WorldWideScience

Sample records for research scanning polarimeter

  1. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    Science.gov (United States)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  2. The scanning Compton polarimeter for the SLD experiment

    International Nuclear Information System (INIS)

    Woods, M.

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 ± 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power

  3. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, Chris [NASA Langley Research Center, Hampton, VA (United States); Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States)

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  4. Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter.

    Science.gov (United States)

    Tannenbaum, Dana P; Hoffman, Douglas; Lemij, Hans G; Garway-Heath, David F; Greenfield, David S; Caprioli, Joseph

    2004-02-01

    The presently available scanning laser polarimeter (SLP) has a fixed corneal compensator (FCC) that neutralizes corneal birefringence only in eyes with birefringence that matches the population mode. A prototype variable corneal compensator (VCC) provides neutralization of individual corneal birefringence based on individual macular retardation patterns. The aim of this study was to evaluate the relative ability of the SLP with the FCC and with the VCC to discriminate between normal and glaucomatous eyes. Prospective, nonrandomized, comparative case series. Algorithm-generating set consisting of 56 normal eyes and 55 glaucomatous eyes and an independent data set consisting of 83 normal eyes and 56 glaucomatous eyes. Sixteen retardation measurements were obtained with the SLP with the FCC and the VCC from all subjects. Dependency of parameters on age, gender, ethnic origin, and eye side was sought. Logistic regression was used to evaluate how well the various parameters could detect glaucoma. Discriminant functions were generated, and the area under the receiver operating characteristic (ROC) curve was determined. Discrimination between normal and glaucomatous eyes on the basis of single parameters was significantly better with the VCC than with the FCC for 6 retardation parameters: nasal average (P = 0.0003), superior maximum (P = 0.0003), ellipse average (P = 0.002), average thickness (P = 0.003), superior average (P = 0.010), and inferior average (P = 0.010). Discriminant analysis identified the optimal combination of parameters for the FCC and for the VCC. When the discriminant functions were applied to the independent data set, areas under the ROC curve were 0.84 for the FCC and 0.90 for the VCC (PFCC and 0.90 for the VCC (P<0.016). Individual correction for corneal birefringence with the VCC significantly improved the ability of the SLP to distinguish between normal and glaucomatous eyes and enabled detection of patients with early glaucoma.

  5. Development and application of an emitter for research of an on-board ultraviolet polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Geraimchuk, M. D.; Vidmachenko, A. P.; Ivakhiv, O. V.

    2018-05-01

    In carrying out of the work a layout of on-board small-sized ultraviolet polarimeter (UVP) was created. UVP is the device, which provides an implementation of passive remote studies of stratospheric aerosol from the board of the microsatellite of the Earth by the method of polarimetry. For carrying out of tests and the research of polarimetric equipment, a special stand was created at MAO of NAS of Ukraine. In its composition is an ultraviolet emitter. Emitter is one of the main components of a special stand for the study of on-board ultraviolet polarimeters.

  6. LEP and CEBAF polarimeters

    International Nuclear Information System (INIS)

    Placidi, M.; Burkert, V.; Rossmanith, R.

    1988-01-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a Moller polarimeter (for currents below 1μA). 10 figs

  7. Multi-angle polarimeter inter-comparison: the PODEX and ACEPOL field campaigns

    Science.gov (United States)

    Knobelspiesse, K. D.; Tan, Q.; Redemann, J.; Cairns, B.; Diner, D. J.; Ferrare, R. A.; van Harten, G.; Hasekamp, O. P.; Kalashnikova, O. V.; Martins, J. V.; Yorks, J. E.; Seidel, F. C.

    2017-12-01

    A multi-angle polarimeter has been proposed for the NASA Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey. Such instruments are uncommon in orbit, and there is a great diversity of prototype instrument characteristics. For that reason, NASA funded two field campaigns where airborne polarimeter prototypes were deployed on the high altitude ER-2 aircraft. The first field campaign, POlarimeter DEfinition EXperiment (PODEX), was carried out in southern California in early 2013. Three polarimeters participated: the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). PACS, on its first deployment, suffered detector problems, while AirMSPI and RSP performed within expectations. Initial comparisons of AirMSPI and RSP observations found Degree of Linear Polarization (DoLP) biases. Following corrections to both instrument's calibration and/or geolocation techniques, these issues have improved. We will present the details of this comparison. The recent ACEPOL mission returned to southern California in October-November with a larger compliment of multi-angle polarimeters. This included AirMSPI and RSP, like in PODEX. Additional polarimetric instruments included AirHARP (Airborne HyperAngular Rainbow Polarimeter, a successor to PACS) and SPEX Airborne (SPectropolarimeter for Planetary Exploration). Two Lidars were also deployed: The High Spectral Resolution Lidar -2 (HSRL-2) and the Cloud Physics Lidar (CPL). While data processing is still underway, we will describe the objectives of this campaign and give a preview of what to expect in subsequent analysis.

  8. LWIR Snapshot Imaging Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Robert E Sampson

    2009-04-01

    This report describes the results of a phase 1 STTR to design a longwave infrared imaging polarimeter. The system design, expected performance and components needed to construct the imaging polarimeter are described. Expected performance is modeled and sytem specifications are presented.

  9. The Penn Polarimeters

    Directory of Open Access Journals (Sweden)

    Robert H. Koch

    2012-03-01

    Full Text Available This report describes the inception, development and extensive use over 30 years of elliptical polarimeters at the University of Pennsylvania. The initial Mark I polarimeter design utilized oriented retarder plates and a calcite Foster-Clarke prism as the analyzer. The Mark I polarimeter was used on the Kitt Peak 0.9 m in 1969-70 to accomplish a survey of approximately 70 objects before the device was relocated to the 0.72 m reflector at the Flower and Cook Observatory. Successive generations of automation and improvements included the early-80’s optical redesign to utilize a photoelastic modulated wave plate and an Ithaco lock-in amplifier–the photoelastic modulating polarimeter. The final design in 2000 concluded with a fully remote operable device. The legacy of the polarimetric programs includes studies of close binaries, pulsating hot stars, and luminous late-type variables.

  10. The HARPS Polarimeter

    NARCIS (Netherlands)

    Snik, F.; Kochukhov, O.; Piskunov, N.; Rodenhuis, M.; Jeffers, S.V.; Keller, C.U.; Dolgopolov, A.; Stempels, H. C.; Makaganiuk, V.; Valenti, J.; Johns-Krull, C.

    2010-01-01

    We recently commissioned the polarimetric upgrade of the HARPS spectrograph at ESO’s 3.6-m telescope at La Silla, Chile. The HARPS polarimeter is capable of full Stokes spectropolarimetry with large sensitivity and accuracy, taking advantage of the large spectral resolution and stability of HARPS.

  11. Metasurface-Based Polarimeters

    Directory of Open Access Journals (Sweden)

    Fei Ding

    2018-04-01

    Full Text Available The state of polarization (SOP is an inherent property of light that can be used to gain crucial information about the composition and structure of materials interrogated with light. However, the SOP is difficult to experimentally determine since it involves phase information between orthogonal polarization states, and is uncorrelated with the light intensity and frequency, which can be easily determined with photodetectors and spectrometers. Rapid progress on optical gradient metasurfaces has resulted in the development of conceptually new approaches to the SOP characterization. In this paper, we review the fundamentals of and recent developments within metasurface-based polarimeters. Starting by introducing the concepts of generalized Snell’s law and Stokes parameters, we explain the Pancharatnam–Berry phase (PB-phase which is instrumental for differentiating between orthogonal circular polarizations. Then we review the recent progress in metasurface-based polarimeters, including polarimeters, spectropolarimeters, orbital angular momentum (OAM spectropolarimeters, and photodetector integrated polarimeters. The review is ended with a short conclusion and perspective for future developments.

  12. Proton polarimeters for spin transfer experiments

    International Nuclear Information System (INIS)

    McNaughton, M.W.

    1985-01-01

    The design and use of proton polarimeters for spin transfer (Wolfenstein parameter) measurements is discussed. Polarimeters are compared with polarized targets for spin dependent experiments. 32 refs., 4 figs

  13. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  14. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  15. A NEW RELATIVE PROTON POLARIMETER FOR RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; ALEKSEEV, I.; BUNCE, G.; BRUNER, N.; DESHPANDE, A.; GOTO, Y.; FIELDS, D.; IMAI, K.

    2001-01-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region has been installed and commissioned in the Blue ring of RHIC during the first RHIC polarized proton commissioning in September, 2000. The polarimeter consists of ultra-thin carbon targets and four silicon detectors. All elements are in a 1.6 meter vacuum chamber. This paper summarizes the polarimeter design issues and recent commissioning results

  16. Performance of neutron polarimeter SMART-NPOL

    International Nuclear Information System (INIS)

    Noji, S.; Miki, K.; Yako, K.; Kawabata, T.; Kuboki, H.; Sakai, H.; Sekiguchi, K.; Suda, K.

    2007-01-01

    The neutron polarimeter SMART-NPOL has been constructed at the RIKEN Accelerator Research Facility for measuring polarization correlations of proton-neutron systems. The SMART-NPOL system consists of 12 parallel neutron counter planes of two dimensionally position-sensitive plastic scintillators with a size of 60x60x3.0cm 3 . Polarimetry measurements were made using the analyzing power of the H1(n-vector,n)H1 reaction occurring in the plastic scintillators. The effective analyzing power of SMART-NPOL was measured with polarized neutrons from the zero-degree Li6(d-vector,n-vector) reaction with an incident deuteron energy of 135MeV/A. The effective analyzing power thus obtained was 0.26±0.01 stat ±0.03 syst and the double scattering efficiency was 1.1x10 -3

  17. How the confocal laser scanning microscope entered biological research.

    Science.gov (United States)

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  18. Environmental Scanning, Futures Research, Strategic Foresight and Organizational Future Orientation

    DEFF Research Database (Denmark)

    Rohrbeck, René; Bade, Manuel

    to adjacent research disciplines. Through such integration and linkage research should produce better recommendations for managers on how to build an organizational future orientation, drive organizational adaptation, and make their firms robust towards external discontinuous change.......In this paper we explore the current understanding on how firms explore future changes and trends as well as plan their managerial responses. We review literature in four research streams: (1) environmental scanning, (2) futures research, (3) peripheral vision, and (4) corporate/strategic foresight....... Through the analysis of more than 250 articles we (a) trace the evolution over time, (b) highlight the linkages between the different research streams, and (c) give recommendations for future research. Overall we call for more cross-fertilization of the different research streams and a stronger linkage...

  19. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  20. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics and architectural comparison of polarimeter techniques

    Science.gov (United States)

    Yang, Ruonan; Sen, Pratik; O'Connor, B. T.; Kudenov, M. W.

    2017-08-01

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using stain-aligned polymer-based organic photovoltaics (OPVs) which can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. Two wave plates were incorporated into the system to modulate the S3 stokes parameter so as to reduce the condition number of the measurement matrix. The model for the full-Stokes polarimeter was established and validated, demonstrating an average RMS error of 0.84%. The optimization, based on minimizing the condition number of the 4-cell OPV design, showed that a condition number of 2.4 is possible. Performance of this in-line polarimeter concept was compared to other polarimeter architectures, including Division of Time (DoT), Division of Amplitude (DoAm), Division of Focal Plane (DoFP), and Division of Aperture (DoA) from signal-to-noise ratio (SNR) perspective. This in-line polarimeter concept has the potential to enable both high temporal (as compared with a DoT polarimeter) and high spatial resolution (as compared with DoFP and DoA polarimeters). We conclude that the intrinsic design has the same √2 SNR advantage as the DoAm polarimeter, but with greater compactness.

  1. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  2. The Compton polarimeter at ELSA

    International Nuclear Information System (INIS)

    Doll, D.

    1998-06-01

    In order to measure the degree of transverse polarization of the stored electron beam in the Electron Stretcher Accelerator ELSA a compton polarimeter is built up. The measurement is based on the polarization dependent cross section for the compton scattering of circular polarized photons off polarized electrons. Using a high power laser beam and detecting the scattered photons a measuring time of two minutes with a statistical error of 5% is expected from numerical simulations. The design and the results of a computer controlled feedback system to enhance the laser beam stability at the interaction point in ELSA are presented. The detection of the scattered photons is based on a lead converter and a silicon-microstrip detector. The design and test results of the detector module including readout electronic and computer control are discussed. (orig.)

  3. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  4. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; BRAVAR, A.; LI, Z.; MACKAY, W.W.; MAKDISI, Y.; RESCIA, S.; ROSER, T.; SURROW, B.; BUNCE, G.; DESHPANDE, A.; GOTO, Y.; ET AL

    2002-01-01

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings

  5. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  6. PoET: Polarimeters for Energetic Transients

    Science.gov (United States)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  7. First results from the PETRA-polarimeter

    International Nuclear Information System (INIS)

    Bremer, H.D.; Dehne, H.C.; Lewin, H.C.; Mais, H.; Neumann, R.; Rossmanith, R.; Schmidt, R.

    1980-07-01

    With the PETRA polarimeter electron beam polarization was detected. Up to now the polarization was only detected under certain machine conditions, e.g. without beam-beam interaction. The aim of the future measuring program will be to find out which parameters are decisive for the polarization. (orig.)

  8. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  9. Microprocessor Card for Cuban Series polarimeters Laserpol

    International Nuclear Information System (INIS)

    Arista Romeu, E.; Mora Mazorra, W.

    2012-01-01

    We present the design consists of a card based on a micro-processor 8-bit adds new software components and their basic living, which allow to deliver new services and expand the possibilities for use in other applications of the polarimeter LASERPOL series, as the polarimetric detection. Given the limitations of the original card it was necessary to introduce a series of changes that would allow to address new user requirements, and expand the possible applications of the instruments. This was done the expansion of the capacity of the EPROM and RAM memory, the decoder circuit was implemented memory map using a programmable integrated circuit, and introduced a real time clock with nonvolatile RAM, these features are exploited to the introduction of new features such as the realization of the polarimeter calibration by the user from a sample pattern or a calibration pattern used as a reference, and the incorporation of the time and date to the reports of measurements required industry for quality control processes. Card that is achieved along with the rest of the components is compatible with polarimeters LASERPOL 101M Series, 3M and LP4, pin to pin, which facilitates their incorporation into the polarimeters in operation in the industry 'in situ' replacement cards from previous models, allowing to extend the possibilities of statistical processing, precision and accuracy of the instruments. Improved measurements in the industry, resulting in significant savings by elimination of losses in production and raw materials. The improved response speed of reading the polarimeters LASERPOL Use and polarimetric detectors. (Author)

  10. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar

    Directory of Open Access Journals (Sweden)

    K. Knobelspiesse

    2011-07-01

    Full Text Available Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP. The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS, which was due to be launched as part of the (ultimately failed NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS. During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the contraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within

  11. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    Science.gov (United States)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; hide

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  12. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Science.gov (United States)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  13. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  14. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  15. Chromospheric LAyer SpectroPolarimeter (CLASP2)

    Science.gov (United States)

    Narukage, Noriyuki; Cirtain, Jonathan W.; Ishikawa, Ryoko; Trujillo-Bueno, Javier; De Pontieu, Bart; Kubo, Masahito; Ishikawa, Shinnosuke; Kano, Ryohei; Suematsu, Yoshinori; Yoshida, Masaki; hide

    2016-01-01

    The sounding rocket Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) was launched on September 3rd, 2015, and successfully detected (with a polarization accuracy of 0.1 %) the linear polarization signals (Stokes Q and U) that scattering processes were predicted to produce in the hydrogen Lyman-alpha line (Ly; 121.567 nm). Via the Hanle effect, this unique data set may provide novel information about the magnetic structure and energetics in the upper solar chromosphere. The CLASP instrument was safely recovered without any damage and we have recently proposed to dedicate its second ight to observe the four Stokes profiles in the spectral region of the Mg II h and k lines around 280 nm; in these lines the polarization signals result from scattering processes and the Hanle and Zeeman effects. Here we describe the modifications needed to develop this new instrument called the "Chromospheric LAyer SpectroPolarimeter" (CLASP2).

  16. Moeller polarimeter in the hall a jefferson lab after reconstruction

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.

    2016-01-01

    The Moller polarimeter in the Hall A of Jefferson Lab was reconstructed in order to expand of the energy range of the polarimeter to measure the polarization of the electron beam with an energy up to 11.5 GeV. The paper de-scribes the main results of the Moller polarimeter testing after reconstruction. The measurements of the electrons polarization were provided by two data acquisition systems operating in parallel. The testing of the shielding insertion of magnetic dipole has been performed. The way to eliminate detected deviations in the operation of polarimeter during test is shown.

  17. Portable Imaging Polarimeter and Imaging Experiments; TOPICAL

    International Nuclear Information System (INIS)

    PHIPPS, GARY S.; KEMME, SHANALYN A.; SWEATT, WILLIAM C.; DESCOUR, M.R.; GARCIA, J.P.; DERENIAK, E.L.

    1999-01-01

    Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132(degree) rather than the typical 90(degree). The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5(micro)m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components

  18. Clinical research of bone scan characteristics for metabolic bone diseases

    International Nuclear Information System (INIS)

    Zhu Ruisen; Luo Qiong; Lu Haikui; Chen Libo; Luo Quanyong

    2009-01-01

    Characteristic images of 99m Tc-MDP bone scintigraphy in patients with metabolic bone diseases (MBD) were analyzed and compared, in an attempt to improve the capability of differential diagnosis in this aspect. A total of 142 cases, clinically confirmed as (MBD), were categorized into six groups: hyperparathyroidism (117), renal osteodystrophy (4), Paget's disease (16), hypophosphatemic osteomalacia (2), Albers-Schonberg disease (2), and Brittle bone disease (1). They were diagnosed clinically or pathologically, and scanned with 99m Tc-MDP bone scintegraphy, from which the 142 MBD cases were classified into 4 types. The cases of Type I had increased amount of 99m Tc-MDP uptake in whole body bones, including hyperparathyroidism, Albers-Schonberg disease, brittle bone disease and renal osteodystrophy. The cases of Type II had high uptake of 99m Tc-MDP in local region of bones, including paget's disease, hypophosphatemic osteomalacia and hyperparathyroidism. A Type I case with pathological fracture or secondary osteopathy was classified as Type III. Type IV cases were in early stage of hyperparathyroidism, with normal bone scan image. Analysis of the characteristics of 99m Tc-MDP bone scintigraphic findings (locations, morphology and intensities) in patients with MBD may be helpful in the differential diagnosis of MBD, in association with the patient's history and X-ray data altogether. (authors)

  19. Applications of pilot scanning behavior to integrated display research

    Science.gov (United States)

    Waller, M. C.

    1977-01-01

    The oculometer is an electrooptical device designed to measure pilot scanning behavior during instrument approaches and landing operations. An overview of some results from a simulation study is presented to illustrate how information from the oculometer installed in a visual motion simulator, combined with measures of performance and control input data, can provide insight into the behavior and tactics of individual pilots during instrument approaches. Differences in measured behavior of the pilot subjects are pointed out; these differences become apparent in the way the pilots distribute their visual attention, in the amount of control activity, and in selected performance measures. Some of these measured differences have diagnostic implications, suggesting the use of the oculometer along with performance measures as a pilot training tool.

  20. Research on calibration algorithm in laser scanning projection system

    Science.gov (United States)

    Li, Li Juan; Qu, Song; Hou, Mao Sheng

    2017-10-01

    Laser scanning projection technology can project the image defined by the existing CAD digital model to the working surface, in the form of a laser harness profile. This projection is in accordance with the ratio of 1: 1. Through the laser harness contours with high positioning quality, the technical staff can carry out the operation with high precision. In a typical process of the projection, in order to determine the relative positional relationship between the laser projection instrument and the target, it is necessary to place several fixed reference points on the projection target and perform the calibration of projection. This position relationship is the transformation from projection coordinate system to the global coordinate system. The entire projection work is divided into two steps: the first step, the calculation of the projector six position parameters is performed, that is, the projector calibration. In the second step, the deflection angle is calculated by the known projector position parameter and the known coordinate points, and then the actual model is projected. Typically, the calibration requires the establishment of six reference points to reduce the possibility of divergence of the nonlinear equations, but the whole solution is very complex and the solution may still diverge. In this paper, the distance is detected combined with the calculation so that the position parameters of the projector can be solved by using the coordinate values of three reference points and the distance of at least one reference point to the projector. The addition of the distance measurement increases the stability of the solution of the nonlinear system and avoids the problem of divergence of the solution caused by the reference point which is directly under the projector. Through the actual analysis and calculation, the Taylor expansion method combined with the least squares method is used to obtain the solution of the system. Finally, the simulation experiment is

  1. Fuel element gamma scanning at the Oak Ridge Research Reactor

    International Nuclear Information System (INIS)

    Hobbs, R.W.

    1987-01-01

    In January 1986, a demonstration program was begun at the Oak Ridge Research Reactor (ORR) to convert operations from high-enrichment uranium fuel to the newly developed U 3 Si 2 low-enrichment fuel. A primary program objective is to validate neutronics calculations conducted by the Reduced Enrichment in Research and Test Reactors Program at Argonne National Laboratory. Accordingly, a new method for determining core-power distribution has been developed. The method is based on gamma-ray spectroscopy measurements to determine the relative levels of 140 La in the fuel elements after each operating cycle. The measurement and data analyses are described and a comparison of measured and diffusion theory calculated values of the core-power distribution is presented in this paper

  2. A Compton polarimeter for CEBAF Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G; Cavata, C; Frois, B; Juillard, M; Kerhoas, S; Languillat, J C; Legoff, J M; Mangeot, P; Martino, J; Platchkov, S; Rebourgeard, P; Vernin, P; Veyssiere, C; CEBAF Hall A Collaboration

    1994-09-01

    The physic program at CEBAF Hall A includes several experiments using 4 GeV polarized electron beam: parity violation in electron elastic scattering from proton and {sup 4}He, electric form factor of the proton by recoil polarization, neutron spin structure function at low Q{sup 2}. Some of these experiments will need beam polarization measurement and monitoring with an accuracy close to 4%, for beam currents ranging from 100 nA to 100 microA. A project of a Compton Polarimeter that will meet these requirements is presented. It will comprise four dipoles and a symmetric cavity consisting of two identical mirrors. 1 fig., 10 refs.

  3. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  4. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  5. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  6. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  7. Feasibility of a spin light polarimeter at JLab

    International Nuclear Information System (INIS)

    Dutta, Dipangkar

    2011-01-01

    The future 12 GeV program at JLab includes several high precision experiments that aim to use parity violation in electroweak interactions to search for interactions beyond the Standard Model. These experiments require precision electron polarimetry with an uncertainty of ∼ 0.4%. Compton and Moller polarimeters are typically the polarimeters of choice for these experiments. However, a complimentary polarimetry technique based on the spin dependence of synchrotron radiation (SR), referred to as 'spin-light,' is often overlooked. In this article we examine the feasibility of a 'spin-light' polarimeter at Jefferson Lab (JLab) for 12 GeV experiments.

  8. Design and performance of the Lamb-shift polarimeter

    International Nuclear Information System (INIS)

    Kremers, H.R.; Beijers, J.P.M.; Kalantar-Nayestanaki, N.

    2005-01-01

    A new compact low-energy polarimeter has been designed, developed and put into operation, based on the principle of Lamb-shift polarimetry. Here, we focus on ion-beam deceleration (14-35 kV to 500 V) and the polarimeter's magnetic field. The determination of the optimal setting of oven temperature and the DC gradient in the spin-filter will be presented and illustrated with some measurements. Further, performance of the polarized ion source will be shown by some typical measurements on proton and deuteron beams with the polarimeter

  9. SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Science.gov (United States)

    Fraisse, Aurélien A.; SPIDER Collaboration

    2012-01-01

    SPIDER is a balloon-borne polarimeter designed to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the spectrum of the tensor perturbations that generate this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. The expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological B-mode signal with r=0.03. An optimized scanning strategy enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while providing access to a relatively wide range of angular scales. In the SPIDER field, the polarized emission from interstellar dust is as bright or brighter than the cosmological r=0.03 B-mode signal at all SPIDER frequencies (90, 150, and 280 GHz), a situation similar to that found in the "Southern Hole." Despite this foreground contamination, two 20-day flights of the SPIDER instrument will constrain the amplitude of the B-mode signal to rAPRA-NNX07AL64G), the National Science Foundation (ANT-1043515), the Gordon and Betty Moore Foundation, and the David and Lucile Packard Foundation. Support in Canada is provided by NSERC, the Canadian Space Agency, the Canada Foundation for Innovation, and CIFAR.

  10. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    Vilardy, J; Salas, V.; Torres, C.

