect Phishing Websites

    Directory of Open Access Journals (Sweden)

    Kang Leng Chiew

    2018-01-01

    Full Text Available Phishing attack is a cybercrime that can lead to severe financial losses for Internet users and entrepreneurs. Typically, phishers are fond of using fuzzy techniques during the creation of a website. They confuse the victim by imitating the appearance and content of a legitimate website. In addition, many websites are vulnerable to phishing attacks, including financial institutions, social networks, e-commerce, and airline websites. This paper is an extension of our previous work that leverages the favicon with Google image search to reveal the identity of a website. Our identity retrieval technique involves an effective mathematical model that can be used to assist in retrieving the right identity from the many entries of the search results. In this paper, we introduced an enhanced version of the favicon-based phishing attack detection with the introduction of the Domain Name Amplification feature and incorporation of addition features. Additional features are very useful when the website being examined does not have a favicon. We have collected a total of 5,000 phishing websites from PhishTank and 5,000 legitimate websites from Alexa to verify the effectiveness of the proposed method. From the experimental results, we achieved a 96.93% true positive rate with only a 4.13% false positive rate.

  19. Leveraging FPGAs for Accelerating Short Read Alignment.

    Science.gov (United States)

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2017-01-01

    One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  20. Leveraging Distributions in Physical Unclonable Functions

    Directory of Open Access Journals (Sweden)

    Wenjie Che

    2017-10-01

    Full Text Available A special class of Physical Unclonable Functions (PUFs referred to as strong PUFs can be used in novel hardware-based authentication protocols. Strong PUFs are required for authentication because the bit strings and helper data are transmitted openly by the token to the verifier, and therefore are revealed to the adversary. This enables the adversary to carry out attacks against the token by systematically applying challenges and obtaining responses in an attempt to machine learn, and later predict, the token’s response to an arbitrary challenge. Therefore, strong PUFs must both provide an exponentially large challenge space and be resistant to machine-learning attacks in order to be considered secure. We investigate a transformation called temperature–voltage compensation (TVCOMP, which is used within the Hardware-Embedded Delay PUF (HELP bit string generation algorithm. TVCOMP increases the diversity and unpredictability of the challenge–response space, and therefore increases resistance to model-building attacks. HELP leverages within-die variations in path delays as a source of random information. TVCOMP is a linear transformation designed specifically for dealing with changes in delay introduced by adverse temperature–voltage (environmental variations. In this paper, we show that TVCOMP also increases entropy and expands the challenge–response space dramatically.

  1. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  2. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane; Sutton, Taurean C.

    2015-01-01

    , influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development

  3. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  4. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  5. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  6. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  7. Perceptions and attitudes of geography teachers to biotechnology: A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... perceptions of geography teachers towards biotechnology and GM foods but also provided an ... Key words: Biotechnology, GM foods, perceptions, attitudes, geography education, Turkey. ..... Brazilian high school students.

  8. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  9. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  10. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  11. MHSS 2020 Focused Study on Biotechnology & Nanotechnology, 29 July 1997

    National Research Council Canada - National Science Library

    1998-01-01

    .... This focused study on biotechnology and nanotechnology has two primary goals: (1) examine the future strategic impact of biotechnology and nanotechnology as it relates to the military health system, and (2...

  12. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  13. Measuring the Contribution of Modern Biotechnology to the Canadian Economy

    OpenAIRE

    Ricardo de Avillez

    2011-01-01

    The role of modern biotechnology in agriculture, medicine, and industry has increased dramatically since the 1970s. Despite its growing importance, few efforts have been made so far to estimate the economic contribution of modern biotechnology to the Canadian economy. This report provides an overview of biotechnology activities in Canada, and, using an income-based approach, estimates that biotechnology activities accounted for approximately $15 billion in 2005, equivalent to 1.19 per cent of...

  14. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cash Holdings and Leverage of German Listed Firms

    DEFF Research Database (Denmark)

    Rapp, Marc Steffen; Killi, Andreas Maximilian

    2016-01-01

    We examine cash holdings and leverage levels of German listed (non-financial and non-utility) firms. We document a secular increase in cash ratios over the last twenty years (1992–2011), reducing the net debt book leverage ratio for the average sample firm close to zero. Using prediction models...... firms are associated with measures of uncertainty faced by firms. Our results suggest that German firms have increased (reduced) their cash (net debt leverage) levels over time in order to adopt more precautionary financial policies....

  16. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  17. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  18. Innovation Dynamics and Agricultural Biotechnology in Kenya

    NARCIS (Netherlands)

    H.S. Odame (Hannington)

    2014-01-01

    markdownabstract__Abstract__ Modern agricultural biotechnology is being flaunted in global policy de-bates as a powerful technology for improving agricultural productivity and food security in Africa. These debates often conveniently lump to-gether the controversial GMOs and the less contentious

  19. Magnetic nano- and microparticles in biotechnology

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2009-01-01

    Roč. 63, - (2009), s. 497-505 ISSN 0366-6352 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic particles * smart material Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.791, year: 2009

  20. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  1. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  2. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale

  3. PUTTING PLANT BIOTECHNOLOGY TO WORK FOR FOOD ...

    African Journals Online (AJOL)

    Plant biotechnology is safely bringing valuable new benefits to farmers around the world, including those in developing countries where the needs for food, nutrition and overall development may be greatest. >From the current base of experience, it is reasonable to expect even greater benefits in the future, provided that ...

  4. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  5. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  6. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  7. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  8. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  9. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  10. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  11. Modern trends in biochemistry and biotechnology

    International Nuclear Information System (INIS)

    1996-01-01

    On the conference 'Modern trends in biochemistry and biotechnology' several lectures concerned influence of ionizing radiation on the animal cells. Changes in the cell division caused by radiation induced DNA damage were discussed. Application of single cell gel electrophoresis assay (comet assay) in assessment of DNA damages was the subject of dedicated session

  12. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  13. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  14. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    ... security and public health are high on government's policy agenda. ... tion by the Cameroon Development Corporation. (CDC) of a ... can model law on Safety in Biotechnology (and the Convention ..... its biosafety regulation on liability and redress in due course. ... in Kuala Lumpur, Malaysia in February this year. (2004).

  15. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  16. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  17. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  18. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    The study was carried out in Southeastern agro-ecological zones of Nigeria. Questionnaire was used to collect data from a sample of forty-three heads of departments from research institutes and universities involved in biotechnology research. Results of the study revealed that some of the institutions have been involved in ...

  19. Mathematical Modelling of Continuous Biotechnological Processes

    Science.gov (United States)

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  20. Nigerian Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology publishes original research papers, shot ... State Univ., Mubi, Nigeria. yada525@adsu.edu.ng, Molecular biology and bioremediation ... Dr. Kelechi C. Njoku, Dept. of Cell Biology & Genetics, University of Lagos, Lagos, kecynjoku@gmail.com, Environmental Biology ... HOW TO USE AJOL.

  1. Venture capitalists as gatekeepers for biotechnological innovation

    NARCIS (Netherlands)

    Fernald, Kenneth; Hoeben, Ruud; Claassen, H.J.H.M.

    2015-01-01

    Venture capitalists (VCs) aim at trade sales as a preferred exit-strategy for biotechnology companies they invest in. Therefore, VCs pay close attention to the wishes of larger (bio)pharmaceutical acquirers. In this paper we explore VCs' behavior and strategies by analyzing the technology fields and

  2. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    5.3 The geography of China's health biotechnology collaboration ..... and Argentina, Brazil, Chile, Mexico, Paraguay, Peru and Uruguay, for example, established ...... “Nations team up to share R&D skills in HIV/AIDS battle”, SciDev. ...... This reduces both dependence on international imports, and leads to the availability of ...

  3. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    1999-10-01

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia [es

  4. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  5. Acceptance of biotechnology and social-cultural implications in Ghana

    African Journals Online (AJOL)

    take pride in what they eat. A proposal is made to set biotechnology research agenda in the context of social choices; social scientific coalition of biotechnology with endogenous development pathways' as opposed to 'exogenous biotechnology research'. Also there is the need for adequate capacity building of the existing ...

  6. Environmental Biotechnology Research and Development Program 1989-1992

    NARCIS (Netherlands)

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management

  7. Next generation industrial biotechnology based on extremophilic bacteria.

    Science.gov (United States)

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2018-04-01

    Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  9. Ethical limitations in patenting biotechnological inventions.

    Science.gov (United States)

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  10. [Health risks in the biotechnological industry].