    2016-01-01

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  11. Absolute calibration and beam background of the Squid Polarimeter

    International Nuclear Information System (INIS)

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-01-01

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment

  12. Optoelectronic polarimeter controlled by a graphical user interface of Matlab

    International Nuclear Information System (INIS)

    Vilardy, J M; Torres, R; Jimenez, C J

    2017-01-01

    We show the design and implementation of an optical polarimeter using electronic control. The polarimeter has a software with a graphical user interface (GUI) that controls the optoelectronic setup and captures the optical intensity measurement, and finally, this software evaluates the Stokes vector of a state of polarization (SOP) by means of the synchronous detection of optical waves. The proposed optoelectronic polarimeter can determine the Stokes vector of a SOP in a rapid and efficient way. Using the polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the SOP when the optical waves pass through to the linear polarizers and retarder waves plates. The polarimeter prototype could be used as a main tool for the students in order to learn the theory and experimental aspects of the SOP for optical waves via the Stokes vector measurement. The proposed polarimeter controlled by a GUI of Matlab is more attractive and suitable to teach and to learn the polarization of optical waves. (paper)

  13. Silicon photomultipliers as readout elements for a Compton effect polarimeter: the COMPASS project

    CERN Document Server

    Del Monte, E; Brandonisio, A; Muleri, F; Soffitta, P; Costa, E; di Persio, G; Cosimo, S Di; Massaro, E; Morbidini, A; Morelli, E; Pacciani, L; Fabiani, S; Michilli, D; Giarrusso, S; Catalano, O; Impiombato, D; Mineo, T; Sottile, G; Billotta, S

    2016-01-01

    COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency. We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts. In this paper we describe the status of the COMPASS project, we report about the la...

  14. Next Generation X-ray Polarimeter

    Science.gov (United States)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  15. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    Science.gov (United States)

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  16. Introduction of innovations to Cuban Polarimeters

    International Nuclear Information System (INIS)

    Mora Mazorra, L. W.; Fajer Avila, V.; Arista Romeu, E.; Fernandez Lechuga, H.; Robaina Martinez, B.; Lizaso Menendez, E.

    2012-01-01

    It describes the changes made to the various circuits of electronic card system LASERPOL polarimeters. Modifications made to the hardware of the various circuits allowed to increase the accuracy of the instrument to improve the sensitivity and reproducibility of measurements consisted innovations changes in power, ramp generator circuit, low power and high voltage, redesign the motherboard, changes in the converter circuit, modulator circuit rationalization and ramp generator. This coupled with the addition of a new control board allows the use of the instrument in new applications such as use as polarimetric detector in a chromatographic system with data transmission to a PC for further analysis and processing. There were several changes from the mechanical viewpoint to avoid undesirable reflections that occur on the surface of the plates and introduced a device for, improving the fit of the sheet polarizer of the analyzer. These modifications have been performed on multiple computers satisfactory results for the exploitation of them for a period of several years, allowing an increase in the quality and competitiveness of the instrument. (Author)

  17. Performance of the PRAXyS X-ray polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, W.B., E-mail: wataru.iwakiri@riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Black, J.K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rock Creek Scientific, 1400 East-West Hwy, Silver Spring, MD 20910 (United States); Cole, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Enoto, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hayato, A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hill, J.E.; Jahoda, K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kaaret, P. [University of Iowa, Iowa City, IA 52242 (United States); Kitaguchi, T. [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kubota, M. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Marlowe, H.; McCurdy, R. [University of Iowa, Iowa City, IA 52242 (United States); Takeuchi, Y. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tamagawa, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan)

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2–10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  18. Performance of the PRAXyS X-ray polarimeter

    Science.gov (United States)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  19. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    Science.gov (United States)

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  20. Chromospheric Lyman-alpha spectro-polarimeter (CLASP)

    Science.gov (United States)

    Kano, Ryouhei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Tsuneta, Saku; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Hara, Hirohisa; Shimizu, Toshifumi; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Sakao, Taro; Goto, Motoshi; Kato, Yoshiaki; Imada, Shinsuke; Kobayashi, Ken; Holloway, Todd; Winebarger, Amy; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Trujillo Bueno, Javier; Štepán, Jiří; Manso Sainz, Rafael; Belluzzi, Luca; Asensio Ramos, Andres; Auchère, Frédéric; Carlsson, Mats

    2012-09-01

    One of the biggest challenges in heliophysics is to decipher the magnetic structure of the solar chromosphere. The importance of measuring the chromospheric magnetic field is due to both the key role the chromosphere plays in energizing and structuring the outer solar atmosphere and the inability of extrapolation of photospheric fields to adequately describe this key boundary region. Over the last few years, significant progress has been made in the spectral line formation of UV lines as well as the MHD modeling of the solar atmosphere. It is found that the Hanle effect in the Lyman-alpha line (121.567 nm) is a most promising diagnostic tool for weaker magnetic fields in the chromosphere and transition region. Based on this groundbreaking research, we propose the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) to NASA as a sounding rocket experiment, for making the first measurement of the linear polarization produced by scattering processes and the Hanle effect in the Lyman-alpha line (121.567 nm), and making the first exploration of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP instrument consists of a Cassegrain telescope, a rotating 1/2-wave plate, a dual-beam spectrograph assembly with a grating working as a beam splitter, and an identical pair of reflective polarization analyzers each equipped with a CCD camera. We propose to launch CLASP in December 2014.

  1. Design and construction of a high-energy photon polarimeter

    Science.gov (United States)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  2. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  3. Vector magnetic field observations with the Haleakala polarimeter

    Science.gov (United States)

    Mickey, D. L.

    1985-01-01

    Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.

  4. Calibration method of microgrid polarimeters with image interpolation.

    Science.gov (United States)

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  5. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  6. A variable energy Moeller polarimeter at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Barday, Roman; Enders, Joachim [Institut fuer Kernphysik, TU Darmstadt (Germany); Mueller, Wolfgang; Steiner, Bastian [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A coincidence Moeller polarimeter is designed for both cw and pulsed beam of the Superconducting Darmstadt Linear Accelerator S-DALINAC where polarized electron beams will become available in 2008. The designed polarimeter covers an energy region between 15 and 130 MeV. The beam polarisation at currents of up to 1 {mu}A is inferred from measurement of the asymmetry in polarized electron-electron scattering from the Fe-Co foil. The influence of the atomic motion of the target electrons on the polarisation, the so-called Levchuk effect was investigated.

  7. Polarimeter Arrays for Cosmic Microwave Background Measurements

    Science.gov (United States)

    Stevenson, Thomas; Cao, Nga; Chuss, David; Fixsen, Dale; Hsieh, Wen-Ting; Kogut, Alan; Limon, Michele; Moseley, S. Harvey; Phillips, Nicholas; Schneider, Gideon

    2006-01-01

    We discuss general system architectures and specific work towards precision measurements of Cosmic Microwave Background (CMB) polarization. The CMB and its polarization carry fundamental information on the origin, structure, and evolution of the universe. Detecting the imprint of primordial gravitational radiation on the faint polarization of the CMB will be difficult. The two primary challenges will be achieving both the required sensitivity and precise control over systematic errors. At anisotropy levels possibly as small as a few nanokelvin, the gravity-wave signal is faint compared to the fundamental sensitivity limit imposed by photon arrival statistics, and one must make simultaneous measurements with large numbers, hundreds to thousands, of independent background-limited direct detectors. Highly integrated focal plane architectures, and multiplexing of detector outputs, will be essential. Because the detectors, optics, and even the CMB itself are brighter than the faint gravity-wave signal by six to nine orders of magnitude, even a tiny leakage of polarized light reflected or diffracted from warm objects could overwhelm the primordial signal. Advanced methods of modulating only the polarized component of the incident radiation will play an essential role in measurements of CMB polarization. One promising general polarimeter concept that is under investigation by a number of institutions is to first use planar antennas to separate millimeter-wave radiation collected by a lens or horn into two polarization channels. Then the signals can be fed to a pair of direct detectors through a planar circuit consisting of superconducting niobium microstrip transmission lines, hybrid couplers, band-pass filters, and phase modulators to measure the Stokes parameters of the incoming radiation.

  8. Solving Research Tasks Using Desk top Scanning Electron Microscope Phenom ProX

    Directory of Open Access Journals (Sweden)

    Vertsanova, O.V.

    2014-03-01

    Full Text Available Phenom ProX — morden effective universal desktop Scanning Electron Microscope with integrated EDS system. Phenom-World helps customers to stay competitive in a world where critical dimensions are continuously getting smaller. All Phenom desktop systems give direct access to the high resolution and high-quality imaging and analysis required in a large variety of applications. They are affordable, flexible and a fast tool enabling engineers, technicians, researchers and educational professionals to investigate micron and submicron structures.

  9. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    Science.gov (United States)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  10. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  11. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; hide

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  12. Polarisation at HERA. Reanalysis of the HERA II polarimeter data

    Energy Technology Data Exchange (ETDEWEB)

    Sobloher, B.; Behnke, T.; Olsson, J.; Pitzl, D.; Schmitt, S.; Tomaszewska, J.; Fabbri, R.

    2012-01-15

    In this technical note we briefly present the analysis of the HERA polarimeters (transversal and longitudinal) as of summer 2011. We present the final reanalysis of the TPOL data, and discuss the systematic uncertainties. A procedure to combine and average LPOL and TPOL data is presented. (orig.)

  13. Polarisation at HERA. Reanalysis of the HERA II polarimeter data

    International Nuclear Information System (INIS)

    Sobloher, B.; Behnke, T.; Olsson, J.; Pitzl, D.; Schmitt, S.; Tomaszewska, J.; Fabbri, R.

    2012-01-01

    In this technical note we briefly present the analysis of the HERA polarimeters (transversal and longitudinal) as of summer 2011. We present the final reanalysis of the TPOL data, and discuss the systematic uncertainties. A procedure to combine and average LPOL and TPOL data is presented. (orig.)

  14. Polarimeters and energy spectrometers for the ILC beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, S. [London Univ. (United Kingdom). Royal Holloway; Hildreth, M. [Univ. of Notre Dame (United States); Kaefer, K. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-02-15

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. (orig.)

  15. Structured decomposition design of partial Mueller matrix polarimeters.

    Science.gov (United States)

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  16. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    Science.gov (United States)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic

  17. Research on Mechanical Properties of Concrete Constructs Based on Terrestrial Laser Scanning Measurement

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2016-05-01

    Full Text Available Terrestrial laser scanning (TLS technology is broadly accepted as a structural health monitoring device for reinforced concrete (RC composite structures. Both experiments and numerical analysis are considered. In this submit, measurements were conducted for the composite concrete beams. The emphasis in numerical simulation is given on finite element methods (FEM which is corrected by the response surface methodology (RSM. Aspects considered are effects of material parameters and variation in geometry. This paper describes our recent progress on FEM modeling of damages in concrete composite structures based on the TLS measurement. We also focus on the research about mechanical properties of concrete constructs here.

  18. Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2017-12-01

    Full Text Available The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.

  19. The main ring polarimeter at KEK 12 GeV PS

    International Nuclear Information System (INIS)

    Sato, Hikaru; Hiramatsu, Shigenori; Toyama, Takeshi; Arakawa, Dai; Sakamoto, Hiroshi; Imai, Ken-ichi; Tamura, Norio.

    1984-03-01

    An internal polarimeter was constructed to detect the beam polarization from T sub(P) = 500 MeV to 12 GeV. The polarimeter was installed in the main ring of KEK proton synchrotron and successfully used for the measurement of the beam polarization at 500 MeV in order to study depolarizing resonances during acceleration in the booster synchrotron. We report the design and the performance of the polarimeter and the results of the first measurement. (author)

  20. Dynamic spectro-polarimeter based on a modified Michelson interferometric scheme.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Baek, Byung-Joon; Kim, Daesuk

    2016-06-27

    A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter. The proposed dynamic spectro-polarimeter enables us to extract highly accurate spectral Stokes vector of any transmissive anisotropic object with a frame rate of more than 20Hz.

  1. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  2. A Millimeter Polarimeter for the 45-m Telescope at Nobeyama

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1999-04-01

    We have designed and constructed a tunable polarimeter to cover frequencies from 35 GHz to 250 GHz (8.6 mm and 1.2 mm in wavelength) for the 45-m telescope at Nobeyama Radio Observatory. Both circular and linear polarizations can be measured by the polarimeter. The insertion loss was measured to be 0.14 +/- 0.05 dB in the 100-GHz band. The overall instrumental polarization of the system in the 100 GHz band is as low as VY Canis Majoris. The observation revealed that the J = 2--1 emission in the v = 0 state of the object is highly linear polarized, which suggests that the emission originates through maser action in the circumstellar region. The details of the design, construction, and tests are presented. Nobeyama Radio Observatory is a branch of the National Astronomical Observatory, operated by the Ministry of Education, Science, Sports and Culture.

  3. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  4. Impact of liberalization on private financed energy research. From scan to image. Final report

    International Nuclear Information System (INIS)

    De Graaff, R.J.; Dullens, M.; Benner, J.H.B.; Klaassen, M.A.W.; Schneider, H.C.

    2000-01-01

    The consequences of the liberalization process in the market for research and development in the Dutch electricity and natural gas sector are discussed. The main questions of the study are (1) what are the developments in those sectors, and (2) what can be learned from the experiences of liberalized energy markets in other countries and existing commercial petroleum and natural gas companies. The results are based on a literature study and interviews by telephone with experts in the field in seven countries (the 'scan-phase'). The results of the seven countries (Denmark, United Kingdom, Sweden, Germany, Norway, USA, Netherlands, and the European Union as a whole) are presented in the form of fact sheets. The most important leads and subjects were explored in detail by means of personal interviews with representatives from the energy sector in Sweden and England (the 'image-phase'). 52 refs

  5. X-Ray Spectro-Polarimetry with Photoelectric Polarimeters

    Science.gov (United States)

    Strohmayer, T. E.

    2017-01-01

    We derive a generalization of forward fitting for X-ray spectroscopy to include linear polarization of X-ray sources, appropriate for the anticipated next generation of space-based photoelectric polarimeters. We show that the inclusion of polarization sensitivity requires joint fitting to three observed spectra, one for each of the Stokes parameters, I(E), U(E), and Q(E). The equations for StokesI (E) (the total intensity spectrum) are identical to the familiar case with no polarization sensitivity, and for which the model-predicted spectrum is obtained by a convolution of the source spectrum, F (E), with the familiar energy response function,(E) R(E,E), where (E) and R(E,E) are the effective area and energy redistribution matrix, respectively. In addition to the energy spectrum, the two new relations for U(E) and Q(E) include the source polarization fraction and position angle versus energy, a(E), and 0(E), respectively, and the model-predicted spectra for these relations are obtained by a convolution with the modulated energy response function, (E)(E) R(E,E), where(E) is the energy-dependent modulation fraction that quantifies a polarimeters angular response to 100 polarized radiation. We present results of simulations with response parameters appropriate for the proposed PRAXyS Small Explorer observatory to illustrate the procedures and methods, and we discuss some aspects of photoelectric polarimeters with relevance to understanding their calibration and operation.

  6. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  7. Design study of the PEPSI polarimeter for the LBT

    Science.gov (United States)

    Hofmann, A.; Strassmeier, K. G.; Woche, M.

    2002-07-01

    We present the conceptual design of the two polarimetric channels of the PEPSI spectropolarimeter for the Large Binocular Telescope (LBT). The two direct Gregorian f/15 focii of the LBT will take up two identical but independent full-Stokes IQUV polarimeters that themselves fiberfeed a high-resolution Echelle spectrograph (see the accompanying paper by Zerbi et al.). The polarizing units will be based on super-achromatic Fresnel-rhomb retarders and Foster prisms. A total of four fibers are foreseen to simultaneously direct two ordinary and two extraordinary light beams to the Echelle spectrograph. Both polarimetric units are layed out in a modular design, each one optimized to the polarization state in which it is used. A number of observing modes can be chosen that are optimized to the type of polarization that is expected from the target, e.g. circularly and linearly polarized light simultaneously, or linearly polarized light in both polarimeters, or integral light from one and polarized light from the other telescope, a.s.o.. Calibration would be provided for each polarimeter separately.

  8. Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine

    Science.gov (United States)

    Sinyavskiy, I. I.; Ivanov, Yu. S.; Vidmachenko, A. P.; Sergeev, A. V.

    2013-09-01

    MAO of NASU proposed and implemented the concept [1] of imaging Stokes polarimeter, which allows to measure four components of the Stokes vector at the same time, in a wide field, and without restrictions on the relative aperture of the system. And polarimeter can be converted into low-resolution spectropolarimeter by rotation of the wheel with replaceable elements. To full utilization of the CCD area in the device installed four film's polarizer with positional angles 0°, 45°, 90°, 135°. In each channel of this device installed the system of special deflecting prisms, which achromatize for the spectral range 420-850 nm [2]. Distortion is less than 0.65%. Also have the opportunity the use of the diffraction grating with a frequency up to 100 lines / mm, working on the transmission. References. 1. Sinyavskii I.I., Ivanov Yu.S., Vidmachenko A.P., Karpov N.V. Panoramic Stokes polarimeter // Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, ISSN: 1729-5459. - 2013 - V. 3, No 4. - P. 123-127. 2. Sinyavskii, I. I.; Ivanov, Yu. S.; Vil'machenko, A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548.

  9. Policy, Practice, and Research Agenda for Emergency Medical Services Oversight: A Systematic Review and Environmental Scan.

    Science.gov (United States)

    Taymour, Rekar K; Abir, Mahshid; Chamberlin, Margaret; Dunne, Robert B; Lowell, Mark; Wahl, Kathy; Scott, Jacqueline

    2018-02-01

    Introduction In a 2015 report, the Institute of Medicine (IOM; Washington, DC USA), now the National Academy of Medicine (NAM; Washington, DC USA), stated that the field of Emergency Medical Services (EMS) exhibits signs of fragmentation; an absence of system-wide coordination and planning; and a lack of federal, state, and local accountability. The NAM recommended clarifying what roles the federal government, state governments, and local communities play in the oversight and evaluation of EMS system performance, and how they may better work together to improve care. This systematic literature review and environmental scan addresses NAM's recommendations by answering two research questions: (1) what aspects of EMS systems are most measured in the peer-reviewed and grey literatures, and (2) what do these measures and studies suggest for high-quality EMS oversight? To answer these questions, a systematic literature review was conducted in the PubMed (National Center for Biotechnology Information, National Institutes of Health; Bethesda, Maryland USA), Web of Science (Thomson Reuters; New York, New York USA), SCOPUS (Elsevier; Amsterdam, Netherlands), and EMBASE (Elsevier; Amsterdam, Netherlands) databases for peer-reviewed literature and for grey literature; targeted web searches of 10 EMS-related government agencies and professional organizations were performed. Inclusion criteria required peer-reviewed literature to be published between 1966-2016 and grey literature to be published between 1996-2016. A total of 1,476 peer-reviewed titles were reviewed, 76 were retrieved for full-text review, and 58 were retained and coded in the qualitative software Dedoose (Manhattan Beach, California USA) using a codebook of themes. Categorizations of measure type and level of application were assigned to the extracted data. Targeted websites were systematically reviewed and 115 relevant grey literature documents were retrieved. A total of 58 peer-reviewed articles met inclusion

  10. Ability to Assent in Pediatric Critical Care Research: A Prospective Environmental Scan of Two Canadian PICUs.

    Science.gov (United States)

    O'Hearn, Katharine J; Martin, Dori-Ann; Dagenais, Maryse; Menon, Kusum

    2018-06-13

    To determine the number of patients considered not appropriate to approach for assent within the first 24 hours of PICU admission. Exploratory prospective 1-month environmental scan. Two tertiary Canadian PICUs. Ninety patients age newborn to 17 years old admitted to the PICU during September 2016 (Site 1) or May 2017 (Site 2). None. At PICU admission, 81% of patients were deemed not appropriate to approach for assent most commonly due to age, influence of psychotropic medications, and/or mechanical ventilation. At PICU discharge, 74% of patients were considered not appropriate to approach, most commonly due to age and/or developmental delay. There was moderate to good agreement between the research team and care team assessments of appropriateness for assent. Only 8% of patients considered not approachable at admission become appropriate to approach for assent by PICU discharge. Very few patients were considered approachable for assent during the first 24 hours of PICU admission. Those who were considered appropriate to approach were less ill, spent less time in PICU, and were unlikely to be considered for enrollment in pediatric critical care research.

  11. Electro interstitial scan system: assessment of 10 years of research and development

    Directory of Open Access Journals (Sweden)

    Maarek A

    2012-03-01

    Full Text Available Albert MaarekResearch and Development, LD Technology, Miami, FL, USABackground: Ten years of research and development have allowed an understanding of how the electro interstitial scan (EIS works and what its clinical applications may be.Materials and methods: The EIS is a galvanic skin response device. The measurements are performed by electrical stimulation of the post sympathetic cholinergic fiber with weak DC current and voltage 1.28V applied during 2 minutes and in bipolar mode.Current scientific knowledge: EIS electrical measurements are related to: (1 the concentration of free chloride ions in the interstitial fluid, which affects the transfer of electrical current and the ratio intensity/voltage; (2 the morphology of the interstitial fluid, which is related to the electrical dispersion calculated from the Cole equation (α parameter; (3 electrical stimulation, which causes a change in sweat rate at the passive electrodes – post sympathetic cholinergic fiber electrical stimulation appears to be responsible for activating M2 receptors, which regulate nitric oxide (NO production in the endothelial cell and cause vasodilation and a released sweat response; and (4 the electrochemical redox reactions (electrolysis of the released sweat on electrodes, which are different on the bulk of the metal electrodes (O2 + [4H+] + [4e-] and on the Ag/AgCl disposable electrodes (AgCl precipitation.Results: For each of the EIS clinical results, various explanations were posited, such as: (1 electrical stimulation of the postsympathetic cholinergic fiber-activating NO production in the endothelial cell, which causes vasodilation and a released sweat response (diabetes detection; (2 estimation of interstitial fluid's acid–base balance, which is reflected in an electrochemical reaction on the bulk of the electrodes through the released sweat (prostate cancer detection; (3 estimation of cerebral interstitial fluid chloride ions (detection of ADHD in

  12. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  13. Calibration of a neutron polarimeter in the 0.2-1.1GeV region

    International Nuclear Information System (INIS)

    Semenov, A.Yu.; Zhang, W.M.; Madey, R.; Ahmidouch, A.; Anderson, B.D.; Assamagan, K.; Avery, S.; Baldwin, A.R.; Crowell, A.S.; Eden, T.; Manley, D.M.; Markowitz, P.; Milleret, G.; Prout, D.; Reichelt, T.; Semenova, I.A.; Ulmer, P.E.; Voutier, E.; Watson, J.W.; Wells, S.P.

    2006-01-01

    We measured the analyzing power and the efficiency of a neutron polarimeter at the Saturne National Laboratory in France with central energies of the neutron beam of 261,533,752,922, and 1057MeV. This polarimeter was a prototype designed to measure G E n , the neutron electric form factor, at the Thomas Jefferson National Accelerator Facility

  14. The 270 MeV deuteron beam polarimeter at the Nuclotron Internal Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, P.K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Ladygin, V.P., E-mail: vladygin@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Uesaka, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Suda, K. [RIKEN Nishina Center, Saitama (Japan); Gurchin, Yu.V.; Isupov, A.Yu. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Itoh, K. [Department of Physics, Saitama University, Saitama (Japan); Janek, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, University of Zilina, 010 26 Zilina (Slovakia); Karachuk, J.-T. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Advanced Research Institute for Electrical Engineering, Bucharest (Romania); Kawabata, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Khrenov, A.N.; Kiselev, A.S.; Kizka, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kliman, J. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia); Krasnov, V.A.; Livanov, A.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Nuclear Research, Moscow (Russian Federation); Maeda, Y. [Kyushi University, Hakozaki (Japan); Malakhov, A.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Matousek, V.; Morhach, M. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia)

    2011-06-21

    A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 MeV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.

  15. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students

    Science.gov (United States)

    Lisboa, Pedro; Sotomayor, Joo; Ribeiro, Paulo

    2010-01-01

    The construction of a diode laser polarimeter apparatus by undergraduate students is described. The construction of the modular apparatus by undergraduate students gives them an insight into how it works and how the measurement of a physical or chemical property is conducted. The students use the polarimeter to obtain rotation angle values for the…

  16. A system architecture for sharing de-identified, research-ready brain scans and health information across clinical imaging centers.

    Science.gov (United States)

    Chervenak, Ann L; van Erp, Theo G M; Kesselman, Carl; D'Arcy, Mike; Sobell, Janet; Keator, David; Dahm, Lisa; Murry, Jim; Law, Meng; Hasso, Anton; Ames, Joseph; Macciardi, Fabio; Potkin, Steven G

    2012-01-01

    Progress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover, the clinical interpretation of brain scans benefits from compare and contrast analyses of scans from patients with similar, and sometimes rare, demographic, diagnostic, and treatment status. A solution to both needs is to acquire standardized, research-ready clinical brain scans and to build the information technology infrastructure to share such scans, along with other pertinent information, across hospitals. This paper describes the design, deployment, and operation of a federated imaging system that captures and shares standardized, de-identified clinical brain images in a federation across multiple institutions. In addition to describing innovative aspects of the system architecture and our initial testing of the deployed infrastructure, we also describe the Standardized Imaging Protocol (SIP) developed for the project and our interactions with the Institutional Review Board (IRB) regarding handling patient data in the federated environment.