    Science.gov (United States)

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    Science.gov (United States)

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    production and the economy of this depressed areas. However, the problems bound to environmental protection must not be forgotten; priority should be given to monitor the risks of introduction of foreign species. Red biotechnologies potentially bring a vast domain of powerful tools and processes to achieve better human health, most notably improved diagnostics by molecular techniques, better targeting of pathogens and a better knowledge of their sensitivities to drugs to permit better treatment. Biosafety regulatory frameworks had been initiated in several countries, starting with primary biosafety law. However, disparate attitudes to the purpose of biosafety regulation (e.g., fostering informed decision-making versus 'giving the green-light for a flood of GMOs') currently prevent a needed consensus for sub-regional harmonisation. To date, most R&D funding has come from North America with some commercial interests from Asia, but African biotechnology workers expressed strong desire for (re-)engagement with interested parties from the European Union. Although in some of the visited countries there are very well qualified personnel in molecular biology and biosafety/regulation, the main message received is that human resources and capacity building in-house are still needed. This could be achieved through home-based courses and capacity-building including funds for post-degree research to motivate and retain trained staff. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Enterprise Cloud Adoption: Leveraging on the Business and ...

    African Journals Online (AJOL)

    Enterprise Cloud Adoption: Leveraging on the Business and Security Benefits. ... on security, privacy and forensic issues associated with this new computing platform for ... Keywords: Cloud Computing, Cloud Security, Cloud Forensic, Security ...

  13. 78 FR 17766 - Interagency Guidance on Leveraged Lending

    Science.gov (United States)

    2013-03-22

    ... high-level principles related to safe-and-sound leveraged lending activities, including underwriting considerations, assessing and documenting enterprise value, risk management expectations for credits awaiting distribution, stress- testing expectations, pipeline portfolio management, and risk management expectations for...

  14. Estimation of the Continuous and Discontinuous Leverage Effects.

    Science.gov (United States)

    Aït-Sahalia, Yacine; Fan, Jianqing; Laeven, Roger J A; Wang, Christina Dan; Yang, Xiye

    2017-01-01

    This paper examines the leverage effect, or the generally negative covariation between asset returns and their changes in volatility, under a general setup that allows the log-price and volatility processes to be Itô semimartingales. We decompose the leverage effect into continuous and discontinuous parts and develop statistical methods to estimate them. We establish the asymptotic properties of these estimators. We also extend our methods and results (for the continuous leverage) to the situation where there is market microstructure noise in the observed returns. We show in Monte Carlo simulations that our estimators have good finite sample performance. When applying our methods to real data, our empirical results provide convincing evidence of the presence of the two leverage effects, especially the discontinuous one.

  15. Leveraged exchange-traded funds price dynamics and options valuation

    CERN Document Server

    Leung, Tim

    2016-01-01

    This book provides an analysis, under both discrete-time and continuous-time frameworks, on the price dynamics of leveraged exchange-traded funds (LETFs), with emphasis on the roles of leverage ratio, realized volatility, investment horizon, and tracking errors. This study provides new insights on the risks associated with LETFs. It also leads to the discussion of new risk management concepts, such as admissible leverage ratios and admissible risk horizon, as well as the mathematical and empirical analyses of several trading strategies, including static portfolios, pairs trading, and stop-loss strategies involving ETFs and LETFs. The final part of the book addresses the pricing of options written on LETFs. Since different LETFs are designed to track the same reference index, these funds and their associated options share very similar sources of randomness. The authors provide a no-arbitrage pricing approach that consistently value options on LETFs with different leverage ratios with stochastic volatility and ...

  16. The Effects of Logistics Leverage in Marketing Systems

    OpenAIRE

    G.N. Okeudo

    2012-01-01

    An effective logistics system when incorporated into marketing can strengthen its operations and further give the firm a competitive edge. To design a marketing system which must maintain its market share, a firm must consider the effects of logistics and how its integration into marketing can produce several points of leverage. It is the purpose of this paper to highlight the leverage points available in any logistics units and to further analyze how marketing managers can work in sync with ...

  17. Leverage, debt maturity and firm investment: An empirical analysis

    OpenAIRE

    Dang, Viet A.

    2011-01-01

    In this paper, we examine the potential interactions of corporate financing and investment decisions in the presence of incentive problems. We develop a system-based approach to investigate the effects of growth opportunities on leverage and debt maturity as well as the effects of these financing decisions on firm investment. Using a panel of UK firms between 1996 and 2003, we find that high-growth firms control underinvestment incentives by reducing leverage but not by shortening debt maturi...

  18. The Role of Target Leverage in Security Issues and Repurchases

    OpenAIRE

    Armen Hovakimian

    2004-01-01

    The paper examines whether security issues and repurchases adjust the capital structure toward the target. The time-series patterns of debt ratios imply that only debt reductions are initiated to offset the accumulated deviation from target leverage. The importance of target leverage in earlier debt-equity choice studies is driven by the subsample of equity issues accompanied by debt reductions. Unlike debt issues and reductions, equity issues and repurchases have no significant lasting effec...

  19. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. THE IMPACT OF FINANCIAL LEVERAGE ON RETURN AND RISK

    Directory of Open Access Journals (Sweden)

    HAKAN SARITAŞ

    2013-05-01

    Full Text Available Financing with debt and preferred stock to increase the potential return to the residual common shareholders’ equity is referred to as financial leverage. A firm’s return on equity (ROE is a key determinant of the growth rate of its earnings. Return on equity is affected profoundly by the firm’s degree of financial leverage. Increased debt will make a positive contribution to a firm’s ROE only if the firm’s return on assets (ROA exceeds the interest rate on the debt. In spite of the fact that financial leverage increases the rate of return on common stock equity, the grater the proportion of debt in the capital structure, however, the greater the risk the common shareholders bear. Introduction of financial leverage increases the average profitability of the firm as well as its risk. In good economic years, the impact of financial leverage will most likely be positive; however, the leverage effect may be negative in relatively bad years. Traditionally, studies treated short-term debt and long-term debt as perfect substitutes for each other. There is, however, risk-sharing by long-term debtholders which makes short-term debt financing riskier to shareholders than long-term debt financing. The significant affect associated with the total debt usage is largely attributable to short-term debt financing, since the impact of short-term debt financing on the expected returns is shown to be greater than that of long-term debt financing.

  1. Analysis of debt leveraging in private power projects

    International Nuclear Information System (INIS)

    Kahn, E.P.; Meal, M.; Doerrer, S.; Morse, S.

    1992-08-01

    As private power (non-utility generation) has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital, and that this leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not home by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs

  2. Analysis of debt leveraging in private power projects

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.P. (Lawrence Berkeley Lab., CA (United States)); Meal, M.; Doerrer, S.; Morse, S. (Morse, Richard, Weisenmiller Associates, Inc., Oakland, CA (United States))

    1992-08-01

    As private power has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital. This leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not borne by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.

  3. Why do the biotechnology and the climate change debates hardly mix? Evidence from a global stakeholder survey.

    Science.gov (United States)

    Aerni, Philipp

    2013-05-25

    Despite its potential to address climate change problems, the role of biotechnology is hardly ever touched upon in the global sustainability debate. We wanted to know why. For that purpose, we conducted a global online stakeholder survey on biotechnology and climate change. The relevant stakeholders and their representatives were selected by means of key informants that were familiar with either of the two debates. A self-assessment showed that a majority of respondents felt more familiar with the climate change than the biotechnology debate. Even though the survey results reveal that most respondents consider the potential of modern biotechnology to address climate change to be substantial, the policy network analysis revealed that one stakeholder who is not just considered to be relevant in both debates but also crucial in the formation of global public opinion, strongly rejects the view that biotechnology is a climate-friendly and therefore clean technology. This influential opposition seems to ensure that the biotechnology and the climate change debates do not mix. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. PENGGUNAAN LEVERAGE PADA PERUSAHAAN: PERBEDAAN ANTARA CEO PRIA DAN WANITA

    Directory of Open Access Journals (Sweden)

    Farida Titik Kritanti

    2014-07-01

    Full Text Available AbstractVarious studies show that women are more risk averse in making decisions and better long-term oriented. Women would rather risk averse than men, making it less likely they will use debt in their capital structure, since by increasing debt increases the risk of the company's financial means. This study want to test whether gender became a significant factor in financial leverage, to see whether there are differences in policy between the company's leverage, led by men and women. Financial leverage is used as a measure of corporate risk because these variables can be changed by the CEO. Data from companies listed on the Jakarta Stock Exchange as sample. The results showed that there were differences in leverage between firms that have a men CEO with the women CEO of a company. Men CEO use more debt than the women CEO. But for the performance measured by ROI, obtained different results for the type of industry studied. For the consumer goods industry, there are performance differences between the men CEO and the women. But for the internet service industry and enamel kitchen showed no performance difference between women CEO with men CEO.Key words: leverage, woman CEO, man CEO, performanceAbstrakBerbagai penelitian menunjukkan bahwa wanita lebih risk averse dalam mengambil keputusan dan lebih berorientasi jangka panjang. Wanita lebih suka menolak risiko dibandingkan pria, sehingga kecil kemungkinan mereka akan menggunakan hutang dalam struktur modalnya, karena dengan menambah hutang berarti memperbesar risiko keuangan perusahaan. Penelitian ini ingin menguji apakah jender menjadi faktor yang cukup signifikan dalam financial leverage, dengan melihat apakah ada perbedaan dalam kebijakan leverage antara perusahaan yang dipimpin oleh pria dan wanita. Financial leverage dipakai sebagai ukuran risiko perusahaan karena variabel ini bisa diubah oleh CEO. Sampel menggunakan data dari perusahaan yang listed di Jakarta Stock Exchange. Hasil penelitian

  5. Pili and flagella biology, structure, and biotechnological applications.

    Science.gov (United States)

    Van Gerven, Nani; Waksman, Gabriel; Remaut, Han

    2011-01-01

    Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Current challenges and future perspectives of plant and agricultural biotechnology.