  17. Evaluation of different photodetector types for an ILC polarimeter

    International Nuclear Information System (INIS)

    Helebrant, Christian

    2009-01-01

    At the International Linear Collider (ILC) (ILC Reference Design Report, 2007 ) the polarization of the electron and positron beams needs to be measured with as yet unequaled precision of ΔP/P∼0.25%. The key element of the polarimeter will be the precise detection of Cherenkov light from Compton scattered electrons. The poster ) deals with the choice of a suitable photodetector (PD). In a recently assembled test facility various types of PDs have been checked. Results are presented with a special focus on the linearity of the device, since this is expected to be the limiting factor on the precision of the polarization measurement at the ILC.

  18. Testing of polarimeter UVP layout on telescope AZT-2

    Science.gov (United States)

    Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.

    2018-05-01

    Layout of on-board small-sized ultraviolet polarimeter was created. On its basis a ground version of the layout was prepared. It was installed on the AZT-2 telescope for carrying out special tests. With this device we investigated the possibility of determining the degree of polarization of the twilight glow of the Earth's atmosphere, and also worked out the observation methodology required for such work, and the basic principles of the implementation of this method. For this purpose, a special complex of auxiliary equipment was developed.

  19. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  20. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  1. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  2. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  3. A tensor and vector polarimeter for deuterons at fusion energies

    Energy Technology Data Exchange (ETDEWEB)

    Kroell, Leonard; Engels, Ralf; Gregoryev, Kyril; Mikirtychiants, Maxim; Mikirtychiants, Sergey; Rathmann, Frank; Stroeher, Hans [Institut fuer Kernphysik, Juelich Center for Hadron Physics, FZ Juelich (Germany); Kravtsov, Peter; Vasilyev, Alexander [High Energy Physics Department, PNPI (Russian Federation); Paetz, Hans [Institut fuer Kernphysik, Universitaet Koeln (Germany); Hebbeker, Thomas [III. Physikalisches Institut A, RWTH, Aachen (Germany)

    2010-07-01

    Within the framework of an ISTC project the fusion reactions of double-polarized deuterium (vector (d)+vector (d){yields} {sup 3}H+p, vector (d)+vector (d){yields} {sup 3}He+n) will be analysed in order to study the influence of the vector and tensor polarization of the initial projectiles on the total cross sections. These results allow a conclusion on the change of the branching ration between the two fusion channels and, therefore, the neutron reduction for a future generation of fusion reactor. The measurements request the knowledge of the polarization of the deuteron beam and of the (gas)target. With an unpolarized target, the beam polarization can be determined by measuring the angular distributions of the outgoing particles ({sup 3}He, p and {sup 3}H) with use of the known analysing powers. Vice versa, additional data for the analysing powers can be obtained with a beam of known polarization, measured with a Lamb-shift polarimeter. The setup of the charged ejectile polarimeters is described.

  4. Extended depth measurement for a Stokes sample imaging polarimeter

    Science.gov (United States)

    Dixon, Alexander W.; Taberner, Andrew J.; Nash, Martyn P.; Nielsen, Poul M. F.

    2018-02-01

    A non-destructive imaging technique is required for quantifying the anisotropic and heterogeneous structural arrangement of collagen in soft tissue membranes, such as bovine pericardium, which are used in the construction of bioprosthetic heart valves. Previously, our group developed a Stokes imaging polarimeter that measures the linear birefringence of samples in a transmission arrangement. With this device, linear retardance and optic axis orientation; can be estimated over a sample using simple vector algebra on Stokes vectors in the Poincaré sphere. However, this method is limited to a single path retardation of a half-wave, limiting the thickness of samples that can be imaged. The polarimeter has been extended to allow illumination of narrow bandwidth light of controllable wavelength through achromatic lenses and polarization optics. We can now take advantage of the wavelength dependence of relative retardation to remove ambiguities that arise when samples have a single path retardation of a half-wave to full-wave. This effectively doubles the imaging depth of this method. The method has been validated using films of cellulose of varied thickness, and applied to samples of bovine pericardium.

  5. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    International Nuclear Information System (INIS)

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; Poelker, B.; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-01-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy

  6. The clinical research of bone scan in patients with fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Yuan Zhibin; Yu Jianfang; Luo Quanyong; Lu Hankui; Zhu Jifang; Zhu Ruisen

    2002-01-01

    Objective: To study the characteristics of fibrous dysplasia of bone in bone imaging and evaluate the diagnostic value of radionuclide bone scan in fibrous dysplasia of bone. Methods: All 42 cases of fibrous dysplasia of bone patients had radionuclide bone scan performed and compared with other imaging modalities. A retrospective study method was used to analyze the imaging results. Results: Although fibrous dysplasia of bone showed uptake of 99m Tc-MDP in the images, its appearance characteristic was different from those metastatic bone tumors and other bone diseases. Combining with X rays and other imaging modalities can improve the diagnostic accuracy of this disease. Conclusion: Radionuclide bone scan has got certain value in the diagnosis of fibrous dysplasia of bone. Combining with other imaging modality can make up its disadvantage of low specificity

  7. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  8. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  9. The MESA polarimetry chain and the status of its double scattering polarimeter

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-01-01

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article

  10. Conceptual design report of a compton polarimeter for CEBAF hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G.; Cavata, C.; Neyret, D.; Frois, B.; Jorda, J.P.; Legoff, J.M.; Platchkov, S.; Steinmetz, L.; Juillard, M.; Authier, M.; Mangeot, P.; Rebourgeard, P.; Colombel, N.; Girardot, P.; Martinot, J.; Sellier, J.C.; Veyssiere, C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvieille, H.; Roblin, Y. [Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), 75 - Paris (France); Chen, J.P. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1996-12-31

    This report describes the design of the Compton polarimeter for the Cebaf electron beam in End Station A. The method of Compton polarimeter is first introduced. It is shown that at CEBAF beam intensities, the use of standard visible LASER light gives too low counting rates. An amplification scheme of the LASER beam based on a high finesse optical cavity is proposed. Expected luminosities with and without such a cavity are given. The polarimeter setup, including a 4 dipole magnet chicane, a photon and an electron detector, is detailed. The various sources of systematic error on the electron beam polarization measurement are discussed. (author). 82 refs.

  11. Birefringence Polarimeter Using Dual LiNbO3 Electrooptic Crystal Modulators

    Science.gov (United States)

    Saitou, Takeshi; Nurdin Bin, Muhammad; Kowa, Hiroyuki; Umeda, Norihiro; Takizawa, Kuniharu; Kondoh, Eiichi; Jin, Lianhua

    2012-08-01

    A birefringence polarimeter that uses dual LiNbO3 electrooptic crystal modulators operating at a frequency ratio of 4:1 is described. The significance of this polarimeter is that the birefringent parameters of a sample are obtained only from the modulated polarization status. The measurement, therefore, avoids depolarization effects resulting from the sample itself and the rest of the optical system. The high speed and accuracy of this polarimeter are shown by measurements using a quarter-wave plate, a Babinet-Soleil compensator, and a phase modulator.

  12. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  13. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  14. Data reduction and analysis for the graphite crystal X-ray spectrometer and polarimeter experiment flown aboard OSO-8 spacecraft

    Science.gov (United States)

    Novick, R.

    1980-01-01

    The documentation and software programs developed for the reception, initial processing (quickbook), and production analysis of data obtained by solar X-ray spectroscopy, stellar spectroscopy, and X-ray polarimetry experiments on OSO-8 are listed. The effectiveness and sensitivity of the Bragg crystal scattering instruments used are assessed. The polarization data polarimetric data obtained shows that some X-ray sources are polarized and that a larger polarimeter of this type is required to perform the measurements necessary to fully understand the physics of X-ray sources. The scanning Bragg crystal spectrometer was ideally suited for studying rapidly changing solar conditions. Observations of the Crab Nebula and pulsar, Cyg X-1, Cyg X-2, Cyg X-3, Sco X-1, Cen X-3, and Her X-1 are discussed as well as of 4U1656-53 and 4U1820-30. Evidence was obtained for iron line emission from Cyg X-3.

  15. Matrix structure for information-driven polarimeter design

    Science.gov (United States)

    Alenin, Andrey S.

    Estimating the polarization of light has been shown to have merit in a wide variety of applications between UV and LWIR wavelengths. These tasks include target identification, estimation of atmospheric aerosol properties, biomedical and other applications. In all of these applications, polarization sensing has been shown to assist in discrimination ability; however, due to the nature of many phenomena, it is difficult to add polarization sensing everywhere. The goal of this dissertation is to decrease the associated penalties of using polarimetry, and thereby broaden its applicability to other areas. First, the class of channeled polarimeter systems is generalized to relate the Fourier domains of applied modulations to the resulting information channels. The quality of reconstruction is maximized by virtue of using linear system manipulations rather than arithmetic derived by hand, while revealing system properties that allow for immediate performance estimation. Besides identifying optimal systems in terms of equally weighted variance (EWV), a way to redistribute the error between all the information channels is presented. The result of this development often leads to superficial changes that can improve signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs in the literature. Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in regards to their capacity to match the level of discrimination performance achieved by full systems. The concepts of structured decomposition and the reconstructables matrix are developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a pMMP basis that allows the formation of ten classes of pMMP systems. A method for evaluating such systems while considering a multi-objective optimization of noise resilience and space coverage is provided. An example is presented for which the number of measurements was reduced to half. Third, the novel developments

  16. Research on defect detection from incomplete scanning of X-ray

    International Nuclear Information System (INIS)

    Zhang Shunli; Zhang Dinghua; Cheng Yunyong; Li Xiaolin

    2011-01-01

    Computed tomography (CT) is an advanced means of non-destructive testing, which has been widely used in medical and industrial fields. Aiming at the non-destructive testing problem of large industrial components, It presents a defect detection method from incomplete scanning of X-ray. Firstly, a set of incomplete scanning projection data before using the component has been obtained, then reconstruct them by algebraic re- construction technique (ART), and take the reconstructed images as the norm images. Then, the incomplete projection data of different times during the use of the component has been obtained, and reconstruct them by ART algorithm. Finally, It makes digital subtraction operation by the reconstructed images and the norm images, the defection can be detected clearly and intuitively from the subtraction image. Experimental result shows the proposed method is effective. (authors)

  17. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    Science.gov (United States)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  18. Development of the GEM-TPC X-ray Polarimeter with the Scalable Readout System

    Directory of Open Access Journals (Sweden)

    Kitaguchi Takao

    2018-01-01

    Full Text Available We have developed a gaseous Time Projection Chamber (TPC containing a single-layered foil of a gas electron multiplier (GEM to open up a new window on cosmic X-ray polarimetry in the 2–10 keV band. The micro-pattern TPC polarimeter in combination with the Scalable Readout System produced by the RD51 collaboration has been built as an engineering model to optimize detector parameters and improve polarimeter sensitivity. The polarimeter was characterized with unpolarized X-rays from an X-ray generator in a laboratory and polarized X-rays on the BL32B2 beamline at the SPring-8 synchrotron radiation facility. Preliminary results show that the polarimeter has a comparable modulation factor to a prototype of the flight one.

  19. Passive New UV Polarimeter for Remote Surface and Atmospheric Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our imaging polarimeter concept makes available for the first time, the passive remote imagery of all four Stokes vector components at UV wavelengths shorter than...

  20. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Athay, R.G.; Beckers, J.M.; Brandt, J.C.; Bruner, E.C.; Chapman, R.D.; Cheng, C.C.; Burman, J.G.; Henze, W.; Hyder, C.L.; Michalitsianos, A.G.; Shine, R.A.; Schoolman, S.A.; Woodgate, B.E.

    1981-01-01

    We present new observations with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first 3 months of Solar Maximum Mission operations

  1. CLASP2: The Chromospheric LAyer Spectro-Polarimeter

    Science.gov (United States)

    Rachmeler, Laurel; E McKenzie, David; Ishikawa, Ryohko; Trujillo Bueno, Javier; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; Bethge, Christian; Kano, Ryouhei; Kubo, Masahito; Song, Donguk; Narukage, Noriyuki; Ishikawa, Shin-nosuke; De Pontieu, Bart; Carlsson, Mats; Yoshida, Masaki; Belluzzi, Luca; Stepan, Jiri; del Pino Alemná, Tanausú; Ballester, Ernest Alsina; Asensio Ramos, Andres

    2017-08-01

    We present the instrument, science case, and timeline of the CLASP2 sounding rocket mission. The successful CLASP (Chromospheric Lyman-Alpha Spectro-Polarimeter) sounding rocket flight in 2015 resulted in the first-ever linear polarization measurements of solar hydrogen Lyman-alpha line, which is sensitive to the Hanle effect and can be used to constrain the magnetic field and geometric complexity of the upper chromosphere. Ly-alpha is one of several upper chromospheric lines that contain magnetic information. In the spring of 2019, we will re-fly the modified CLASP telescope to measure the full Stokes profile of Mg II h & k near 280 nm. This set of lines is sensitive to the upper chromospheric magnetic field via both the Hanle and the Zeeman effects.

  2. Rocket Experiment Demonstration of a Soft X-ray Polarimeter

    Science.gov (United States)

    Marshall, Herman

    This proposal is the lead proposal. Boston University will submit, via NSPIRES, a Co-I proposal, per instructions for Suborbital proposals for multiple-award. Our scientific goal of the Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is to make the first measurement of the linear X-ray polarization of an extragalactic source in the 0.2-0.8 keV band. The first flight of the REDSoX Polarimeter would target Mk 421, which is commonly modeled as a highly relativistic jet aimed nearly along the line of sight. Such sources are likely to be polarized at a level of 30-60%, so the goal is to obtain a significant detection even if it is as low as 10%. Significant revisions to the models of jets emanating from black holes at the cores of active galaxies would be required if the polarization fraction lower than 10%. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. Using replicated foil mirrors from MSFC and gratings made at MIT, we construct a spectrometer that disperses to three laterally graded multilayer mirrors (LGMLs). The lateral grading changes the wavelength of the Bragg peak for 45 degree reflections linearly across the mirror, matching the dispersion of the spectrometer. By dividing the entrance aperture into six equal sectors, pairs of blazed gratings from opposite sectors are oriented to disperse to the same LGML. The position angles for the LGMLs are 120 degrees to each other. CCD detectors then measure the intensities of the dispersed spectra after reflection and polarizing by the LGMLs, giving the three Stokes parameters needed to determine the source polarization. We will rely on components whose performance has been verified in the laboratory or in space. The CCD detectors are based on Chandra and Suzaku heritage. The mirror fabrication team

  3. A p-Carbon CNI Polarimeter for RHIC

    International Nuclear Information System (INIS)

    Huang, H.; Bai, M.; Bunce, G.; Makdisi, Y.; Roser, T.; Imai, K.; Nakamura, M.; Tojo, J.; Yamamoto, K.; Zhu, L.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Lewis, B.; Smith, B.; Thomas, T. L.; Wolfe, D.; Goto, Y.; Hayoshi, N.; Ishihara, M.; Kurita, K.; Okamura, M.; Saito, N.; Taketani, A.; Doskow, J.; Kwiatkowski, K.; Lozowski, B.; Meyer, H.O.; Przewoski, B. V.; Rinckel, T.; Nurushev, S. B.; Strikhanov, M. N.; Runtzo, M. F.; Alekseev, I. G.; Svirida, D. N.; Deshpande, A.; Hughes, V.

    1999-01-01

    The RHIC spin program requires excellent polarimetry so that the knowledge of the beam polarization does not limit the errors on the experimental measurements. However, polarimetry of proton beams with energies higher than about 30 GeV poses a difficult challenge. For polarization monitoring during operation, a fast and reliable polarimeter is required that produces a polarization measurement with a 10% relative error within a few minutes. The p-Carbon elastic scattering in the Coulomb-Nuclear-Scattering (CNI) region has a calculable and large analyzing power, but detecting the recoil carbon needs sophisticated detector system and a very thin target. Experiment has been planned in the AGS. This paper describes the experimental setup in the AGS

  4. Use of proportional tubes in a muon polarimeter

    International Nuclear Information System (INIS)

    Kenney, C.J.; Eckhause, M.; Ginkel, J.F.

    1988-01-01

    A prototype muon polarimeter was built to study the feasibility of measuring the positive muon polarization in the decay K/sub L/ → μ + μ/sup /minus//. The system consisted of alternating layers of extruded aluminum gas proportional tubes and polarization-retaining absorber plates of either aluminum or marble. Longitudinally polarized positive muons from the Stopped Muon Channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) were stopped in the absorber plates where they precessed in a field of 60 gauss. Decay times were recorded in 100 ns first-in-first-out memories for all wires hit during a 12.8 μs period centered about the muon stop trigger. The performance of the system was studied for different beam rates and absorber thicknesses. The value of imposing time and spacial cuts on track data to enhance the precession signal was also investigated. 7 refs., 4 figs., 1 tab

  5. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.

    Science.gov (United States)

    Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott

    2009-05-25

    Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.

  6. Faraday rotation calculations for a FIR polarimeter on ITER

    International Nuclear Information System (INIS)

    Nieswand, C.

    1997-01-01

    The measurement of the safety factor profile has been considered as an essential diagnostics for ITER. Without the presence of a neutral beam, the only reliable diagnostics which can fulfill the requirements for the q-profile determination is at present the polarimetry. This paper presents the results of calculations of the Faraday rotation and the Cotton-Mouton effect for various plasma configurations (considered as typical) and various beam geometries which can eventually be realized in spite of the restricted access. The calculations should help to find a decision for the wavelength and the number and the position of the observation chords of a possible polarimeter system on ITER. The paper does not deal with technical questions concerning the implementation of such a system on ITER. The potential use of internal retro-reflectors or waveguides for the beams is not discussed. (author) 4 figs., 3 refs

  7. Ly-alpha polarimeter design for CLASP rocket experiment

    Science.gov (United States)

    Kubo, M.; Watanabe, H.; Narukage, N.; Ishikawa, R.; Bando, T.; Kano, R.; Tsuneta, S.; Kobayashi, K.; Ichimoto, K.; Trujillo Bueno, J.; Song, D.

    2011-12-01

    A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the Summer of 2014. CLASP will observe the upper solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The CLASP needs a rotating half-waveplate and a polarization analyzer working at the Ly-alpha wavelength to measure the linear polarization signal. We select Magnesium Fluoride (MgF2) as a material of the optical components because of its birefringent property and high transparency at UV wavelength. We have confirmed that the reflection at the Brewster's Angle of MgF2 plate is a good polarization analyzer for the Ly-alpha line by deriving its ordinary refractive index and extinction coefficient along the ordinary and extraordinary axes. These optical parameters are calculated with a least-square fitting in such a way that the reflectance and transmittance satisfy the Kramers-Kronig relation. The reflectance and transmittance against oblique incident angles for the s-polarized and the p-polarized light are measured using the synchrotron beamline at the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR). We have also measured a retardation of a zeroth-order waveplate made of MgF2. The thickness difference of the waveplate is 14.57 um.This waveplate works as a half-waveplate at 121.74 nm. From this measurement, we estimate that a waveplate with the thickness difference of 15.71 um will work as a half-waveplate at the Ly-alpha wavelength. We have developed a rotating waveplate - polarization analyzer system called a prototype of CLASP polarimeter, and input the perfect Stokes Q and U signals. The modulation patterns that are consistent with the theoretical prediction are successfully obtained in both cases.

  8. The test of the layout of polarimeter "UFP" on the telescope AZT-2

    Science.gov (United States)

    Levchenko, T. A.; Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Saryboha, H. V.; Zbrutsky, O. V.; Ivakhiv, O. V.

    2016-05-01

    Main Astronomical Observatory of NAS of Ukraine in cooperation with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of an optical polarimeter to study of the stratospheric layer of the Earth using of orbital satellite. During this time, was accumulated a large experience of such work, and was established a layout of compact ultraviolet polarimeter (UFP) on board of satellite

  9. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  10. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  11. Application of terrestrial laser scanning for coastal geomorphologic research questions in western Greece

    Science.gov (United States)

    Hoffmeister, Dirk; Curdt, Constanze; Tilly, Nora; Ntageretzis, Konstantin; Aasen, Helge; Vött, Andreas; Bareth, Georg

    2013-04-01

    Coasts are areas of permanent change, influenced by gradual changes and sudden impacts. In particular, western Greece is a tectonically active region, due to the nearby plate boundary of the Hellenic Arc. The region has suffered from numerous earthquakes and tsunamis during prehistoric and historic times and is thus characterized by a high seismic and tsunami hazard risk. Additionally, strong winter storms may reach considerable dimensions. In this study, terrestrial laser scanning was applied for (i) annual change detection at seven coastal areas of western Greece for three years (2009-2011) and (ii) accurate parameter detection of large boulders, dislocated by high-energy wave impacts. The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro) for all surveys. Each scan position and a further target were recorded for georeferencing and merging of the point clouds. (i) For the annual detection of changes, reference points for the base station of the DGPS system were marked. High-resolution digital elevation models (HRDEM) were generated from each dataset of the different years and are compared to each other, resulting in mass balances. (ii) 3D-models of dislocated boulders were reconstructed and parameters (e.g. volume in combination with density measurements, distance and height above present sea-level) were derived for the solution of wave transport equations, which estimate the minimum wave height or velocity that is necessary for boulder movement. (i) Our results show that annual changes are detectable by multi-temporal terrestrial laser scanning. In general, volumetric changes and affected areas are quantifiable and maps of changes can be established. On exposed beach areas, bigger changes were detectable, where seagrass and sand is eroded and gravel accumulated. In opposite, only minor changes for elevated areas are derived. Dislocated boulders on several sites showed no movement. At coastal areas with a high

  12. Development of a method of testing irradiation devices by gamma scanning inside a research nuclear reactor

    International Nuclear Information System (INIS)

    Michel, Francois.

    1975-01-01

    A tridimensional experiment of spectrometry of an irradiation device located inside the reactor Siloe at a place shielded against spurious radiations, is exposed. The automatic scanning system that was developed, makes it possible to fully analyze in about 24 hours, the irradiation device (fuel pin, coolant and structures). The process combined with a 'pre-processing' program allows first partial results to be simultaneously obtained, more refined results being achieved during the next week, using the 'heavy processing'. The irradiation of the device is only interrupted during the compelling duty shutdown of the reactor, the evolution of the device during the successive irradiation cycles being thus followed up without pertubing said evolution. The reproducibility was studied at a local stage for testing the collimation of the detection unit (1% accuracy) and for testing the whole set 'processing measurement and computation' (5% accuracy). The sensitivity has been illustrated by detecting and measuring local singularities inside fuel (pellets), determining the detection efficiency dependence on the radial distribution of fission products and measuring nucleides inside the coolant flow (limiting value 10 -7 ). The accuracy of the method is evaluated at 5% for relative measurement of an experimental device during its in-pile lifetime and as 10% for quantitative absolute measurements [fr

  13. Research and design of scanning power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Huang Yuzhen; Liu Yuntao; Chen Youxin; Gao Daqing; Zhang Shu; Gao Yalin

    2009-01-01

    This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). To ensure the specified accuracy of the current, the hysteresis loop control strategy was adopted, and tracking error was constrained in the specified tolerance. One prototype was designed and installed. And the simulation results and test results were listed in the paper. The results show that all the targets can meet the design requirements, and that the circuit configuration and hysteresis loop control strategy selected are practicable. (authors)

  14. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  15. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    Liu, Chuyu

    2012-01-01

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as 'organs of sense' or 'eyes of the accelerator.' Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  16. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements

    International Nuclear Information System (INIS)

    Kolbe, Michaela

    2011-01-01

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S 2 I/I 0 , with the asymmetry function S and the ratio between scattered and primary intensity I/I 0 . State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM ≅10 -4 . On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10 4 data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a μ-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k parallel -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of ≅3 eV. This leads to a two-dimensional figure of merit of FoM 2D =1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to investigate strongly reactive samples in a short time. This

  17. Post-market drug evaluation research training capacity in Canada: an environmental scan of Canadian educational institutions.