    Science.gov (United States)

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mesoscale modeling: solving complex flows in biology and biotechnology.

    Science.gov (United States)

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  10. Foundations for a Colombian Biotechnology policy

    Directory of Open Access Journals (Sweden)

    Óscar Castellanos

    2001-07-01

    Full Text Available Globalisation has created challenges for industry related to the constant need for improving national and international productivity and competitivity. Biological knowledge today has growing industrial application as it proposes innovative production methods. This type of biotechnology is becoming more relevant in Colombia's economic and social development all the time. The Colombian Ministry of Development, Colciencias and the National University of Colombia have therefore been jointly developing an integral set of guidelines. These are framed within Colombia's biotechnology policy to create concrete goals, objectives, strategies and direct action from the State, academic institutions and the business world. They encompass six fundamental approaches: markets and management; normativity and legislation; research and development (R&D; economic resources; human resources; and integration training. They al so explicitly raise the question of who shall be responsible for follow-up and the way that the policy's execution and achievements will be evaluated.

  11. Canadian biotechnological developments in fossil fuels

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    CANMET recently initiated a Biotechnology program in cooperation with various oil companies and university personnel to develop biological processes and to determine various biological mechanisms associated with coal, oil and gas recovery. This presentation will give a brief overview of the ongoing projects including the microbial decomposition of refinery sludges and wastes, microbial internal and external corrosion of pipeline, the use of microbial exopolymers in secondary oil recovery and in the prevention of loss of drilling lubricants. (author)

  12. Bacterial Siderophores and their Biotechnological applications

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.

    Siderophores and their Biotechnological applications C. Mohandass Biological Oceanography Division National Institute of Oceanography Dona-paula, Goa.403 004.India. Introduction Siderophore is the Greek phrase for ?iron bearer? and is applied to molecules... the efficiency of the biological carbon pump. Phytoplankton must have developed a sophisticated mechanism to uptake iron. However, little is known about the uptake mechanism. Given the importance of the biological pump in controlling atmospheric CO2, elucidating...

  13. MIPs as Tools in Environmental Biotechnology.

    Science.gov (United States)

    Mattiasson, Bo

    2015-01-01

    Molecular imprints are potentially fantastic constructions. They are selective, robust, and nonbiodegradable if produced from stable polymers. A range of different applications has been presented, everything from separation of enantiomers, via adsorbents for sample preparation before analysis to applications in wastewater treatment. This chapter deals with molecularly imprinted polymers (MIPs) as tools in environmental biotechnology, a field that has the potential to become very important in the future.

  14. Biotechnology and where it is going

    Energy Technology Data Exchange (ETDEWEB)

    Malik, V.S.

    From some of the selected highlights in this paper, it is apparent that biotechnology is becoming increasingly popular in meeting the world's expanding needs. There are endless tasks which can be accomplished by the judicious application of recombinant DNA technology for engineering of microorganisms. Use of microbes will accelerate in the next decade and fermentation processes may be used to produce many products that are presently derived from petrochemicals or chemical synthesis. (Refs. 17).

  15. Biotechnological production of limonene in microorganisms

    OpenAIRE

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial producti...

  16. Microbial biotechnology addressing the plastic waste disaster

    OpenAIRE

    Narancic, Tanja; O'Connor, Kevin E.

    2017-01-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2. However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14).

  17. UNIVERSITY BASIC RESEARCH AND APPLIED AGRICULTURAL BIOTECHNOLOGY

    OpenAIRE

    Xia, Yin

    2004-01-01

    I examine the effects of R&D inputs on the subset of life-science outputs which demonstrably has influenced later technology, as evidenced by literature citations in agricultural biotechnology patents. Universities are found to be a principal seedbed for cutting-edge technology development. A university's life-science research budget strongly affects its technology-relevant life-science output as well as graduate education.

  18. SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    O. M. Klyuchko

    2018-02-01

    Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.

  19. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  1. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  2. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    Natarajan, K.A.

    2012-01-01

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  3. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  4. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  5. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  6. 13 CFR 107.1130 - Leverage fees and additional charges payable by Licensee.

    Science.gov (United States)

    2010-01-01

    ... you issue a Debenture or Participating Security to repay or redeem existing Leverage, you must pay the leverage fee before SBA will guarantee or purchase the new Leverage security. (2) If you issue a Debenture... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Leverage fees and additional...

  7. Leveraging Interactive Patient Care Technology to Improve Pain Management Engagement.

    Science.gov (United States)

    Rao-Gupta, Suma; Kruger, David; Leak, Lonna D; Tieman, Lisa A; Manworren, Renee C B

    2017-12-15

    Most children experience pain in hospitals; and their parents report dissatisfaction with how well pain was managed. Engaging patients and families in the development and evaluation of pain treatment plans may improve perceptions of pain management and hospital experiences. The aim of this performance improvement project was to engage patients and families to address hospitalized pediatric patients' pain using interactive patient care technology. The goal was to stimulate conversations about pain management expectations and perceptions of treatment plan effectiveness among patients, parents, and health care teams. Plan-Do-Study-Act was used to design, develop, test, and pilot new workflows to integrate the interactive patient care technology system with the automated medication dispensing system and document actions from both systems into the electronic health record. The pediatric surgical unit and hematology/oncology unit of a free-standing, university-affiliated, urban children's hospital were selected to pilot this performance improvement project because of the high prevalence of pain from surgeries and hematologic and oncologic diseases, treatments, and invasive procedures. Documentation of pain assessments, nonpharmacologic interventions, and evaluation of treatment effectiveness increased. The proportion of positive family satisfaction responses for pain management significantly increased from fiscal year 2014 to fiscal year 2016 (p = .006). By leveraging interactive patient care technologies, patients and families were engaged to take an active role in pain treatment plans and evaluation of treatment outcomes. Improved active communication and partnership with patients and families can effectively change organizational culture to be more sensitive to patients' pain and patients' and families' hospital experiences. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  8. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    Science.gov (United States)

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  9. Photo-biotechnology as a tool to improve agronomic traits in crops.

    Science.gov (United States)

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. White biotechnology: State of the art strategies for the development of biocatalysts for biorefining.

    Science.gov (United States)

    Heux, S; Meynial-Salles, I; O'Donohue, M J; Dumon, C

    2015-12-01

    White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    Directory of Open Access Journals (Sweden)

    Özlem Tüz

    2013-12-01

    Full Text Available Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of the money. In this study, monitoring and measuring of the leverage ratio because of the displacement in cash inflows of construction projects which uses high leverage and low cash to do business in the sector is targeted. Cash need because of drifting the cash inflows may be seen due to the model. Work should be done in the early stages of the project with little capital but in the later stages, rapidly growing capital need arises.The values obtained from the model may be used to supply the capital held in the right time by anticipating the risks because of the delay in cashflow of construction projects which uses high leverage ratio.

  13. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  14. Role of biotechnology in future agriculture. Korekarano nogyo to biotechnology eno kitai

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T. (Kyoto Univ., Kyoto (Japan). Faculty of Agriculture)

    1992-09-01

    In comparison with ancient times when everything is handled empirically, biological matter suitable for purposes can be produced and utilized faster and more reliably these days when life science has made a great advance. The advancement is related to new breeding technology and production means, and those means offer the point of contact between biotechnology and agriculture. The application fields of biotechnology are microbiology, cell technology, enzyme technology (bioreactor), and gene engineering. High yield, high content of high value ingredients as foods, adaptability to environment, resistance to disease and insect damage, etc. may be the subjects expected for future agricultural organisms. There may be many areas where biotechnology is related to those organisms, but a discussion is made in this report centering around the problem in breeding. Outlines are given on the applied cases of cell technological method, gene engineering method, and recombinant DNA technology, as well as on gene engineering for plants and animals. 10 refs., 7 figs.

  15. PENGARUH PROFITABILITAS, LEVERAGE DAN LIKUIDITAS TERHADAP KINERJA LINGKUNGAN

    Directory of Open Access Journals (Sweden)

    Agus Widarsono

    2015-12-01

    Full Text Available This study aims to test and obtain empirical evidence of factors that affect the environmental performance partially and simultaneously. Factors studied in this research are profitability, leverage and liquidity. The research method used is descriptive method verifikatif. With verificative testing using multiple regression, partial test (t test and simultaneous test (F test. The data used are secondary data that is the company's annual report and PROPER report of Ministry of Environment as sample in the research. The sample of research is 11 State-Owned Enterprise (BUMN Year 2009-2013 taken by using purposive sampling method. The results of this study indicate that profitability, leverage and liquidity have no significant effect on environmental performance partially. And profitability, leverage, and profitability have no significant effect on environmental performance simultaneously.

  16. Asimetri Informasi, Leverage, dan Ukuran Perusahaan pada Manajemen Laba

    Directory of Open Access Journals (Sweden)

    Tiya Mahawyahrti

    2017-03-01

    Full Text Available This study aims at finding the empirical evidence of the effect of asymmetry information, leverage, and firm size on earning management. This research uses agency theory and positive accounting theory to explain the effect of asymmetry information, leverage, and firm size on earning management. This study was conducted on companies listed in Indonesia Stock Exchange during the period of 2009-2013. The samples were selected by purposive sampling method. The number of selected samples were 39 companies. Multiple linear regression analysis was used to analyze the data. Based on the data analysis, the study proves that the asymmetry information has positive effects on earning management, leverage has positive effects on earning management and firm size has negative effects on earning management.

  17. DOWNWARD SLOPING DEMAND CURVES FOR STOCK AND LEVERAGE

    Directory of Open Access Journals (Sweden)

    Liem Pei Fun

    2006-01-01

    Full Text Available This research attempts to investigate the effect of downward sloping demand curves for stock on firms' financing decisions. For the same size of equity issuance, firms with steeper slope of demand curves for their stocks experience a larger price drop in their share price compare to their counterparts. As a consequence, firms with a steeper slope of demand curves are less likely to issue equity and hence they have higher leverage ratios. This research finds that the steeper the slope of demand curve for firm's stock, the higher the actual leverage of the firm. Furthermore, firms with a steeper slope of demand curves have higher target leverage ratios, signifying that these firms prefer debt to equity financing in order to avoid the adverse price impact of equity issuance on their share price.

  18. Systemic risk and heterogeneous leverage in banking networks

    Science.gov (United States)

    Kuzubaş, Tolga Umut; Saltoğlu, Burak; Sever, Can

    2016-11-01

    This study probes systemic risk implications of leverage heterogeneity in banking networks. We show that the presence of heterogeneous leverages drastically changes the systemic effects of defaults and the nature of the contagion in interbank markets. Using financial leverage data from the US banking system, through simulations, we analyze the systemic significance of different types of borrowers, the evolution of the network, the consequences of interbank market size and the impact of market segmentation. Our study is related to the recent Basel III regulations on systemic risk and the treatment of the Global Systemically Important Banks (GSIBs). We also assess the extent to which the recent capital surcharges on GSIBs may curb financial fragility. We show the effectiveness of surcharge policy for the most-levered banks vis-a-vis uniform capital injection.

  19. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications

    Czech Academy of Sciences Publication Activity Database

    Vítová, Milada; Bišová, Kateřina; Kawano, S.; Zachleder, Vilém

    2015-01-01

    Roč. 33, č. 6 (2015), s. 1204-1218 ISSN 0734-9750 R&D Projects: GA MŠk LO1416; GA ČR GA15-09231S Institutional support: RVO:61388971 Keywords : Algae * Carbon dioxide * Cell cycle Subject RIV: EE - Microbiology, Virology Impact factor: 9.848, year: 2015

  20. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vilmantas, Vaidas; Melnikas, Borisas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology-based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  1. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  2. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  3. Environmental Biotechnology Research and Development Program 1989-1992

    OpenAIRE

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management of the environment are evaluated. In this program two kinds of research are distinguished. Applied research directly focusses on specific environmental problems. Fundamental research aims at developing...

  4. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  5. PLANT BIOTECHNOLOGY IN THE 21ST CENTURY: THE CHALLENGES AHEAD

    OpenAIRE

    Altman, Arie

    1999-01-01

    In a world where population growth is outstripping food supply agricultural -and especially plant-biotechnology, needs to be swiftly implemented in all walks of life. Achievements today in plant biotechnology have already surpassed all previous expectations, and the future is even more promising. The full realisation of the agricultural biotechnology revolution depends on both continued successful and innovative research and development activities and on a favourable regulatory climate and pu...

  6. International Trade in Biotechnology Products and Strategic Mandatory Labelling

    OpenAIRE

    Jinji, Naoto

    2003-01-01

    This paper examines strategic motives to impose mandatory labelling of biotechnology products when consumers perceive these products as being of lower quality. When a foreign dominant firm produces a biotechnology product, it is shown that without mandatory labelling fringe firms, which produce a conventional product, provide voluntary labelling as long as voluntary labelling is fully credible. Information on which product is biotechnologically engineered is hence completely disclosed without...

  7. Biotechnology as a competitive edge for the Finnish forest cluster

    OpenAIRE

    Hakala, Terhi

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  8. Biotechnology as a Competitive Edge for the Finnish Forest Cluster

    OpenAIRE

    Hakala, Terhi; Haltia, Olli; Hermans, Raine; Kulvik, Martti; Nikinmaa, Hanna; Porcar-Castell, Albert; Pursula, Tiina

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  9. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    OpenAIRE

    Özlem Tüz; Şafak Ebesek

    2013-01-01

    Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of th...

  10. Random diffusion and leverage effect in financial markets.

    Science.gov (United States)

    Perelló, Josep; Masoliver, Jaume

    2003-03-01

    We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.

  11. Leveraging the wisdom of the crowd in software testing

    CERN Document Server

    Sharma, Mukesh

    2015-01-01

    Its scale, flexibility, cost effectiveness, and fast turnaround are just a few reasons why crowdsourced testing has received so much attention lately. While there are a few online resources that explain what crowdsourced testing is all about, there's been a need for a book that covers best practices, case studies, and the future of this technique.Filling this need, Leveraging the Wisdom of the Crowd in Software Testing shows you how to leverage the wisdom of the crowd in your software testing process. Its comprehensive coverage includes the history of crowdsourcing and crowdsourced testing, im

  12. Can plant biotechnology help break the HIV-malaria link?

    Science.gov (United States)

    Vamvaka, E; Twyman, R M; Christou, P; Capell, T

    2014-01-01

    The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Industrial College of the Armed Forces Industry Studies 2003: Biotechnology

    National Research Council Canada - National Science Library

    Aichouche, Abdelaziz

    2003-01-01

    Biotechnology is a discipline that integrates biology, chemistry, physiology, information technology, engineering, and nanotechnology with the potential to revolutionize every aspect of modern life...

  14. Industrial College of the Armed Forces Industry Studies 2002: Biotechnology

    National Research Council Canada - National Science Library

    2002-01-01

    The biotechnology industry is critically important to the development of products that will improve health care, agriculture, industrial processes, environmental remediation, and biological defense...

  15. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  16. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  17. Replacing reserve requirements

    OpenAIRE

    Edward J. Stevens

    1993-01-01

    An examination of the fading significance of the Federal Reserve System's reserve requirements and the recent flowering of required clearing balances, a rapidly growing feature of Reserve Bank operations.

  18. Leveraging cultural differences to promote educational equality.

    Science.gov (United States)

    Brady, Laura M; Germano, Adriana L; Fryberg, Stephanie A

    2017-12-01

    This paper theorizes that academic interventions will be maximally effective when they are culturally grounded. Culturally grounded interventions acknowledge cultural differences and validate multiple cultural models in a given context. This review highlights the importance of considering culture in academic interventions and draws upon the culture cycle framework to provide a blueprint for those interested in building more efficacious interventions. Specifically, the paper reviews literature in education and psychology to argue: first, when working-class and racial minority students' cultural models are not valued in mainstream academic domains, these students underperform; and second, many current academic interventions intended to improve working-class and racial minority students' academic outcomes could be further enhanced by cultural grounding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  20. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  1. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  2. Financial Risk in the Biotechnology Industry

    OpenAIRE

    Joseph H. Golec; John A. Vernon

    2007-01-01

    The biotechnology industry has been an engine of innovation for the U.S. healthcare system and, more generally, the U.S. economy. It is by far the most research intensive industry in the U.S. In our analyses in the current paper, for example, we find that, over the past 25 years, average R&D intensity (R&D spending to total firm assets) for this industry was 38 percent. Consider that over this same period average R&D intensity for all industries was only about 3 percent. In the current paper ...