    Science.gov (United States)

    Wiens, Matthew O; Soon, Judith A; MacLeod, Stuart M; Sharma, Sunaina; Patel, Anik

    2014-01-01

    Ongoing efforts by Health Canada intended to modernize the legislation and regulation of pharmaceuticals will help improve the safety and effectiveness of drug products. It will be imperative to ensure that comprehensive and specialized training sites are available to train researchers to support the regulation of therapeutic products. The objective of this educational institution inventory was to conduct an environmental scan of educational institutions in Canada able to train students in areas of post-market drug evaluation research. A systematic web-based environmental scan of Canadian institutions was conducted. The website of each university was examined for potential academic programs. Six core programmatic areas were determined a priori as necessary to train competent post-market drug evaluation researchers. These included biostatistics, epidemiology, pharmacoepidemiology, health economics or pharmacoeconomics, pharmacogenetics or pharmacogenomics and patient safety/pharmacovigilance. Twenty-three academic institutions were identified that had the potential to train students in post-market drug evaluation research. Overall, 23 institutions taught courses in epidemiology, 22 in biostatistics, 17 in health economics/pharmacoeconomics, 5 in pharmacoepidemiology, 5 in pharmacogenetics/pharmacogenomics, and 3 in patient safety/pharmacovigilance. Of the 23 institutions, only the University of Ottawa offered six core courses. Two institutions offered five, seven offered four and the remaining 14 offered three or fewer. It is clear that some institutions may offer programs not entirely reflected in the nomenclature used for this review. As Heath Canada moves towards a more progressive licensing framework, augmented training to increase research capacity and expertise in drug safety and effectiveness is timely and necessary.

  18. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  19. Design, construction and calibration of a polarimeter for gamma radiation

    International Nuclear Information System (INIS)

    Macchiavelli, A.O.; Marti, G.V.; Gimenez, C.R.; Laffranchi, J.A.; Behar, M.

    1980-01-01

    Information on different nuclear states can be obtained from the analysis of the angular distribution of the emitted gamma radiation. When the information is not sufficient to determine certain relevant parameters, or is ambiguous, a measurement of the linear polarization of radiation together with the angular distribution allows, in many cases, to resolve this ambiguity. This in turn, necessitates of a detector radiation: this is a Ge(Li) planar detector with a width d of the compensated zone smaller than the length L (L/d greater than 1), built from a germanium block with a square section of 33 mm side, compensated with lithium up to 3 mm depth, by means of usual techniques. The detector characteristics, measured by conventional electronics, were: system's total resolution (Full Width at Half Maximum) 2.4 keV; pico-Compton relation of 6/1 and relative efficiency of 0. for γ rays of 1.33 MeV from 60 Co. Using γ-γ fast-slow coincidence techniques (Ge(Li)-INa system), the curve of polarization efficiency in the 0.1.5 MeV energy range was determined and a polarization efficiency of approximately 17% was obtained for said energy range. This value is comparable to the results obtained in previous works for polarimeters of similar dimensions and can be used to determine multipolarity of nuclear states. (M.E.L.) [es

  20. Building blocks for a polarimeter-on-a-chip

    International Nuclear Information System (INIS)

    Stevenson, Thomas R.; Hsieh, W.-T.; Schneider, Gideon; Travers, Douglas; Cao, Nga; Wollack, Edward; Limon, Michele; Kogut, Alan

    2006-01-01

    For the 'Primordial Anisotropy Polarization Pathfinder Array (PAPPA)' balloon flight project, we have designed and made thin-film niobium microstrip circuits as building blocks for a 'polarimeter-on-a-chip' in which superconducting transmission lines are used to couple millimeter wave signals from planar antennas to superconducting transition edge sensor (TES) detectors. Our goal is to demonstrate technology for precision measurements of the polarization of the cosmic microwave background. To enable characterization and verification of our microstrip components, we have incorporated waveguide probes on each chip that can bring millimeter wave signals from a room temperature vector network analyzer to the superconducting circuits on the chip and back again for S-parameter measurements. We have designed a planar antenna and RF choke on the probes to efficiently couple radiation between waveguide and thin-film microstrip. To support the probe antennas in waveguides, we sculpted thin silicon cantilevers that extend from an edge of each silicon chip into a pair of waveguides within a specially designed split-block mount. This technique will allow us to make calibrated measurements at low temperatures of the velocity, impedance, and loss properties of our niobium transmission lines, the frequency response of microstrip filters, hybrid couplers, or terminations, and the performance of integrated detectors

  1. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  2. Lifetime estimation of a time projection chamber x-ray polarimeter

    Science.gov (United States)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; Montt de Garcia, Kristina; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-09-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  3. New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer

    International Nuclear Information System (INIS)

    Tamii, A.; Sakaguchi, H.; Takeda, H.; Yosoi, M.; Akimune, H.; Fujiwara, M.; Ogata, H.; Tanaka, M.; Togawa, H.

    1996-01-01

    This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor., The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This rate includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, the authors developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM's transfer data from LeCroy PCOS III's or 4298's, and FERA/FERET's directly to CES 8170 High Speed Memories (HSM) in VME crates. The data transfer rate of the RDTM from PCOS III's to the HSM is about 4 Mbytes/s

  4. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  5. Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Syniavskyi, I.; Ivanov, Yu.; Vidmachenko, A. P.; Sergeev, A.

    2015-08-01

    The construction of an imaging Stokes-polarimeter in the MAO NAS of Ukraine is proposed. It allows measuring the three components of the Stokes vector simultaneously in large FOV without restrictions on the relative aperture of the system. Moreover, the polarimeter can be converted to a low resolution spectropolarimeter by placement into optical axis of the transparence diffraction grating.

  6. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    CERN Document Server

    Reyes Cortes, S.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Joffrin, E.

    2016-01-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  7. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  8. A proton polarimeter for beam energies below 300 keV

    International Nuclear Information System (INIS)

    Buchmann, L.

    1990-10-01

    A nuclear polarimeter based on the low energy analyzing power of the 6 Li(p, 3 He)α reaction has been developed and tested for proton energies below E p =300 keV. The polarimeter uses a 6 LiF target evaporated on a water cooled tantalum backing. The target is observed at backwards angles by four silicon surface barrier detectors. The energy dependence of the analyzing power under 130 o for the 6 Li(p, 3 He)α reaction has been determined down to 200 keV. Spin rotation has been observed via a magnetic field incorporated in a Wien filter demonstrating that the polarimeter is operational. (Author) (7 refs., 7 figs.)

  9. Thermal control modeling approach for GRAPE (GRAntecan PolarimEter)

    Science.gov (United States)

    Di Varano, I.; Woche, M.; Strassmeier, K. G.

    2016-08-01

    GRAPE is the polarimeter planned to be installed on the main Cassegrain focus of GTC (Gran Telescopio Canarias), having an equivalent entrance pupil of 10.4 m, located at the Observatorio del Roque de los Muchachos (ORM) , in La Palma, Canary Islands. It's meant to deliver full Stokes (IQUV) polarimetry covering the spectral range 0.420-1.6 μ, in order to feed the HORS instrument (High Optical Resolution Spectrograph), mounted on the Nasmyth platform, which has a FWHM resolving power of about 25,000 (5 pixel) designed for the wavelength range of 380-800 nm. Two calcite blocks and a BK-7 prism arranged in a Foster configuration are splitting the Ø12.5mm collimated beam into the ordinary and extraordinary components. The entire subunit from the Foster prisms down to the input fibers is rotated by steps of 45 degrees in order to retrieve Q, U components. By inserting a quarter wave retarder plate before the entrance to the Foster unit circular polarization is measured too. The current paper consist of two main parts: at first CFD simulations are introduced, which have been run compliant to the specifications derived by the environmental conditions and the transient thermal gradients taking into account the presence of the electronic cabinets installed, which are triggering the boundary conditions for the outer structure of the instrument; then a thermal control model is proposed based on heat exchangers to stabilize the inner temperature when compensation via passive insulation is not enough. The tools that have been adopted to reach for such goal are Ansys Multiphysics, in particular CFX package and Python scripts.

  10. Origins Space Telescope: The Far Infrared Imager and Polarimeter FIP

    Science.gov (United States)

    Staguhn, Johannes G.; Chuss, David; Howard, Joseph; Meixner, Margaret; Vieira, Joaquin; Amatucci, Edward; Bradley, Damon; Carter, Ruth; Cooray, Asantha; Flores, Anel; Leisawitz, David; Moseley, Samuel Harvey; Wollack, Edward; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST)* is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The current "concept 1", which envisions a cold (4K) 9m space telescope, includes 5 instruments, providing a wavelength coverage ranging from 6um and 667um. The achievable sensitivity of the observatory will provide three to four orders of magnitude of improvement in sensitivity over current observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures on exo-planets to mapping primordial H_2 from the "dark ages" before the universe went through the phase of re-ionization.Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The cameral will cover four bands, 40um, 80um, 120um, and 240um. It will allow for differential polarimetry in those bands with the ability to observe two colors in polarimtery mode simultaneously, while all four bands can be observed simultaneously in total power mode. While the confusion limit will be reached in only 32ms at 240um, at 40um the source density on the sky is so low, that at the angular resolution of 1" of OST at this wavelength there will be no source confusion, even for the longest integration times. Science topics that can be addressed by FIP include but are not limited to galactic and extragalactic magnetic field studies, Deep Galaxy Surveys, and Outer Solar System objects..*Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  11. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  12. A high-energy Compton polarimeter for the POET SMEX mission

    Science.gov (United States)

    Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Hill, Joanne E.; Kippen, Marc; Ryan, James M.

    2014-07-01

    The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission.

  13. RHIC PC CNI POLARIMETER:STATUS AND PERFORMANCE from THE FIRST COLLIDER RUN

    International Nuclear Information System (INIS)

    JINNOUCHI, O.; ALEKSEEV, I.G.; BLAND, L.C.; BRAVAR, A.; BUNCE, G.; CADMAN, R.; DESHPANDE, A.D.; HAWAN, S.; FIELDS, D.E.; HUANG, H.; HUGHES, V.; IGO, G.; IMAI, K.; KANAVETS, V.P.; KIRYLUK, J.; KURITA, K.; LI, Z.; LOZOWSKI, W.; MACKAY, W.W.; MAKDISI, Y.; OGAWA, A.; RESCIA, S.; ROSER, T.; SAITO, N.; SPINKA, H.; SURROW, B.; SVIRIDA, D.N.; TOJO, J.; UNDERWOOD, D.; WOOD, J.

    2002-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  14. RHIC pC CNI Polarimeter: Status and Performance from the First Collider Run

    International Nuclear Information System (INIS)

    Jinnouchi, O.; Tojo, J.; Alekseev, I.G.; Kanavets, V.P.; Svirida, D.N.; Bland, L.C.; Bravar, A.; Huang, H.; Li, Z.; MacKay, W.W.; Makdisi, Y.; Ogawa, A.; Rescia, S.; Roser, T.; Surrow, B.; Bunce, G.; Cadman, R.; Spinka, H.; Underwood, D.; Deshpande, A.

    2003-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  15. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  16. A CAMAC-resident microprocessor for the monitoring of polarimeter spin states

    International Nuclear Information System (INIS)

    Reid, D.; DuPlantis, D.; Yoder, N.; Dale, D.

    1992-01-01

    A CAMAC module for the reporting of polarimeter spin states is being developed using a resident microcontroller. The module will allow experimenters at the Indiana University Cyclotron Facility to monitor spin states and correlate spin information with other experimental data. The use of a microprocessor allows for adaptation of the module as new requirements ensue without change to the printed circuit board layout. (author)

  17. The HERA polarimeter and the first observation of electron spin polarization at HERA

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Boege, M.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, H.; Klanner, R.; Lewin, H.C.; Meyners, N.; Vogel, W.; Brueckner, W.; Buescher, C.; Dueren, M.; Gaul, H.G.; Muecklich, A.; Neunreither, F.; Rith, K.; Scholz, C.; Steffens, E.; Veltri, M.; Wander, W.; Zapfe, K.; Zetsche, F.; Chapman, M.; Milner, R.; Coulter, K.; Delheij, P.P.J.; Haeusser, O.; Henderson, R.; Levy, P.; Vetterli, M.; Gressmann, H.; Janke, T.; Micheel, B.; Westphal, D.; Kaiser, R.; Losev, L.; Nowak, W.D.

    1992-10-01

    Electron spin polarizations of about 8% were observed at HERA in November 1991. In runs during 1992 utilizing special orbit corrections, polarization values close to 60% have been achieved. In this paper the polarimeter, the machine conditions, the data analysis, the first results and plans for future measurements are described. (orig.)

  18. Evaluative studies in nuclear medicine research. Interim progress report, July 1, 1975--June 30, 1976. [Diagnostic value of brain scans

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E.J.

    1976-01-01

    Data relating to the determination of the efficacy of radionuclide brain scanning have been analyzed. The data were gathered at a teaching hospital by use of a prospective questionnaire followed by a retrospective study of the result of the brain scan examination. Data analysis was accomplished using a method of pattern discovery which relates selected outcomes such as normal and abnormal brain scans to patient attributes (signs, symptoms, history, and previous test results). The objective of the analysis was the identification of patterns or clusters of patient attributes which have a high probability of acting as predictors of the outcome of the brain scan.

  19. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  20. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers

    Science.gov (United States)

    Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.

    We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.

  1. DAQ system for high energy polarimeter at the LHE, JINR: implementation based on the qdpb (data processing with branchpoints) system

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2001-01-01

    Online data acquisition (DAQ) system's implementation for the High Energy Polarimeter (HEP) at the LHE, JINR is described. HEP DAQ is based on the qdpb system. Software modules specific for such implementation (HEP data and hardware dependent) are discussed

  2. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  3. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  4. A novel comparison of Møller and Compton electron-beam polarimeters

    Directory of Open Access Journals (Sweden)

    J.A. Magee

    2017-03-01

    Full Text Available We have performed a novel comparison between electron-beam polarimeters based on Møller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (<5 μA during the Qweak experiment in Hall-C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 μA operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Møller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.

  5. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  6. The Bragg Reflection Polarimeter On the Gravity and Extreme Magnetism Small Explorer Mission

    Science.gov (United States)

    Allured, Ryan; Griffiths, S.; Daly, R.; Prieskorn, Z.; Marlowe, H.; Kaaret, P.; GEMS Team

    2011-09-01

    The strong gravity associated with black holes warps the spacetime outside of the event horizon, and it is predicted that this will leave characteristic signatures on the polarization of X-ray emission originating in the accretion disk. The Gravity and Extreme Magnetism Small Explorer (GEMS) mission will be the first observatory with the capability to make polarization measurements with enough sensitivity to quantitatively test this prediction. Students at the University of Iowa are currently working on the development of the Bragg Reflection Polarimeter (BRP), a soft X-ray polarimeter sensitive at 500 eV, that is the student experiment on GEMS. The BRP will complement the main experiment by making a polarization measurement from accreting black holes below the main energy band (2-10 keV). This measurement will constrain the inclination of the accretion disk and tighten measurements of black hole spin.

  7. Managing Systematic Errors in a Polarimeter for the Storage Ring EDM Experiment

    Science.gov (United States)

    Stephenson, Edward J.; Storage Ring EDM Collaboration

    2011-05-01

    The EDDA plastic scintillator detector system at the Cooler Synchrotron (COSY) has been used to demonstrate that it is possible using a thick target at the edge of the circulating beam to meet the requirements for a polarimeter to be used in the search for an electric dipole moment on the proton or deuteron. Emphasizing elastic and low Q-value reactions leads to large analyzing powers and, along with thick targets, to efficiencies near 1%. Using only information obtained comparing count rates for oppositely vector-polarized beam states and a calibration of the sensitivity of the polarimeter to rate and geometric changes, the contribution of systematic errors can be suppressed below the level of one part per million.

  8. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P.A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; hide

    2016-01-01

    We present the design and the preliminary on-sky performance with respect to beams and pass bands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  9. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Munson, C. D.; Nati, F.; Niemack, M. D.; Page, L.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Schillaci, A.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  10. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    Science.gov (United States)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  11. POLARIMETER: A Soft X-Ray 8-Axis UHV-Diffractometer at BESSY II

    Directory of Open Access Journals (Sweden)

    Andrey Sokolov

    2016-11-01

    Full Text Available A versatile UHV-polarimeter for the EUV XUV spectral range is described which incorporates two optical elements: a phase retarder and a reflection analyzer. Both optics are azimuthally rotatable around the incident synchrotron radiation beam and the incidence angle is freely selectable. This allows for a variety of reflectometry, polarimetry and ellipsometry applications on magnetic or non-magnetic samples and multilayer optical elements.

  12. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Borzounov, Yu.T.; Piskunov, N.M.; Tsvinev, A.P.

    1996-01-01

    This article describes the design and working principle of a 3-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid Helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self regulation of Helium flow in the cryostat to stabilize the liquid hydrogen level is presented. (author)

  13. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  14. The project of installing a ZIMPOL_3 polarimeter at GREGOR in Tenerife

    OpenAIRE

    Michele Bianda; Renzo Ramelli; Jan Olof Stenflo; Svetlana Berdyugina; Daniel Gisler; Ivan Defilippis; Nazaret Bello Gonzáles

    2013-01-01

    A project of collaboration between Kiepenheuer Institut für Sonnenphysik KIS and Istituto Ricerche Solari Locarno IRSOL includes the installation of a ZIMPOL_3 high resolution polarimeter at the 1.5 meter aperture solar telescope GREGOR in Tenerife. Important scientific topics are expected to be investigated in particular in the case of events showing faint amplitude polarization signatures like scattering polarization effects and the Hanle effect. This project has also a technical importance...

  15. A CO2 laser polarimeter for measurement of plasma current profile in Alcator C-Mod

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Richards, R.K.; Irby, J.; Luke, T.

    1994-01-01

    A multichannel infrared polarimeter system for measurement of the plasma current profile in Alcator C-Mod has been designed, constructed, and tested. The system utilizes a cw CO 2 , laser at a wavelength of 10.6 μm. An electro-optic polarization-modulation technique has been used to achieve the high sensitivity required for the measurement. The recent results of the measurements as well as the feasibility of its application on ITER are presented

  16. The multichannel triple-laser interferometer/polarimeter system at RTP

    NARCIS (Netherlands)

    Rommers, J. H.; Donne, A. J. H.; Karelse, F. A.; Howard, J.

    1997-01-01

    yA 19-channel combined interferometer and polarimeter system has recently become operational at the Rijnhuizen Tokamak Project (a = 0.164 m, R = 0.72 m, B-tor less than or equal to 2.5 T, I-p less than or equal to 150 kA, plasma pulse duration less than or equal to 500 ms), in order to determine the

  17. Instrumentations in x-ray plasma polarization spectroscopy. Crystal spectrometer, polarimeter and detectors for astronomical observations

    Energy Technology Data Exchange (ETDEWEB)

    Baronova, Elena O.; Stepanenko, Mikhail M. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland); Tsunemi, Hiroshi [Osaka Univ., Graduate School of Science, Osaka (Japan)

    2002-08-01

    This report discusses the various problems which are encountered when a crystal spectrometer is used for the purpose of observing polarized x-ray lines. A polarimeter is proposed based on the novel idea of using two series of equivalent atomic planes in a single crystal. The present status of the astronomical x-ray detection techniques are described with emphasis on two dimensional detectors which are polarization sensitive. (author)

  18. The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennet, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakula, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  19. A video-polarimeter and its applications in physics and astronometric observations

    Science.gov (United States)

    Dollfus, Audouin; Fauconnier, Thierry; Dreux, Michel; Boumier, Patrick; Pouchol, Thierry

    1989-01-01

    A video-polarimeter system is described which can image a field in nonpolarized, circularly polarized, or linearly polarized light. Images are formed using a Peltier-effect cooled CCD detector array and a quick look video system, and are stored in a 6-Mo random access memory. The system is demonstrated with a two-dimensional measurement of a plexiglass rod, an open-air inspection of a car park, and a telescopic observation of the moon.

  20. An integrated thermo-structural model to design a polarimeter for the GTC

    Science.gov (United States)

    Di Varano, I.; Strassmeier, K. G.; Woche, M.; Laux, U.

    2016-07-01

    The GTC (Gran Telescopio Canarias), with an equivalent aperture of 10.4 m, effective focal length of 169.9 m, located at the Observatorio del Roque de los Muchachos , in La Palma, Canary Islands, will host on its Cassegrain focus the GRAPE polarimeter (GRAntecan PolarimEter). At such focus the plate scale is 1.21 arcsec/mm and the unvignetted FOV 8 arcmin. The instrument will provide full Stokes polarimetry in the spectral range 380-1500 nm, feeding simultaneously up to two spectrographs. At the moment an interface to HORS (High Optical Resolution Spectrograph) is being defined, located on the Nasmyth platform, it has a FWHM resolving power of about 25,000 (5 pixel) within a spectral range of 400-680 nm. The rotator and instrumental flanges for the Cassegrain focus are currently under definition. Hereafter I present the state of art of the mechanical design of the polarimeter, whose strategy is based on an integrated model of Zemax design into ANSYS FEM static and dynamic analyses with thermal loads applied, in order to retrieve tip-tilt, decentering errors and other significant parameters to be looped back to the Zemax model. In such a way it is possible to compare and refine the results achieved through the tolerance analysis.

  1. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    Science.gov (United States)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  2. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  3. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  4. LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds

    Science.gov (United States)

    Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.

    2017-11-01

    Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.

  5. Special report: workshop on 4D-treatment planning in actively scanned particle therapy--recommendations, technical challenges, and future research directions.

    Science.gov (United States)

    Knopf, Antje; Bert, Christoph; Heath, Emily; Nill, Simeon; Kraus, Kim; Richter, Daniel; Hug, Eugen; Pedroni, Eros; Safai, Sairos; Albertini, Francesca; Zenklusen, Silvan; Boye, Dirk; Söhn, Matthias; Soukup, Martin; Sobotta, Benjamin; Lomax, Antony

    2010-09-01

    This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009 at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of institutions actively involved in particle therapy delivery and research. The purpose of the 4DTPW was to discuss current approaches, challenges, and future research directions in 4D-treatment planning in the context of actively scanned particle radiotherapy. Key aspects were addressed in plenary sessions, in which leaders of the field summarized the state-of-the-art. Each plenary session was followed by an extensive discussion. As a result, this article presents a summary of recommendations for the treatment of mobile targets (intrafractional changes) with actively scanned particles and a list of requirements to elaborate and apply these guidelines clinically.

  6. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  7. Laser Polarimeter for Measurement of Optical Activity of Biological Objects

    Science.gov (United States)

    Protasov, E. A.; Protasov, D. E.; Ryzhkova, A. V.

    In this paper has been described the polarimetric device for measurement of optical activity of biological tissues, where the source of radiation is an infrared laser with a wave λ=0.808 micron. The polarizers used are polarizing prisms of Glan - Taylor. To obtain required angular resolution (0.180/cm) has been developed a device that converts the angle of rotation of the analyzer into electrical signal, which is fed to the appropriate scan digital oscilloscope. The passage of the polarized light through the fingers of the hand was established and the angles of rotation of the polarization vector of the transmitted radiation were measured, the values of which may be determined by the content of hemoglobin in the blood.

  8. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  9. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  10. Construction of a γ-polarimeter in search of neutral weak current effects in the nucleus 18F

    International Nuclear Information System (INIS)

    Mogharrab, R.

    1978-07-01

    A possible contribution of neutral weak currents to the nucleon-nucleon potential is to be determined by observation of the circular polarization of the 1081 keV γ-transition in 18 F. A γ-polarimeter with 4 transmission magnets will be used. It is suitable for use in beam. The polarimeter has been built and the analysing power determined by using the 1119 keV γ-radiation in 46 Sc. The instrumental asymmetries are -5 . The 18 F is produced in the reaction 16 O ( 3 He,pγ) 18 F. Observations in beam proved the expected suitability of the polarimeter. The observed spectra allow to estimate the finally required beam times to about 2000 hours. (orig.) [de

  11. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  12. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

    Science.gov (United States)

    Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.

    2018-05-01

    Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

  13. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  14. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    Science.gov (United States)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver

  15. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  16. Development of two color laser diagnostics for the ITER poloidal polarimeter

    International Nuclear Information System (INIS)

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-01-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH 3 OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  17. Upgraded photon calorimeter with integrating readout for the Hall A Compton polarimeter at Jefferson Lab

    International Nuclear Information System (INIS)

    Friend, M.; Parno, D.; Benmokhtar, F.; Camsonne, A.; Dalton, M.M.; Franklin, G.B.; Mamyan, V.; Michaels, R.; Nanda, S.; Nelyubin, V.; Paschke, K.; Quinn, B.; Rakhman, A.; Souder, P.; Tobias, A.

    2012-01-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition (DAQ) system now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd 2 SiO 5 crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  18. Development of a Polarimeter for Magnetic Field Measurements in the Ultraviolet

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.

  19. Design of a scattering polarimeter for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Costa, E.; Cinti, M.N.; Feroci, M.; Matt, G.; Rapisarda, M.

    1995-01-01

    The design of a new hard X-ray Compton scattering polarimeter based on scintillating fibre technology is presented and studied in detail by means of Monte Carlo calculations. Several different configurations and materials have been tested in order to optimise the sensitivity in the medium/high energy X-ray band. A high sensitivity over the energy band 20-200 keV is obtained for a two material configuration. The advantages deriving from employing a new scintillating material, the YAP (YAlO 3 ), are also discussed. (orig.)

  20. Algorithm Validation of the Current Profile Reconstruction of EAST Based on Polarimeter/Interferometer

    International Nuclear Information System (INIS)

    Qian Jinping; Ren Qilong; Wan Baonian; Liu Haiqin; Zeng Long; Luo Zhengping; Chen Dalong; Shi Tonghui; Sun Youwen; Shen Biao; Xiao Bingjia; Lao, L. L.; Hanada, K.

    2015-01-01

    The method of plasma current profile reconstruction using the polarimeter/interferometer (POINT) data from a simulated equilibrium is explored and validated. It is shown that the safety factor (q) profile can be generally reconstructed from the external magnetic and POINT data. The reconstructed q profile is found to reasonably agree with the initial equilibriums. Comparisons of reconstructed q and density profiles using the magnetic data and the POINT data with 3%, 5% and 10% random errors are investigated. The result shows that the POINT data could be used to a reasonably accurate determination of the q profile. (fusion engineering)

  1. Monte-Carlo estimation of the inflight performance of the GEMS satellite x-ray polarimeter

    Science.gov (United States)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steven; Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah

    2014-07-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  2. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  3. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    Science.gov (United States)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  4. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters.

    Science.gov (United States)

    Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M

    2009-10-15

    Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.

  5. A Mott polarimeter for the search of time reversal violation in the decay of free neutrons

    International Nuclear Information System (INIS)

    Ban, G.; Beck, M.; Bialek, A.; Bodek, K.; Gorel, P.; Kirch, K.; Kistryn, St.; Kozela, A.; Kuzniak, M.; Lindroth, A.; Naviliat-Cuncic, O.; Pulut, J.; Severijns, N.; Stephan, E.; Zejma, J.

    2006-01-01

    A new polarimeter for low-energy electrons has been built and tested. The device was developed for the measurement of the transverse polarization of beta particles emitted in the decay of polarized cold neutrons. The decay electrons are identified by multi-wire proportional chambers made of low-Z materials and are detected with plastic scintillator hodoscopes. The transverse polarization is analyzed by means of large angle Mott scattering on a thin Pb foil. We describe here the elements of the apparatus and present the results of test measurements which illustrate its performance

  6. A Mott polarimeter for the search of time reversal violation in the decay of free neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ban, G. [Laboratoire de Physique Corpusculaire, Caen (France); Beck, M. [Catholic University, Leuven (Belgium); Bialek, A. [Institute of Physics, Polish Academy of Sciences, Cracow (Poland); Bodek, K. [Institute of Physics, Jagiellonian University, Cracow (Poland)]. E-mail: ufbodek@if.uj.edu.pl; Gorel, P. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Kistryn, St. [Institute of Physics, Jagiellonian University, Cracow (Poland); Kozela, A. [Institute of Physics, Polish Academy of Sciences, Cracow (Poland); Kuzniak, M. [Institute of Physics, Jagiellonian University, Cracow (Poland); Lindroth, A. [Catholic University, Leuven (Belgium); Naviliat-Cuncic, O. [Laboratoire de Physique Corpusculaire, Caen (France); Pulut, J. [Institute of Physics, Jagiellonian University, Cracow (Poland); Paul Scherrer Institute, Villigen (Switzerland); Catholic University, Leuven (Belgium); Severijns, N. [Catholic University, Leuven (Belgium); Stephan, E. [Institute of Physics, University of Silesia, Katowice (Poland); Zejma, J. [Institute of Physics, Jagiellonian University, Cracow (Poland)

    2006-09-15

    A new polarimeter for low-energy electrons has been built and tested. The device was developed for the measurement of the transverse polarization of beta particles emitted in the decay of polarized cold neutrons. The decay electrons are identified by multi-wire proportional chambers made of low-Z materials and are detected with plastic scintillator hodoscopes. The transverse polarization is analyzed by means of large angle Mott scattering on a thin Pb foil. We describe here the elements of the apparatus and present the results of test measurements which illustrate its performance.

  7. Concerning the use of multifunctional photometer - polarimeter for studying the invasion of cosmic bodies into the Earth's atmosphere

    Science.gov (United States)

    Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.

    2018-05-01

    Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.

  8. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  9. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  10. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  11. Modeling the hyperfine state selectivity of a short lamb-shift spin-filter polarimeter

    International Nuclear Information System (INIS)

    Mendez, A.J.; Roper, C.D.; Clegg, T.B.

    1995-01-01

    An rf cavity, previously used as a spin filter in a Lamb-shift polarized ion source, is being adapted for use as a polarimeter in an atomic beam polarized hydrogen and deuterium ion source. Paramount among the design criteria is maintaining the current source performance while providing on-line beam polarization monitoring. This requires minimizing both the polarimeter system length and the coupling with the magnetic fields of the other ion source systems. Detailed computer calculations have modeled the four-level interaction involving the 2S 1/2 -2P 1/2 states of the atomic beam. These indicate that a significantly shorter spin-filter cavity and uniform axial magnetic field than used in the Lamb-shift source do not compromise the spin-state selectivity. The calculations also predict the axial magnetic field uniformity needed as well as the gains achieved from proper shaping of the cavity rf and dc fields. copyright 1995 American Institute of Physics

  12. A spin filter polarimeter and an α-particle D-state study

    International Nuclear Information System (INIS)

    Lemieux, S.K.

    1993-01-01

    A Spin Filter Polarimeter (SFP) which reveals populations of individual hyperfine states of nuclear spin-polarized H ± (or D ± ) beams has been tested. the SFP is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of the hydrogen (or deuterium) atoms, created when the polarized ion beams pick up electrons in cesium vapor. The SFP has potential for an absolute accuracy of better than 1.5%, thus it could be used for calibrating polarimeters absolutely for low energy experiments for which no nuclear polarization standard exists. Test results show that the SFP provides a quick and elegant measure of the relative hyperfine state populations in the beam. This α-particle study is a small part of a larger project studying the deuteron-deuteron configuration of the α-particle wave function. The differential cross section and tensor analyzing powers (TAP) were measured for the 50 Ti(bar d,α) 48 Sc reaction to the J π = 7 + state in 48 Sc at E x = 1.097 MeV and compared with exact finite-range distorted-wave Born approximation (DWBA) calculations. The DWBA calculations use realistic α-particle wave functions generated from variational Monte-Carlo calculations

  13. A Michelson interferometer/polarimeter on the Tokamak Fusion Test Reactor (TFTR)

    International Nuclear Information System (INIS)

    Park, H.K.; Mansfield, D.K.; Johnson, L.C.; Ma, C.H.

    1987-01-01

    A multichannel interferometer/polarimeter for the Tokamak Fusion Test Reactor (TFTR) has been developed in order to study the time dependent plasma current density (J/sub p/) and electron density (n/sub e/) profile simultaneously. The goal of the TFTR is demonstration of breakeven via dueuterium and tritium (DT) plasma. In order to be operated and maintained during DT operation phase, the system is designed based on the Michelson geometry which possesses intrinsic standing wave problems. So far, there has been no observable signals due to these standing waves. However, a standing wave resulted from the beam path design to achieve a optimum use of the laser power was found. This standing wave has not prevented initial 10 channel interferometer operation. However, a single channel polarimeter test indicated this standing wave was fatal for Faraday notation measurements. Techniques employing 1/2 wave plates and polarizers have been applied to eliminate this standing wave problem. The completion of 10 channel Faraday rotation measurements may be feasible in the near future

  14. Quasi-optical reflective polarimeter for wide millimeter-wave band

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1998-11-01

    We constructed a new reflective-type polarimeter system at 35 - 250 GHz for the 45 m telescope at Nobeyama Radio Observatory (NRO). Using the system, we can measure both linear polarization and circular polarization for our needs. The new system has two key points. First is that we can tune the center frequency of the polarimeter in the available frequency range, second is that insertion loss is low (0.15 plus or minus 0.03 dB at 86 GHz). These characteristics extended achievable scientific aims. In this paper, we present the design and the performance of the system. Using the system, we measured linear polarizations of some astronomical objects at 86 GHz, with SiO (nu) equals 0,1 and 2 at J equals 2 - 1 and 29SiO (nu) equals 0 J equals 2 - 1 simultaneously. As a result, the observation revealed SiO (nu) equals 0 J equals 2 - 1 of VY Canis Majoris is highly linearly polarized, the degree of linear polarization is up to 64%, in spite of SiO J equals 2 - 1 (nu) equals 1 is not highly linearly polarized. The highly linearly polarized feature is a strong evidence that 28SiO J equals 2 - 1 transition at the ground vibrational state originate through maser action. This is the first detection of the cosmic maser emission of SiO (nu) equals 0 J equals 2 - 1 transition.

  15. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  16. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  17. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  18. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  19. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  20. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM).

    Science.gov (United States)

    Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu

    2018-01-01

    The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.

  1. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM)

    Science.gov (United States)

    Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.

    2018-01-01

    Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178

  2. Design and Tests of the Hard X-ray Polarimeter X-Calibur

    Directory of Open Access Journals (Sweden)

    M. Beilicke

    2014-12-01

    Full Text Available X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-Calibur, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-Calibur achieves a high detection efficiency of order unity.

  3. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  4. Integration of a thermo-structural analysis with an optical model for PEPSI polarimeter

    Science.gov (United States)

    Di Varano, Igor; Strassmeier, Klaus G.; Ilyin, Ilya; Woche, Manfred; Kaercher, Hans J.

    2011-09-01

    The two spectropolarimeters for PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) have been de¬signed in order to reconstruct the full Stokes vector measuring linear and circular polarization simultaneously with a re¬solving power of 120,000. The polarimeters will be attached to the Gregorian focus of the so far largest LBT 2x8.4m telescope and will feed together with permanent focus stations the spectrograph via 44m long fibers connection. The spectrograph will be located in a pressure-temperature controlled chamber within the telescope pier. We present hereafter the last results from combined structural and CFD analyses in order to fulfill the optical requirements.

  5. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Chesny, P.; Gheller, J.M.; Guillier, G.; Ladygin, V.P.; Theure, Ph.; Tomasi-Gustafsson, E.

    1996-01-01

    This article describes the design and working principle of a three-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self-regulation of helium flow in the cryostat to stabilize the liquid hydrogen level is presented. The main feature of this target is the simplicity of the design as well as its safeness towards any incident. Results of cooling down, filling up of the target and stabilization regime were processed during one experiment of physics at synchrotron Saturne II. (orig.)

  6. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  7. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    Science.gov (United States)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  8. Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator.

    Science.gov (United States)

    Povel, H P; Keller, C U; Yadigaroglu, I A

    1994-07-01

    We present the first measurements and scientific observations of the solar photosphere obtained with a new two-dimensional polarimeter based on piezoelastic modulators and synchronous demodulation in a CCD imager. This instrument, which is developed for precision solar-vector polarimetry, contains a specially masked CCD that has every second row covered with an opaque mask. During exposure the charges are shifted back and forth between covered and light-sensitive rows synchronized with the modulation. In this way Stokes I and one of the other Stokes parameters can be recorded. Since the charge shifting is performed at frequencies well above the seeing frequencies and both polarization states are measured with the same pixel, highly sensitive and accurate polarimetry is achieved. We have tested the instrument in laboratory conditions as well as at three solar telescopes.

  9. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  10. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  11. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Scott, E. R., E-mail: evrscott@ucdavis.edu [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Barchfeld, R. [Department of Applied Science, University of California, Davis, California 95616 (United States); Riemenschneider, P.; Domier, C. W.; Sohrabi, M.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Muscatello, C. M. [General Atomics, San Diego, California 92121 (United States); Kaita, R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  12. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    Science.gov (United States)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  13. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  14. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  15. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  16. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Valerie M. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    The Qweak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (QpW). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer (Q^2) from the electron to the proton. The extraction of QpW from the measured asymmetry requires a precise Q^2 determination. The Qweak experiment had a Q^2 = 24.8 ± 0.1 m(GeV^2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and Q^2, QpW was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Qweak experiment. Future parity-violating electron scattering experiments similar to the Qweak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.

  17. Contribution to the study and realization of a gamma scanning examination method for irradiation devices analysis in a research nuclear reactor

    International Nuclear Information System (INIS)

    Michel, Francois.

    1979-01-01

    To meet the requirements of the experimenters in research nuclear reactors, a fast quantitative, non destructive method of irradiation devices examination was conceived and applied in the CEN.G SILOE reactor as far back as 1972. The object is the analysis of the fuel sample evolution and the continuous study of the possible coolant contamination. This report describes and justifies the choices taken for the measurements installation conception (two dimensional scanning bench, collimation, detector, automatic operation), and explains the analysis and calibration methods, the work on the whole being adjusted to obtain absolute results (present atomic concentrations). Different results interpretations are presented which concern the axial and radial fission products migration in the fuel, their release in case of cladding rupture, and the fission power measurement [fr

  18. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  19. A paedophile scan to prevent child sexual abuse in child care? A thought experiment to problematize the notion of alignment in Responsible Research and Innovation.

    Science.gov (United States)

    de Jong, Irja Marije; Kupper, Frank; de Ruiter, Corine; Broerse, Jacqueline

    2017-12-01

    Responsible Research and Innovation (RRI) is a science policy concept that gained traction from 2000 onwards in the EU and US, in which alignment on purposes and values between different stakeholders is a key aspect. This thought experiment problematizes this particular notion: ethically acceptable and societally desirable outcomes are not necessarily achieved when alignment is a consequence of early closure. To argue this point, we took the example of the potential development of scanning technology for the detection of paedophilia among job applicants, for which indicators of broad societal support were found in an RRI project on neuroimaging. We analysed this case by looking through several lenses, obtained by structured and non-structured literature searches. We explored how facts and values are masked when a taboo topic is considered. This results in the black boxing of the problem definition, potential solutions and development trajectories. Complex unstructured problems can thus be perceived as manageable structured problems, which can in turn lead to irresponsible policies surrounding technology development. Responsible processes of research and technology development thus require the involvement of a critical reflector who is alert to signs of early closure and who prevents foreclosure of ongoing reflexive deliberation. There is an important role for ethical, legal and societal aspect studies within the framework of RRI. This paper shows that the concepts of "value/fact diversity masking" and "early discursive closure" are new avenues for RRI research.

  20. Nuclear research using the electromagnetic probe

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1990-11-01

    This report discusses research in the following areas: Measurement of the spin dependent structure function; the transverse and longitudinal response functions; measurement of proton polarization in the d(γ,p)n reaction; and the electron beam polarimeter in Hall A

  1. Challenges in designing a very compact 130 MeV Moeller polarimeter for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bahlo, Thore; Enders, Joachim; Kuerzeder, Thorsten; Pietralla, Norbert; Wissmann, Jan [Institut fuer Kernphysik, TU Darmstadt, Darmstadt (Germany)

    2016-07-01

    The Superconducting Darmstadt Linear Accelerator is capable of accelerating polarized electron beams produced by the S-DALINAC Polarized Injector (SPIN). For electron energies of up to 14 MeV it is possible to measure the absolute polarization of the electrons with two Mott polarimeters that are already mounted in the injector beamline. Until now it is not possible to measure the absolute electron beam polarization after the passage of the main accelerator. Therefore a Moeller polarimeter for energies between 50 MeV and 130 MeV is currently being developed. The rather low incident beam energy, the variability of the incident beam energy, and spatial restrictions necessitate a compact set-up with large acceptance. The very restrictive boundary conditions introduce technical and geometrical challenges. We will present the design of the target chamber, of the separation dipole magnet as well as the beam dump.

  2. Precision measurement of positron polarization in 68Ga decay based on the use of a new positron polarimeter

    International Nuclear Information System (INIS)

    Gerber, G.; Newman, D.; Rich, A.; Sweetman, E.

    1977-01-01

    We report a new measurement of positron polarization (P) in 68 Ga decay. Using a new polarimeter the asymmetry (A) in the decay of positronium in a magnetic field was measured to 5%. When combined with a calculation of the positron depolarization on stopping in MgO powder the overall uncertainty in P is 11%. The most precise prior determination of P was to 12% accuracy. An eventual precision of 1% in A and 0.1% in comparisons of asymmetries from different sources is anticipated. In addition to the 68 Ga work we point out the possible use of the polarimeter in a number of new measurements including a determination of e + polarization in μ + and nuclear decay and in a g - 2 experiment

  3. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  4. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  5. Concept and realization of the A4 Compton backscattering polarimeter at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Han

    2008-12-15

    The main concern of the A4 parity violation experiment at the Mainzer Microtron accelerator facility is to study the electric and magnetic contributions of strange quarks to the charge and magnetism of the nucleons at the low momentum transfer region. More precisely, the A4 collaboration investigates the strange quarks' contribution to the electric and magnetic vector form factors of the nucleons. Thus, it is important that the A4 experiment uses an adequate and precise non-destructive online monitoring tool for the electron beam polarization when measuring single spin asymmetries in elastic scattering of polarized electrons from unpolarized nucleons. As a consequence, the A4 Compton backscattering polarimeter was designed and installed such that we can take the absolute measurement of the electron beam polarization without interruption to the parity violation experiment. The present study shows the development of an electron beam line that is called the chicane for the A4 Compton backscattering polarimeter. The chicane is an electron beam transport line and provides an interaction region where the electron beam and the laser beam overlap. After studying the properties of beam line components carefully, we developed an electron beam control system that makes a beam overlap between the electron beam and the laser beam. Using the system, we can easily achieve the beam overlap in a short time. The electron control system, of which the performance is outstanding, is being used in production beam times. And the study presents the development of a scintillating fiber electron detector that reduces the statistical error in the electron polarization measurement. We totally redesigned the scintillating fiber detector. The data that were taken during a 2008 beam time shows a huge background suppression, approximately 80 percent, while leaving the Compton spectra almost unchanged when a coincidence between the fiber detector and the photon detector is used. Thus, the

  6. Relationships between road safety, safety measures and external factors : a scan of the literature in view of model development and topics for further research.

    NARCIS (Netherlands)

    Churchill, T. & Norden, Y. van

    2010-01-01

    The purpose of this literature scan is to examine where literature on the effect of external factors and road safety measures on road safety exists and where it is lacking. This scan will help us to decide which factors to include in a comprehensive road safety model as SWOV is working on, and at

  7. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  8. POLAR: A Space-borne X-Ray Polarimeter for Transient Sources

    Science.gov (United States)

    Orsi, S.; Polar Collaboration

    2011-02-01

    POLAR is a novel compact Compton X-ray polarimeter designed to measure the linear polarization of the prompt emission of Gamma Ray Bursts (GRB) and other strong transient sources such as soft gamma repeaters and solar flares in the energy range 50-500 keV. A detailed measurement of the polarization from astrophysical sources will lead to a better understanding of the source geometry and emission mechanisms. POLAR is expected to observe every year several GRBs with a minimum detectable polarization smaller than 10%, thanks to its large modulation factor, effective area, and field of view. POLAR consists of 1600 low-Z plastic scintillator bars, divided in 25 independent modular units, each read out by one flat-panel multi-anode photomultiplier. The design of POLAR is reviewed, and results of tests of one modular unit of the engineering and qualification model (EQM) of POLAR with synchrotron radiation are presented. After construction and testing of the full EQM, we will start building the flight model in 2011, in view of the launch foreseen in 2013.

  9. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    Science.gov (United States)

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  10. First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, Derek; Pattle, Kate; Kirk, Jason M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bastien, Pierre; Coudé, Simon [Centre de recherche en astrophysique du Québec and département de physique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7 (Canada); Furuya, Ray S. [Tokushima University, Minami Jousanajima-machi 1-1, Tokushima 770-8502 (Japan); Kwon, Woojin; Choi, Minho; Hoang, Thiem [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Berry, David; Friberg, Per; Graves, Sarah F. [East Asian Observatory, 660 N. A‘ohōkū Place, University Park, Hilo, HI 96720 (United States); Francesco, James Di; Johnstone, Doug [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Franzmann, Erica [Department of Physics and Astronomy, The University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada); Greaves, Jane S. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Houde, Martin [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London N6A 3K7 (Canada); Koch, Patrick M., E-mail: dward-thompson@uclan.ac.uk, E-mail: kmpattle@uclan.ac.uk, E-mail: jmkirk@uclan.ac.uk, E-mail: spseyres@uclan.ac.uk [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); and others

    2017-06-10

    We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey’s aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous “integral filament” in the densest regions of that filament. Furthermore, we see an “hourglass” magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.

  11. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  12. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    Science.gov (United States)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.

  13. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    Science.gov (United States)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-08-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.

  14. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  15. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    Science.gov (United States)

    Joiner, R. K.; Kobayashi, K.; Winebarger, A. R.; Champey, P. R.

    2014-12-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e-/DN, a noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non-linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  16. The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Science.gov (United States)

    Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  17. Effects of stray lights on Faraday rotation measurement for polarimeter-interferometer system on EAST.

    Science.gov (United States)

    Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X

    2018-01-01

    A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

  18. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  19. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  20. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  1. SU-F-I-11: Software Development for 4D-CBCT Research of Real-Time-Image Gated Spot Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T; Fujii, Y; Shimizu, S; Shirato, H [Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Miyamoto, N; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively by using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.

  2. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    Science.gov (United States)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  3. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  4. Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-07-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  5. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  6. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  7. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  8. DAQ systems for the high energy and nuclotron internal target polarimeters with network access to polarization calculation results and raw data

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2004-01-01

    On-line data acquisition (DAQ) system for the Nuclotron Internal Target Polarimeter (ITP) at the LHE, JINR, is explained in respect of design and implementation, based on the distributed data acquisition and processing system qdpb. Software modules specific for this implementation (dependent on ITP data contents and hardware layout) are discussed briefly in comparison with those for the High Energy Polarimeter (HEP) at the LHE, JINR. User access methods both to raw data and to results of polarization calculations of the ITP and HEP are discussed

  9. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  10. Opto-Mechanical systems design for polarimeter-interferometer on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Z.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, H.Q., E-mail: hqliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ding, W.X.; Brower, D.L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Li, W.M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Lan, T. [University of Science and Technology of China, Hefei, Anhui 230026 (China); Zeng, L.; Yao, Y.; Yang, Y.; Jie, Y.X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-15

    Highlights: • The POINT system has been designed double-pass horizontal 11-channel, and the probe beams are reflected by corner cube retro reflectors in the vacuum vessel for the first time. • ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system. • The massy, vibration isolation performance of optical table and optical tower are designed and vibration tested. - Abstract: An 11-channel Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system has been successfully operated in 2015 EAST experimental campaign. For high accuracy measurement of POINT system, optimized optical system to reduce the stray light and crosstalk is very important. Optical design is done and improved by using ZEMAX software, in which spot size and energy distribution can be calculated in any position. The crosstalk and stray light can be reduced by optimized design of optical components and putting high extinction ratio materials in some key positions. Vibration isolation coefficient of optical platform is set to 90%. The optical platform and vibration isolation system are about 5 and 20 tons in weight respectively. To reduce vibration caused by the EAST hall, a more than 30 tons in weight stainless steel tower, filled with sand and mounted independent of the EAST machine, is constructed to ensure the stability of optics. Based on the optimized opto-mechanical design, the POINT system resolutions for Faraday rotation and line integral electron density measurements are 0.1° and 1 × 10{sup 16} m{sup −2}, respectively.

  11. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    Energy Technology Data Exchange (ETDEWEB)

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa (Italy); Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Burwitz, V.; Burkert, W., E-mail: sergio.fabiani@iaps.inaf.it [Max-Planck-Institut für extraterrestrische Physik, Gautinger Str. 45, D-82061 Neuired (Germany); and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  12. The application of microfocal radiography to neuroanatomy and neuropathology research, and its relation to cerebral magnification angiography and brain scan interpretation. Chapter 3

    International Nuclear Information System (INIS)

    Saunders, R.L. de C.H.

    1980-01-01

    Microfocal radiography is used to study post mortem, the microcirculatory and neuronal organization of the normal and diseased brain, as well as to interpret the images obtained clinically by the new techniques of cerebral magnification angiography and X-ray brain scanning. An outline of the basic technique underlying CT scanning and magnification radiography of the living human brain is given to facilitate the understanding of why microfocal radiography is central to magnification radiography and complementary to CT scanning. Microangiography, one of the microfocal radiographic techniques, is discussed at length in relation to the microvasculature of the human cerebral cortex, the vasculature of the subcortical or medullary white matter, the microvascular patterns of the central grey matter and internal capsule, the vascular patterns of the visual cortex and hippocampus; the application of microangiography to the spinal cord and nerve roots is also discussed. Another microfocal radiographic technique described is cerebral historadiography, i.e. X-ray studies of brain histology, with particular reference to the human hippocampal formation. Finally, the correlation of microfocal X-ray and brain CT scan images is discussed. (U.K.)