  3. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  4. New challenges and opportunities for industrial biotechnology.

    Science.gov (United States)

    Chen, Guo-Qiang

    2012-08-20

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  5. Financial Times Global Pharmaceutical & Biotechnology Conference 2009.

    Science.gov (United States)

    Scattereggia, Jennifer

    2010-01-01

    The Financial Times Global Pharmaceutical & Biotechnology conference, held in London, included topics covering the current and future challenges confronting the pharma and biotech industry, and presented possible solutions to those challenges. This conference report highlights selected presentations on the industry challenges for big pharma companies, diversification as a solution to industry problems, overcoming challenges with collaborations and M&As, and the role of emerging markets in the pharma industry. Other subjects discussed included the expected impact of personalized medicine on the industry, the entry of big pharma into the generics market and the problems that are confronting the small pharma and biotech industry.

  6. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  7. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Daugsch, Andreas; Pastores, Glaucia . E-daugsch@fea.unicamp.br

    2005-01-01

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  8. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  9. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  10. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    -governmental organisations, including delegations from 42 FAO Member States. At the end of ABDC-10, the Member States reached a number of key conclusions, agreeing, inter alia, that FAO and other relevant international organisations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies. Copyright © 2011 FAO. Published by Elsevier B.V. All rights reserved.

  11. Heterogeneity in the Speed of Adjustment toward Target Leverage

    DEFF Research Database (Denmark)

    Elsas, Ralf; Florysiak, David

    2011-01-01

    Estimating the speed of adjustment toward target leverage using the standard partial adjustment model assumes that all firms within the sample adjust at the same (average) pace. Dynamic capital structure theory predicts heterogeneity in adjustment speed due to firm-specific adjustment costs. Appl...

  12. Mining E-mail to Leverage Knowledge Networks in Organizations

    NARCIS (Netherlands)

    van Reijsen, J.; Helms, R.W.; Jackson, T.W.

    2009-01-01

    There is nothing new about the notion that in today‟s knowledge driven economy, knowledge is the key strategic asset for competitive advantage in an organization. Also, we have learned that knowledge is residing in the organization‟s informal network. Hence, to leverage business performance from a

  13. Leveraging Mobile Games for Place-Based Language Learning

    Science.gov (United States)

    Holden, Christopher L.; Sykes, Julie M.

    2011-01-01

    This paper builds on the emerging body of research aimed at exploring the educational potential of mobile technologies, specifically, how to leverage place-based, augmented reality mobile games for language learning. Mentira is the first place-based, augmented reality mobile game for learning Spanish in a local neighborhood in the Southwestern…

  14. Banking Competition and Stability : The Role of Leverage

    NARCIS (Netherlands)

    Freixas, X.; Ma, K.

    2014-01-01

    This paper reexamines the classical issue of the possible trade-offs between banking competition and financial stability by highlighting different types of risk and the role of leverage. By means of a simple model we show that competition can affect portfolio risk, insolvency risk, liquidity risk,

  15. The impact of Taxation on Bank Leverage and Asset Risk

    NARCIS (Netherlands)

    Horvath, B.L.

    2013-01-01

    Abstract: The tax-bene t of interest deductibility encourages debt nancing, but regulatory and market constraints create dependency between bank leverage and risk. Using a large international sample of banks this paper estimates the short and long run effects of corporate income taxes (CIT) on bank

  16. Leveraging Proximity Sensing to Mine the Behavior of Museum Visitors

    NARCIS (Netherlands)

    Martella, Claudio; Miraglia, Armando; Cattani, Marco; van Steen, Martinus Richardus

    Face-to-face proximity has been successfully leveraged to study the relationships between individuals in various contexts, from a working place, to a conference, a museum, a fair, and a date. We spend time facing the individuals with whom we chat, discuss, work, and play. However, face-to-face

  17. Real interest rates, leverage, and bank risk-taking

    NARCIS (Netherlands)

    Dell’Ariccia, G.; Laeven, L.; Marquez, R.

    2014-01-01

    Do low interest rate environments lead to greater bank risk-taking? We show that, when banks can adjust their capital structures, reductions in real interest rates lead to greater leverage and higher risk for any downward sloping loan demand function. However, if the capital structure is fixed, the

  18. The effect of leverage increases on real earnings management

    NARCIS (Netherlands)

    I. Zagers-Mamedova (Irina)

    2009-01-01

    textabstractMain subject of this paper is to understand whether there could be an incentive for managers to manipulate cash flow from operating activities (CFO) through the use of real earnings management (REM), in situations with increasing leverage. Based upon a study of Jelinek (2007) who

  19. Factors affecting Leverage: An empirical analysis of Mauritius ...

    African Journals Online (AJOL)

    Nafiisah

    presumably have an impact on the WACC and the firm's investment decision and ... debt is advocated as it consists of fixed interest payment which does not lead to ... explain the level of leverage – company size, profitability, asset tangibility and ... The firm will thus pursue an optimal capital structure or target debt ratio by.

  20. Leveraging Innovation Capabilities of Asian Micro, Small and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leveraging Innovation Capabilities of Asian Micro, Small and Medium Enterprises through Intermediary Organizations. Micro, small and medium enterprises (MSMEs) are a source of livelihood for billions of poor people worldwide. The current global economic downturn has hit these enterprises particularly hard, putting ...

  1. A feasible central limit theory for realised volatility under leverage

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, Neil

    In this note we show that the feasible central limit theory for realised volatility and realised covariation recently developed by Barndor-Nielsen and Shephard applies under arbitrary diusion based leverage eects. Results from a simulation experiment suggest that the feasible version of the limit...

  2. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)

    DARNE GERMANO DE ALMEIDA

    2016-10-01

    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  3. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    Science.gov (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  4. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    Directory of Open Access Journals (Sweden)

    Bal-Prilipko L. V.

    2014-10-01

    Full Text Available The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of special strains of microorganisms in production of functional meat products offers some opportunities. Thus, such action is associated with formation of the following specific dietary components: organic acids, bactericins, enzymes, vitamins and others. They promote to improve the sanitary microbiological, organoleptic, functional and technological parameters of meat products. Using of denitrifying microbial strains could reduce the residual content of sodium nitrite in the finished product, minimizing the possible carcinogenic and mutagenic impact of this compound on a human body, producing functional safe products while maintaining its high organoleptic characteristics.

  5. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    International Nuclear Information System (INIS)

    Johnson, Robbin S.

    2011-01-01

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product’s development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  6. Nuclear energy in the age of biotechnology

    International Nuclear Information System (INIS)

    Deocaris, C.C.

    2002-01-01

    The unprecedented rate of discovery in molecular biology and biotechnology, in particular, the human genome sciences, has already far surpassed advancements in aerospace and nuclear science. Its influence will not only permanently mold perspectives in health, medicine and the life sciences, but will also create an impact in the field of nuclear energy development. In the next 50 years, nuclear power run by fission-reactions will be relaunched. It is bound to present more diverse applications, e.g., in propelling ships, in the production of heat for industry and for space heating, and perhaps in the desalination of water. The general public will be more at ease with nuclear power knowing that there is no other form of energy capable of delivering so much power at reasonable cost with negligible impact on climate and environment in what is perceived to be the coming of a nuclear rennaissance (Blix, 2001). This paper surveys opportunities for future nuclear energy applications in biotechnology, including DNA-damage sensors, bioelectronics and computers, genetic testing of nuclear workers and upgrading of biofuels. The relevance of these myriads of biosystems applications may not 'ust complement requirements of a nuclear power program in improving overall efficiency and safety but may also provide more diverse uses of nuclear power that may find use for developing nations. (Author)

  7. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  8. Uses of biotechnology in waste treatment

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Benson, J.

    1996-01-01

    BNFL have invested in a Biotechnology programme to address waste treatment problems. The use of biotechnology to destroy organic pollutants is well known and has been successfully employed both in-situ and ex-situ. The BNFL approach has been to concentrate on the interaction of microbial systems with inorganic materials. This study has resulted in two major programmes of work that show every indication of being suitable for large scale application. The first programme of work investigated using, to decontaminate concrete surfaces, the phenomena of concrete degradation by sulphur oxidizing bacteria. Laboratory tests proved encouraging and have resulted in a Co-operative Research and Development Agreement (CRADA), between BNFL and Lockheed Martin Idaho Technologies Company for the INEL site. The CRADA will lead to a demonstration of the technology. The second major area of investigation is the development of an integrated bioremediation process for the removal and recovery of toxic heavy metals from contaminated land. The two stage process, which can be employed in an in-situ or ex-situ mode, involves the use of indigenous micro-organisms to generate sulphuric acid and environmental consortia to generate hydrogen sulphide. This project has reached the point of field trials. Results from both programmes will be presented and their applications at nuclear sites detailed

  9. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Science.gov (United States)

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  10. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  11. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  12. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  13. 75 FR 1749 - Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for...

    Science.gov (United States)

    2010-01-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for Determination of... Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a....gov ). FOR FURTHER INFORMATION CONTACT: Dr. Subray Hegde, Biotechnology Regulatory Services, APHIS...

  14. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology... of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda...

  15. Payeeship, financial leverage, and the client-provider relationship.

    Science.gov (United States)

    Angell, Beth; Martinez, Noriko I; Mahoney, Colleen A; Corrigan, Patrick W

    2007-03-01

    Although representative payeeship provided within clinical settings is believed to have therapeutic benefits, its potential negative impact on the therapeutic alliance or client-provider relationship is of concern. This study examined the effects of payeeship and perceived financial leverage on positive and negative dimensions of the client-provider relationship. The sample consisted of 205 adults ages 18 to 65 with axis I disorders who were receiving mental health services from a large urban community mental health clinic. Information about money management characteristics and ratings of the client-provider relationship were collected via face-to-face interview. Fifty-three percent of the sample had a payee or money manager, and 79% of this group had a clinician payee. Respondents with co-occurring psychotic and substance use disorders, lower functioning, and lower insight about their illness were more likely to have a clinician payee. Forty percent of those with a clinician payee reported perceived financial leverage. Having a clinician payee was also associated with perceived financial leverage and with higher levels of conflict in the case management relationship. When examined in combination, financial leverage was found to mediate the effects of payeeship on conflict in the case management relationship (mean+/-SE=2.37+/-1.33, 95% confidence interval=16-5.52, pconflict in the therapeutic alliance when used as a source of treatment leverage. Although payeeship provides important support and may enhance functional outcomes for the patient, decisions about using the mechanism for promoting treatment adherence should take into account the potential disruption to the client-provider relationship.

  16. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  17. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  18. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  19. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  20. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  1. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  2. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  3. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  4. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  5. Feeding the world with induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Mohan Jain, S.

    2002-01-01

    The paper discussed the following subjects: biotechnology - somaclonal variation, somatic embryogenesis, somatic cell hybridization; induced mutations - in banana, ornamental plants; in vitro mutagenesis; T-DNA insertional mutagenesis. Suggestions for improving biotechnology in the developing countries also presented in the paper

  6. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  7. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  8.   Biotechnology in Danish forestry - Christmas trees and Biofuels

    DEFF Research Database (Denmark)

    Find, Jens

    for development of additional biotechnological breeding technologies as e.g. genetic transformation, and because SE allows for storage of elite germ plasm over extended periods in liquid nitrogen. The combination of SE and other biotechnological breeding tools permit for relative fast and market oriented breeding...

  9. Of Apples and Animals: An Introduction to Biotechnology.

    Science.gov (United States)

    Mourad, Teresa M.; And Others

    This guide is designed to foster an understanding of the basic concepts underlying biotechnology through simple activities that are fun and creative for students in grades 3-5. It contains four units that will lead young students to an appreciation of how biotechnology is possible and some of its applications. The process of learning is intended…

  10. Western Australian High School Students' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    This study reports on the attitudes towards biotechnology of 905, 15-16 year-old students from 11 Western Australian schools. Students were asked to read 15 statements about biotechnology processes and to draw a line to separate what they considered "acceptable" statements from those they considered "unacceptable". Overall, the…

  11. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  12. Challenges and opportunities for improving food quality and nutrition through plant biotechnology.

    Science.gov (United States)

    Francis, David; Finer, John J; Grotewold, Erich

    2017-04-01

    Plant biotechnology has been around since the advent of humankind, resulting in tremendous improvements in plant cultivation through crop domestication, breeding and selection. The emergence of transgenic approaches involving the introduction of defined DNA sequences into plants by humans has rapidly changed the surface of our planet by further expanding the gene pool used by plant breeders for plant improvement. Transgenic approaches in food plants have raised concerns on the merits, social implications, ecological risks and true benefits of plant biotechnology. The recently acquired ability to precisely edit plant genomes by modifying native genes without introducing new genetic material offers new opportunities to rapidly exploit natural variation, create new variation and incorporate changes with the goal to generate more productive and nutritious plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    Science.gov (United States)

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest.

    Science.gov (United States)

    Cologna, Nicholas de Mojana di; Gómez-Mendoza, Diana Paola; Zanoelo, Fabiana Fonseca; Giannesi, Giovana Cristina; Guimarães, Nelciele Cavalieri de Alencar; Moreira, Leonora Rios de Souza; Filho, Edivaldo Ximenes Ferreira; Ricart, Carlos André Ornelas

    2018-02-01

    Filamentous fungal secretomes comprise highly dynamic sets of proteins, including multiple carbohydrate active enzymes (CAZymes) which are able to hydrolyze plant biomass polysaccharides into products of biotechnological interest such as fermentable sugars. In recent years, proteomics has been used to identify and quantify enzymatic and non-enzymatic polypeptides present in secretomes of several fungi species. The resulting data have widened the scientific understanding of the way filamentous fungi perform biomass degradation and offered novel perspectives for biotechnological applications. The present review discusses proteomics approaches that have been applied to the study of fungal secretomes, focusing on two of the most studied filamentous fungi genera: Trichoderma and Aspergillus. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    Science.gov (United States)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  16. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  17. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  18. From Stove-pipe to Network Centric Leveraging Technology to Present a Unified View

    National Research Council Canada - National Science Library

    Abuhantash, Medhat A; Shoultz, Matthew V

    2004-01-01

    .... The paper will also demonstrate how the application of current technology can be leveraged to present a unified view of data from disparate data sources, and how our organization is leveraging...

  19. The Media, Intelligence, and Information Proliferation: Managing and Leveraging the Chaos

    National Research Council Canada - National Science Library

    Steetin, Robert

    1999-01-01

    ... the chaos and leverage that coverage and flow of information. Leveraging the coverage only refers to improving and maintaining the leadership's situational awareness in a volatile, uncertain, complex, and ambiguous (VUCA) world...

  20. Complex Biochemistry and Biotechnological Production of Betalains

    Directory of Open Access Journals (Sweden)

    Marijana Krsnik-Rasol

    2011-01-01

    Full Text Available The demand for natural food colourants is increasing because of public awareness of their health benefits. Betalains are nitrogen-containing plant pigments whose colours range from red-violet betacyanins to yellow betaxanthins. They are used for colouring dairy products, meat and frozen desserts. Betalains have attracted additional interest because of their antioxidative, anti-inflammatory and anticarcinogenic properties. The main source of commercially produced betalains is red beet root, but alternative sources are found in plants from the Amaranthaceae and Cactaceae families. Another alternative source is plant cell culture in bioreactors, although optimization of pigment production seems necessary. In this paper we synthesize the results of recent studies on betalain biosynthesis, chemical properties, sources, biotechnology and applications.

  1. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  2. Essentials of Conservation Biotechnology: A mini review

    Science.gov (United States)

    Merlyn Keziah, S.; Subathra Devi, C.

    2017-11-01

    Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.

  3. Identification of Conceptual Understanding in Biotechnology Learning

    Science.gov (United States)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  4. New challenges and opportunities for industrial biotechnology

    Science.gov (United States)

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  5. New challenges and opportunities for industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Chen Guo-Qiang

    2012-08-01

    Full Text Available Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  6. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  7. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  8. Biotechnological production of limonene in microorganisms.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.

  9. Biotechnological interventions in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Pritika; Guleri, Rupam; Singh, Varinder; Kaur, Gurpreet; Kataria, Hardeep; Singh, Baldev; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.

  10. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  11. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  12. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    ” semiotic networks across hierarchical levels and for relating the different emergent codes in living systems. I consider this an important part of the work because there I define some of the main concepts that will help me to analyse different codes and semiotic processes in living systems in order...... to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic...... to exemplify how a semiotic approach can be of help when organising the knowledge that can lead us to understanding the relevance, the role and the position of signal transduction networks in relation to the larger semiotic networks in which they function, i.e.: in the hierarchical formal processes of mapping...

  13. The contribution of bank regulation and fair value accounting to procyclical leverage

    OpenAIRE

    Amel-Zadeh; Barth, ME; Landsman, WR

    2017-01-01

    Our analytical description of how banks’ responses to asset price changes can result in procyclical leverage reveals that for banks with a binding regulatory leverage constraint, absent differences in regulatory risk weights across assets, procyclical leverage does not occur. For banks without a binding constraint, fair value and bank regulation both can contribute to procyclical leverage. Empirical findings based on a large sample of US commercial banks reveal that bank regulation explains p...