  13. An examination of the sensitivity and systematic error of the NASA GEMS Bragg Reflection Polarimeter using Monte-Carlo simulations

    Science.gov (United States)

    Allured, Ryan; Okajima, Takashi; Soufli, Regina; Fernández-Perea, Mónica; Daly, Ryan O.; Marlowe, Hannah; Griffiths, Scott T.; Pivovaroff, Michael J.; Kaaret, Philip

    2012-10-01

    The Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission is designed to measure the linear polarization of astrophysical sources in a narrow band centered at about 500 eV. X-rays are focused by Wolter I mirrors through a 4.5 m focal length to a time projection chamber (TPC) polarimeter, sensitive between 2{10 keV. In this optical path lies the BRP multilayer reflector at a nominal 45 degree incidence angle. The reflector reflects soft X-rays to the BRP detector and transmits hard X-rays to the TPC. As the spacecraft rotates about the optical axis, the reflected count rate will vary depending on the polarization of the incident beam. However, false polarization signals may be produced due to misalignments and spacecraft pointing wobble. Monte-Carlo simulations have been carried out, showing that the false modulation is below the statistical uncertainties for the expected focal plane offsets of < 2 mm.

  14. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at COSY/Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2016-07-01

    The Cooler Synchrotron (COSY) is a facility for cooled polarized beams at the Forschungszentrum in Juelich. The Low Energy Polarimeter (LEP) is the polarimeter in the injection beam line of COSY. The beam polarization is measured using scattering off carbon and polyethylene (CH2) targets. The outgoing particles are detected using twelve plastic scintillators installed in groups of three to the left, to the right, above, and below the beam. The LEP is the routine tool for beam set-up, but its performance was limited by the old read-out electronics consisting of analog NIM modules. A new system using analog pulse sampling and an FPGA chip for signal processing was installed and tested. The ejectile particles were identified by relative time of flight measurement using a signal from the RF amplifier of the cyclotron used for acceleration as a reference. The new system is able to measure the time at which a particle arrives to an accuracy in the order of 50 ps. The presentation includes a review of available systems and a report about measurements in May and December 2015.

  15. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at the cooler synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The Cooler Synchrotron (COSY) is a storage ring used for experiments with polarized proton and deuteron beams. The low energy polarimeter is used to determine the vector and tensor polarization of the beam before injection at kinetic energies up to 45 MeV for protons and 75 MeV for deuterons. The polarimeter uses scintillators to measure the energy of both outgoing particles of a scattering reaction and the time between their detection. The present read-out electronics consists of analog NIM modules and is limited in terms of time resolution and the capability for online data analysis. The read-out electronics will be replaced with a a new system based on analog pulse sampling and an FPGA chip for logic operations. The new system will be able to measure the time at which particles arrive to a precision better than 50 ps, facilitating better background reduction using coincidence measurement. In addition to measuring the beam polarization, the system will be used to precisely determine the vector and tensor analyzing powers for deuteron scattering off carbon at a kinetic energy of 75 MeV.

  16. Optimization of a dual-rotating-retarder polarimeter as applied to a tunable infrared Mueller-matrix scatterometer

    International Nuclear Information System (INIS)

    Vap, J C; Nauyoks, S E; Marciniak, M A

    2013-01-01

    The value of Mueller-matrix (Mm) scatterometers lies in their ability to simultaneously characterize the polarimetric and directional scatter properties of a sample. To extend their utility to characterizing modern optical materials in the infrared (IR), which often have very narrow resonances yet interesting polarization and directional properties, the addition of tunable IR lasers and an achromatic dual-rotating-retarder (DRR) polarimeter is necessary. An optimization method has been developed for use with the tunable IR Mm scatterometer. This method is rooted in the application of random error analysis to three different DRR retardances, λ/5, λ/4 and λ/3, for three different analyzer (A)-to-generator (G) retarder rotation ratios, θ A :θ G = 34:26, 25:5 and 37.5:7.5, and a variable number of intensity measurements. The product of the error analysis is in terms of the level of error that could be expected from a free-space Mm extraction for the various retardances, retarder rotation ratios and number of intensity measurements of the DRR. The optimal DRR specifications identified are a λ/3 retardance and a Fourier rotation ratio, with the number of required collected measurements dependent on the level of error acceptable to the user. Experimental results corroborate this error analysis using an achromatic 110-degree retardance-configured DRR polarimeter at 5 µm wavelength, which resulted in consistent 1% error in its free-space Mm extractions. (paper)

  17. Optimisation and calibration of the polarimeter Polder at Saturne. Experiment t20 at the Jefferson Laboratory: Measurement of the deuteron form factors

    International Nuclear Information System (INIS)

    Eyraud, Laurent

    1998-01-01

    The topic of this thesis is the made for the upgrade of the deuteron tensor polarimeter Polder, and its use in the so-called t 20 experiment at the Jefferson Laboratory (USA). The Polder polarimeter is based on the analysing reaction H(d → ,2p)n which makes possible the measurement of the tensor polarization of deuterons in the kinetic energy range 160 MeV - 520 MeV. The first part of this thesis describes the polarimeter and its performances as obtained during the calibration experiment at Saturne (Saclay, France). Specific developments of this polarimeter for the t 20 experiment (Wire Chambers with 3 detections planes, target, hodoscopes) are described. An acquisition system based on Fastbus-VME standard was developed and used during the calibration runs. The second part of the thesis is devoted to the t 20 experiment. The experimental devices, the CEBAF accelerator and the data analysis are presented. Finally the preliminary results for the polarization t 20 and the extraction of the electromagnetic form factors of the deuteron (G c , G q and G m ) for six values of the transferred momentum Q in the range of 4.11 - 6.8 fm -1 are presented and discussed along various theoretical models predictions. (author) [fr

  18. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    Science.gov (United States)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we

  19. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  1. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  3. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  4. Scanning probe microscopy competency development

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  5. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  6. Bone scan indications in oncology

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da; Marquiotti, M.

    1986-01-01

    The scintigraphic method is described and a critical analysis of its value in the research of bone metastases is presented. The method validity, the positivity of bone scan for metastases at the first examination and the preferencial distribution metastases in skeleton are related.Bone pain and the results of bone scintigram are correlated. (M.A.C.) [pt

  7. Table of solar activity associated with coronal mass ejections observed by the SMM coronagraph/polarimeter in 1980. Technical note

    International Nuclear Information System (INIS)

    Webb, D.F.

    1987-10-01

    This report is the description and presentation of a table of solar activity considered to be associated with coronal mass ejections (CMEs) as observed during 1980 with the High Altitude Observatory's Coronagraph/Polarimeter (C/P) on the SMM spacecraft. The list has formed the basic data set for several studies, most prominently a study of CME associations published by Webb and Hundhausen (1987). An attendant source of CME data is the unpublished C/P Event List for 1980, which co-evolved with the association list under the guidance of Art Hundhausen. Discussions of the details of the selection and verification of the list of SMM CMEs are contained in the above paper as well as in this papers of Hundhausen et al. (1984) and Hundhausen (1987)

  8. Integrated rotating-compensator polarimeter for real-time measurements and analysis of organometallic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flock, K.; Kim, S.-J.; Asar, M.; Kim, I.K.; Aspnes, D.E

    2004-05-01

    We describe a single-beam rotating-compensator rotating-sample spectroscopic polarimeter (RCSSP) integrated with an organometallic chemical vapor deposition (OMCVD) reactor for in-situ diagnostics and control of epitaxial growth, and report representative results. The rotating compensator generates Fourier coefficients that provide information about layer thicknesses and compositions, while sample rotation provides information about optical anisotropy and therefore surface chemistry. We illustrate capabilities with various examples, including the simultaneous determination of <{epsilon}> and {alpha}{sub 10} during exposure of (001)GaAs to TMG, the heteroepitaxial growth of GaP on GaAs, and the growth of (001)GaSb with TMG and TMSb. Using a recently developed approach for quantitatively determining thickness and dielectric function of depositing layers, we find the presence of metallic Ga on TMG-exposed (001)GaAs. The (001)GaSb data show that Sb deposition is self-limiting, in contrast to expectations.

  9. Observations of the X-ray nova A0620-00 with the Ariel V crystal spectrometer/polarimeter

    International Nuclear Information System (INIS)

    Griffiths, R.E.; Rickets, M.J.; Cooke, B.A.

    1976-01-01

    The X-ray nova A0620-00 has been studied with the Ariel V crystal spectrometer/polarimeter for the presence of X-ray lines and polarization. Upper limits are obtained for the Si XIV, S XV and S XVI lines to a level of less than 2 eV at 3 sigma for the sulphur lines and 3.6 eV for Si XIV. No linear polarization is observed to a level of 2 per cent at 2.6 keV. These results are interpreted in terms of an accretion disk model for the source, in which the electron scattering depth tausub(es) approximately 20, and constraints are given on the disk geometry. (author)

  10. Observations of the 1980 April 30 limb flare by the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    International Nuclear Information System (INIS)

    Woodgate, B.W.; Shine, R.A.; Brandt, J.C.; Chapman, R.D.; Michalitsianos, A.G.; Kenny, P.J.; Bruner, E.C.; Rehse, R.A.; Schoolman, S.A.; Cheng, C.C.; Tandberg-Hanssen, E.; Athay, R.G.; Beckers, J.M.; Gurman, J.B.; Henze, W.; Hyder, C.L.

    1981-01-01

    Observations of the M2 limb flare of 1980 April 30 by the Ultraviolet Spectrometer and Polarimeter in the C IV 1548 A line are described and compared with observations from other SMM instruments and with ground-based Hα data. Events observed during the 18 minutes leading up to the flare impulsive phase include the filling of a small loop with material moving at about 20 km s -1 , followed by a rapid brightening in C IV, Hα, and hard X-rays, with a subsequent brightening of a higher set of loops. The rapid brightening appears to be at the junction of the small loop with the overlying magnetic structures, which suggests the flare may be caused by their interaction

  11. Observations of the 1980 April 30 limb flare by the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Shine, R. A.; Brandt, J. C.; Chapman, R. D.; Michalitsianos, A. G.; Kenny, P. J.; Bruner, E. C.; Rehse, R. A.; Schoolman, S. A.; Cheng, C. C.

    1981-01-01

    Observations of the M2 limb flare of 1980 April 30 by the ultraviolet spectrometer and polarimeter in the C IV 1548 A line are described and compared with observations from other SMM instruments and with ground-based H-alpha data. Events observed during the 18 minutes leading up to the flare impulsive phase include the filling of a small loop with material moving at about 20 km/s, followed by a rapid brightening in C IV, H-alpha, and hard X-rays, with a subsequent brightening of a higher set of loops. The rapid brightening appears to be at the junction of the small loop with the overlying magnetic structures, which suggests the flare may be caused by their interaction.

  12. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  13. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    International Nuclear Information System (INIS)

    Kenji Higuchi; Tsuyoshi Akiyama; Yoshifumi Azuma; Shunji Tsuji-Iio; Hiroaki Tsutsui; Ryuichi Shimada

    2006-01-01

    Accurate measurement of the magnetic field around plasma is indispensable for real-time control and data analysis on magnetic fusion devices such as tokamaks. Instead of commonly used pick-up loops, which have the problems of zero-point drifts, we proposed and tested a magneto-optic polarimeter based on the polarization modulation method using two photoelastic modulators (PEMs). Polarization detection using a pair of PEMs has been applied to the motional Stark effect (MSE) measurements in some tokamaks. The CO 2 laser polarimeter for electron density measurement on JT-60U adopted this method and demonstrated long time stability for several hours. However, this method requires the same number of pairs of PEMs, which are delicate and expensive, as that of channels so that this method is not easy to apply to multi-point measurements of magnetic fields around tokamaks. To cope with this problem, the two PEMs, which are conventionally placed behind each magnetic sensor, are used to modulate the incident beam before split for each magneto-optic sensor. This configuration can reduce the number of PEMs drastically and the optical system becomes simple. In this new optical configuration, the polarization angle resolution comparable to the conventional optical configuration of 0.002 o with response time of 10 ms was achieved at an incident polarization angle of about 0 o while that at 21 o was 0.07 o . The resolution of 0.07 o corresponds to 7 gauss when a 40-mm-long ZnSe sensing rod is used. Performance test between the two optical configurations were also made on the long-time stability and the accuracy with increasing numbers of beam splitters and/or mirrors for multi-point measurements. (author)

  14. Radionuclide brain scanning

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.

    1992-01-01

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ''allied advances'' with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  15. Radionuclide brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Dayem, H

    1993-12-31

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ``allied advances`` with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  16. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  17. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  18. Ultrafast CT scanning of an oak log for internal defects

    Science.gov (United States)

    Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder

    1989-01-01

    Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...

  19. Special report : Workshop on 4D-treatment planning in actively scanned particle therapy-Recommendations, technical challenges, and future research directions

    NARCIS (Netherlands)

    Knopf, Antje; Bert, Christoph; Heath, Emily; Nill, Simeon; Kraus, Kim; Richter, Daniel; Hug, Eugen B.; Pedroni, Eros; Safai, Sairos; Albertini, Francesca; Zenklusen, Silvan; Boye, Dirk; Söhn, Matthias; Soukup, Martin; Sobotta, Benjamin; Lomax, Antony

    This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009 at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of institutions actively involved in particle therapy delivery and research. The purpose of the 4DTPW was to

  20. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  1. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  3. Acquisition of a Laser Scanning Confocal Microscope to Examine CNS Activity of Antidotal Oximes and to Enhance Undergraduate Research Training Across the Sciences

    Science.gov (United States)

    2016-07-15

    interdisciplinary research activities in the Center for Science, Health, and Policy, support pedagogical advances, 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE...Health, and Policy, support pedagogical advances, and expose students to cutting edge technologies. Users come from the biology, chemistry, physics

  4. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  5. Status of automated nuclear scanning systems

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; McNeece, J.P.; Ruddy, F.H.

    1983-07-01

    Present day minicomputers and microprocessors enable a range of automation, from partial to total, of tasks once thought beyond approach. The status of three computer controlled systems for quantitative track measurements is reviewed. Two systems, the Hanford optical track scanner (HOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third systems, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Current limitations of these systems for quantitative track scanning are presented. Experimental uncertainties attained with these computer controlled systems are described using results obtained from reactor neutron dosimetry

  6. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  7. Linking world scan and image

    International Nuclear Information System (INIS)

    Timmer, H.; Alcamo, J.; Bollen, J.; Gielen, A.; Gerlach, R.; Den Ouden, A.; Zuidema, G.

    1995-01-01

    In march 1994 the Central Planning Bureau (CPB) in the Hague, the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven and the Institute of Environmental Studies (IES) in Amsterdam started the first phase of a joint research program aimed at creating integrated scenarios of the global economy, GHG emissions, and climate impacts. The goal of the first phase of this project was to design and test a linked version of the economic model WORLD SCAN of the former, and the climate model IMAGE 2 of the latter institute. This first phase has resulted in the planned test runs with an operational version of the linked models by May 1995. The experiences in the first year were encouraging, both in the scientific and the organizational sense. In a sense, a link was made between scientific disciplines: a coupling of disciplines concerning with global economic development and the global physical climate system is difficult and novel. The goal of the project was to integrate long-term economic developments and effects of climate change. Both the WORLD SCAN model and IMAGE 2 provide a consistent analysis of the global system, but from different perspectives. IMAGE 2 simulates climate change and its effects in a global context but treats the economic system as exogenous. WORLD SCAN covers the world economic system in a consistent manner but does not take into account the global environment. The links are constructed in the area of agriculture and energy. The basic idea is that WORLD SCAN determines demand and supply on economic principles, while IMAGE 2 provides information on changes of land area and average quality of productive land, and other damage costs based on its three sub-systems. The demand for energy is fed into IMAGE 2's Energy Industry subsystem (EIS), which in turn determines emissions of greenhouse gases. Furthermore, some additional output from WORLD SCAN on activity levels, prices and capital structure can be used to determine

  8. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam

    International Nuclear Information System (INIS)

    Diefenbacher, Juergen

    2010-01-01

    The A4 experiment determines the strange quark contribution to the electromagnetic from factors of the nucleon by measuring the parity violation in elastic electron nucleon scattering. These measurements are carried out using the spin polarized electron beam of the Mainzer Mikrotron (MAMI) with beam energies in the range from 315 to 1508 MeV. For the data analysis it is essential to determine the degree of polarization of the electron beam in order to extract the physics asymmetry from the measured parity violating asymmetry. For this reason the A4 collaboration has developed a novel type of Compton laser backscattering polarimeter that allows for a non-destructive measurement of the beam polarization in parallel to the running parity experiment. In the scope of this work the polarimeter was refined in order to enable reliable continuous operation of the polarimeter. The data acquisition system for the photon and electron detector was re-designed and optimized to cope with high count rates. A novel detector (LYSO) for the backscattered photons was commissioned. Furthermore, GEANT4 simulations of the detectors have been performed and an analysis environment for the extraction of Compton asymmetries from the backscattered photon data has been developed. The analysis makes use of the possibility to detect backscattered photons in coincidence with the scattered electrons, thus tagging the photons. The tagging introduces a differential energy scale which enables the precise determination of the analyzing power. In this work the analyzing power of the polarimeter has been determined. Therefore, at a beam current of 20 μA the product of electron and laser polarization can be determined, while the parity experiment is running, with a statistical accuracy of 1 % in 24 hours at 855 MeV or 2 =0.6 (GeV/c) 2 the analysis yields a raw asymmetry of A Roh PV =(-20.0±0.9 stat ) x 10 -6 at the moment. For a beam polarization of 80 % the total error would be 1,68 x 10 -6 with ΔP e

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  12. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  13. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  14. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  15. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  17. Heart CT scan

    Science.gov (United States)

    ... make to decrease the risk of heart disease. Risks Risks of CT scans include: Being exposed to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or ... or had thyroid cancer. A physician may perform these imaging tests to: determine if the gland is ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Nuclear medicine is less expensive and ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  6. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... as an overactive thyroid gland, a condition called hyperthyroidism , cancer or other growths assess the nature of ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... painless. However, during the thyroid scan, you may feel uncomfortable when lying completely still with your head ... When the radiotracer is given intravenously, you will feel a slight pin prick when the needle is ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  12. Body CT (CAT Scan)

    Science.gov (United States)

    ... a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... You will receive specific instructions based on the type of scan you are undergoing. top of page ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  15. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... exam of any medications you are taking, including vitamins and herbal supplements. You should also inform them ... of scan you are undergoing. top of page What does the equipment look like? The special camera ...

  17. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  19. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    Science.gov (United States)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  20. The Gamma-Ray Burst Polarimeter - POLAR onboard the China’s Spacelab “Tiangong-2”

    Science.gov (United States)

    Sun, Jianchao; BAO, T. W.; BATSCH, T.; BRITVITCH, I.; CADOUX, F.; DONG, Y. W.; GAUVIN, N.; HAJDAS, W.; KOLE, M.; LECHANOINE-LELUC, C.; LI, L.; MARCINKOWSKI, R.; ORSI, S.; POHL, M.; PRODUIT, N.; RAPIN, D.; RUTCZYNSKA, A.; RYBKA, D.; SZABELSKI, J.; WANG, R. J.; WU, B. B.; XIAO, H. L.; ZHANG, S. N.; ZHANG, Y. J.; ZWOLINSKA, A.

    2015-08-01

    POLAR is a novel compact space-borne Compton polarimeter conceived for a precise measurement of hard X-ray/Gamma-ray polarization and optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRB) in the energy range 50 - 500 keV. The future detailed measurement of the polarization of GRB will lead to a better understanding of its radiation region geometry and emission mechanisms. Thanks to its remarkable properties on large effective area, field of view (4.14 sr or 1/3 of the visible sky) and obvious modulation factor, POLAR will be able to reach a minimum detectable polarization (1-σ level) of about 3% for several GRB measurements per year. POLAR consists of 25 detector modular units (DMU). Each DMU is composed of 64 low-Z plastic scintillator bars, read out by a flat-panel multi-anode photomultipliers and ASIC front-end electronics. The incoming photons undergo Compton scattering in the bars and produce a modulation pattern. Simulations and hard X-ray synchrotron radiation experiments have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for pinning down the GRB mechanisms. A full flight model of POLAR has been constructed, in view of a flight on the Chinese spacelab TG-2 expected in 2016. The design of POLAR, Monte-Carlo simulation analysis as well as the performance test results will be all addressed in details in this talk.

  1. A Study of Background Conditions for Sphinx—The Satellite-Borne Gamma-Ray Burst Polarimeter

    Directory of Open Access Journals (Sweden)

    Fei Xie

    2018-04-01

    Full Text Available SPHiNX is a proposed satellite-borne gamma-ray burst polarimeter operating in the energy range 50–500 keV. The mission aims to probe the fundamental mechanism responsible for gamma-ray burst prompt emission through polarisation measurements. Optimising the signal-to-background ratio for SPHiNX is an important task during the design phase. The Geant4 Monte Carlo toolkit is used in this work. From the simulation, the total background outside the South Atlantic Anomaly (SAA is about 323 counts/s, which is dominated by the cosmic X-ray background and albedo gamma rays, which contribute ∼60% and ∼35% of the total background, respectively. The background from albedo neutrons and primary and secondary cosmic rays is negligible. The delayed background induced by the SAA-trapped protons is about 190 counts/s when SPHiNX operates in orbit for one year. The resulting total background level of ∼513 counts/s allows the polarisation of ∼50 GRBs with minimum detectable polarisation less than 30% to be determined during the two-year mission lifetime.

  2. Design Improvements and X-Ray Performance of a Time Projection Chamber Polarimeter for Persistent Astronomical Sources

    Science.gov (United States)

    Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru

    2014-01-01

    The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.

  3. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    Science.gov (United States)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; hide

    2016-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  4. Evaluation of the polarization properties of a Philips-type prism for the construction of imaging polarimeters

    Science.gov (United States)

    Fernandez-Borda, R.; Waluschka, E.; Pellicori, S.; Martins, J. V.; Ramos-Izquierdo, L.; Cieslak, J. D.; Thompson, P.

    2009-08-01

    The design and construction of wide FOV imaging polarimeters for use in atmospheric remote sensing requires significant attention to the prevention of artificial polarization induced by the optical elements. Surface, coatings, and angles of incidence throughout the system must be carefully designed in order to minimize these artifacts because the remaining instrumental bias polarization is the main factor which drives the final polarimetric accuracy of the system. In this work, we present a detailed evaluation and analysis to explore the possibility of retrieving the initial polarization state of the light traveling through a generic system that has inherent instrumental polarization. Our case is a wide FOV lens and a splitter device. In particular, we chose as splitter device a Philips-type prism, because it is able to divide the signal in 3 independent channels that could be simultaneously analyze to retrieve the three first elements of the Stoke vector (in atmospheric applications the elliptical polarization can be neglected [1]). The Philips-type configuration is a versatile, compact and robust prism device that is typically used in three color camera systems. It has been used in some commercial polarimetric cameras which do not claim high accuracy polarization measurements [2]. With this work, we address the accuracy of our polarization inversion and measurements made with the Philips-type beam divider.

  5. Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

    Science.gov (United States)

    Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038

  6. Research

    African Journals Online (AJOL)

    abp

    2016-06-09

    Jun 9, 2016 ... Neurocysticercosis on Brain CT scan representing a prevalence of 51.41%. Consumption of pork and ... use, recent brain injury as well physical examination for signs of meningitis and any ..... Percentage. Age categories ...

  7. Research

    African Journals Online (AJOL)

    abp

    2014-05-10

    May 10, 2014 ... Key words: Computerized Tomographic Scan, chronic rhinosinusitis, nasal discharge, nasal .... evaluated using bone window (window width 2,000 Hounsfield units ..... paranasal sinuses and chronic sinusitis in children.

  8. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    Science.gov (United States)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  9. Preoperative bone scans

    International Nuclear Information System (INIS)

    Charkes, N.D.; Malmud, L.S.; Caswell, T.; Goldman, L.; Hall, J.; Lauby, V.; Lightfoot, W.; Maier, W.; Rosemond, G.

    1975-01-01

    Strontium nitrate Sr-87m bone scans were made preoperatively in a group of women with suspected breast cancer, 35 of whom subsequently underwent radical mastectomy. In 3 of the 35 (9 percent), the scans were abnormal despite the absence of clinical or roentgenographic evidence of metastatic disease. All three patients had extensive axillary lymph node involvement by tumor, and went on to have additional bone metastases, from which one died. Roentgenograms failed to detect the metastases in all three. Occult bone metastases account in part for the failure of radical mastectomy to cure some patients with breast cancer. It is recommended that all candidates for radical mastectomy have a preoperative bone scan. (U.S.)

  10. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  11. Computing infrared scanning residuals in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Tonelli, A M

    1976-01-01

    The thermal phenomena related to the presence of geothermal source and the data processing to be employed for bringing them into evidence are discussed. The intake of deep-lying heat, which has to be considered as constant with respect to solar energy, generates an apparent increase of thermal inertia due to local smoothing of both temperature gradient in time and space. A method is analyzed to obtain useful information from a couple of thermograms, having relative distortion based on the minimum variation of entropy during the period of the transitory considered. The minimum variation of entropy, defined as proportional to the log of ratio of the numbers ''thermal gradient events,'' would be an indicator of an anomalous local endogenous heat input.

  12. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  13. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  14. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  15. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  16. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is used to determine the size, shape and position of the thyroid gland. The ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  19. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  20. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  1. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  2. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    Morales G, R.; Cano P, R.; Mendoza P, R.

    1993-01-01

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information. The thyroid scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is a gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body ...

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  5. Stabilized radiographic scanning agent

    International Nuclear Information System (INIS)

    Fawzi, M.B.

    1979-01-01

    A stable composition useful in preparation of technetium-99m-based radiographic scanning agents has been developed. The composition contains a stabilizing amount of gentisate stabilizer selected from gentisic acid and its soluble pharmaceutically-acceptable salts and esthers. (E.G.)

  6. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  7. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two months. are taking medications or ingesting other substances that contain iodine , including kelp, seaweed, cough syrups, multivitamins or heart medications. have any ...

  11. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  12. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the 'Needleman-Wunsch' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  13. Development and characterization of a snapshot Mueller matrix polarimeter for the determination of cervical cancer risk in the low resource setting

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Gonzalez, Mariacarla; Chue-Sang, Joseph; Montejo, Karla; Krup, Karl; Srinivas, Vijaya; DeHoog, Edward; Madhivanan, Purnima

    2018-04-01

    Mueller Matrix polarimetry can provide useful information about the function and structure of the extracellular matrix. Mueller Matrix systems are sophisticated and costly optical tools that have been used primarily in the laboratory or in hospital settings. Here we introduce a low-cost snapshot Mueller Matrix polarimeter that that does not require external power, has no moving parts, and can acquire a full Mueller Matrix in less than 50 milliseconds. We utilized this technology in the study of cervical cancer in Mysore India, yet the system could be translated in multiple diagnostic applications.

  14. 432-μm laser's beam-waist measurement for the polarimeter / interferometer on the EAST Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X. [Chinese Academy of Sciences, Anhui (China); and others

    2014-10-15

    A far-infrared (FIR) polarimeter / interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432-μm CHCOOH lasers pumped by a CO{sub 2} laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 x 12.4 mm{sup 2}. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  15. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  16. Scan path entropy and Arrow plots: Capturing scanning behavior of multiple observers

    Directory of Open Access Journals (Sweden)

    Ignace T C Hooge

    2013-12-01

    Full Text Available Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures 1 scan path entropy to quantify gaze guidance and 2 the arrow plot to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50. The new measures were tested in an eye tracking study (48 observers, 39 advertisements. Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place.

  17. Ionospheric research at INPE

    International Nuclear Information System (INIS)

    Abdu, M.A.

    1984-01-01

    Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt

  18. Effects of Optimizing the Scan-Path on Scanning Keyboards with QWERTY-Layout for English Text.

    Science.gov (United States)

    Sandnes, Frode Eika; Medola, Fausto Orsi

    2017-01-01

    Scanning keyboards can be essential tools for individuals with reduced motor function. However, most research addresses layout optimization. Learning new layouts is time-consuming. This study explores the familiar QWERTY layout with alternative scanning paths intended for English text. The results show that carefully designed scan-paths can help QWERTY nearly match optimized layouts in performance.

  19. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  20. Scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mainsbridge, B [Murdoch Univ., WA (Australia). School of Mathematical and Physical Sciences

    1994-12-31

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, `because we are too big`. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs.

  1. 67Ga lung scan

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  2. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    for a joint horizon scanning system (HSS).  We propose to create a central “horizon scanning unit” to perform the joint HS activities (a newly established unit, an existing HS unit, or a third party commissioned and financed by the collaborating countries). The unit will be responsible for the identification...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...... will collect country-specific information, liaise between the central HS unit and country-specific clinical and other experts, coordinate the national prioritization process (to select products for early assessment), and communicate the output of the HSS to national decision makers.  The outputs of the joint...

  3. Multichannel scanning spectrophotometer

    International Nuclear Information System (INIS)

    Lagutin, A.F.

    1979-01-01

    A spectrophotometer designed in the Crimea astrophysical observatory is described. The spectrophotometer is intended for the installation at the telescope to measure energy distribution in the star spectra in the 3100-8550 A range. The device is made according to the scheme with a fixed diffraction lattice. The choice of the optical kinematic scheme is explained. The main design elements are shown. Some singularities of the scanning drive kinematics are considered. The device performance is given

  4. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  5. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  6. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  7. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  8. Scanning unit for collectrons

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1976-01-01

    This invention concerns a measurement scanning assembly for collectron type detectors. It is used in measuring the neutron flux in nuclear reactors. As the number of these detectors in a reactor can be very great, they are not usually all connected permanently to the measuring facility but rather in turn by means of a scanning device which carries out, as it were, multiplexing between all the collectrons and the input of a single measuring system. The object of the invention is a scanning assembly which is of relative simplicity through an original organisation. Specifically, according to this organisation, the collectrons outputs are grouped together in bunches, each of these bunches being processed by a multiplexing sub-assembly belonging to a first stage, the different outputs of these multiplexing subassemblies of this first stage being grouped together yet again in bunches processed by multiplexors forming a new stage and so forth. Further, this structure is specially adapted for use with collectrons by utilising a current amplifier at each multiplexing level so that from one end to the other of the multiplexing system, the commutations are carried out on currents and not on voltages [fr

  9. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  10. Theoretical and numerical evaluation of polarimeter using counter-circularly-polarized-probing-laser under the coupling between Faraday and Cotton-Mouton effect.

    Science.gov (United States)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2016-04-01

    This study evaluated an effect of an coupling between the Faraday and Cotton-Mouton effect to a measurement signal of the Dodel-Kunz method which uses counter-circular-polarized probing-laser for measuring the Faraday effect. When the coupling is small (the Faraday effect is dominant and the characteristic eigenmodes are approximately circularly polarized), the measurement signal can be algebraically expressed and it is shown that the finite effect of the coupling is still significant. When the Faraday effect is not dominant, a numerical calculation is necessary. The numerical calculation under an ITER-like condition (Bt = 5.3 T, Ip = 15 MA, a = 2 m, ne = 10(20) m(-3) and λ = 119 μm) showed that difference between the pure Faraday rotation and the measurement signal of the Dodel-Kunz method was an order of one degree, which exceeds allowable error of ITER poloidal polarimeter. In conclusion, similar to other polarimeter techniques, the Dodel-Kunz method is not free from the coupling between the Faraday and Cotton-Mouton effect.

  11. Development of compact integral field unit for spaceborne solar spectro-polarimeter

    Science.gov (United States)

    Suematsu, Y.; Koyama, M.; Sukegawa, T.; Enokida, Y.; Saito, K.; Okura, Y.; Nakayasu, T.; Ozaki, S.; Tsuneta, S.

    2017-11-01

    A 1.5-m class aperture Solar Ultra-violet Visible and IR telescope (SUVIT) and its instruments for the Japanese next space solar mission SOLAR-C [1] are under study to obtain critical physical parameters in the lower solar atmosphere. For the precise magnetic field measurements covering field-of-view of 3 arcmin x3 acmin, a full stokes polarimetry at three magnetic sensitive lines in wavelength range of 525 nm to 1083 nm with a four-slit spectrograph of two dinesional image scanning mechanism is proposed: one is a true slit and the other three are pseudo-slits from integral field unit (IFU). To suit this configuration, besides a fiber bundle IFU, a compact mirror slicer IFU is designed and being developed. Integral field spectroscopy (IFS), which is realized with IFU, is a two dimensional spectroscopy, providing spectra simultaneously for each spatial direction of an extended two-dimensional field. The scientific advantages of the IFS for studies of localized and transient solar surface phenomena are obvious. There are in general three methods [2][3] to realize the IFS depending on image slicing devices such as a micro-lenslet array, an optical fiber bundle and a narrow rectangular image slicer array. So far, there exist many applications of the IFS for ground-based astronomical observations [4]. Regarding solar instrumentations, the IFS of micro-lenslet array was done by Suematsu et al. [5], the IFS of densely packed rectangular fiber bundle with thin clads was realized [6] and being developed for 4-m aperture solar telescope DKIST by Lin [7] and being considered for space solar telescope SOLAR-C by Katsukawa et al. [8], and the IFS with mirror slicer array was presented by Ren et al. [9] and under study for up-coming large-aperture solar telescope in Europe by Calcines et al. [10] From the view point of a high efficiency spectroscopy, a wide wavelength coverage, a precision spectropolarimetry and space application, the image slicer consisting of all reflective

  12. Research

    African Journals Online (AJOL)

    ebutamanya

    15 mars 2016 ... Selon les marqueurs évolutifs, 112 patients (78,3%) avaient un AgHBe négatif. Quant à la charge virale, 106 patients (74,2%) avaient une virémie inférieure à 2000UI/ml et une fibrose minime inférieure à 7kpa selon le FibroScan. Parmi eux, 13 malades avaient un ADN du VHB indétectable (<20UI/ml).

  13. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  14. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Bevan, J.A.

    1983-01-01

    This invention relates to radiodiagnostic agents and more particularly to a composition and method for preparing a highly effective technetium-99m-based bone scanning agent. One deficiency of x-ray examination is the inability of that technique to detect skeletal metastases in their incipient stages. It has been discovered that the methanehydroxydiphosphonate bone mineral-seeking agent is unique in that it provides the dual benefits of sharp radiographic imaging and excellent lesion detection when used with technetium-99m. This agent can also be used with technetium-99m for detecting soft tissue calcification in the manner of the inorganic phosphate radiodiagnostic agents

  15. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  16. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  17. Scanning apparatus and method

    International Nuclear Information System (INIS)

    Brunnett, C.J.

    1980-01-01

    A novel method is described for processing the analogue signals from the photomultiplier tubes in a tomographic X-ray scanner. The system produces a series of pulses whose instantaneous frequency depends on the detected intensity of the X-radiation. A timer unit is used to determine the segment scan intervals and also to deduce the average radiation intensity detected during this interval. The overall system is claimed to possess the advantageous properties of low time delay, wide bandwidth and relative low cost. (U.K.)

  18. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  19. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  20. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-03-02

    Mar 2, 2015 ... Joseph Daniels1,&, Ruth Nduati1,2, James Kiarie1,3, Carey Farquhar1,4,5 .... or basic science research career (Socio-Behavioral Research, .... a research environment that supports knowledge sharing to develop research ...

  1. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    Science.gov (United States)

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  2. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the Diabetes Research in Children Network (DirecNet) experience

    International Nuclear Information System (INIS)

    Barnea-Goraly, Naama; Marzelli, Matt J.; Mazaika, Paul K.; Weinzimer, Stuart A.; Ruedy, Katrina J.; Beck, Roy W.; Kollman, Craig; Cheng, Peiyao; Mauras, Nelly; Fox, Larry; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Reiss, Allan L.

    2014-01-01

    The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. (orig.)

  3. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the Diabetes Research in Children Network (DirecNet) experience

    Energy Technology Data Exchange (ETDEWEB)

    Barnea-Goraly, Naama; Marzelli, Matt J.; Mazaika, Paul K. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Weinzimer, Stuart A. [Yale University, Pediatric Endocrinology, New Haven, CT (United States); Ruedy, Katrina J.; Beck, Roy W.; Kollman, Craig; Cheng, Peiyao [Jaeb Center for Health Research, Tampa, FL (United States); Mauras, Nelly; Fox, Larry [Nemours Children' s Clinic, Pediatric Endocrinology, Jacksonville, FL (United States); Aye, Tandy [Stanford University, Department of Pediatrics, Stanford, CA (United States); White, Neil H. [Washington University in St. Louis, Department of Pediatrics, St. Louis, MO (United States); Tsalikian, Eva [University of Iowa, Pediatric Endocrinology, Iowa City, IA (United States); Reiss, Allan L. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Stanford University, Department of Pediatrics, Stanford, CA (United States); Stanford University, Department of Radiology, Diabetes Research in Children Network (DirecNet), Stanford, CA (United States); Collaboration: on behalf of the Diabetes Research in Children Network (DirecNet)

    2014-02-15

    The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. (orig.)

  4. Use of a W-band polarimeter to measure microphysical characteristics of clouds

    Science.gov (United States)

    Galloway, John Charles

    1997-08-01

    This dissertation presents W-Band measurements of the copolar correlation co-efficient and Doppler spectrum taken from the University of Wyoming King Air research airplane. These measurements demonstrate the utility of making W-Band polarimetric and Doppler spectrum measurements from an airborne platform in investigations of cloud microphysical properties. Comparison of copolar correlation coefficient measurements with aircraft in situ probe measurements verifies that polarimetric measurements indicate phase transitions, and hydrometeor alignment in ice clouds. Melting layers in clouds were measured by the W-Band system on board the King Air during 1992 and 1994. Both measurements established the use of the linear depolarization ratio, LDR, to locate the melting layer using an airborne W-Band system. The measurement during 1994 allowed direct comparison of the magnitude of the copolar correlation coefficient with the values of LDR. The relation between the measurements corresponds with a predicted relationship between the two parameters for observation of particles exhibiting isotropy in the plane of polarization. Measurements of needle crystals at horizontal and vertical incidence provided further evidence that the copolar correlation coefficient values agreed with the expected response from hydrometeors possessing a preferred alignment for the side looking case, and hydrometeors without a preferred alignment for the vertical incidence case. Observation of significant specific differential phase at vertical incidence, the first reported at W-Band, corresponded to a significant increase in differential reflectivity overhead, which was most likely produced by hydrometeor alignment driven by cloud electrification. Comparison of the drop size distributions estimated using the Doppler spectra with those measured by the wingtip probes on the King Air reveals that the radar system is better suited under some liquid cloud conditions to provide microphysical measurements

  5. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  6. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  7. Factors influencing bone scan quality

    International Nuclear Information System (INIS)

    Adams, F.G.; Shirley, A.W.

    1983-01-01

    A reliable subjective method of assessing bone scan quality is described. A large number of variables which theoretically could influence scan quality were submitted to regression and factor analysis. Obesity, age, sex and abnormality of scan were found to be significant but weak variables. (orig.)

  8. CT scans in encephalitis

    International Nuclear Information System (INIS)

    Imanishi, Masami; Morimoto, Tetsuya; Iida, Noriyuki; Hisanaga, Manabu; Kinugawa, Kazuhiko

    1980-01-01

    Generally, CT scans reveal a decrease in the volume of the ventricular system, sylvian fissures and cortical sulci in the acute stage of encephalitis, and softening of the cerebral lobes with dilatation of the lateral ventricles and subarachnoidian dilated spaces in the chronic stage. We encountered three cases of encephalitis: mumps (case 1), herpes simplex (case 2), and syphilis (case 3). In case 1, brain edema was seen in the acute stage and brain atrophy in the chronic stage. In case 2, necrosis of the temporal pole, which is pathognomonic in herpes simplex encephalitis, was recognized. And in case 3, multiple lesions whose CT appearance was enhanced by contrast materials were found scattered over the whole brain. These lesions were diagnosed as inflammatory granuloma by histological examination. (author)

  9. Scanning device for scintigraphy

    International Nuclear Information System (INIS)

    Casale, R.

    1975-01-01

    A device is described for the scintigraphic scanning according to a horizontal plane, comprising: (a) A support provided with two guides horizontally and longitudinally located, one of which is located in the upper part of the support, while the second guide is located in the lower part of the support; (b) A carriage, movable with respect to the support along the two guides, provided in its upper part, projecting above the support, with rolling means suitable to support and to cause to slide along its axis a support rod for the first detector, horizontally and transversely located, said carriage being further provided in its lower part with a recess with possible rolling means suitable to support and to cause to slide along its axis a second support rod for the second detector, said second rod being located parallel to the first rod and below it; (c) One or two support rods for the detectors, the first of said rods being supported above the support in a sliding way along its axis, by the rolling means located in the upper part of the carriage, and the second rod if present is supported slidingly along its axis by the possible rolling means contained in the suitable recess which is provided in the lower part of the carriage, and (d) A vertical shaft supported by said carriage on which is mounted a toothed wheel for each rod, each toothed wheel engaging a positive drive belt or the like, which is connected to each said rod so that rotation of the shaft determines the simultaneous displacement of the two rods along their axes; and single motor means for driving said shaft during a scanning operation. (U.S.)

  10. Scanning the periphery.

    Science.gov (United States)

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  11. Research

    African Journals Online (AJOL)

    A descriptive qualitative research design was used to determine whether participants ... simulation as a teaching method; a manikin offering effective learning; confidence ..... Tesch R. Qualitative Research: Analysis Types and Software Tools.

  12. Research

    African Journals Online (AJOL)

    research process, as part of which students must find and appraise evidence from research.[5] This highlights that teaching research methodology is inclined towards equipping students ... Students believed that evidence-based practice was vital, yet their understanding of the concept was restricted when compared with the.

  13. Computed Tomography Scanning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION:Advances research in the areas of marine geosciences, geotechnical, civil, and chemical engineering, physics, and ocean acoustics by using high-resolution,...

  14. Eye scanning activity influenced by temperament traits

    Czech Academy of Sciences Publication Activity Database

    Lukavský, Jiří

    2005-01-01

    Roč. 34, - (2005), s. 121 ISSN 0301-0066. [European Conference on Visual Perception 2005. 22.08.2005-26.08.2005] Institutional research plan: CEZ:AV0Z70250504 Keywords : Eye movements * scanning * temperament * TCI-R * Rorschach test Subject RIV: AN - Psychology

  15. Optimal configuration of partial Mueller matrix polarimeter for measuring the ellipsometric parameters in the presence of Poisson shot noise and Gaussian noise

    Science.gov (United States)

    Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui

    2018-05-01

    We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.

  16. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  17. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  18. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  19. Gastrointestinal scanning agent

    International Nuclear Information System (INIS)

    Francis, M.D.

    1980-01-01

    An easily prepared radiolabeled gastrointestinal scanning agent is described. Technetium-99m has ideal characteristics for imaging the upper and lower GI tract and determining stomach emptying and intestinal transit time when used with an insoluble particulate material. For example, crystalline and amorphous calcium phosphate particles can be effectively labeled in a one-step process using sup(99m)TcO 4 and SnCl 2 . These labeled particles have insignificant mass and when administered orally pass through the GI tract unchanged, without affecting the handling and density of the intestinal contents. Visualization of the esophageal entry into the stomach, the greater and lesser curvatures of the stomach, ejection into the duodenum, and rates of passage through the upper and lower GI tract are obtained. The slurry of sup(99m)TC particulate can be given rectally by enema. Good images of the cecum and the ascending, transverse, and descending colon are obtained. Mucosal folds and the splenic and hepatic flexures are visualized. The resilience of the large intestine is also readily visualized by pneumocolonographic techniques. (author)

  20. Measurement of effective analyzing powers for the NTOF polarimeter at LAMPF and DLL(0 degree) for Gamow-Teller transitions in p-shell nuclei

    International Nuclear Information System (INIS)

    Mercer, D.J.

    1993-01-01

    Measurements of neutron polarization from (rvec p,rvec n) reactions can provide valuable clues toward understanding the isovector nucleon-nucleus interaction. A neutron time-of-flight polarimeter has been constructed at the Los Alamos Meson Physics Facility to perform such measurements, but before the polarimeter can be used, its effective analyzing powers must be determined. This is accomplished by using the 14 C(rvec p,rvec n) 14 N reaction at a bombarding energy of 494 MeV to produce a beam of neutrons with known polarization, illuminating the detector with these neutrons, and measuring the azimuthal asymmetries after scattering from a hydrogenous analyzer fluid within the detector. Secondary measurements are made using the 2 H(rvec p,rvec n) 2 p reaction with bombarding energies of 318 and 494 MeV to produce a polarized neutron beam. The results from (rvec np) analyzing reactions within the detector agree with values anticipated from free nucleon-nucleon analyzing powers, but the results from (rvec np) analyzing reactions display a more than 33% reduction from the anticipated values. Additionally, measurements are made of the polarization transfer coefficient D LL (0 degree) for rvec p,rvec n Gamow-Teller reactions on 2 H, 7 Li 12 C, and 14 C targets. For a purely central interaction, one would expect that D LL (0 degree) ∼ -1/3 in the plane wave limit, but a simple average of the Jπ = 0 + → 1 + results at a bombardment energy of 494 MeV gives D LL (0 degree) = -0.689 ± 0.044. Thus, the measurements indicate that the nucleon-nucleus interaction -- which is largely central at 200 MeV -- has strong tensor contributions at higher energy

  1. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  2. Research

    African Journals Online (AJOL)

    2014-05-06

    May 6, 2014 ... facilitate and support articulation between the ECT mid-level worker qualification and the professional B EMC degree. Methods. The researchers used an exploratory, sequential mixed-method design, which is characterised by a qualitative phase of research followed by a quantitative phase. This design is ...

  3. Research

    African Journals Online (AJOL)

    supports medical education and research at institutions in 12 ... (CBE). CapacityPlus, led by IntraHealth International, is the USAID-funded ... acquire public health, clinical, and/or research skills, usually through applied learning in a .... If students were evaluated, indicate the type of student (i.e. medical, dental, nursing, etc.) ...

  4. Research

    African Journals Online (AJOL)

    abp

    2017-01-24

    Jan 24, 2017 ... and the specific rotavirus VP4 (P-types) and VP7 (G-types) determined. Results: The .... Centre for Virus Research (CVR) of the Kenya Medical Research. Institute (KEMRI) ... rotavirus dsRNA was run on 10% polyacrylamide resolving gels using a large format .... What is known about this topic. •. Rotavirus is ...

  5. Hyperchromatic laser scanning cytometry

    Science.gov (United States)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  6. Anthropometric data collection of Portuguese children using 3D body scanning: considerations about the scanning booth

    Science.gov (United States)

    de Campos, R.; Carvalho, M. A.; Lopes, H. P.; Xu, B.

    2017-10-01

    This paper presents some considerations regarding the scanning booth used in an anthropometric study done with a 3D body scanning technology. The data collected is part of a Ph.D. study conducted in Textile Engineering at University of Minho in Portugal, which aims to develop clothing for overweight and obese Portuguese children aged 2-11 years, of both genders. The challenges faced during data collection are described, and modifications of the scanning booth are proposed. It is possible to conclude that the importance of the scanning booth is key to an efficient anthropometric data collection, including the growth of this technology in the garment industry, Universities Research Institutes involved with anthropometric studies.

  7. Research

    African Journals Online (AJOL)

    abp

    2017-10-25

    Oct 25, 2017 ... stigma and superstition are known to lead to frequent presentation .... The limited documented research on challenges to help-seeking behaviour for cancer ..... to touch your breast [16] that breast self-examination may cause.

  8. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-10-02

    Oct 2, 2015 ... thought to prevent infection, but recent research has proven otherwise. In addition ... One patient had ophthalmalgia and was exposed to. Kaiy for one year and ... migraine, ear infections, tuberculosis, bone fractures, epilepsy,.

  9. Research

    African Journals Online (AJOL)

    abp

    2016-07-12

    Jul 12, 2016 ... multiple risk factors provides support for multiple-behavior interventions as ... consumption) with smoking therefore needs further research. As such this study .... restaurants, in bars, and on a statewide basis. They preferred to.

  10. Research

    African Journals Online (AJOL)

    The mini-clinical-evaluation exercise (mini-CEX) is a way of assessing the clinical ... Ethical approval for this study was obtained from the Medical Health. Research ..... mini-CEX assessment and feedback session, the greater the likelihood of.

  11. Research

    African Journals Online (AJOL)

    abp

    2016-04-14

    Apr 14, 2016 ... Qualitative data, content analysis approach was used. Results: Overall 422 .... Study design: A mixed method cross-sectional design using both quantitative and qualitative research methods as described by. Hanson et al [33] ...

  12. Research

    International Nuclear Information System (INIS)

    1999-01-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance

  13. Research

    African Journals Online (AJOL)

    Research. December 2017, Vol. 9, No. 4 AJHPE 171. During curriculum development, teachers ... Ideally, examiners need an educational method to determine ..... A major focus of this study was addressing the human resource gap when.

  14. Gallium scans in myasthenia gravis

    International Nuclear Information System (INIS)

    Swick, H.M.; Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether 67 Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on 67 Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis

  15. Gallium scans in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Swick, H.M. (Univ. of Kentucky, Lexington); Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether /sup 67/Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on /sup 67/Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis. (HLW)

  16. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  17. Research

    African Journals Online (AJOL)

    abp

    2017-05-18

    May 18, 2017 ... available to populations of developing countries [2-5]. In 2013, in. Western and Central Europe and ..... initiation among the infected persons in the community. Addressing stigma and educating ... Lifespan/Tufts/Brown Center for AIDS Research (P30AI042853). Tables. Table 1: Baseline characteristics of ...

  18. Research

    African Journals Online (AJOL)

    abp

    15 févr. 2016 ... présentent un Indice de Masse Corporel (IMC) normal, les autres femmes sont soit ..... In The health belief model and personal health behavior, edited by MH ... Evaluation of the Osteoporosis Health Belief Scale. Research in.

  19. Research

    African Journals Online (AJOL)

    2017-03-14

    Mar 14, 2017 ... R Ebrahim,1 MSc (Dent); H Julie,2 MPH, MCur, PhD. 1 Extended ... and research is applied to develop and sustain society.[5]. Methods .... service they want, not the service we want to give whether they want it or. Co math. G.

  20. Research

    African Journals Online (AJOL)

    abp

    2017-11-24

    Nov 24, 2017 ... Page number not for citation purposes. 1. Prevalence and determinants of common mental ..... illnesses were smoke cigarette in the last 3 months that make prevalence of tobacco use 38.2%. ..... Okasha A, Karam E.Mental health services and research in the. Arab world. Acta Psychiatrica Scandinavica.

  1. Research

    African Journals Online (AJOL)

    abp

    2014-04-21

    Apr 21, 2014 ... Prospective assessment of the risk of obstructive sleep apnea in ... Faculty of Clinical Sciences, College of Medicine, University of .... University Teaching Hospital Health Research Ethics Committee ... BANG, Berlin questionnaire and the American Society of .... The epidemiology of adult obstructive sleep.

  2. Research

    African Journals Online (AJOL)

    abp

    2016-02-01

    Feb 1, 2016 ... University Hospital, DK-5000 Odense, Denmark, 3Center for Global Health, Institute of Clinical Research, University of Southern Denmark, DK-5000. Odense .... BHP is a Danish-Guinean Demographic Surveillance Site with a study-area .... variables such as age groups, previous military duty, history of.

  3. Research

    African Journals Online (AJOL)

    abp

    2015-06-24

    Jun 24, 2015 ... related immunosuppression, previous history of TB, and pause in treatment [6]. In Brazil, researchers .... treatment, use of traditional medicines or herbs, history of TB drug side effects and treatment delay). ..... therapy for pulmonary tuberculosis in Lima Ciudad, Peru. International journal of tuberculosis and ...

  4. Research

    African Journals Online (AJOL)

    Research. May 2016, Vol. 8, No. 1 AJHPE 37. Students who enrol in occupational therapy (OT) at the. University of Kwa Zulu-Natal (UKZN), Durban, South Africa ... The latter may include becoming familiar with the disintegrating social systems in primary .... They also lacked the skills needed to adapt sessions and failed to ...

  5. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-06-22

    Jun 22, 2015 ... collaboration with Makerere University, School of Public Health. We acknowledge The Family Health Research and Development Centre. (FHRDC) Uganda. Supported by Bill & Melinda Gates Institute for. Population & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, ...

  6. Research

    African Journals Online (AJOL)

    However, a focus on competence alone is inadequate to produce graduates who are capable of adapting to the changing needs of health systems. While knowledge and technical ... shared their responses to guided questions. There were three sessions; after each session the researcher aggregated participant responses ...

  7. Research

    African Journals Online (AJOL)

    abp

    2014-01-31

    Jan 31, 2014 ... by Hazarika in a population-based study in India. The researcher noted that patients' preference to the private health facilities was due mainly to their dissatisfaction with the services in the public health facilities [11]. Furthermore, the quality of the services in the private health facilities could also be a major ...

  8. Research

    African Journals Online (AJOL)

    2018-03-20

    Mar 20, 2018 ... student health professionals in various institutions, both in South Africa. (SA) and internationally. ... field include dentists, dental therapists and oral hygienists in training, .... The College of Health Sciences at UKZN has four schools: clinical ..... Journal of Emerging Trends in Educational Research and Policy ...

  9. Research

    African Journals Online (AJOL)

    abp

    2017-09-14

    Sep 14, 2017 ... Abstract. Introduction: Medical and dental students are a high-risk group for hepatitis B virus (HBV) infection which is an ... The Pan African Medical Journal - ISSN 1937-8688. ... Research ... in the College of Health Sciences and clinical students (years four to .... Hepatology International.2017 Jan; 11(1):.

  10. Research

    African Journals Online (AJOL)

    abp

    2015-01-19

    Jan 19, 2015 ... One research assistant was available to assist the learners and to answer questions while they completed the questionnaires during a classroom period. ..... PubMed | Google Scholar. 4. Hall PA, Holmqvist M, Sherry SB. Risky adolescent sexual behaviour: A psychological perspective for primary care.

  11. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  12. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  13. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    Yang, H-C; Wu, T-Y; Horng, H-E; Wu, C-C; Yang, S Y; Liao, S-H; Wu, C-H; Jeng, J T; Chen, J C; Chen, Kuen-Lin; Chen, M J

    2006-01-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T c (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  14. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  16. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    Science.gov (United States)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  17. Are environmental scanning units effective?

    Science.gov (United States)

    Stubbart, C

    1982-06-01

    Many authorities have urged companies to set up environmental scanning to assist corporate planning. Some advocates have recommended a unit at corporate level. This would give breadth of view and penetration into the future. It would arm decision makers with accurate forecasts. The information would be broad in scope and future directed. It could provide also assumptions for long-range planning. The Fahey and King study produced a model of corporate scanning types. The data showed that environmental information was built into the plan. Though the political environment was important, scanning was inadequate. The best location for scanning was not at corporate level and most firms used irregular methods. The Thomas study concluded that effective environmental scanning was permanent and multi level and that 'best practice' was continuous scanning. In 1978 the sample organizations were revisited. Five of the twelve have not changed their practice. The factors which encouraged a continuous model were the attitudes of academics and business media, demonstrated success of the units, the right kind of personnel. Contrary influences were changes in top management, decentralization moves, resource cuts, defining the environment and its significance, the availability of scanning competent personnel, surprise itself, and the availability of alternatives e.g. external forecasts.

  18. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  19. Field Applications of Gamma Column Scanning Technology

    International Nuclear Information System (INIS)

    Aquino, Denis D.; Mallilin, Janice P.; Nuñez, Ivy Angelica A.; Bulos, Adelina DM.

    2015-01-01

    The Isotope Techniques Section (ITS) under the Nuclear Service Division (NSD) of the Philippine Nuclear Research Institute (PNRI) conducts services, research and development on radioisotope and sealed source application in the industry. This aims to benefit the manufacturing industries such as petroleum, petrochemical, chemical, energy, waste, column treatment plant, etc. through on line inspection and troubleshooting of a process vessel, column or pipe that could optimize the process operation and increase production efficiency. One of the most common sealed source techniques for industrial applications is the gamma column scanning technology. Gamma column scanning technology is an established technique for inspection, analysis and diagnosis of industrial columns for process optimization, solving operational malfunctions and management of resources. It is a convenient non-intrusive, cost effective and cost-efficient technique to examine inner details of an industrial process vessel such as a distillation column while it is in operation. The Philippine Nuclear Research Institute (PNRI) recognize the importance and benefits of this technology and has implemented activities to make gamma column scanning locally available to benefit the Philippine industries. Continuous effort for capacity building is being pursued thru the implementation of in-house and on-the-job training abroad and upgrading of equipment. (author)

  20. Scanning by use of TV

    International Nuclear Information System (INIS)

    Drevermann, H.

    1981-01-01

    The use of TV read out for scanning and measuring holographic pictures seems to give less problems than the use of optical projection as is usual for conventional bubble chamber photos. Whereas the measuring of conventional bubble chamber pictures seems to give no problems, it is not clear whether scanning by use of TV is possible. Therefore scanning pictures from experiment NA16 (taken in LEBC) with TV only was tried using the TV system of ERASME, where the CRT system is used as a camera. It should be mentioned that this system, being a flying spot device, cannot be adapted for holography. (author)

  1. Tomography system having axial scanning

    International Nuclear Information System (INIS)

    1976-01-01

    An improved method and apparatus has been invented for the transaxial tomographic scanning of a patient to determine mass distribution internal to the patient. A scanning system is provided having a rotatably mounted X-ray radiation source/detector assembly which orbits and scans the patient in plane of orbit. The source provides a plurality of beams of radiation in the orbital plane. Beams pass through the patient to an array of detectors which are spaced in the plane of orbit and respectively aligned with one of the beams. Radiation intensity data is collected at predetermined orientations of each beam-detector pair as the assembly orbits about the patient

  2. Rapid line scan MR angiography

    International Nuclear Information System (INIS)

    Frahm, J.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.

    1987-01-01

    Direct MR angiography may be performed using line scan imaging techniques combined with presaturation of stationary spins. Thus, a single line scan echo yields a projection of vessels due to the signal from reflowing unsaturated spins. Reconstruction of an angiographic image is performed line by line at slightly incremented positions. In particular, line scan angiography is direct and fast without a sensitivity to artifacts even for high flow rates. Image resolution and field of view may be chosen without restrictions, and zoom images using enhanced gradients may be recorded without aliasing artifacts. The method is robust with respect to eddy currents and pulsatile flow. Line scan MR angiograms of phantoms, animals, and human volunteers have been recorded using 90 0 radio frequency pulses and gradient-recalled echoes

  3. Security scanning at 35 GHz

    Science.gov (United States)

    Anderton, Rupert N.; Appleby, Roger; Coward, Peter R.; Kent, P. J.; Price, Sean; Sinclair, Gordon N.; Wasley, Matthew R. M.

    2001-08-01

    It has been known for some time that millimeter waves can pas through clothing. In short range applications such as in the scanning of people for security purposes, operating at Ka band can be an advantage. The penetration through clothing is increased and the cost of the equipment when compared to operation at W band. In this paper a Ka band mechanically scanned imager designed for security scanning is discussed. This imager is based on the folded conical scan technology previously reported. It is constructed from low cost materials such as polystyrene and printed circuit board. The trade off between image spatial resolution and the number of receivers will be described and solutions, which minimize this number discussed.

  4. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  5. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  6. Scan analysis in myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J [Landesunfallkrankenhaus, Feldkirch (Austria). Inst. fuer Strahlenmedizin

    1976-08-01

    Myocardial scans with sup(99m)Tc-labelled phosphates are reported to be useful in the diagnosis of acute myocardial infarction. A retrospective survey of 205 patients referred for sup(99m)Tc-phophate bone scanning and with no evidence of recent heart disease revealed an occurrence of 10% of false positive images, that is to say, uptake of phosphate in non-infarcted mayocardium. These striking findings stress the need for critical assessment of the usefulness of this diagnostic technique.

  7. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    Science.gov (United States)

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  8. Ocular volume measured by CT scans

    International Nuclear Information System (INIS)

    Hahn, F.J.; Wei-Kom Chu

    1984-01-01

    Newer CT scans have greatly enhanced oculometric research and made it possible to measure ocular dimensions. With these measurements, ocular volume can be more accurately estimated to understand its relationship with age and sex. One hundred CT orbit scans with presumed normal eyes were used for the data base. The mean values and normal variations of ocular volumes at various ages in both sexes are presented. Rapid growth of the eyeball was noted during the first 24 months of age. It reached its peak between the ages of 18 and 30 years of age, after which there was a reduction. Results may be of help in recognizing eye abnormalities such as microophthalmus and macrophthalmia. (orig.)

  9. Hepatobiliary scan in neonatal Jaundice

    International Nuclear Information System (INIS)

    Nahar, Nurun; Hasan, Mizanul; Karim, M.A.

    2002-01-01

    Jaundice is more or less common in newborn babies. Through physiological jaundice is most common cause of neonatal jaundice, possibility of obstructive jaundice especially biliary atresia should be kept in mind. Early diagnosis of biliary atresia followed by surgical treatment can save baby's life. Otherwise death is inevitable due to liver failure. Hepatobiliary scan is the imaging study of choice in neonatal jaundice especially when there is persistent conjugated hyperbilirubinaemia. Total 27 newborn babies of suspected biliary atresia, aged 14 days to 4 months were referred to Institute of Nuclear Medicine for Hepatobiliary scan. All of them had high serum bilirubin ranged from 6.0 mg/dl with an average of 9.35 ng/dl serum bilirubin level. Ultrasonography of hepatobiliary system was performed in 14 cases showing normal sized liver in 4 cases and hepatomegaly in 10 cases. Hepatobiliary scan was done with 99m Tc-Mebrofenin (Br IDA) after preparing the baby with phenobarbitone for 3-5 days. 20 (67%) cases were scan positive suggesting biliary atresia (BA) and 7(27%) cases were scan negative. In BA there will be increased hepatic uptake of the radionuclide without any significant excretion even in 24 hours delayed images. Presence of radiotracer in the bowel exclude the diagnosis of BA. Early diagnosis of biliary atresia is very important because in this condition surgery should be performed early (within 60 days of life). Studies suggest that hepatobiliary scan after hepatic stimulation with phenobarbitone for a period of 3-5 days is highly accurate for differentiating biliary atresia from other causes of neonatal jaundice. It is very important to perform hepatobiliary scan in a case of neonatal jaundice to exclude biliary atresia for the sake of baby's life.(author)

  10. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  11. Calibration of the Breit-Rabi Polarimeter for the PAX Spin-Filtering Experiment at COSY/Jülich and AD/CERN

    CERN Document Server

    Barschel, Colin

    2010-01-01

    The PAX(PolarizedAntiproton eXperiment) experiment is proposed to polarize a stored antiproton beam for use at the planned High Energy Storage Ring (HESR) of the FAIR facility at GSI (Darmstadt, Germany). The polarization build-up will be achieved by spin-filtering, i.e., by a repetitive passage of the antiproton beam through a polarized atomic hydrogen or deuterium gas target. The experimental setup requires a Polarized Internal gas Target (PIT) surrounded with silicon detectors. The PIT includes an Atomic Beam Source (ABS), the target cell and a Breit-Rabi Polarimeter (BRP). The first phase of the Spin-Filtering Studies for PAX covers the commissioning of the PIT components and themeasurement of an absolute calibration standard for the BRP at the COSY ring in Jülich. The spin-filtering with protons aim at confirming the results of the FILTEX experiment and determine the pp hadronic spin dependent cross sections at 50MeV.The second phase will be realized in the Antiproton Decelerator ring (AD) at CERN to po...

  12. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV-1 MeV

    Science.gov (United States)

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  13. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV--1 MeV

    International Nuclear Information System (INIS)

    Sareen, R.A.; Urban, W.; Barnett, A.R.; Varley, B.J.

    1995-01-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168 Er(α,2n) 170 Yb reaction at E α =25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV. copyright 1995 American Institute of Physics

  14. Obstacles to Industrial Implementation of Scanning Systems

    Science.gov (United States)

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  15. Interesting bone scans - unusual findings

    International Nuclear Information System (INIS)

    Dobson, M.; Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.

    1997-01-01

    A 59-year-old female with carcinoma of the colon and known liver metastatic disease was referred for bone scan to evaluate for bone metastases. Although no bone metastases were found, there was abnormal uptake noted in the liver corresponding to a metastatic calcified lesion. The only other findings were of degenerative disease in the cervical spine, right shoulder and small joints of the hands. A 69-year-old male with carcinoma of the prostate and right side low back pain was referred for bone scan. No focal abnormalities to suggest metastatic disease were identified; findings within the cervical spine, lumber spine and knees were presumed secondary to degenerative disease. Intermittent pain persisted and the patient was referred for a repeat bone scan six months later. Previous scan findings of degenerative disease and no metastatic disease were confirmed; however, closer inspection revealed an enlarged right kidney with significant retention of tracer in the pelvicalyceal system suggesting possible obstruction. A Retrograde pyelogram was performed, and no obvious obstruction demonstrated. As bone scan findings were very suggestive of obstruction, a DTPA scan with lasix was performed showing a dilated right collecting system with no functional obstruction. Given the degree of dilation, it is possible that the patient experiences intermittent PUJ obstruction causing his symptoms. A 33-year-old male with insulin dependent diabetes mellitus and viral arthritis was referred for a bone scan. A three phase revealed increased uptake in the region of the knee and leR proximal tibia. Delayed whole body images revealed multiple focal areas of osteoblastic activity in the leR tibia. Abnormal uptake was also seen in the upper third of the leR femur. The remainder of the skeletal survey was normal. X-ray correlation of the leR tibia and femoral findings was undertaken. Combinating unilateral changes on bone scan and X-ray although very suggestive of sclerotic polyostotic

  16. The boundary-scan handbook

    CERN Document Server

    Parker, Kenneth P

    2016-01-01

    Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers;   Explains the new IEEE 1149.8.1 subsidiary standard and applications;   Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1                      Digital Boundary-Scan IEEE Std 1149.4                      Analog Boundary-Scan IEEE Std 1149.6                      Advanced I/O Testing IEEE Std 1149.8.1           �...

  17. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  18. Security scanning at 94GHz

    Science.gov (United States)

    Anderton, Rupert N.; Appleby, Roger; Beale, John E.; Coward, Peter R.; Price, Sean

    2006-05-01

    It is well known that millimetre waves can pass through clothing. In short range applications such as in the scanning of people for security purposes, operating at W band can be an advantage. The size of the equipment is decreased when compared to operation at Ka band and the equipments have similar performance. In this paper a W band mechanically scanned imager designed for imaging weapons and contraband hidden under clothing is discussed. This imager is based on a modified folded conical scan technology previously reported. In this design an additional optical element is added to give a Cassegrain configuration in image space. This increases the effective focal length and enables improved sampling of the image and provides more space for the receivers. This imager is constructed from low cost materials such as polystyrene, polythene and printed circuit board materials. The trade off between image spatial resolution and thermal sensitivity is discussed.

  19. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  20. Scanning vector Hall probe microscopy

    International Nuclear Information System (INIS)

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  1. Footwear scanning systems and methods

    Science.gov (United States)

    Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.

    2017-07-25

    Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.

  2. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  3. Producing colour pictures from SCAN

    International Nuclear Information System (INIS)

    Robichaud, K.

    1982-01-01

    The computer code SCAN.TSK has been written for use on the Interdata 7/32 minicomputer which will convert the pictures produced by the SCAN program into colour pictures on a colour graphics VDU. These colour pictures are a more powerful aid to detecting errors in the MONK input data than the normal lineprinter pictures. This report is intended as a user manual for using the program on the Interdata 7/32, and describes the method used to produce the pictures and gives examples of JCL, input data and of the pictures that can be produced. (U.K.)

  4. Advanced HEDL gamma scan system

    International Nuclear Information System (INIS)

    Smith, F.C.; Olson, R.N.

    1983-01-01

    The design of an advanced state-of-the-art gamma scan system built for the purpose of measuring the point-by-point gamma activity of irradiated fuel rods is described. The emphasis of the system design was to achieve the highest rate of throughput with the minimum per rod cost while maintaining system accuracy and reliability. Preliminary tests demonstrate that all system requirements were met or exceeded. The system provides improved throughput, precision, automation, flexibility, and data processing capability over previous gamma scan systems

  5. Bone mineral density scans in veterans

    Directory of Open Access Journals (Sweden)

    Elizabeth Bass

    2007-07-01

    Full Text Available Elizabeth Bass1,2, Etienne Pracht1,3, Philip Foulis4,51VISN 8 Patient Safety Center of Inquiry, Tampa, FL; 2School of Aging Studies, University of South Florida, Tampa, FL, USA; 3College of Public Health, University of South Florida, Tampa, FL, USA; 4James A Haley VA Hospital, Tampa, FL, USA; 5Pathology and Laboratory Medicine, College of Medicine, University of South Florida, Tampa, FL, USAGoals: Recent findings suggest the prevalence of osteoporosis among men is under-recognized. The patient population of the Veterans Health Administration (VA is predominantly male and many elderly veterans may be at risk of osteoporosis. Given the lack of data on male osteoporosis, we provide initial insight into diagnostic procedures for patients at one VA medical center. Procedures: A review and descriptive analysis of patients undergoing radiological evaluation for osteoporosis at one VA medical center.Results: We identified 4,919 patients who had bone mineral density scans from 2001–2004. VA patients receiving bone mineral density scans were commonly white, male, over age 70 and taking medications with potential bone-loss side effects.Conclusions: While further research is needed, preliminary evidence suggests that the VA screens the most vulnerable age groups in both genders. Heightened awareness among primary care providers of elderly male patients at risk of osteoporosis can lead to early intervention and improved management of this age-related condition.Keywords: bone mineral density scans, osteoporosis, veterans

  6. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  7. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  8. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  9. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... made of metal. Objects such as keys or wallets that would be in the area being scanned should be removed. You will ... and are often available in drugstores and on mobile health vans in the community. The pDEXA device is much smaller than ...

  10. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard s...

  11. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  12. Introduction to scanning tunneling microscopy

    CERN Document Server

    Chen, C Julian

    2008-01-01

    The scanning tunneling and the atomic force microscope, both capable of imaging individual atoms, were crowned with the Physics Nobel Prize in 1986, and are the cornerstones of nanotechnology today. This is a thoroughly updated version of this 'bible' in the field.

  13. CT scan of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, T; Noguchi, S; Nishitani, H [National Sanatorium of Utano, Kyoto (Japan); Kitano, H; Ikegami, Y

    1981-04-01

    In forty-eight patients with Parkinson's disease, we examined the ventricular size and the degree of cortical atrophy which were measured by the photos of CT scan and compared them with their clinical symptoms and side effects of anti-parkinsonian drugs. The ventricular size was expressed as the ventricular ratio which is the percentage of superimposed lateral ventricular area to the white and gray matter area at the slice number 2B of CT scan photos. The degree of the cortical atrophy was expressed as the sulcal numbers which were clearly visualized at the slice number 3B or 4A of CT scan photos. We used the CT scan photos of age-matched other patients which did not show definit central nervous system abnormalities. Our findings were as follows: (1) The ventricular enlargement was observed in the parkinsonian patients who showed dementia and/or Yahr's classification grades IV or V. (2) There was no correlation between the duration of this disease and the L--dopa treatments with the ventricular size and sulcal numbers. (3) The side effects of drugs such as visual hallucination were tended to be observed in the patients who showed the ventricular enlargement. (4) There was no definite correlation between the degree of cortical atrophy with clinical symptoms and side effects of various drugs. These findings suggested that the ventricular enlargement in Parkinson's disease was an important sign of dementia and the tendency of appearance of side effects of various drugs.

  14. CT scan of Parkinson's disease

    International Nuclear Information System (INIS)

    Konishi, Tetsuro; Noguchi, Sadako; Nishitani, Hiroshi; Kitano, Haruo; Ikegami, Yoshinori.

    1981-01-01

    In forty-eight patients with Parkinson's disease, we examined the ventricular size and the degree of cortical atrophy which were measured by the photos of CT scan and compared them with their clinical symptoms and side effects of anti-parkinsonian drugs. The ventricular size was expressed as the ventricular ratio which is the percentage of superimposed lateral ventricular area to the white and gray matter area at the slice number 2B of CT scan photos. The degree of the cortical atrophy was expressed as the sulcal numbers which were clearly visualized at the slice number 3B or 4A of CT scan photos. We used the CT scan photos of age-matched other patients which did not show definit central nervous system abnormalities. Our findings were as follows: (1) The ventricular enlargement was observed in the parkinsonian patients who showed dementia and/or Yahr's classification grades IV or V. (2) There was no correlation between the duration of this disease and the L--dopa treatments with the ventricular size and sulcal numbers. (3) The side effects of drugs such as visual hallucination were tended to be observed in the patients who showed the ventricular enlargement. (4) There was no definite correlation between the degree of cortical atrophy with clinical symptoms and side effects of various drugs. These findings suggested that the ventricular enlargement in Parkinson's disease was an important sign of dementia and the tendency of appearance of side effects of various drugs. (author)

  15. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    ... to stop eating (fast), be on a special diet, or take any medicines before the test. A chest x-ray is usually done before or after a ventilation and perfusion scan. You wear a hospital gown or comfortable clothing that does not have ...

  16. Deploying scanning lidars at coastal sites

    DEFF Research Database (Denmark)

    Courtney, Michael; Simon, Elliot

    that the most desirable sites are away from sand dunes and with some significant elevation above the sea surface, such as at the top of a cliff. Coastal planning restrictions in Denmark are quite restrictive and it was important to allow sufficient time to obtain permission from the relevant authorities....... At the same time, with our particular application, the authorities and land owners were quite favourably inclined to give permission to temporary installations in support of wind energy research. The report concludes with the final positions and a pictorial description of the three RUNE scanning lidars....

  17. Scanning tunneling spectroscopy study of DNA conductivity

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Král, Karel; Bunček, M.; Nešpůrek, Stanislav; Todorciuc, Tatiana; Weiter, M.; Navrátil, J.; Schneider, Bohdan; Pavluch, J.

    2008-01-01

    Roč. 6, č. 3 (2008), s. 422-426 ISSN 1895-1082 R&D Projects: GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN400720701; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : molecular electronics * DNA * scanning tunneling microscopy * conductivity * charge carrier transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.448, year: 2008

  18. Computer controlled scanning systems for quantitative track measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; Ruddy, F.H.

    1982-01-01

    The status of three computer cntrolled systems for quantitative track measurements is described. Two systems, an automated optical track scanner (AOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third system, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Recent advances achieved with these systems are presented, with emphasis placed upon the current limitation of these systems for reactor neutron dosimetry

  19. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  20. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.

    2014-01-01

    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de