  14. Size, Leverage, Concentration, and R&D Investment in Generating Growth Opportunities

    OpenAIRE

    Yew Kee Ho; Mira Tjahjapranata; Chee Meng Yap

    2006-01-01

    We show that a firm's ability to reap growth opportunities from R&D investments depends on its size, leverage, and the industry concentration. While the direct effects of these factors are significant, the size-leverage interaction reveals further important insights. Large firms' advantages over small firms disappear as their leverage increases. Specifically, small firms with high leverage reap the greatest growth opportunities. Our results provide explanations for inconsistent findings obser...

  15. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  16. Development of agriculture biotechnology in Pakistan.

    Science.gov (United States)

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  17. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  18. 17 CFR 31.23 - Limited right to rescind first leverage contract.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Limited right to rescind first... COMMISSION LEVERAGE TRANSACTIONS § 31.23 Limited right to rescind first leverage contract. (a) A leverage... pursuant to the following provisions: (1) Such customer may be assessed actual price losses accruing to the...

  19. 17 CFR 31.13 - Financial reports of leverage transaction merchants.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Financial reports of leverage... COMMISSION LEVERAGE TRANSACTIONS § 31.13 Financial reports of leverage transaction merchants. (a) Each... person must include with such financial report a statement describing the source of his current assets...

  20. Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis.

    Science.gov (United States)

    Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang

    2017-01-01

    In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients' phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases.

  1. PENGARUH KUALITAS AKRUAL DAN LEVERAGE TERHADAP CASH HOLDING PERUSAHAAN

    Directory of Open Access Journals (Sweden)

    Anggita Langgeng Wijaya

    2010-12-01

    Full Text Available This research tests the effect of accrual quality and leverage on corporate cash holding for a sample of manufacturing company listed in Indonesian Stock Exchange over the period 2006-2007. This research also tests the role of asymmetric information as a mediating variable on the relation between accrual quality and cash holding. Population of this research is 197 manufacturing companies at the Indonesian Stock Exchange. This research uses the purposive sampling method. Hypothesis test of this research em­ploys multiple regression analysis and path analysis. The results show that: accrual quality does not affect asymmetric information; asymmetric information positively affects corporate cash holdings; asymmetric information is not a mediating variable on the relation between accrual quality and cash holding; leverage negatively affects corporate cash holding.

  2. Defining and Leveraging Game Qualities for Serious Games

    Science.gov (United States)

    Martin, Michael W.; Shen, Yuzhong

    2011-01-01

    Serious games can and should leverage the unique qualities of video games to effectively deliver educational experiences for the learners. However, leveraging these qualities is incumbent upon understanding what these unique 'game' qualities are , and how they can facilitate the learning process. This paper presents an examination of the meaning of the term 'game' . as it applies to both serious games and digital entertainment games. Through the examination of counter examples, we derive three game characteristics; games are self contained, provide a variety of meaningful choices, and are intrinsically compelling. We also discuss the theoretical educational foundations which support the application of these 'game qualities' to educational endeavors. This paper concludes with a presentation of results achieved through the application of these qualities and the applicable educational theories to teach learners about the periodic table of elements via a serious game developed by the authors.

  3. Leveraging mobile computing and communication technologies in education

    DEFF Research Database (Denmark)

    Annan, Nana Kofi

    education and technology have evolved in tandem over the past years, this dissertation recognises the lapse that there is, in not being able to effectively leverage technology to improve education delivery by most educators. The study appreciates the enormousness of mobile computing and communication...... technologies in contributing to the development of tertiary education delivery, and has taken keen interest to investigate how the capacities of these technologies can be leveraged and incorporated effectively into the pedagogic framework of tertiary education. The purpose is to research into how...... of the results conducted after rigorous theoretical and empirical research unveiled the following: Mobile technologies can be incorporated into tertiary education if it has a strong theoretical underpinning, which links technology and pedagogy; the technology would not work if the user’s concerns in relation...

  4. LEVERAGE IMPACTS ON AGRO-INDUSTRIAL COMPANY INVESTMENTS

    Directory of Open Access Journals (Sweden)

    Nugroho A.C.

    2018-03-01

    Full Text Available Agro-industry has an important role in Indonesian economic growth. One of the crucial constraints in agro-industry investments in developing country is due to limited access to investment fund. This research was aimed to analyze the impacts of leverage on the agro-industrial company investments. The research used financial report data of the manufacturing industries on agro-industrial bases registered in Indonesian Stock-Exchange from 2007 to 2016. The data were analyzed using panel data regression analysis. The results of the research showed that the leverage influenced negatively on the agro-industrial companies. Cash flow has a negative impact on the company investments, which shows the existence of financial constraints when the company decide to invest.

  5. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way......Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... the statistical leverage of each individual gauge. This may be of help in determining appropriate procedures for data preprocessing, of particular importance for the Arctic area as the GIA is hard to constrain and many gauges are located on rivers. We use a model based on empirical orthogonal functions from...

  6. Leveraging best practices to promote health, safety, sustainability, and stewardship.

    Science.gov (United States)

    Weiss, Marjorie D

    2013-08-01

    Strategically leveraging health and safety initiatives with sustainability and stewardship helps organizations improve profitability and positively impact team member and customer attachment to the organization. Collective efficacy enhances the triple bottom line: healthy people, healthy planet, and healthy profits. The HS(3)™ Best Practice Exchanges group demonstrated that collective efficacy can leverage the social cohesion, communication channels, and activities within workplaces to promote a healthy, sustainable work culture. This in turn (1) protects the health and safety of workers, (2) preserves the natural environment, and (3) increases attachment to the organization. Community-based participatory research using the Attach21 survey assessed the progress of these companies in their efforts to integrate health, safety, sustainability, and stewardship. Monthly Best Practice Exchanges promoted collective efficacy by providing support, encouragement, and motivation to share and adopt new ideas. Copyright 2013, SLACK Incorporated.

  7. Leveraging the Customer Base: Creating Competitive Advantage Through Knowledge Management

    OpenAIRE

    Elie Ofek; Miklos Sarvary

    2001-01-01

    Professional services firms (e.g., consultants, accounting firms, or advertising agencies) generate and sell business solutions to their customers. In doing so, they can leverage the cumulative experience gained from serving their customer base to either reduce their variable costs or increase the quality of their products/services. In other words, their "production technology" exhibits some form of increasing returns to scale. Growth and globalization, coupled with recent advances in informa...

  8. The Economics of Hedge Funds: Alpha, Fees, Leverage, and Valuation

    OpenAIRE

    Yingcong Lan; Neng Wang; Jinqiang Yang

    2011-01-01

    Hedge fund managers are compensated via management fees on the assets under management (AUM) and incentive fees indexed to the high-water mark (HWM). We study the effects of managerial skills (alpha) and compensation on dynamic leverage choices and the valuation of fees and investors' payoffs. Increasing the investment allocation to the alpha-generating strategy typically lowers the fund's risk-adjusted excess return due to frictions such as price pressure. When the manager is only paid via m...

  9. Bank stock returns, leverage and the business cycle

    OpenAIRE

    Jing Yang; Kostas Tsatsaronis

    2012-01-01

    The returns on bank stocks rise and fall with the business cycle, making bank equity financing cheaper in the boom and dearer during a recession. This provides support for prudential tools that give incentives for banks to build capital buffers at times when the cost of equity is lower. In addition, banks with higher leverage face a higher cost of equity, which suggests that higher capital ratios are associated with lower funding costs.

  10. Karakteristik Eksekutif Terhadap Tax Avoidance Dengan Leverage Sebagai Variabel Intervening

    OpenAIRE

    Carolina, Verani; Natalia, Maria; Debbianita, Debbianita

    2014-01-01

    This research aimed to examine the influence of the executive characteristic on corporate tax avoidance. Risktaker’s executive tended to be more courageous and aggressive in taking decision related to the tax. On thecontrary, the risk averse executive tended to be carefully (Low, 2006). This research used leverage as interveningvariable. Therefore, there was an assumption that the executive characteristic determined the corporateleverage which then influenced their tax avoidance in the compan...

  11. Leveraging Technological Capabilities across Polarized Cultures: Shanghai Delco Electronics Limited

    OpenAIRE

    Lucy A. Ojode

    2006-01-01

    Rallying its units for an impending spin-off from General Motors, the Delphi Automotive Systems division cleared the Delphi Delco Electronics (Delphi-D) unit to begin planning for entry into China in 1994. Delphi saw China as ideal for leveraging its technological and innovation capabilities as well as the enormous General Motor heritage and reputation from years of experience delivering quality products to the automotive industry. Delphi-D found a perfect partner in Shanghai Changjiang YiBia...

  12. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  13. Good news is bad news: Leverage cycles and sudden stops

    OpenAIRE

    Akinci, Ozge; Chahrour, Ryan

    2015-01-01

    We show that a model with imperfectly forecastable changes in future productivity and an occasionally binding collateral constraint can match a set of stylized facts about “sudden stop” events. “Good” news about future productivity raises leverage during times of expansion, increasing the probability that the constraint binds, and a sudden stop occurs, in future periods. The economy exhibits a boom period in the run-up to the sudden stop, with output, consumption, and investment all above tre...

  14. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  15. Leverage, Asymmetric Information, Firm Value, and Cash Holdings in Indonesia

    Directory of Open Access Journals (Sweden)

    Aldea Mita Cheryta

    2018-02-01

    Full Text Available This research aimed to analyze the effect of leverage and asymmetry information on the firm value through cash holding as mediation variable. The populations of this research were all the firms which listed on the Indonesia Stock Exchange since 2012 – 2015. A sample of this research was saturated sample and census, consisted 56 firms related the population criteria.  This research used secondary data from the firm financial report through path analysis method. This research showed that leverage had a negative effect on the cash holdings, asymmetry information had a negative effect on the firm value through cash holding, and cash holding had a negative effect on the firm value.  With leverage and effect on cash, holding cannot affect the firm value, due to investor risk-averse, investor risk seeker, and neutral investor has their own point of view in assessing the company. Cash holdings can lead to asymmetric information that can lead to agency conflict that can affect a company's performance, so that indirectly, with the existence of asymmetry information had an effect on the declining the firm value. 

  16. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  17. [Biotechnological cultivation of edible macrofungi: an alternative for obtaining nutraceutics].

    Science.gov (United States)

    Suárez Arango, Carolina; Nieto, Ivonne Jeannette

    2013-01-03

    Macromycetes have been part of the human culture for thousand years, and have been reported as food in the most important civilizations in history. Many nutraceutical properties of macromycetes have been described, such as anti-cancer, anti-tumour, cholesterol lowering, antiviral, antibacterial, or immunomodulatory, among others. Given that production of mushrooms by traditional cultivation and extraction of bioactive metabolites is very difficult in some cases, biotechnology is essential for the development of profitable and productive techniques for obtaining these metabolites. It is the development of this technology, and the ease in which it enables the use of its variables that has allowed mycelium to be cultivated in liquid medium of macrofungi, with a significant reduction in time and an increased production of metabolites. This increased production has led to the study of compounds that have medicinal, nutriceutical and quasi-farmaceutical potential, in the exhausted media and the mycelium. The aim of this review is to provide an overview of the use of liquid-state fermentation as a technological tool for obtaining edible fungi, and the study of these and their metabolites, by describing the different cultivation conditions used in recent years, as well as the results obtained. The relevance of Agaricus, Flammulina, Grifola, Pleurotus and Lentinula genera, will also be discussed, with emphasis on the last one, since Shiitake has been always considered as the ultimate medicinal mushroom. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier España, S.L. All rights reserved.

  18. Waste valorization by biotechnological conversion into added value products.

    Science.gov (United States)

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  19. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

    Science.gov (United States)

    Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S

    2015-05-01

    Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    Science.gov (United States)

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Properties and biotechnological applications of ice-binding proteins in bacteria.

    Science.gov (United States)

    Cid, Fernanda P; Rilling, Joaquín I; Graether, Steffen P; Bravo, Leon A; Mora, María de La Luz; Jorquera, Milko A

    2016-06-01

    Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The role of biotechnology in combating climate change

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    on biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk...

  6. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  7. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  9. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  10. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...... to start to fill this gap and develop a conceptual framework for comparing and analysing new and emerging modes of governance affiliated with biotechnology in the light of more general approaches to governance. We aim for a framework that can facilitate comparative inquiries and learning across different...

  11. Global unbalance in seaweed production, research effort and biotechnology markets.

    Science.gov (United States)

    Mazarrasa, Inés; Olsen, Ylva S; Mayol, Eva; Marbà, Núria; Duarte, Carlos M

    2014-01-01

    Exploitation of the world's oceans is rapidly growing as evidenced by a booming patent market of marine products including seaweed, a resource that is easily accessible without sophisticated bioprospecting technology and that has a high level of domestication globally. The investment in research effort on seaweed aquaculture has recently been identified to be the main force for the development of a biotechnology market of seaweed-derived products and is a more important driver than the capacity of seaweed production. Here, we examined seaweed patent registrations between 1980 and 2009 to assess the growth rate of seaweed biotechnology, its geographic distribution and the types of applications patented. We compare this growth with scientific investment in seaweed aquaculture and with the market of seaweed production. We found that both the seaweed patenting market and the rate of scientific publications are rapidly growing (11% and 16.8% per year respectively) since 1990. The patent market is highly geographically skewed (95% of all registrations belonging to ten countries and the top two holding 65% of the total) compared to the distribution of scientific output among countries (60% of all scientific publications belonging to ten countries and the top two countries holding a 21%), but more homogeneously distributed than the production market (with a 99.8% belonging to the top ten countries, and a 71% to the top two). Food industry was the dominant application for both the patent registrations (37.7%) and the scientific publications (21%) followed in both cases by agriculture and aquaculture applications. This result is consistent with the seaweed taxa most represented. Kelp, which was the target taxa for 47% of the patent registrations, is a traditional ingredient in Asian food and Gracilaria and Ulva, which were the focus of 15% and 13% of the scientific publications respectively, that are also used in more sophisticated applications such as cosmetics, chemical

  12. Bioprospection of marine microorganisms: biotechnological applications and methods

    Directory of Open Access Journals (Sweden)

    Hebe M Dionisi

    2012-03-01

    Full Text Available Environmental microorganisms constitute an almost inexhaustible reserve of genetic and functional diversity, accumulated during millions of years of adaptive evolution to various selective pressures. In particular, the extent of microbial biodiversity in marine habitats seems to grow larger as new techniques emerge to measure it. This has resulted in novel and more complex approaches for the screening of molecules and activities of biotechnological interest in these environments. In this review, we explore the different partially overlapping biotechnological fields that make use of microorganisms and we describe the different marine habitats that are particularly attractive for bioprospection. In addition, we review the methodological approaches currently used for microbial bioprospection, from the traditional cultivation techniques to state of the art metagenomic approaches, with emphasis in the marine environment.Bioprospección de microorganismos marinos: aplicaciones biotecnológicas y métodos. Los microorganismos ambientales constituyen una reserva prácticamente inagotable de diversidad genética, acumulada durante millones de años de evolución adaptativa a varias presiones selectivas. En particular, la magnitud de la biodiversidad microbiana en hábitats marinos parece crecer al emerger nuevas técnicas para medirla. Como resultado, se han comenzado a utilizar enfoques novedosos y más complejos para la búsqueda de moléculas y actividades de interés biotecnológico en estos ambientes. En este artículo de revisión, nosotros exploramos los diferentes campos de la biotecnología que utilizan microorganismos, los cuales se superponen parcialmente, y describimos los diferentes hábitats marinos que resultan particularmente atractivos para la bioprospección. Además, revisamos los enfoques metodológicos actualmente utilizados para la bioprospección microbiana, desde las técnicas de cultivo tradicionales hasta modernos enfoques

  13. ANALISIS FINANCIAL LEVERAGE PADA PT. RAJAWALI JAYA SAKTI CONTRINDO DI MAKASSAR.

    OpenAIRE

    ANWAR, H. MUH.

    2013-01-01

    2013 H.Muh.ANWAR, A financial leverage analysis at PT.Rajawali Jaya Sakti Contrindo of Makassar (Supervised by HJ.Siti Haerani and Kasman Damang). The problem statement of this research is whether financial leverage can increase company???s profit. The objectives of this research is to find out the calculation of financial leverage applied by company and to analyse the impact of financial leverage toward profit gained by company. The result of the research on leverage ratio of PT.Raja...

  14. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ...] Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System Program AGENCY... participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management..., audit-based compliance assistance program known as the Biotechnology Quality Management System Program...

  15. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  16. The Future of Bio-technology

    Science.gov (United States)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  17. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    The role of biotechnology on the treatment of wastes. ... treatment, gas treatment and disposal of solid wastes in environmental engineering. Also ... units and biogas reactors are used extensively among the waste treatment technologies.

  18. Recognizing biotechnology as a tool for sustainable development ...

    African Journals Online (AJOL)

    Knowledge of space science, information technology and biotechnology in ... It is indeed an essential panacea to the pervasive poverty and food security problem ... the nation and its citizens in such a way that the ecosystem is not threatened.

  19. African Journal of Biotechnology - Vol 7, No 23 (2008)

    African Journals Online (AJOL)

    Oryza sativa) and Tog5681 (Oryza glaberrima) · EMAIL FREE FULL TEXT EMAIL ... Perceptions and attitudes of geography teachers to biotechnology: A study focusing on genetically modified (GM) foods · EMAIL FREE FULL TEXT EMAIL FREE ...

  20. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms