WorldWideScience

Sample records for requiring no-chromate pretreatment

  1. 40 CFR 403.8 - Pretreatment Program Requirements: Development and Implementation by POTW.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND... applicable civil and criminal penalties for violation of Pretreatment Standards and requirements, and any... authority to seek or assess civil or criminal penalties in at least the amount of $1,000 a day for each...

  2. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass.

    Science.gov (United States)

    Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.

  3. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  4. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment

    DEFF Research Database (Denmark)

    Manns, Dirk; Andersen, Stinus K.; Saake, Bodo

    2016-01-01

    of lamina having decreasing average surface area (100–0.1 mm2) with increased milling severity. Higher milling severity (lower rotating disc distance) also induced higher spontaneous carbohydrate solubilization from the material. Due to the seaweed material consisting of flat blades, the milling did...... not increase the overall surface area of the seaweed material, and size diminution of the laminas by milling did not improve the enzymatic glucose release. Milling was thus not required for enzymatic saccharification because all available glucose was released even from unmilled material. Treatment...

  5. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  6. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  7. Effects of Cement, Abutment Surface Pretreatment, and Artificial Aging on the Force Required to Detach Cantilever Fixed Dental Prostheses from Dental Implants.

    Science.gov (United States)

    Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan

    To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.

  8. Methods for pretreating biomass

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  9. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries: Hydrothermal Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland WA USA; Tao, Ling [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Wyman, Charles E. [Chemical and Environmental Engineering Department and Center for Environmental Research and Technology, Bourns College of Engineering, University of California at Riverside, CA, USA, BioEnergy Science Center (BESC), Oak Ridge National Laboratory, TN USA

    2017-10-11

    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of the entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Thus, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.

  10. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  11. Fungal pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Wan, Caixia; Li, Yebo

    2012-01-01

    Pretreatment is a crucial step in the conversion of lignocellulosic biomass to fermentable sugars and biofuels. Compared to thermal/chemical pretreatment, fungal pretreatment reduces the recalcitrance of lignocellulosic biomass by lignin-degrading microorganisms and thus potentially provides an environmentally-friendly and energy-efficient pretreatment technology for biofuel production. This paper provides an overview of the current state of fungal pretreatment by white rot fungi for biofuel production. The specific topics discussed are: 1) enzymes involved in biodegradation during the fungal pretreatment; 2) operating parameters governing performance of the fungal pretreatment; 3) the effect of fungal pretreatment on enzymatic hydrolysis and ethanol production; 4) efforts for improving enzymatic hydrolysis and ethanol production through combinations of fungal pretreatment and physical/chemical pretreatment; 5) the treatment of lignocellulosic biomass with lignin-degrading enzymes isolated from fungal pretreatment, with a comparison to fungal pretreatment; 6) modeling, reactor design, and scale-up of solid state fungal pretreatment; and 7) the limitations and future perspective of this technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  13. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  14. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  15. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...... and may also lead to increased deposit formation. A pretreatment process is required to solve the problems. In this paper two pretreatment processes are considred, one based on straw wash and another based on pyrolysis and char wash. To evaluate and compare the processes, laboratory and technical...... invetsigations were performed. The economy of both processes are favourable compared with seperate straw fired boilers, however, the removal efficiency of potassium of the pyrolysi based process is relatively low. At the present level of invetsigations the straw wash process looks promising and commercially...

  16. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    NARCIS (Netherlands)

    Kuhnel, S.; Schols, H.A.; Gruppen, H.

    2011-01-01

    Background - Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be

  17. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Processes for pretreating lignocellulosic biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  19. New prospects in pretreatment of cotton fabrics using microwave heating.

    Science.gov (United States)

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.

  1. TWRS tank waste pretreatment process development hot test siting report

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F. [Westinghouse Hanford Co., Richland, WA (United States); Hansen, R.I.; Reynolds, B.A. [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities.

  2. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    Science.gov (United States)

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Advances in paper-based sample pretreatment for point-of-care testing.

    Science.gov (United States)

    Tang, Rui Hua; Yang, Hui; Choi, Jane Ru; Gong, Yan; Feng, Shang Sheng; Pingguan-Murphy, Belinda; Huang, Qing Sheng; Shi, Jun Ling; Mei, Qi Bing; Xu, Feng

    2017-06-01

    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.

  4. Enhanced micropropagation and tiller formation in sugarcane through pretreatment of explants with thidiazuron (TDZ).

    Science.gov (United States)

    Kumari, Kavita; Lal, Madan; Saxena, Sangeeta

    2017-10-01

    An efficient, simple and commercially applicable protocol for rapid micropropagation of sugarcane has been designed using variety Co 05011. Pretreatment of shoot tip explants with thidiazuron (TDZ) induced high frequency regeneration of shoot cultures with improved multiplication ratio. The highest frequency (80%) of shoot initiation in explants pretreated with 10 mg/l of TDZ was obtained during the study. Maximum 65% shoot cultures could be established from the explants pretreated with TDZ as compared to minimum 40% establishment in explants without pretreatment. The explants pretreated with 10 mg/l of TDZ required minimum 40 days for the establishment of shoot cultures as compared to untreated explants which required 60 days. The highest average number of shoots per culture (19.1) could be obtained from the explants pretreated with 10 mg/l of TDZ, indicating the highest multiplication ratio (1:6). Highest rooting (over 94%) was obtained in shoots regenerated from pretreated explants on ½ strength MS medium containing 5.0 mg/l of NAA and 50 g/l of sucrose within 15 days. Higher number of tillers/clump (15.3) could be counted in plants regenerated from pretreated explants than untreated ones (10.9 tillers/clump) in field condition, three months after transplantation. Molecular analysis using RAPD and DAMD markers suggested that the pretreatment of explants with TDZ did not adversely affect the genetic stability of regenerated plants and maintained high clonal purity.

  5. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment pro...

  6. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gao Ziqing

    2012-05-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. Results The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. Conclusion G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.

  7. Rheological evaluation of pretreated cladding removal waste

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  8. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  9. K basins sludge removal sludge pretreatment system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.

  10. Investigation of accessory hemicellulases and pectinases for polysaccharide hydrolysis of ionic liquid pretreated biomass

    Science.gov (United States)

    The polysaccharides, cellulose, hemicellulose, and other additional carbohydrate polymers of terrestrial biomass, comprise renewable feedstocks for carbon-based chemicals and fuels. Biomass pretreatment is required to overcome its recalcitrance to biochemical deconstruction to monomeric sugars for ...

  11. Switchgrass alkaline pretreatment, enzymatic saccharification, and fermentation with residual oligosaccharide product analysis by mass spectrometry

    Science.gov (United States)

    Switchgrass (SG) is a potential renewable biomass source for conversion to liquid biofuels. Efficient conversion requires effective strategies for pretreatment and enzymatic saccharification to fermentable sugars. Standard analysis of fermentation broth includes detection of monosaccharides and etha...

  12. Waste pretreatment and interfacing system dynamic simulation model (ITHINK model) FY-96 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, R.W.

    1996-09-30

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation (ITHINK) Model (see WHC-SD-WM-DR-013) was originally created to investigate the required pretreatment facility processing rates required to meet the Tri-Party Agreement (TPA) waste vitrification milestones. The TPA milestones are satisfied by retrieving the TX tank farm (salt cake) single-shell tanks (SSTs)first and by utilizing a relatively constant retrieval rate to the year 2018 when retrieval is completed.

  13. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  14. Steam explosion pretreatment for enhancing biogas production of late harvested hay.

    Science.gov (United States)

    Bauer, Alexander; Lizasoain, Javier; Theuretzbacher, Franz; Agger, Jane W; Rincón, María; Menardo, Simona; Saylor, Molly K; Enguídanos, Ramón; Nielsen, Paal J; Potthast, Antje; Zweckmair, Thomas; Gronauer, Andreas; Horn, Svein J

    2014-08-01

    Grasslands are often abandoned due to lack of profitability. Extensively cultivating grassland for utilization in a biogas-based biorefinery concept could mend this problem. Efficient bioconversion of this lignocellulosic biomass requires a pretreatment step. In this study the effect of different steam explosion conditions on hay digestibility have been investigated. Increasing severity in the pretreatment induced degradation of the hemicellulose, which at the same time led to the production of inhibitors and formation of pseudo-lignin. Enzymatic hydrolysis showed that the maximum glucose yields were obtained under pretreatment at 220 °C for 15 min, while higher xylose yields were obtained at 175 °C for 10 min. Pretreatment of hay by steam explosion enhanced 15.9% the methane yield in comparison to the untreated hay. Results indicate that hay can be effectively converted to methane after steam explosion pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    Science.gov (United States)

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls.

    Science.gov (United States)

    Islam, S M Mahfuzul; Li, Qian; Loman, Abdullah Al; Ju, Lu-Kwang

    2017-11-01

    The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO2-H2O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO2-H2O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO2-H2O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Description of waste pretreatment and interfacing systems dynamic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  18. Wastewater pretreatment at Cape Canaveral Air Force Station

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, D.W.; Zanoni, P.D.

    1999-07-01

    Cape Canaveral Air Force Station (CCAFS) in Florida provides berthing services for US military ships and submarines including the storage and pretreatment of various types of onboard wastewater. CCAFS required an upgrade to the current pretreatment processes to adequately treat shipboard, bilge and missile tube wastewaters prior to discharge to a new base sewage treatment plant. A wastewater characterization showed that the nature of the onboard wastewaters is quite unique and highly variable. Due to the unusual characteristics of these wastewaters, treatability testing was performed on representative samples of these wastewater to simulate pH adjustment, gravity oil separation and dissolved air flotation (DAF). Based on the results of that readability tests and other design requirements, three pretreatment systems were designed, one for each type of wastewater. Due to the location and the high profile nature of the project, several special design issues were involved including special aesthetics requirements, environmental restrictions, special clear zones from munitions storage and multiple review agencies. The project was completed within the required schedule and budget constraints.

  19. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    Science.gov (United States)

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  20. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - Comparison of five pretreatment technologies

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Thygesen, Anders; Thomsen, Sune Tjalfe

    2013-01-01

    A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma-assisted pretre...

  1. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

    2014-12-15

    Treatment of food waste by anaerobic digestion can lead to an energy production coupled to a reduction of the volume and greenhouse gas emissions from this waste type. According to EU Regulation EC1774/2002, food waste should be pasteurized/sterilized before or after anaerobic digestion. With respect to this regulation and also considering the slow kinetics of the anaerobic digestion process, thermal and chemical pretreatments of food waste prior to mesophilic anaerobic digestion were studied. A series of batch experiments to determine the biomethane potential of untreated as well as pretreated food waste was carried out. All tested conditions of both thermal and ozonation pretreatments resulted in an enhanced biomethane production. The kinetics of the anaerobic digestion process were, however, accelerated by thermal pretreatment at lower temperatures (food waste, was obtained with thermal pretreatment at 80 °C for 1.5 h. On the basis of net energy calculations, the enhanced biomethane production could cover the energy requirement of the thermal pretreatment. In contrast, the enhanced biomethane production with ozonation pretreatment is insufficient to supply the required energy for the ozonator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings.

    Science.gov (United States)

    Li, Zhenglun; Chen, Charles H; Hegg, Eric L; Hodge, David B

    2013-08-26

    One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to

  3. How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.

    Science.gov (United States)

    DeMartini, Jaclyn D; Foston, Marcus; Meng, Xianzhi; Jung, Seokwon; Kumar, Rajeev; Ragauskas, Arthur J; Wyman, Charles E

    2015-01-01

    Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons' stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non

  4. Innovative pretreatment strategies for biogas production.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Chandolias, Konstantinos; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    Biogas or biomethane is traditionally produced via anaerobic digestion, or recently by thermochemical or a combination of thermochemical and biological processes via syngas (CO and H2) fermentation. However, many of the feedstocks have recalcitrant structure and are difficult to digest (e.g., lignocelluloses or keratins), or they have toxic compounds (such as fruit flavors or high ammonia content), or not digestible at all (e.g., plastics). To overcome these challenges, innovative strategies for enhanced and economically favorable biogas production were proposed in this review. The strategies considered are commonly known physical pretreatment, rapid decompression, autohydrolysis, acid- or alkali pretreatments, solvents (e.g. for lignin or cellulose) pretreatments or leaching, supercritical, oxidative or biological pretreatments, as well as combined gasification and fermentation, integrated biogas production and pretreatment, innovative biogas digester design, co-digestion, and bio-augmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  6. Non-enzymatic pretreatment of nerve agent (soman) poisoning: A brief state-of-the-art review

    NARCIS (Netherlands)

    Helden, H.P.M. van; Joosen, M.J.A.; Philippens, I.H.C.H.M.

    2011-01-01

    The rapid onset of toxic signs following nerve agent intoxication and the apprehension that current therapy (atropine, oxime, diazepam) may not prevent brain damage, requires supportive pretreatment. Since the current pretreatment drug pyridostigmine fails in protecting brain-AChE, more effective

  7. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  8. Anaerobic digestion of microalgal biomass after ultrasound pretreatment.

    Science.gov (United States)

    Passos, Fabiana; Astals, Sergi; Ferrer, Ivet

    2014-11-01

    High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16-67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16-100%), hydrolysis rate (25-56%) and methane yield (6-33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Enzymatic pretreatment of low-grade oils for biodiesel production

    DEFF Research Database (Denmark)

    Nordblad, Mathias; Pedersen, Anders K.; Rancke-Madsen, Anders

    2016-01-01

    stocks is to employ acid catalysis, which is slow and requires a large excess of methanol, orto evaporate FFA and convert that in a separate process. An attractive option would be to convert the FFA in oil feedstocks to FAME, before introducing it into the alkaline process. The high selectivity of enzyme...... catalysis makes it a suitable basis for such a pretreatment process. In this work, we present a characterization of the pretreatment of high-FFA rapeseed oil using immobilized Candida antarctica lipase B (Novozym 435), focused on the impact of initial FFA and methanol concentration. Based on experimental...... results, we have identified limitations for the process in terms of FFA concentration in the feedstock and make suggestions for process operation. It was found that, using 5% catalyst and 4% methanol at 35C, the FFA concentration could be reduced to 0.5% within an hour for feedstock containing up to 15...

  10. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    .e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied...... ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  11. Structural Analysis of Alkaline Pretreated Rice Straw for Ethanol Production

    National Research Council Canada - National Science Library

    Paripok Phitsuwan; Chutidet Permsriburasuk; Sirilak Baramee; Thitiporn Teeravivattanakit; Khanok Ratanakhanokchai

    2017-01-01

    ...) at two pretreatment temperatures: room temperature and 60°C. Statistical analysis indicated similarity of enzymatic glucose production at both pretreatment temperatures after 3-day incubation...

  12. Integrated analysis of hydrothermal flow through pretreatment

    Directory of Open Access Journals (Sweden)

    Archambault-Leger Veronique

    2012-07-01

    Full Text Available Abstract Background The impact of hydrothermal flowthrough (FT pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum. Results Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF. XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar. Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum, and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan. Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. Conclusions XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly

  13. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  14. Understanding Ionic Liquid Pretreatment of Lignocellulosic Biomasses

    Science.gov (United States)

    Pretreatment of biomass is essential for breaking apart highly ordered and crystalline plant cell walls and loosening the lignin and hemicellulose conjugation to cellulose microfibrills, thereby facilitating enzyme accessibility and adsorption and reducing costs of downstream saccharification proces...

  15. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  16. Industrial Pretreatment Program for New England

    Science.gov (United States)

    The Industrial Pretreatment Program prevents the discharge of pollutants to Publicly-Owned Treatment Works (POTWs) which will interfere with the operations of the POTW or its use and disposal of municipal biosolids.

  17. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate.

    Science.gov (United States)

    Sievers, David A; Kuhn, Erik M; Tucker, Melvin P; McMillan, James D

    2017-11-01

    The reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165°C for 10min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80kg/hm2 and cake permeability of 15x10-15. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    Science.gov (United States)

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  20. Lignocellulosic biomass-Thermal pretreatment with steam: Pretreatment techniques for biofuels and biorefineries

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    With the ever rising demand for more energy and the limited availability of depleted world resources, many are beginning to look for alternatives to fossil fuels. Liquid biofuel, in particular, is of key interest to decrease our dependency on fuels produced from imported petroleum. Biomass pre...... of different pretreatment methods are known to enhance the digestibility of lingo-cellulosic biomass by affecting these limiting factors. Some of them are: milling, thermal pretreatment with steam or hot water, acid pre-treatment and alkaline pre-treatment. This chapter will focus on one of the more promising...

  1. Ultrasound pretreatment as an alternative to improve essential oils extraction

    Directory of Open Access Journals (Sweden)

    Flávia Michelon Dalla Nora

    Full Text Available ABSTRACT: Essential oils are substances originated from plants in general. These compounds are well known to have a high biological activity, specially the antioxidant and antimicrobial. Several extraction techniques are employed to obtain these substances. However, the majority of these techniques require a long extraction time. In this sense, innovative and alternative extraction techniques, such as ultrasound, have recently been the target of studies. In view of the small amount of publications using ultrasonic pretreatment, this review aimed to congregate current relevant information on ultrasound-assisted extraction of essential oils. In this sense, theoretical aspects, such as the main factors that influence the performance of this technique as well as the advantages and disadvantages of the use of ultrasound as an environmental friendly alternative technique to improve the extraction of essential oil in comparison to traditional methods, are shown. Considering the available studies in the literature on essential oil extraction using ultrasonic pretreatment, low frequencies ranged from 20 to 50kWz and times ranged from 20 to 40min were used. The use of ultrasonic pretreatment represents a time reduction to near 70% in relation to the conventional hydrodistillation. Also, these conditions enabled a growth in the extraction of bioactive compounds and consequently improving the antioxidant and antimicrobial activities of essential oils.

  2. Deconstruction of ionic liquid pretreated lignocellulosic biomass using mono-component cellulases and hemicellulases and commercial mixtures

    Science.gov (United States)

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Lignocellulose requires pretreatment before biochemical conversion to its monomeric sugars which can provide a renewable carbon based feedstock for...

  3. SU-E-T-148: Benchmarks and Pre-Treatment Reviews: A Study of Quality Assurance Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstein, J; Nguyen, H; Roll, J; Walsh, A; Tailor, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To determine the impact benchmarks and pre-treatment reviews have on improving the quality of submitted clinical trial data. Methods: Benchmarks are used to evaluate a site’s ability to develop a treatment that meets a specific protocol’s treatment guidelines prior to placing their first patient on the protocol. A pre-treatment review is an actual patient placed on the protocol in which the dosimetry and contour volumes are evaluated to be per protocol guidelines prior to allowing the beginning of the treatment. A key component of these QA mechanisms is that sites are provided timely feedback to educate them on how to plan per the protocol and prevent protocol deviations on patients accrued to a protocol. For both benchmarks and pre-treatment reviews a dose volume analysis (DVA) was performed using MIM softwareTM. For pre-treatment reviews a volume contour evaluation was also performed. Results: IROC Houston performed a QA effectiveness analysis of a protocol which required both benchmarks and pre-treatment reviews. In 70 percent of the patient cases submitted, the benchmark played an effective role in assuring that the pre-treatment review of the cases met protocol requirements. The 35 percent of sites failing the benchmark subsequently modified there planning technique to pass the benchmark before being allowed to submit a patient for pre-treatment review. However, in 30 percent of the submitted cases the pre-treatment review failed where the majority (71 percent) failed the DVA. 20 percent of sites submitting patients failed to correct their dose volume discrepancies indicated by the benchmark case. Conclusion: Benchmark cases and pre-treatment reviews can be an effective QA tool to educate sites on protocol guidelines and to minimize deviations. Without the benchmark cases it is possible that 65 percent of the cases undergoing a pre-treatment review would have failed to meet the protocols requirements.Support: U24-CA-180803.

  4. New pentose dimers with bicyclic moieties from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, H.; Sørensen, Henrik Rokkjær; Tanner, David Ackland

    2017-01-01

    oligophenolic compounds from pilot scale pretreated wheat straw was assessed at two different pretreatment severities. An increase in severity of the pretreatment led to more oligophenol compounds and in turn the total overall cellulase inhibition increased. When the xylooligosaccharides were enzymatically...... from either xylose or glucose reacting with glyceraldehyde during pretreatment. The data show that the main cellulase inhibition from hydrothermally pretreated wheat straw liquors is due to xylooligosaccharides followed by oligophenolic compounds and the newly discovered dipentose with bicyclic...

  5. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  6. Optimizing ethanol and methane production from steam-pretreated, phosphoric acid-impregnated corn stover.

    Science.gov (United States)

    Bondesson, Pia-Maria; Dupuy, Aurélie; Galbe, Mats; Zacchi, Guido

    2015-02-01

    Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %).

  7. Simultaneous saccharification and co-fermentation of peracetic acid pretreated sugar cane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.C. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte (Brazil); Linden, J.C.; Schroeder, H.A. [Colorado State University, Fort Collins, CO (United States)

    1999-07-01

    Previous work in our laboratory has demonstrated that peracetic acid improves the enzymatic digestibility of lignocellulosic materials. From the same studies, use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increases sugar conversion yields in a synergistic, not additive, manner. Deacetylation of xylan is conducted easily by use of dilute alkali solutions at mild conditions. In this paper, the effectiveness of peracetic acid pretreatment of sugar cane bagasse combined with an alkaline pre-pretreatment, is evaluated through simultaneous saccharification and co-fermentation (SSCF) procedures. A practical 92% of theoretical ethanol yield using recombinant Zymomonas mobilis CP4/pZB5 is achieved using 6% NaOH/I5% peracetic acid pretreated substrate. No sugar accumulation is observed during SSCF; the recombinant microorganism exhibits greater glucose utilization rates than those of xylose. Acetate levels at the end of the co-fermentations are less than 0.2% (w/v). Based on demonstrated reduction of acetyl groups of the biomass, alkaline pre-pretreatments help to reduce peracetic acid requirements. The influence of deacetylation is more pronounced in combined pretreatments using lower peracetic acid loadings. Stereochemical impediments of the acetyl groups in hemicellulase on the activity of specific enzymes may be involved. (author)

  8. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol.

    Science.gov (United States)

    Laser, M; Schulman, D; Allen, S G; Lichwa, J; Antal, M J; Lynd, L R

    2002-01-01

    Sugar cane bagasse was pretreated with either liquid hot water (LHW) or steam using the same 25 l reactor. Solids concentration ranged from 1% to 8% for LHW pretreatment and was > or = 50% for steam pretreatment. Reaction temperature and time ranged from 170 to 230 degrees C and 1 to 46 min, respectively. Key performance metrics included fiber reactivity, xylan recovery, and the extent to which pretreatment hydrolyzate inhibited glucose fermentation. In four cases, LHW pretreatment achieved > or = 80% conversion by simultaneous saccharification and fermentation (SSF). > or = 80% xylan recovery, and no hydrolyzate inhibition of glucose fermentation yield. Combined effectiveness was not as good for steam pretreatment due to low xylan recovery. SSF conversion increased and xylan recovery decreased as xylan dissolution increased for both modes. SSF conversion, xylan dissolution. hydrolyzate furfural concentration, and hydrolyzate inhibition increased, while xylan recovery and hydrolyzate pH decreased, as a function of increasing LHW pretreatment solids concentration (1-8%). These results are consistent with the notion that autohydrolysis plays an important. if not exclusive, role in batch hydrothermal pretreatment. Achieving concurrently high (greater than 90%) SSF conversion and xylan recovery will likely require a modified reactor configuration (e.g. continuous percolation or base addition) that better preserves dissolved xylan.

  9. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jensen, Jakob M.

    2012-01-01

    that captures the environmental temperature differences inside the reactor using distributed parameters. A Kalman filter is then added to account for any missing dynamics and the overall model is embedded into a temperature soft sensor. The operator of the plant will be able to observe the temperature in any......In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...

  10. Extrusion pretreatment of pine wood chips.

    Science.gov (United States)

    Karunanithy, C; Muthukumarappan, K; Gibbons, W R

    2012-05-01

    Pretreatment is the first step to open up lignocellulose structure in the conversion of biomass to biofuels. Extrusion can be a viable pretreatment method due to its ability to simultaneously expose biomass to a range of disruptive conditions in a continuous flow process. Extruder screw speed, barrel temperature, and feedstock moisture content are important factors that can influence sugar recovery from biomass. Hence, the current study was undertaken to investigate the effects of these parameters on extrusion pretreatment of pine wood chips. Pine wood chip at 25, 35, and 45 % wb moisture content were pretreated at various barrel temperatures (100, 140, and 180 °C) and screw speeds (100, 150, and 200 rpm) using a screw with compression ratios of 3:1. The pretreated pine wood chips were subjected to standard enzymatic hydrolysis followed by sugar and byproducts quantification. Statistical analyses revealed the existence of significant differences in sugar recovery due to independent variables based on comparing the mean of main effects and interaction effects. Pine wood chips pretreated at a screw speed of 150 rpm and a barrel temperature of 180 °C with a moisture content of 25 % resulted in a maximum cellulose, hemicellulose, and total sugar recoveries of 65.8, 65.6, and 66.1 %, respectively, which was about 6.7, 7.9, and 6.8 fold higher than the control (unpretreated pine chips). Furthermore, potential fermentation inhibitors such as furfural, hydroxyl methyl furfural, and acetic acid were not found in any of the treatment combinations.

  11. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    Science.gov (United States)

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pretreatment on Corn Stover with Low Concentration of Formic Acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at 195 degrees for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid...... pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical...... was observed from corn stover pretreated at 195 degrees for 15min with formic acid....

  13. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  14. Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion.

    Science.gov (United States)

    Bordeleau, É L; Droste, R L

    2011-01-01

    Organic matter hydrolysis prior to anaerobic digestion has been shown to improve biogas production (30-50%) and reduce solids (20-60%) by ultrasound, chemical, conventional heating, and microwave pretreatments. Numerous studies have been performed to determine the extent of digestion improvement but few focus on financial feasibility of these processes. A comprehensive model was created using Microsoft Excel and its Visual Basic Assistant to evaluate pretreatment permutations for conventional wastewater treatment plants. The four above-mentioned processes were evaluated for energetic and financial demands. Well-established energy equations and wastewater characteristics, both average and high, were used. Average and high flows were 460 and 750×10(3) m3/d, respectively. Net costs per influent flow for ultrasound, chemical, conventional heating, and microwave were 0.0166, 0.0217, 0.0124, 0.0119 $/m3 and 0.0264, 0.0357, 0.0187, and 0.0162 $/m3 for average and high conditions, respectively. The average cost increase from results excluding pretreatment use for all processes was 0.003 and 0.0055 $/m3 for average and high conditions, respectively. No matter the permutation, pretreatments requiring more energy to achieve required hydrolysis levels were costlier. If energetic recoveries are substantial, dewaterability is positively affected, and solids meet environmental constraints to be handled and disposed at lower costs, pretreatments can be viable.

  15. Performance of a Constructed Wetland and Pretreatment System Receiving Potato Farm Wash Water

    Directory of Open Access Journals (Sweden)

    Vera Bosak

    2016-04-01

    Full Text Available Many potato processors require on-farm washing of potatoes, creating large quantities of wastewater that requires treatment, starting in the fall until the end of the potato storage period in mid-summer. We studied the treatment of wastewater from a potato farm in Ontario, Canada, using a system of pretreatment (sedimentation, aeration followed by a surface-flow wetland with a dense growth of cattails (Typha sp.. The raw wastewater had high average concentrations of 5-day biochemical oxygen demand (BOD5; 1113 mg·L−1, total suspended solids (TSS; 4338 mg·L−1, total nitrogen (TN; 311 mg·L−1 and total phosphorus (TP; 42.5 mg·L−1. Due to high influent loads, the pretreatment was enlarged during annual sediment cleaning at the end of Year 1 (Y1, which increased the hydraulic retention time and delayed the seasonal onset of wetland loading from winter in Y1 to spring in Year 2 (Y2. Total concentration reduction for the treatment system (pretreatment + wetland in Y2 was 96% BOD5, 99% TSS, 86% TN and 90% TP; and in Y1 was 79% BOD5, 97% TSS, 62% TN and 54% TP. Overall, the best treatment in both the pretreatment and the wetland was seen in spring months. The enlarged pretreatment system enabled seasonal loading of the wetland during the spring and summer, which facilitated improved treatment performance.

  16. USE OF NANOTECHNOLOGY PRE-TREATMENT IN AUTOMOTIVE PAINTING LINE

    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa

    2012-09-01

    Full Text Available The current safety requirements, environmental impacts and performance have been ledding the automotive industry to search for new alternatives, not just for new car bodies materials, also for new sheet surface treatments as well, used in the painting process in order to fit simultaneous, environmental requirements and corrosion resistance maintenance, that are the key feature guarantees offered by automakers and are also vital to the durability of the vehicle. This fact is of great importance considering that, besides the various types of steels and their metalic coatings, another factor that directly influences the corrosion resistance is the painting system used. Within this context, the GMB, in partnership with CSN, has been performing several works by adding the knowledge of the supplier to automotive technology. An example of this partnership we have the present study, which aimed to, comparatively, evaluate the corrosion resistance of two systems of painted galvanized steel, the first one with pre-treatment based on a traditional phosphate, and the another one based on a nano-ceramic film. In this study, was found out that materials with pre-treatment based on results of nanotechnology showed similar corrosion resistance comparing the phosphatized materials in a traditional way.

  17. Pb2+ Biosorption by Pretreated Fungal Biomass

    OpenAIRE

    Çabuk,Ahmet; İLHAN, Semra; FİLİK, Cansu; ÇALIŞKAN, Figen

    2005-01-01

    The effect of pretreatment on the Pb2+ biosorption capacity of fungal biomasses, Aspergillus versicolor, Metarrhizium anisopliae var. anisopliae, and Penicillium verrucosum, was investigated. For this purpose, the biomasses were subjected to physical treatments such as heat and autoclaving, and chemical treatments such as sodium hydroxide, formaldehyde, gluteraldehyde, acetic acid, hydrogen peroxide, commercial laundry detergent, orthophosphoric acid and dimethyl sulfoxide. Dimethyl sulfoxid...

  18. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    To investigate the effect of unknown fermentation inhibitors in corncob hemicellulose acid hydrolysate processed by pretreatment and detoxification on fermentation, corncob hemicellulose acid hydrolysate and artificially prepared hydrolysate were fermented in parallel by Candida shehatae YHFK-2. The results show that ...

  19. Dissolved organic nitrogen measurement using dialysis pretreatment.

    Science.gov (United States)

    Lee, Wontae; Westerhoff, Paul

    2005-02-01

    Dissolved organic nitrogen (DON) is important for ecological and engineering researches. Quantification of low DON concentrations in waters with elevated dissolved inorganic nitrogen (DIN) using existing methods is inaccurate. In this study, a dialysis-based pretreatment technique was optimized and adopted to reduce the interference from DIN to the quantification of DON in natural water. A cellulose ester dialysis tube (nominal molecular weight cutoff = 100 Da) was used in batch and continuous-flow dialysis steps with model compounds, natural organic matter isolates, and bulk waters to develop a dialysis pretreatment approach that selectively reduces DIN from solutions containing DON. By reducing DIN concentrations, propagation of analytical variance in total dissolved nitrogen (TDN) and DIN species concentrations allows more accurate determination of DON (DON = TDN - NO3 - NO2- - NH3/NH4+). Dialysis for 24 h against continuously flowing distilled water reduced DIN species by 70%. With dialysis pretreatment, DON recoveries of more than 95% were obtained for surface water and finished drinking water, but wastewater experienced a slight loss (approximately 10%) of DON possibly due to the adsorption of organics onto the dialysis membrane, permeation of low molecular weight fractions, or biodegradation. Dialysis experiments using surface water spiked with different DIN/TDN ratios concluded that dialysis pretreatment leads to more accurate DON determination than no dialysis when DIN/TDN ratios exceed 0.6 mg of N/mg of N.

  20. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  1. Vapor-phase diethyl oxalate pretreatment of wood chips. Part 1, Energy savings and improved pulps

    Science.gov (United States)

    William Kenealy; Eric Horn; Carl Houtman

    2007-01-01

    Diethyl oxalate (DEO) was injected into a digester containing wood chips (pine, spruce, or aspen) preheated to 130–1408C and held for 30 min at the same temperature. When mechanical pulps were produced from these pretreated chips, savings in electrical refiner energy could be achieved. For southern yellow pine (Pinus taeda), the electrical refiner energy required to...

  2. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...

  3. Synthesis, Modelling and Evaluation of Pretreatment Technologies for Biofuels Production Systems

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè

    2017-01-01

    , technically, economically and environmentally wise. In this sense, Process Systems Engineering (PSE) concepts and Process Integration were applied to evaluate different scenarios and used to generate possible alternatives for a more competitive bioethanol production process. Finally, a systematic approach...... as a promising substitute for liquid fuels. The recalcitrance structure of the biomass however, requires the employment of a pretreatment step in the production process to release the sugars for conversion. Several pretreatment methods have been studied in the past years, but a general consensus is yet...... was developed for process synthesis of a second generation bioethanol production process. The methodology was used to generate a set of alternatives for organosolv and ammonia fiber explosion (AFEX) pretreatment methods, and to evaluate hotspots in the systems for enhanced and more integrated setups....

  4. Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Gonzalez Londono, Jorge Enrique; Schmidt, Jens Ejbye

    2015-01-01

    Pretreating lignocellulosic biomass for cellulosic ethanol production in a West African setting requires smaller scale and less capital expenditure compared to current state of the art. In the present study, three low-tech methods applicable for West African conditions, namely Boiling Pretreatment...... husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass’ (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion...... of glucan (>30 g glucan per 100 g total solids (TS)). HTT did show better results in both enzymatic convertibility and fermentation, but evaluated on the overall ethanol yield the low-tech pretreatment methods are viable alternatives with similar levels to the HTT (13.4–15.2 g ethanol per 100 g TS raw...

  5. NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report

    Science.gov (United States)

    Kessel, Kurt R.

    2015-01-01

    NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.

  6. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review.

    Science.gov (United States)

    Veluchamy, C; Kalamdhad, Ajay S

    2017-12-01

    Pulp and paper industry is one of the most polluting, energy and water intensive industries in the world. Produced pulp and paper mill sludge (PPMS) faces a major problem for handling and its management. An anaerobic digestion has become an alternative source. This review provides a detailed summary of anaerobic digestion of PPMS - An overview of the developments and improvement opportunities. This paper explores the different pretreatment methods to enhance biogas production from the PPMS. First, the paper gives an overview of PPMS production, and then it reviews PPMS as a substrate for anaerobic digestion with or without pretreatment. Finally, it discuss the optimal condition and concentration of organic and inorganic compounds required for the anaerobic metabolic activity. Future research should focus on the combination of different pretreatment technologies, relationship between sludge composition, reactor design and its operation, and microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments

    Directory of Open Access Journals (Sweden)

    Pu Yunqiao

    2013-01-01

    Full Text Available Abstract The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicated structure of plant cell walls. Currently, a pretreatment step that can effectively reduce biomass recalcitrance is generally required to make the polysaccharide fractions locked in the intricacy of plant cell walls to become more accessible and amenable to enzymatic hydrolysis. Dilute acid and hydrothermal pretreatments are attractive and among the most promising pretreatment technologies that enhance sugar release performance. This review highlights our recent understanding on molecular structure basis for recalcitrance, with emphasis on structural transformation of major biomass biopolymers (i.e., cellulose, hemicellulose, and lignin related to the reduction of recalcitrance during dilute acid and hydrothermal pretreatments. The effects of these two pretreatments on biomass porosity as well as its contribution on reduced recalcitrance are also discussed.

  8. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    Science.gov (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  9. Nickel Extraction from Olivine: Effect of Carbonation Pre-Treatment

    Directory of Open Access Journals (Sweden)

    Rafael M. Santos

    2015-09-01

    Full Text Available In this work, we explore a novel mineral processing approach using carbon dioxide to promote mineral alterations that lead to improved extractability of nickel from olivine ((Mg,Fe2SiO4. The precept is that by altering the morphology and the mineralogy of the ore via mineral carbonation, the comminution requirements and the acid consumption during hydrometallurgical processing can be reduced. Furthermore, carbonation pre-treatment can lead to mineral liberation and concentration of metals in physically separable phases. In a first processing step, olivine is fully carbonated at high CO2 partial pressures (35 bar and optimal temperature (200 °C with the addition of pH buffering agents. This leads to a powdery product containing high carbonate content. The main products of the carbonation reaction include quasi-amorphous colloidal silica, chromium-rich metallic particles, and ferro-magnesite ((Mg1−x,FexCO3. Carbonated olivine was subsequently leached using an array of inorganic and organic acids to test their leaching efficiency. Compared to leaching from untreated olivine, the percentage of nickel extracted from carbonated olivine by acid leaching was significantly increased. It is anticipated that the mineral carbonation pre-treatment approach may also be applicable to other ultrabasic and lateritic ores.

  10. Pretreatment of Latent Prints for Laser Development.

    Science.gov (United States)

    Menzel, E R

    1989-06-01

    The pretreatment procedures for laser detection of latent fingerprints is reviewed. The general features of laser detection and the operational aspects of the examination of physical evidence for laser fingerprint detection are enumerated in the initial sections. The literature review is divided into various pretreatment approaches. Cited studies prior to 1981 are primarily concerned with the demonstration of the viability of laser fingerprint detection, whereas work post-1981 addresses issues of compatibility with the traditional methods of fingerprint development, examination of difficult surfaces, and the routine implementation of laser detection by law enforcement agencies. Related topics of research, review articles, conference reports, case examinations, the research support climate, and future trends are also briefly addressed. Copyright © 1989 Central Police University.

  11. Waste Separations and Pretreatment Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M. [Westinghouse Hanford Co., Richland, WA (United States); Harrington, R.A. [Kaiser Engineers Hanford Co., Richland, WA (United States); Quadrel, M.J. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities.

  12. SEM analysis of weathered grains: Pretreatment effects

    Science.gov (United States)

    Cremeens, D. L.; Darmody, R. G.; Jansen, I. J.

    1987-05-01

    Fresh microcline, albite, and almandine, along with soil grains, were treated with various traditional pretreatments prior to observation with scanning electron microscopy (SEM). The grains were observed with SEM and given ratings for each of several surface properties to determine which pretreatments produced clean surfaces on soil grains without laboratory-induced damage on the fresh mineral grains. Gentle overnight shaking in 2% sodium bicarbonate at pH 9.5 produced the most effective cleaning of soil grains with the least amount of induced damage to fresh mineral samples. This pretreatment was equivalent to that given the control samples (shaken overnight in distilled water) for observations of etch pits on fresh mineral samples within a 25% equivalence (or negligible difference) interval. Ultrasonification, hydrogen peroxide, and boiling hydrochloric acid caused the most damage to mineral samples, mainly in the form of 0.5-μm etch pits. Boiling hydrochloric acid, boiling nitric acid, and stannous chloride resulted in increased coated surfaces on soil grains.

  13. Hydrothermal pretreatment of palm oil empty fruit bunch

    Science.gov (United States)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  14. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–Comparison of five pretreatment technologies

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    2013-01-01

    A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma...... yield of 57. g ethanol/100. g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae...

  15. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    Directory of Open Access Journals (Sweden)

    Gruppen Harry

    2011-05-01

    Full Text Available Abstract Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP. Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.

  16. Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, William L.; Arm, Stuart T.; Huckaby, James L.; Kurath, Dean E.; Rassat, Scot D.

    2008-07-15

    Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled “Undemonstrated Leaching Processes” and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describes the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.

  17. Physiochemical Characterization of Lignocellulosic Biomass Dissolution by Flowthrough Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lishi; Pu, Yunqiao; Bowden, Mark; Ragauskas, Arthur J.; Yang, Bin

    2016-01-04

    Comprehensive understanding of biomass solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of valorizing biomass to fermentable sugars and lignin for biofuels production. In this study, poplar wood was flowthrough pretreated by water-only or 0.05% (w/w) sulfuric acid at different temperatures (220-270 °C), flow rate (25 mL/min), and reaction times (8-90 min), resulting in significant disruption of the lignocellulosic biomass. Ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and solid state cross-polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) spectroscopy were applied to characterize the pretreated biomass whole slurries in order to reveal depolymerization as well as solubilization mechanism and identify unique dissolution structural features during these pretreatments. Results showed temperature-dependent cellulose decrystallization in flowthrough pretreatment. Crystalline cellulose was completely disrupted, and mostly converted to amorphous cellulose and oligomers by water-only operation at 270 °C for 10 min and by 0.05 wt % H2SO4 flowthrough pretreatment at 220 °C for 12 min. Flowthrough pretreatment with 0.05% (w/w) H2SO4 led to a greater disruption of structures in pretreated poplar at a lower temperature compared to water-only pretreatment.

  18. Energy consumption modeling during dairy sewage pretreatment

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł; Boruszko, Dariusz

    2017-11-01

    The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  19. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    and milled particle size (the extent to which the wheat straw was milled) were investigated and optimized. The developed methodology offered the advantage of a simple and relatively fast (0.5–2 h) pretreatment allowing a dry matter concentration of 45–60%. FTIR measurements did not suggest any structural...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  20. Corn-milling pretreatment with anhydrous ammonia.

    Science.gov (United States)

    Taylor, Frank; Craig, James C; Kurantz, M J; Singh, Vijay

    2003-02-01

    Exposure to anhydrous ammonia has been suggested as a pretreatment for corn milling. Batches of corn were exposed to ammonia under controlled conditions. The amounts of ammonia absorbed and reacted with the corn were measured. The amounts were not more than are needed as nutritional supplement for yeast fermentation to ethanol. Loosening of the hull was observed qualitatively, and subsequent shearing in a disk mill followed by steeping for 2, 4, 6, or 8 h showed that germ could be recovered at higher yield and after a shorter steeping time compared to untreated control batches. Quality of oil was not affected by treatment with ammonia.

  1. The characteristic changes of betung bamboo (Dendrocalamus asper pretreated by fungal pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-05-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The fungal pretreatment effect on chemical structural and morphological changes of Betung Bamboo was evaluated based on its biomass components after being cultivated by white rot fungi, Trametes versicolor. Betung bamboo powder (15 g was exposed to liquid inoculum of white rot fungi and incubated at 270C for 15, 30 and 45 days. The treated samples were then characterized by FT-IR spectroscopy, X-Ray diffraction and SEM-EDS analyses. Cultivation for 30 days with 5 and 10% loadings retained greater selectivity compared to that of the other treatments. FTIR spectra demonstrated that the fungus affected the decreasing of functional group quantities without changing the functional groups. The decrease in intensity at wave number of 1246 cm-1 (guaiacyl of lignin was greater than that at wave number of 1328 cm-1 (deformation combination of syringyl and xylan after fungal treatment. X-ray analysis showed the pretreated samples had a higher crystallinity than the untreated ones which might be due to the cleavage of amorphous fractions of cellulose. The pretreated samples have more fragile than the untreated ones confirmed by SEM. Crystalline allomorph calculated by XRD analysis showed that fungus pretreatment for 30 days has transformed triclinic structure of cellulose to monoclinic structure.

  2. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.

    Science.gov (United States)

    Qin, Lizhen; Qian, Hanyu; He, Yucai

    2017-12-01

    Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol-H2SO4-water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2 = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

  3. Acetic acid pretreatment improves the hardness of cooked potato slices.

    Science.gov (United States)

    Zhao, Wenlin; Shehzad, Hussain; Yan, Shoulei; Li, Jie; Wang, Qingzhang

    2017-08-01

    The effects of acetic acid pretreatment on the texture of cooked potato slices were investigated in this work. Potato slices were pretreated with acetic acid immersion (AAI), distilled water immersion (DWI), or no immersion (NI). Subsequently, the cell wall material of the pretreated samples was isolated and fractioned to evaluate changes in the monosaccharide content and molar mass (MM), and the hardness and microscopic structure of the potato slices in different pretreatments before and after cooking were determined. The results showed that the highest firmness was obtained with more intact structure of the cell wall for cooked potato slices with AAI pretreatment. Furthermore, the MM and sugar ratio demonstrated that the AAI pretreated potato slices contained a higher content of the small molecular polysaccharides of cell walls, especially in the hemicellulose fraction. This work may provide a reference for potato processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of pretreatment on colour and texture of watermelon rind

    Science.gov (United States)

    Athmaselvi, K.; Alagusundaram, K.; Kavitha, C.; Arumuganathan, T.

    2012-07-01

    The effect of osmotic dehydration pretreatment on water loss, solid gain, colour and textural change was investigated. Watermelon rind 1 x 1 cm size was immersed in sucrose solution of 40, 50 and 60° Brix after pretreatment with microwave and conventional boiling in water for 1, 3, and 5 min, respectively. Water loss and solid gain increased with the time of cooking and sugar concentration. Microwave pretreated samples showed higher water loss and solid gain. Increase in the time of cooking decreased the brightness of all the samples. Microwave pretreated samples showed higher `b' values than conventionally pretreated ones. There was no significant difference (P≤0.05) in texture profile analysis parameters except for hardness. Hardness decreased with increase in time of cooking and sugar concentration. Second order regression model was developed for water loss and solid gain of microwave and conventional pretreated watermelon rind.

  5. EFFECT OF AQUEOUS PRETREATMENT ON PYROLYSIS CHARACTERISTICS OF NAPIER GRASS

    Directory of Open Access Journals (Sweden)

    ISAH YAKUB MOHAMMED

    2015-11-01

    Full Text Available Effect of non-catalytic aqueous pretretment on pyrolysis characteristics of Napier grass was investigated using thermogravimetric analyser. Increasing pretreatment severity (0.0-2.0 improved pyrolysis process. The residual mass at the end of pyrolysis for the pretreated sample was about 50% less compared to the untreated sample. Kinetics of the process was evaluated using order based model and both pretreated and untreated samples followed first order reaction. The activation energy of the pretreated samples was similar and higher than that of the raw sample which was attributed to faster rate of decomposition due removal of hetromaterials (ash, extractives and some hemicellulose in the pretreatment stage. Finally, this pretreatment method has demonstrated effectiveness for the removal of pyrolysis retardants and will improve the quantity and quality of bio-oil yield.

  6. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne; Scheutz, Charlotte

    2016-04-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered in the biopulp. The biochemical methane potential for the biopulp was 469 ± 7 mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw-pulping technology showed higher biodegradable material recovery, lower electricity consumption and comparable water consumption. The higher material recovery achieved with the technology was associated with greater transfer of nutrients (N and P), carbon (total and biogenic) but also heavy metals (except Pb) to the produced biomass. The data generated in this study could be used for the environmental assessment of the technology and thus help in selecting the best pre-treatment technology for source separated organic household waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dilute acid pretreatment of corncob for efficient sugar production

    Science.gov (United States)

    G.S. Wang; Jae-Won Lee; Junyong Zhu; Thomas W. Jeffries

    2011-01-01

    Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160–190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-...

  8. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  9. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  10. Optimal pretreatment determination of kiwifruit drying via online monitoring.

    Science.gov (United States)

    Nadian, Mohammad Hossein; Abbaspour-Fard, Mohammad Hossein; Sadrnia, Hassan; Golzarian, Mahmood Reza; Tabasizadeh, Mohammad

    2016-11-01

    Pre-treating is a crucial stage of drying process. The best pretreatment for hot air drying of kiwifruit was investigated using a computer vision system (CVS), for online monitoring of drying attributes including drying time, colour changes and shrinkage, as decision criteria and using clustering method. Slices were dried at 70 °C with hot water blanching (HWB), steam blanching (SB), infrared blanching (IR) and acid ascorbic 1% w/w (AA) as pretreatments each with three durations of 5, 10 and 15 min. The results showed that the cells in HWB-pretreated samples stretched without any cell wall rupture, while the highest damage was observed in AA-pretreated kiwifruit microstructure. Increasing duration of AA and HWB significantly lengthened the drying time while SB showed opposite results. The drying rate had a profound effect on the progression of the shrinkage. The total colour change of pretreated samples was higher than those with no pretreatment except for AA and HWB. The AA could well prevent colour change during the initial stage of drying. Among all pretreatments, SB and IR had the highest colour changes. HWB with a duration of 5 min is the optimum pretreatment method for kiwifruit drying. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol...... the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7...

  12. Nonhazardous Urine Pretreatment Method for Future Exploration Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A nonhazardous urine pretreatment system prototype is proposed that will stabilize urine against biological growth or chemical instabilities without using hazardous...

  13. Value added liquid products from waste biomass pyrolysis using pretreatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nonhazardous Urine Pretreatment Method for Future Exploration Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel urine pretreatment that will prevent biological growth or chemical instabilities in urine without using hazardous chemicals is proposed. Untreated urine...

  15. Influence of dentin pretreatment on bond strength of universal adhesives.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.

  16. CO.sub.2 Pretreatment prevents calcium carbonate formation

    Science.gov (United States)

    Neavel, Richard C.; Brunson, Roy J.; Chaback, Joseph J.

    1980-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with carbon dioxide. The carbon dioxide pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 14 to about 68 atmospheres and a carbon dioxide partial pressure within the range from about 14 to about 34 atmospheres. Temperature during pretreatment will generally be within the range from about 100.degree. to about 200.degree. C.

  17. 40 CFR 417.84 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.84 Pretreatment standards for existing sources. Any existing source...

  18. Pretreatment of Palm Oil Mill Effluent (POME Using Magnetic Chitosan

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2011-01-01

    Full Text Available Chitosan is a natural organic polyelectrolyte of high molecular weight and charge density; obtained from deacetylation of chitin. This study explored the potential and effectiveness of applying chitosan-magnetite nanocomposite particles as a primary coagulant and flocculent, in comparison with chitosan for pre-treatment of palm oil mill effluent (POME. A series of batch coagulation processes with chitosan-magnetite nanocomposite particles and chitosan under different conditions, i.e. dosage and pH were conducted, in order to determine their optimum conditions. The performance was assessed in terms of turbidity, total suspended solids (TSS and chemical oxygen demand (COD reductions. Chitosan-magnetite particles showed better parameter reductions with much lower dosage consumption, compared to chitosan, even at the original pH of POME, i.e. 4.5. At pH 6, the optimum chitosan-magnetite dosage of 250 mg/L was able to reduce turbidity, TSS and COD levels by 98.8%, 97.6% and 62.5% respectively. At this pH, the coagulation of POME by chitosan-magnetite was brought by the combination of charge neutralization and polymer bridging mechanism. On the other hand, chitosan seems to require much higher dosage, i.e. 370 mg/L to achieve the best turbidity, TSS and COD reductions, which were 97.7%, 91.7% and 42.70%, respectively. The synergistic effect of cationic character of both the chitosan amino group and the magnetite ion in the pre-treatment process for POME brings about enhanced performance for effective agglomeration, adsorption and coagulation.

  19. Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal.

    Science.gov (United States)

    Drikas, Mary; Dixon, Mike; Morran, Jim

    2011-02-01

    Removal of natural organic matter (NOM) is a key requirement to improve drinking water quality. This study compared the removal of NOM with, and without, the patented magnetic ion exchange process for removal of dissolved organic carbon (MIEX DOC) as a pre-treatment to microfiltration or conventional coagulation treatment over a 2 year period. A range of techniques were used to characterise the NOM of the raw and treated waters. MIEX pre-treatment produced water with lower concentration of dissolved organic carbon (DOC) and lower specific UV absorbance (SUVA). The processes incorporating MIEX also produced more consistent water quality and were less affected by changes in the concentration and character of the raw water DOC. The very hydrophobic acid fraction (VHA) was the dominant NOM component in the raw water and was best removed by MIEX pre-treatment, regardless of the raw water VHA concentration. MIEX pre-treatment also produced water with lower weight average apparent molecular weight (AMW) and with the greatest reduction in complexity and range of NOM. A strong correlation was found between the VHA content and weight average AMW confirming that the VHA fraction was a major component of the NOM for both the raw water and treated waters. © 2010 Elsevier Ltd. All rights reserved.

  20. Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sui, G. [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States); Zhong, W.H. [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States)], E-mail: Katie.Zhong@ndsu.edu; Yang, X.P.; Yu, Y.H. [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-06-25

    To significantly improve the performance of rubber materials, fundamental studies on rubber nanocomposites are necessary. The curing kinetics and vulcanizate properties of carbon nanotubes (CNTs)/natural rubber (NR) nanocomposites were analyzed in this paper. The pretreatment of CNTs was carried out by acid bath followed by ball milling with HRH bonding systems in experiments. The CNT/NR nanocomposites were prepared through solvent mixing on the basis of pretreatment of CNTs. The surface characteristic of CNTs and physical interaction between CNTs and NR macromolecules were analyzed by Fourier transform infrared spectroscopy (FT-IR). The vulcanization kinetics of CNT/NR nanocomposites were studied contrasting with the neat NR. The quality of the NR vulcanizates was assessed through static and dynamic mechanical property tests and scanning electron microscope (SEM). Curing kinetic parameters of the neat NR and CNT/NR nanocomposites were obtained from experiments; the results indicated that the presence of CNTs affects the curing process of the NR, and additional heating is required to cure CNT/NR nanocomposites due to its higher active energy. The dispersion of pretreated CNTs in the rubber matrix and interfacial adhesion between them were obviously improved. The physical and mechanical properties of the CNT/NR nanocomposites showed considerable increases by incorporation of the pretreated CNTs compared to the neat NR and untreated CNTs-filled NR nanocomposites.

  1. Gas pre-treatment and their impact on liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenbijl, J.M.; Dillion, M.L.; Heyman, E.C.

    1999-07-01

    Natural gas generally requires removal of H{sub 2}S, CO{sub 2}, COS, organic sulfur compounds, mercury and water prior to liquefaction in order to meet product specifications, avoid blockages and to prevent damage to process equipment. The cost of pre-treatment is dependent on the type and concentrations of the contaminants in the natural gas. Most of the operational base load LNG plants process feed gas with only low concentrations of CO{sub 2}, mercury and water as contaminants. This type of gas requires the minimum of treating, often comprising of a CO{sub 2} removal unit, molecular sieves for drying and a carbon bed for mercury removal. The Shell sulfinol process is the most widely applied acid gas removal process, serving some 40% of the installed base load LNG capacity, and has proven to be very reliable and cost effective. If substantial quantities of H{sub 2}S are present in the feed, a sulfur recovery unit is required as well. When mercaptans are also present in gas feed, the Shell Sulfinol process is strongly preferred, Almost the automatic choice for as the acid gas removal step, since it combines total CO{sub 2} and H{sub 2}S removal with mercaptan removal up to 97%. Formulated methyl diethanol amine (MDEA) solvents have a comparable capital cost to Sulfinol, but lack the mercaptan removal capabilities. There is one exception, the Flexsorb formulation (from Exxon) which also contains sulfolane. Later revamp of a gas pre-treatment unit from limited mercaptan handling capability to significant mercaptan handling capability can also elegantly be done using an integrated Sulfinol based concept. Whereas the capital cost for dehydration and mercury removal depend mainly on the natural gas throughput, the relative capital investment for acid gas removal treating in a LNG plant increases significantly with increasing CO{sub 2} content., At 2% mol CO{sub 2} the acid gas unit represents from 6% of the processing equipment cost at 2% mol CO{sub 2} but at 14% mol

  2. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè; Errico, Massimiliano; Rong, Ben-Guang

    2018-01-01

    data, we propose a feasible process flowsheet for organosolv pretreatment. Simulation of the pretreatment process provided mass and energy balances for a techno-economic analysis, and the values were compared with the most prevalent and mature pretreatment method: diluted acid. Organosolv pretreatment...... in the sensitivity analysis turned into possible savings of 42.8% in the minimum ethanol selling price for organosolv pretreatment....

  3. Optimization of the dilute maleic acid pretreatment of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Background - In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1)

  4. Coagulation pretreatment for ultrafiltration of deinking effluents containing flexographic inks

    Science.gov (United States)

    Bruno Chabot; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    This study was carried out to determine the potential of coagulation pretreatment with organic or inorganic coagulants to improve ultrafiltration performance during processing of wash deinking effluents containing flexographic inks. Wash filtrate effluents generated from mixtures of old flexographic and offset newspapers and old magazines were pretreated with a...

  5. 40 CFR 408.336 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 408.336 Section 408.336 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... Subcategory § 408.336 Pretreatment standards for new sources. Any new source subject to this subpart that...

  6. 40 CFR 421.336 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 421.336 Section 421.336 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... Subcategory § 421.336 Pretreatment standards for new sources. Except as provided in 40 CFR 403.7, any new...

  7. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    Purpose: To investigate the synergistic effect of trehalose and saccharose pretreatment on maintenance of lyophilized human red blood cell (RBC) quality. Methods: RBCs were pre-treated with trehalose and saccharose, and then lyophilized and re-hydrated. Prior to lyophilization and after re hydration, RBC parameters, ...

  8. Quality evaluation of beverage produced from pre-treated tigernut ...

    African Journals Online (AJOL)

    Beverage samples from pretreated and untreated tigernut were evaluated for physical and chemical properties. Sensory evaluation of the beverage samples were carried out and the best preferred tigernutbeverage was compared with a popularly consumed beverage, soymilk. All the pre-treatments, except germination, ...

  9. Influence of pre-treatment on torrefaction of Phyllostachys edulis.

    Science.gov (United States)

    Xu, Xiwei; Jiang, Enchen; Lan, Xiang

    2017-09-01

    This study investigated the effects of different pre-treatments on structural changes in Phyllostachys edulis. Samples were pretreated with water, 15% ammonia water, 2% sulfuric acid, hydrothermal carbonization, and ball milling. Moreover, ultrasound was introduced. The influence of pre-treatment on the physiochemical property and composition of P. edulis were studied. Moreover, torrefaction characterization was performed and the distribution of torrefaction products of pretreated samples was determined. Results showed that pre-treatment effectively modified physiochemical structure and the torrefaction property of P. edulis. The pretreatment reduced the ash content and increased the bio-oil content of the torrefaction products. Compared with that of the raw material, the residual bio-char content of the pretreated samples decreased by 2-8%, and degradation temperature of bio-char fluctuated between 365°C and 321°C. The distribution of bio-oil contents, bio-char, and bio-gas in the torrefaction products significantly varied with pretreatments methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural Analysis of Alkaline Pretreated Rice Straw for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Paripok Phitsuwan

    2017-01-01

    Full Text Available Rice straw (RS is an abundant, readily available agricultural waste, which shows promise as a potential feedstock for Asian ethanol production. To enhance release of glucose by enzymatic hydrolysis, RS was pretreated with aqueous ammonia (27% w/w at two pretreatment temperatures: room temperature and 60°C. Statistical analysis indicated similarity of enzymatic glucose production at both pretreatment temperatures after 3-day incubation. Chemical composition, FTIR, and EDX analyses confirmed the retention of glucan and xylan in the pretreated solid, but significant reduction of lignin (60.7% removal and silica. SEM analysis showed the disorganized surfaces and porosity of the pretreated RS fibers, thus improving cellulose accessibility for cellulase. The crystallinity index increased from 40.5 to 52.3%, indicating the higher exposure of cellulose. With 10% (w/v solid loadings of pretreated RS, simultaneous saccharification and fermentation yielded a final ethanol concentration of 24.6 g/L, corresponding to 98% of maximum theoretical yield. Taken together, aqueous ammonia pretreatment is an effective method to generate highly digestible pretreated RS for bioethanol production and demonstrates potential application in biorefinery industry.

  11. Effect of chemical pretreatment of some lignocellulosic wastes on ...

    African Journals Online (AJOL)

    Highest cellulase activity (0.06777 IU/ml/min) was display d by the organism grown on bagasse substrate pretreated with 2M NaOH for one hour. The proximate analysis of the cellulosic residues differed from one substrate to another, with the bagasse being the best. Pulverized substrates syndicated with alkali pretreatment ...

  12. Development of pretreatment of empty fruit bunches for enhanced ...

    African Journals Online (AJOL)

    Heating, boiling and steaming are among the physical agents and different concentrations of nitric acid, sulfuric acid and sodium hydroxide (NaOH) were the chemical agents used for the pretreatment of EFB to enhance the enzymatic saccharification of EFB. NaOH was proved to be the best among all the pretreatment ...

  13. 40 CFR 408.184 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 408.184 Section 408.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Hand-Butchered Salmon Processing Subcategory § 408.184 Pretreatment standards for existing sources. Any...

  14. 40 CFR 463.15 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources. 463.15 Section 463.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Heating Water Subcategory § 463.15 Pretreatment standards for existing sources. (a) PSES for bis(2...

  15. Influence of Chemical Pretreatment on the Quality of Dried Whole ...

    African Journals Online (AJOL)

    Chemical pretreatment of vegetables prior to drying is widely used to improve colour, texture and overall acceptability. Thus, this study investigated the effect of chemical pretreatment on some physico-chemical properties, colour and rehydration properties of dried red bell pepper. Fresh samples of whole red bell peppers ...

  16. Effect of combination pre-treatment on physicochemical, sensory ...

    African Journals Online (AJOL)

    Effect of combination pre-treatment on physicochemical, sensory and microbial characteristics of fresh aerobically stored minced goat (Black Bengal) meat organs. ... African Journal of Biotechnology ... However, acetic acid and glucose pretreatment controlled the fungal growth in meat samples most effectively. The

  17. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  18. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  19. Electrohydrolysis pretreatment of water hyacinth for enhanced hydrolysis.

    Science.gov (United States)

    Barua, Visva Bharati; Raju, V Wilson; Lippold, Sophia; Kalamdhad, Ajay S

    2017-08-01

    This study investigates the use of electrohydrolysis pretreatment on water hyacinth to cut short the hydrolysis step and increase biogas production at the same time. Electrohydrolysis pretreatment of water hyacinth at 20V for 60min exhibited improved solubilisation (42.9%). Therefore, bio-chemical methane potential (BMP) test was carried out between water hyacinth pretreated at 20V for 60min and untreated water hyacinth. By the end of 30days, cumulative methane production of 2455±17mL CH4/g VS for electrohydrolysis pretreated substrate and 1936±27mL CH4/g VS for the untreated substrate was achieved. Compositional analysis and characterization study revealed the efficiency of electrohydrolysis pretreatment in melting the lignin and lowering the cellulose crystallinity of water hyacinth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore....... Ionic liquid had been reported to be able to dissolve lignocellulose. However, as our knowledge, in all published researches, the concentration of lignocellulose in ionic liquid were low (5~10%). Besides, pretreatment time were long (from 1 hr to 1 day). Based on the hypothesis that the amount of ionic...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  1. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  2. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates

    Science.gov (United States)

    2011-01-01

    A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the

  3. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group).

    Science.gov (United States)

    Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe

    2015-11-01

    The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. © The Author(s) 2015.

  4. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2017-02-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  5. Dilute alkali pretreatment of softwood pine: A biorefinery approach.

    Science.gov (United States)

    Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh

    2017-06-01

    Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Understanding the impact of ionic liquid pretreatment on eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Centikol, Ozgul [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Knierim, Manfred [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  7. Effects of Pretreatment Methods on Electrodes and SOFC Performance

    Directory of Open Access Journals (Sweden)

    Guo-Bin Jung

    2014-06-01

    Full Text Available Commercially available tapes (anode, electrolyte and paste (cathode were choosen to prepare anode-supported cells for solid oxide fuel cell applications. For both anode-supported cells or electrolyte-supported cells, the anode needs pretreatment to reduce NiO/YSZ to Ni/YSZ to increase its conductivity as well as its catalytic characteristics. In this study, the effects of different pretreatments (open-circuit, closed-circuit on cathode and anodes as well as SOFC performance are investigated. To investigate the influence of closed-circuit pretreatment on the NiO/YSZ anode alone, a Pt cathode is utilized as reference for comparison with the LSM cathode. The characterization of the electrical resistance, AC impedance, and SOFC performance of the resulting electrodes and/or anode-supported cell were carried out. It’s found that the influence of open-circuit pretreatment on the LSM cathode is limited. However, the influence of closed-circuit pretreatment on both the LSM cathode and NiO/YSZ anode and the resulting SOFC performance is profound. The effect of closed-circuit pretreatment on the NiO/YSZ anode is attributed to its change of electronic/pore structure as well as catalytic characteristics. With closed-circuit pretreatment, the SOFC performance improved greatly from the change of LSM cathode (and Pt reference compared to the Ni/YSZ anode.

  8. Enhanced enzymatic conversion with freeze pretreatment of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ken-Lin; Thitikorn-amorn, Jitladda; Ou, Bay-Ming; Chen, Shan-He; Huang, Po-Jung [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Hsieh, Jung-Feng [Department of Food Science, Fu Jen Catholic University, Xin Zhuang, Taipei 242 (China); Ratanakhanokchai, Khanok [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkok 10150 (Thailand); Chen, Shui-Tein [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106 (China)

    2011-01-15

    Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg{sup -1} and 93.84 g kg{sup -1} substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg{sup -1} and 138.77 g kg{sup -1} substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg{sup -1} of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact. (author)

  9. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Northeastern Univ., Boston, MA (United States); Inouye, Hideyo [Northeastern Univ., Boston, MA (United States); Yang, Lin [Brookhaven National Lab. (BNL), Upton, NY (United States); Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tucker, Melvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Makowski, Lee [Northeastern Univ., Boston, MA (United States)

    2015-02-28

    Cellulose can work as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Our results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.

  10. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars.

    Science.gov (United States)

    Kapu, N U S; Manning, M; Hurley, T B; Voigt, J; Cosgrove, D J; Romaine, C P

    2012-06-01

    Spent mushroom compost (SMC), a byproduct of commercial mushroom cultivation, poses serious environmental problems that have hampered the growth of this important agro-industry. In an effort to develop new applications for SMC, we explored its use as a feedstock for bioethanol production. SMC constitutes approximately 30%w/w polysaccharides, 66% of which is glucan. Following dilute-acid pretreatment and enzymatic hydrolysis, both in the presence of PEG 6000, 97% of glucan and 44% of xylan in SMC were converted into the corresponding monosaccharides. Incorporation of PEG 6000 reduced the cellulase requirement by 77%. Zwittergent 3-12 and 3-14 also significantly increased the efficacy of acid pretreatment and enzymatic hydrolysis. The use of SMC in bioethanol production represents a potential mitigation solution for the critical environmental issues associated with the stockpiling of the major byproduct of the mushroom industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives.

    Science.gov (United States)

    Cao, Yujin; Zhang, Rubing; Cheng, Tao; Guo, Jing; Xian, Mo; Liu, Huizhou

    2017-01-01

    As the most abundant biomass in nature, cellulose is considered to be an excellent feedstock to produce renewable fuels and fine chemicals. Due to its hydrogen-bonded supramolecular structure, cellulose is hardly soluble in water and most conventional organic solvents, limiting its further applications. The emergence of ionic liquids (ILs) provides an environmentally friendly, biodegradable solvent system to dissolve cellulose. This review summarizes recent advances concerning imidazolium-based ILs for cellulose pretreatment. The structure of cations and anions which has an influence on the solubility is emphasized. Methods to assist cellulose pretreatment with ILs are discussed. The state of art of the recovery, regeneration, and reuse aspects of ILs is also presented in this work. The current challenges and development directions of cellulose dissolution in ILs are put forward. Although further studies are still much required, commercialization of IL-based processes has made great progress in recent years.

  12. Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production

    Science.gov (United States)

    Slavens, Shelyn Gehle

    Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass

  13. Influence of ultrasound pretreatment on wood physiochemical structure.

    Science.gov (United States)

    He, Zhengbin; Wang, Zhenyu; Zhao, Zijian; Yi, Songlin; Mu, Jun; Wang, Xiaoxu

    2017-01-01

    As an initial step to increase the use of renewable biomass resources, this study was aimed at investigating the effects of ultrasound pretreatment on structural changes of wood. Samples were pretreated by ultrasound with the power of 300W and frequency of 28kHz in aqueous soda solution, aqueous acetic acid, or distilled water, then pretreated and control samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results shown that ultrasound pretreatment is indeed effective in modifying the physiochemical structure of eucalyptus wood; the pretreatment decreased the quantity of alkali metals (e.g., potassium, calcium and magnesium) in the resulting material. Compared to the control group, the residual char content of samples pretreated in aqueous soda solution increased by 10.08%-20.12% and the reaction temperature decreased from 361°C to 341°C, however, in samples pretreated by ultrasound in acetic solution or distilled water, the residual char content decreased by 12.40%-21.45% and there were no significant differences in reactivity apart from a slightly higher maximum reaction rate. Ultrasound pretreatment increased the samples' crystallinity up to 35.5% and successfully removed cellulose, hemicellulose, and lignin from the samples; the pretreatment also increased the exposure of the sample to the treatment solutions, broke down sample pits, and generated collapses and microchannels on sample pits, and removed attachments in the samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Physicochemical quality of eggplant dehydrated with varied pretreatments - doi: 10.4025/actascitechnol.v35i1.10551

    Directory of Open Access Journals (Sweden)

    Rafael Chavez Osidacz

    2013-01-01

    Full Text Available Among the main advantages of dehydrated fruit and vegetables are the great reduction of weight and volume, the ease of transport and storage, not requiring refrigeration, and a longer shelf-life compared with fresh products. This study analyzed the effect of bleaching and osmotic dehydration on the drying of eggplant slices, considering the quality parameters pH, titratable acidity, soluble solids, and shrinkage by image analysis. The pretreatments consisted of: (I osmotic dehydration in 10% NaCl aqueous solution for 20 minutes at 35ºC; (II bleaching of eggplant slices for 5 minutes followed by osmotic dehydration above cited. The pretreated eggplants were subjected to drying (70ºC, along with fresh eggplants, for further comparison. The results showed that the pretreated eggplants (bleached and osmotically dehydrated or osmotically dehydrated have dried more rapidly than the control sample.

  15. Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production.

    Science.gov (United States)

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2009-12-01

    Efficient pretreatment is necessary to make the wood-to-ethanol process more feasible. In this study, chips of different sizes were impregnated with SO(2) and steam-pretreated. Dilute-acid pretreatment together with subsequent enzymatic hydrolysis resulted in solubilization of between 69% and 73% of the fermentable sugars (glucose and mannose) in the raw material for the combinations of impregnation times and chip sizes investigated. Shorter impregnation times resulted in slightly lower mannose yields for the larger chips, probably due to poor diffusion of the catalyst. Small differences in glucose yield after enzymatic hydrolysis showed that the overall glucose yield was slightly higher for the smaller chips, however, whether the increased energy demand and cost of size reduction is compensated for by the higher yield, requires techno-economical evaluations.

  16. WOOD PRE-TREATMENT INFLUENCE ON THE HYDRATION OF PORTLAND CEMENT IN COMBINATION WITH SOME TROPICAL WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Nusirat Aderinsola SADIKU

    2014-06-01

    Full Text Available The influence of three pre-treatment methods on the hydration characteristics of Portland cement in combination with three tropical hardwood species was investigated. The maximum hydration temperature and time to reach maximum hydration temperature were analysed for the wood-cement-water mixtures of the three species after removing inhibitory extractives of wood samples by extraction with 5% Sodium hydroxide (NaOH, cold and hot water after removing inhibitory extractives of wood samples. There were differences in the hydration reaction of the wood species with Portland cement using the different pre-treatment methods. The compatibility of the wood species with Portland cement improved following pre-treatment. Sodium hydroxide pre-treatment had the most significant effect followed by hot water. Terminalia ivorensis (Idigbo, and Antiaris africana (Oriro species showed considerable improvement in their compatibility with Portland cement at 5% Sodium hydroxide pre-treatment with maximum hydration temperature of 65oC where Arere had 60.5oC where both cold and hot water were unable to raise the hydration temperature beyond 55.5oC . This study shows that the wood species requires more than cold and hot water extraction to make them suitable for wood cement composite materials as extraction with sodium hydroxide (1% solution was found to be the most effective treatment for the wood species under investigation.

  17. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida.

    Science.gov (United States)

    Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M

    2016-01-01

    Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.

  18. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price

    Directory of Open Access Journals (Sweden)

    Dave Barchyn

    2014-12-01

    Full Text Available Existing bioethanol operations rely on starch-based substrates, which have been criticized for their need to displace food crops in order to be produced. As an alternative to these first generation biofuels, the use of agricultural residues is being considered to create more environmentally-benign second generation, or cellulosic biofuels. Recalcitrance of these substrates to fermentation requires extensive pre-treatment processes, which often consume more energy than can be extracted from the ethanol that they produce, so one of the priorities in developing cellulosic ethanol is an effective and efficient pre-treatment method. This study examines the use of superheated steam (SS as a process medium by which wheat straw lignocellulosic material is pre-treated. Following enzymatic hydrolysis, it was found that 47% of the total glucose could be liberated from the substrate, and the optimal conditions for pre-treatment were 15 min in hot water (193 kPa, 119˚C followed by 2 min in SS. Furthermore, a preliminary relative economic analysis showed that the minimum ethanol selling price (MESP was comparable to that obtained from steam explosion, a similar process, while energy consumption was 22% less. The conclusion of the study is that SS treatment stands to be a competitive pre-treatment technology to steam explosion.

  19. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  20. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    MAY TH

    2008-08-12

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

  1. IMPROVING THE GRAVITATIONAL PROPERTIES OF SEWAGE SLUDGE BY PRETREATMENTS

    Directory of Open Access Journals (Sweden)

    Ewelina Nowicka

    2015-01-01

    Full Text Available The formation of sludge is an inevitable consequence of wastewater treatment processes. Their disposal and utilization requires knowledge on technology and engineering. The application of pretreatment processes/conditioning allows to obtain better mechanical properties of sludge. In the last decade a lot of research from around the world focused on new methods of conditioning of sludge can be noticed, i.e. The processes of disintegration, of which the destruction of the mechanical, chemical and biological. Despite different activities of each method (introduced energy, thermal phenomena, chemical reactions, mechanical, their common goal is the destruction of activated sludge floc structure and micro-organisms, which result in changes of properties in sediment and supernatant liquid. The influence of the disintegration of the microwave and freezing/thawing dry ice on selected properties of gravitational surplus activated sludge were presented. Characteristic parameters determined sludge sedimentation processes, i.e. the rate of descent and compaction density index sediment and sludge volume index and changes in the supernatant liquid. The study showed the efficacy of selected methods of sludge disintegration with regard to improving the properties of gravity and becoming a contribution to the determination of the effective methods of deposits’ preconditioning.

  2. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth.

    Science.gov (United States)

    Ma, Fuying; Yang, Na; Xu, Chunyan; Yu, Hongbo; Wu, Jianguo; Zhang, Xiaoyu

    2010-12-01

    The mild acid pretreatment and the combination of biological pretreatment by a white rot fungus Echinodontium taxodii or a brown rot fungus Antrodia sp. 5898 with mild acid pretreatment were evaluated under different pretreatment conditions for enzymatic hydrolysis and ethanol production from water hyacinth. The combined pretreatment with E. taxodii (10 days) and 0.25% H(2)SO(4) was proved to be more effective than the sole acid pretreatment. The reducing sugar yield from enzymatic hydrolysis of co-treated water hyacinth increased 1.13-2.11 fold than that of acid-treated water hyacinth at the same conditions. The following study on separate hydrolysis and fermentation with Saccharomyces cerevisiae indicated that the ethanol yield from co-treated water hyacinth achieved 0.192 g/g of dry matter, which increased 1.34-fold than that from acid-treated water hyacinth (0.146 g/g of dry matter). This suggested that the combination of biological and mild acid pretreatment is a promising method to improve enzymatic hydrolysis and ethanol production from water hyacinth with low lignin content. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    Science.gov (United States)

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pretreatment of microalgae to improve biogas production: a review.

    Science.gov (United States)

    Passos, Fabiana; Uggetti, Enrica; Carrère, Hélène; Ferrer, Ivet

    2014-11-01

    Microalgae have been intensively studied as a source of biomass for replacing conventional fossil fuels in the last decade. The optimization of biomass production, harvesting and downstream processing is necessary for enabling its full-scale application. Regarding biofuels, biogas production is limited by the characteristics of microalgae, in particular the complex cell wall structure of most algae species. Therefore, pretreatment methods have been investigated for microalgae cell wall disruption and biomass solubilization before undergoing anaerobic digestion. This paper summarises the state of the art of different pretreatment techniques used for improving microalgae anaerobic biodegradability. Pretreatments were divided into 4 categories: (i) thermal; (ii) mechanical; (iii) chemical and (iv) biological methods. According to experimental results, all of them are effective at increasing biomass solubilization and methane yield, pretreatment effect being species dependent. Pilot-scale research is still missing and would help evaluating the feasibility of full-scale implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of Pretreatments in Convective Dehydration of Rosehip (Rosa eglanteria

    Directory of Open Access Journals (Sweden)

    Alejandra Mabellini

    2012-04-01

    Full Text Available The aim of this work was to experimentally determine drying curves for thin layer and bed drying of rosehip fruits, with and without pretreatments, to reduce processing times as a function of drying air operating variables, to propose dehydration kinetics of fruits and to determine its kinetic parameters for further use within drying simulation software. Fruits were pre-treated both chemically and mechanically, which included dipping the fruits in NaOH and ethyl oleate solutions; and cutting or perforating the fruit cuticle, respectively. Simulation models were then adopted to fit the kinetics drying data considering fruit volume shrinkage. These simple models minimized the calculation time during the simulation of deep-bed driers. Results show that pre-treatments reduced processing times up to 57%, and evaluated models satisfactorily predicted the drying of rosehip fruit. Effective mass diffusion coefficients were up to 4-fold greater when fruit was submitted to mechanical pretreatments.

  6. Effect of ultrasonic pretreatment on emulsion polymerization of styrene.

    Science.gov (United States)

    Nagatomo, Daichi; Horie, Takafumi; Hongo, Chizuru; Ohmura, Naoto

    2016-07-01

    This study investigated the effect of pretreatment of ultrasonic irradiation on emulsion polymerization of styrene to propose a process intensification method which gives high conversion, high reaction rate, and high energy efficiency. The solution containing styrene monomer was irradiated by a horn mounted on the ultrasonic transducer with the diameter of 5mm diameter and the frequency of 28 kHz before starting polymerization. The pretreatment of ultrasound irradiation as short as 1 min drastically improved monomer dispersion and increased reaction rate even under the agitation condition with low rotational speed of impeller. Furthermore, the ultrasonic pretreatment resulted in higher monomer concentration in polymer particles and produced larger polymer particles than conventional polymerization without ultrasonic pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  8. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    Development of sound technologies of biomass conversion will be increasingly important for many years to come as planetary bounderies drive the development towards a biobased society. Pretreatment of lignocellulosic biomass is, in this regard, an essential technology. Current pretreatment methods......, based on severe physio-chemical processes, are effective, however, they are also costly and energy demanding. An alternative biological pretreatment method, based on the well-known biomass preservation of ensiling, has been proposed. Ensiling holds potential as an integrated storage and pretreatment...... was devoted to method development. This resulted in the development of a simple and flexible standard method forlaboratory ensilingwith a high reproducibility,which is well suited for high-throughput experiments.   A comprehensive study on important parameters in ensiling was conducted to find optimal...

  9. Pretreatments to enhance the digestibility of lignocellulosic biomass

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; Zeeman, G.

    2009-01-01

    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a

  10. 40 CFR 417.64 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Soap Flakes and Powders Subcategory § 417.64 Pretreatment standards for existing sources. Any existing...

  11. 40 CFR 417.24 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.24 Pretreatment standards for existing sources. Any existing...

  12. 40 CFR 417.74 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Bar Soaps Subcategory § 417.74 Pretreatment standards for existing sources. Any existing source subject to...

  13. Pretreatment of bituminous coal for hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer, H.

    1943-03-29

    Bituminous coal became plastic at certain temperature ranges and swelled, causing plugging of preheater tubes. With few exceptions, this problem was encountered only when hydrogenating bituminous coal. This swelling often appeared in the coking of coals, and for the majority of the cases it was found that efforts to reduce the baking ability of bituminous coal also reduced the swelling of coal paste in the preheater tubes. Three methods of pretreatment to reduce swelling were preheating, oxidation (anoxidation), and sulfur treatment. The preheating by hot nitrogen at 250 atm for 3 hours showed no improvement in swelling characteristics, but produced a greater asphalt content and a lower amount of gasification. Absorption of oxygen was shown to increase the viscosity of the coal paste, while preheating in a vacuum showed no effects. Oxidation (anoxidation) increased the splitting and gasification and gave higher asphalt content. The baking ability of Saar coal could be destroyed by addition of 2.5% sulfur and heating for 1/sup 1///sub 2/ hours at 110/sup 0/C, in a stream of H/sub 2/S. The volatile content dropped significantly when the same coal was heated to 200/sup 0/ to 250/sup 0/C. When neutralized Saar coal was dried under a stream of H/sub 2/S, only slight deterioration of the yield was noted with equal degree of gasification. It was concluded that a more or less distinct improvement would be observed from the absorption of sulfur, but that residue processing would have to be altered to account for the sulfur content.

  14. Pretreatment seizure semiology in childhood absence epilepsy.

    Science.gov (United States)

    Kessler, Sudha Kilaru; Shinnar, Shlomo; Cnaan, Avital; Dlugos, Dennis; Conry, Joan; Hirtz, Deborah G; Hu, Fengming; Liu, Chunyan; Mizrahi, Eli M; Moshé, Solomon L; Clark, Peggy; Glauser, Tracy A

    2017-08-15

    To determine seizure semiology in children with newly diagnosed childhood absence epilepsy and to evaluate associations with short-term treatment outcomes. For participants enrolled in a multicenter, randomized, double-blind, comparative-effectiveness trial, semiologic features of pretreatment seizures were analyzed as predictors of treatment outcome at the week 16 to 20 visit. Video of 1,932 electrographic absence seizures from 416 participants was evaluated. Median seizure duration was 10.2 seconds; median time between electrographic seizure onset and clinical manifestation onset was 1.5 seconds. For individual seizures and by participant, the most common semiology features were pause/stare (seizure 95.5%, participant 99.3%), motor automatisms (60.6%, 86.1%), and eye involvement (54.9%, 76.5%). The interrater agreement for motor automatisms and eye involvement was good (72%-84%). Variability of semiology features between seizures even within participants was high. Clustering analyses revealed 4 patterns (involving the presence/absence of eye involvement and motor automatisms superimposed on the nearly ubiquitous pause/stare). Most participants experienced more than one seizure cluster pattern. No individual semiologic feature was individually predictive of short-term outcome. Seizure freedom was half as likely in participants with one or more seizure having the pattern of eye involvement without motor automatisms than in participants without this pattern. Almost all absence seizures are characterized by a pause in activity or staring, but rarely is this the only feature. Semiologic features tend to cluster, resulting in identifiable absence seizure subtypes with significant intraparticipant seizure phenomenologic heterogeneity. One seizure subtype, pause/stare and eye involvement but no motor automatisms, is specifically associated with a worse treatment outcome. © 2017 American Academy of Neurology.

  15. Interaction of Solvents and Mechanical Pretreatment with Enzymatic Lignocellulose Hydrolysis

    OpenAIRE

    Wang, Yumei

    2017-01-01

    Renewable plant biomass is considered as an alternative raw material for the production of fuels and chemicals instead of decreasing fossil resources. Enzymatic hydrolysis of pretreated lignocellulosic material to produce high sugar concentrations is one important step in a bio-refinery process, and can be operated under moderate conditions without by-products. However, the efficiency of the enzymatic hydrolysis is hindered by lignocellulose recalcitrance. Therefore, pretreatments of the biom...

  16. Experimental intracerebral haemorrhage: the effect of nimodipine pretreatment.

    OpenAIRE

    Sinar, E J; Mendelow, A D; Graham, D I; Teasdale, G M

    1988-01-01

    The effect of pretreatment with the calcium antagonist nimodipine on the pathophysiological events which follow an intracerebral haemorrhage in rats was compared with a similar control group. Cerebral blood flow was higher and the amount of pathologically determined ischaemic damage measured by light microscopy was less in the nimodipine pretreated group. Bloodbrain barrier permeability was increased in the nimodipine group, but there was no evidence of cerebral oedema. Nimodipine appeared to...

  17. EFFECTS OF PRETREATMENTS ON CALCIUM ACCUMULATION ONTO GAC

    OpenAIRE

    Miño, Esteban R.; Okuda, Tetsuji; NISHIJIMA, Wataru; OKADA, Mitsumasa

    2007-01-01

    The effect of coagulation and ozonation as pretreatments for granular activated carbon (GAC) filtration on calcium accumulation onto GAC was studied. Three kinds of FA solutions extracted from commercial leaf mold for horticulture were used: FA itself, FA after coagulation (FA-c) and FA after ozonation (FA-oz). Coagulation used as pretreatment before GAC filtration significantly decreased calcium accumulation onto GAC while ozonation caused a small increase on calcium accumulation onto GA...

  18. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification

    Science.gov (United States)

    D.S. Zhang; Q. Yang; J.Y. Zhu; X.J. Pan

    2013-01-01

    SPORL (Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose) pretreatment was applied to switchgrass and optimized through an experimental design using Response Surface Methodology within the range of temperature (163–197 °C), time (3–37 min), sulfuric acid dosage (0.8–4.2% on switchgrass), and sodium sulfite dosage (0.6–7.4% on switchgrass)....

  19. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    OpenAIRE

    Giora Rytwo

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregate...

  20. Influence of pretreatment of cotton yarns prior to biopolishing.

    Science.gov (United States)

    Ulson de Souza, A A; Ferreira, F C S; Guelli U Souza, S M A

    2013-04-02

    Cellulase is one of the enzymes most commonly used in the textile industry for the biopolishing process. The appropriate choice of pretreatment is a possible route to promoting enzymatic attack in situations in which this is not favored due to the effects of packing. In order to evaluate the influence of pretreatment the yarn was maintained in water for 24h before biopolishing to promote greater spacing between the chains. In the tensile testing the pretreated Combed 13/1 yarn showed a greater percentage reduction in the maximum breaking force following biopolishing, evidencing a stronger enzymatic attack. Also, the Combed 13/1 and OE 14/1 yarns without pretreatment had an approximately 22% reduction in the shrinkage and after pretreatment the Carded 13/1 yarn had the best shrinkage reduction values (18%). These data demonstrate that the introduction of the pretreatment promotes a change in the access of the enzyme to the fiber. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Coagulation pretreatment of highly concentrated acrylonitrile wastewater from petrochemical plants.

    Science.gov (United States)

    Zheng, Dongju; Qin, Lin; Wang, Tao; Ren, Xiaojing; Zhang, Zhongguo; Li, Jiding

    2014-01-01

    Acrylonitrile (AN) wastewater is a heavily polluted and a likely hazardous liquid that is generated during the production of AN. Several chemical methods for the pretreatment of AN wastewater are available in laboratory scale. However, the harsh reaction conditions and high operational cost make these methods undesirable. Until now, four-effect evaporation is the only pretreatment method used for AN wastewater in industry despite its huge energy consumption and high cost. It is difficult to find an energy-saving pretreatment technique from the perspective of industrial application. In this study, a safe and low-cost coagulation technique was developed for the pretreatment of AN wastewater. Three types of inorganic coagulant and three types of polymer coagulant were investigated for the coagulation treatment of highly concentrated AN wastewater from petrochemical plants. The effects of coagulant type, dosage, and coagulation conditions on the pretreatment efficiency of AN wastewater were investigated. The results show that a combination of inorganic and polymer coagulants is effective for the pretreatment of AN wastewater.

  2. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.

    Science.gov (United States)

    Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia

    2016-03-01

    Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.

  3. Efficient conversion of pretreated brewer's spent grain and wheat bran by submerged cultivation of Hericium erinaceus.

    Science.gov (United States)

    Wolters, Niklas; Schabronath, Christoph; Schembecker, Gerhard; Merz, Juliane

    2016-12-01

    Brewer's spent grain (BSG) and wheat bran (WB) are industrial byproducts that accumulate in millions of tons per year and are typically applied as animal feed. Since both byproducts show a great potential as substrates for fermentation, the approach developed in this study consists of utilizing these lignocellulosic byproducts for biomass production of the medicinal fungus Hericium erinaceus through submerged cultivation. To increase the biological efficiency of the bioconversion, acidic pretreatment was applied yielding a bioconversion of 38.6% for pretreated BSG and 34.8% for pretreated WB. This study shows that the complete degradation of (hemi)cellulose into monosaccharides was not required for an efficient bioconversion. The produced fungal biomass was applied in a second fermentation step to induce the secondary metabolite erinacine C production. Thus, biomass was produced as a functional food ingredient with erinacine C contents of 174.8mg/g for BSG and 99.3mg/g for WB based bioconversions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biosorption and retention of orthophosphate onto Ca(OH)2-pretreated biomass of Phragmites sp.

    Science.gov (United States)

    Markou, Giorgos; Mitrogiannis, Dimitris; Muylaert, Koenraad; Çelekli, Abuzer; Bozkurt, Hüseyin

    2016-07-01

    The biosorption of phosphorus in the form of orthophosphate (Po) from wastewater using biomass as the sorbent is of potential importance because the Po-loaded biomass could be applied in the agricultural sector as fertilizer and soil conditioner. However, biomass generally displays a very low affinity for Po sorption and therefore biomass surface modification is required. In the present study, the biomass (as model grinded leaves of Phragmites sp. were used) was pretreated with Ca(OH)2 to enhance Po biosorption capacity (qe). The results indicate that the alkaline pretreatment resulted in a modification of surface functional groups. It was concluded that the main sorption mechanisms were ligand exchange and electrostatic attraction. A series of experiments were conducted to investigate the performance of the pretreated biomass for Po uptake under various conditions. Isotherm and thermodynamic studies were also applied and analyzed. The biosorption process was best described by the pseudo-second order kinetic model and Langmuir isotherm, which gave a qmax of 12.27mgP/g at 25°C and pH7. The Ca(OH)2 treated Phragmites biomass applied in this study for Po recovery may present some potential advantages in terms of costs and environmental impact. Copyright © 2016. Published by Elsevier B.V.

  5. Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars

    Science.gov (United States)

    Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.

    2016-06-01

    Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.

  6. Pretreatment status report on the identification and evaluation of alternative processes. Milestone Report No. C064

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.G. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest Lab., Richland, WA (United States); Beary, M.M.; Nicholson, G.A. [Science Applications International Corp., San Diego, CA (United States)

    1993-09-01

    The purpose of this report is to support the development and demonstration of a pretreatment system that will (1) destroy organic materials and ferrocyanide in tank wastes so that the wastes can be stored safely, (2) separate the high-activity and low-activity fractions, (3) remove radionuclides and remove or destroy hazardous chemicals in LLW as necessary to meet waste form feed requirements, (4) support development and demonstration of vitrification technology by providing representative feeds to the bench-scale glass melter, (5) support full-scale HLW vitrification operations, including near-term operation, by providing feed that meets specifications, and (6) design and develop pretreatment processes that accomplish the above objectives and ensure compliance with environmental regulations. This report is a presentation of candidate technologies for pretreatment of Hanford Site tank waste. Included are descriptions of studies by the Pacific Northwest Laboratory of Battelle Memorial Institute; Science Applications International Corporation, an independent consultant; BNFL, Inc. representing British technologies; Numatec, representing French technologies; and brief accounts of other relevant activities.

  7. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.

    Science.gov (United States)

    Ochando-Pulido, J M; Rodriguez-Vives, S; Hodaifa, G; Martinez-Ferez, A

    2012-10-01

    Management of the effluent from the olive oil industry is of capital importance nowadays, especially in the Mediterranean countries. Most of the scarce existing studies concerning olive mill wastewater (OMW) treatment by means of membrane processes not only do fix their aims simply on achieving irrigation standards, but lack suitable pretreatments against deleterious fouling issues. With the target of achieving the parametric requirements for public waterways discharge or even for reuse in the production process, a bench-scale study was undertaken to evaluate the feasibility of a thin-film composite reverse osmosis (RO) membrane (polyamide/polysulfone) for the purification of OMW. Previously, OMW was pretreated by means of chemical oxidation based on Fenton's reagent, flocculation-sedimentation and biosorption through olive stones. Impacts of the main operating parameters on permeate flux and pollutants rejection of the RO process, as well as fouling on the membrane surface, were examined for removing the significant ionic concentration and remaining organic matter load of the pretreated OMW. Combining operating parameters adequately in a semibatch operating regime ensured high and sustainable permeate flux, yielding over 99.4% and 98.5% removal efficiencies for the chemical oxygen demand and ionic content respectively, as well as complete rejection of phenols, iron and suspended solids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Analysis of safety, risk factors and pretreatment methods during rush hymenoptera venom immunotherapy.

    Science.gov (United States)

    Gorska, Lucyna; Chelminska, Marta; Kuziemski, Krzysztof; Skrzypski, Marcin; Niedoszytko, Marek; Damps-Konstanska, Iwona; Szymanowska, Amelia; Siemińska, Alicja; Wajda, Beata; Drozdowska, Adrianna; Jutel, Marek; Jassem, Ewa

    2008-01-01

    The safety profile of venom immunotherapy is a relevant issue. We evaluated the frequency of severe adverse events (SAE), associated risk factors, retrospective comparison of pretreatment protocols including solely H1 receptor blockers and a combination of H1 and H2 receptor blockers during rush Hymenoptera venom immunotherapy. The study group comprised 118 patients. The treatment was initiated according to a 5-day rush protocol with the use of standardized venom allergens of either wasp or honeybee. During the rush induction, side effects occurred in 18 patients (15.2%), whereas SAE were present in 7 patients (5.9%). Twelve out of 18 (66.6%) developed anaphylactic reactions on the fourth day of the rush protocol, with the majority of cases at a dose of 40 or 60 microg of the venom extract (p = 0.001). The frequency of SAE was also significantly higher on the fourth day than thereafter (p = 0.0001) as well as in patients allergic to bee venom (p = 0.049). All systemic side effects were more frequent in women (p = 0.0065). However, this relation was not true when SAE were consider (p = 0.11). A higher percentage of SAE was observed in the subjects pretreated with both H1 and H2 receptor antagonists than in those pretreated with H1 blocker only (8.8 vs. 4.1%); however, the difference was not significant. Considerable severity of allergic adverse events requires particular attention to patients allergic to bee venom and during rush phase, especially when rapidly increasing doses are administered. Pretreatment with H2 blockers is debatable and warrants further investigation. Copyright (c) 2008 S. Karger AG, Basel.

  9. Woody biomass pretreatment for cellulosic ethanol production : technology and energy consumption evaluation

    Science.gov (United States)

    Junyong Zhu; X.J. Pan

    2010-01-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed...

  10. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance

    Science.gov (United States)

    J.Y. Zhu; Xuejun Pan; Ronald S. Jr. Zalesny

    2010-01-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the...

  11. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  12. Biomass pretreatment affects Ustilago maydis in producing itaconic acid.

    Science.gov (United States)

    Klement, Tobias; Milker, Sofia; Jäger, Gernot; Grande, Philipp M; Domínguez de María, Pablo; Büchs, Jochen

    2012-04-05

    In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood

  13. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp.

    Science.gov (United States)

    Xie, Chunliang; Gong, Wenbing; Yang, Qi; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2017-11-01

    White-rot fungi combined with alkaline/oxidative (A/O) pretreatments of industrial hemp woody core were proposed to improve enzymatic saccharification. In this study, hemp woody core were treated with only white rot fungi, only A/O and combined with the two methods. The results showed that Pleurotus eryngii (P. eryngii) was the most effective fungus for pretreatment. Reducing sugars yield was 329mg/g with 30 Filter Paper Unit (FPU)/g cellulase loading when treated 21day. In the A/O groups, the results showed that when treated with 3% NaOH and 3% H2O2, the yield of reducing sugars was 288mg/g with 30FPU/g cellulase loading. After combination pretreatment with P. eryngii and A/O pretreatment, the reducing sugar yield from enzymatic hydrolysis of combined sample increased 1.10-1.29-fold than that of bio-treated or A/O pretreatment sample at the same conditions, suggesting that P. eryngii combined with A/O pretreatment was an effective method to improve enzyme hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140 degrees C. Surface response models revealed significantly...... correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after...

  15. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    Science.gov (United States)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  16. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production.

    Science.gov (United States)

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2015-01-01

    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2014-01-01

    pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2...

  18. Pretreatment Methods of Ligno - Cellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Aritra Das

    2015-12-01

    Full Text Available Present work primarily deals with the exhaustive investigations of rapid de-lignification processes from source-sorted organic fractions that are recalcitrant in nature. Organic solid wastes (OSW belongs to the organic fraction of municipal solid wastes (MSW and they act as enormous potential substrate for alternative source of energy in the form of bio-fuels. Nevertheless, these substrates are not easily biodegradable and the degree of biodegradability is solely dependent on the composition & characteristic of organic solid wastes in municipal solid wastes. The component responsible for recalcitrance of organic solid wastes is lignin that occurs in variable amounts in different plant residues. In order to remove the recalcitrance from organic fraction municipal solid wastes and to make it more easily degradable by microbial consortia, certain pretreatment techniques have been adopted and they are applied either individually or in combined way for enhancement of bio-methanation i.e anaerobic digestion (AD process. The goal of pretreatment method is to make the cellulose in micro-fibrils available for hydrolysis and improve the rate of hydrolysis. This paper reviews pretreatment techniques including physical, physico-chemical, chemical, biological methods respectively. The various effects of pretreatment on organic solid wastes are discussed separately and pretreatment methods have been compared on the basis of cost, efficiency and suitability to substrate.

  19. Effect of pretreating of host oil on coprocessing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wender, I.; Tierney, J.W.

    1995-10-01

    A petroleum vacuum resid (1,000 F+) was pretreated by catalytic hydrogenation and hydrocracking reactions and the pretreated resids (host oils) were then coprocessed with coal. The fraction of coal converted to soluble products and the yield of pentane-soluble oils were determined after coprocessing. The phenolic oxygen concentration of the oil product provided a means for estimating the fraction of coal liquids in the products; oils originating from coal had much higher concentrations of phenolic oxygen than those originating from petroleum. Resids that were pretreated by mild temperature hydrogenation reactions, where cracking was suppressed, became better host oils; when these pretreated resids were coprocessed with coal, more of the mixture was converted to tetrahydrofuran-soluble products. Depending on the pretreatment, the pentane-soluble oil yields following thermal coprocessing were either significantly lower or slightly higher than the oil yields obtained with untreated resid. The yield of oils was strongly affected by the concentration of coal in the feed. The presence of small amounts, less than 33% of coal, enhanced the conversion of petroleum resid to oils during coprocessing, although the increases were small. 91 refs.

  20. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    Directory of Open Access Journals (Sweden)

    Yuyan An

    Full Text Available 5-aminolevulinic acid (ALA, a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn. plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC, and reduced leaf superoxide anion ([Formula: see text] production rate and malonaldehyde (MDA content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD and peroxidase (POD, root vigor, and activities of root alcohol dehydrogenase (ADH, and lactate dehydrogenase (LDH, indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  1. Effect of pretreating of host oil on coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hajdu, P.E.; Tierney, J.W.; Wender, I. [Univ. of Pittsburgh, PA (United States)

    1995-12-31

    The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lower molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.

  2. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  3. Steam explosion pretreatment improved the biomethanization of coffee husks.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lobo; Cordeiro, Paulo Henrique de Miranda; Passos, Fabiana; Gurgel, Leandro Vinícius Alves; de Aquino, Sérgio Francisco; Fdz-Polanco, Fernando

    2017-08-31

    This study evaluated the potential of energy generation using a combined heat and power co-generation system (CHP) from biogas produced during the anaerobic digestion of coffee husks (CH) pretreated with steam explosion. Pretreatment conditions assessed were time (1, 5, 15 and 60min) and temperature (120, 180 and 210°C). Polysaccharides solubilisation and biogas production were not correlated. While pretreatment with severities higher than 4 resulted in a highest solubilisation of cellulose, hemicelluloses and lignin; however, furans concentration in those cases hindered biomass biodegradation. Considering a CHP, all pretreatment conditions were worthwhile when compared to non-pretreated CH. The best condition was 120°C for 60min, in which a 2.37 severity showed the highest methane yield (144.96NmLCH4gCOD(-1)) and electricity production (0.59kWhkgCH(-1)). However, even better results could be achieved using 120°C for only 5min, which would lead to a larger amount of CH daily processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intensification of biogas production using pretreatment based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Gogate, Parag R; Csoka, Levente; Dregelyi-Kiss, Agota; Horvath, Miklos

    2016-05-01

    The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    The potential of wheat straw for ethanol production after pretreatment with O3 generated in a plasma at atmospheric pressure and room temperature followed by fermentation was investigated. We found that cellulose and hemicellulose remained unaltered after ozonisation and a subsequent washing step...... (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... and unwashed wheat straw for ethanol production (maximum ethanol yield, 52%). O3 cost estimations were made for the production of ethanol at standard conditions....

  6. Hazard Analysis for the Pretreatment Engineering Platform (PEP)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robin S.; Geeting, John GH; Lawrence, Wesley E.; Young, Jonathan

    2008-07-10

    The Pretreatment Engineering Platform (PEP) is designed to perform a demonstration on an engineering scale to confirm the Hanford Waste Treatment Plant Pretreatment Facility (PTF) leaching and filtration process equipment design and sludge treatment process. The system will use scaled prototypic equipment to demonstrate sludge water wash, caustic leaching, oxidative leaching, and filtration. Unit operations to be tested include pumping, solids washing, chemical reagent addition and blending, heating, cooling, leaching, filtration, and filter cleaning. In addition, the PEP will evaluate potential design changes to the ultrafiltration process system equipment to potentially enhance leaching and filtration performance as well as overall pretreatment throughput. The skid-mounted system will be installed and operated in the Processing Development Laboratory-West at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  7. Acid hydrolysis of sugar beet pulp as pretreatment for fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chamy, R.; Illanes, A.; Aroca, G.; Nunez, L. [Universidad Catolica de Valparaiso (Chile). School of Biochemical Engineering

    1994-12-31

    The purpose of this work is to optimize substrate pretreatment by selectively solubilizing the hemicellulose fraction to render a cellulose-enriched fraction for further fermentation or enzyme hydrolysis. Hemicellulose hydrolyzate, usually a waste stream, is proposed to be fermented by the pentose-utilizing yeast Pichia stipitis. Sugar beet pulp (SBP) was chosen as a substance due to its low lignin content which makes substance pretreatment simpler and less expensive. Hemicellulose utilization is very important in the case of SBP, whose hemicellulose content is as high as 50%. The best conditions for SBP pretreatment were: 55 g/l of 32-50 mesh SBP, 1.1 g H{sub 2}SO{sub 4}/g SBP, 90 min at 80{sup o}C and 400 rpm. Under such conditions, 86.3% and 7.8% of cellulose and hemicellulose hydrolysis, respectively, were obtained. (author)

  8. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    Science.gov (United States)

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.

  10. Fungal pretreatment of straw for enhanced biogas yield

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xinmei; Pilar Castillo, Maria del; Schnuerer, Anna

    2013-07-01

    Among lignocellulosic materials from the agricultural sector, straw is considered to have the biggest potential as a biofuel and therefore also represents a big potential for biogas production. However, the degradation of lignocellulosic materials is somewhat restricted due to the high content of lignin that binds cellulose and hemicellulose and makes them unavailable for microbial degradation. Consequently, low methane yields are achieved. The biodegradability of the lignocellulosic material can be increased by a pretreatment. Optimally the pre-treatment should give an increase in the formation of sugars while avoiding the degradation or loss of carbohydrates and the formation of inhibitory by-products. The treatment should also be cost-effective. Different methods for pre-treatment of lignocellulosic material have been explored, for example thermal, acid, alkaline and oxidative pretreatments. However, they often have a high energy demand. Biological treatment with fungi represents an alternative method for pretreatment of lignocellulosic materials that could be comparably more environmentally friendly, easier to operate and with low energy input. The fungal groups of interest for lignocellulose degradation are the wood decaying fungi, such as the white-, brown-rot and cellulose degraders. The purpose with this work was to increase the biogas potential of straw by using a pretreatment with fungi. Straw was incubated with fungi at aerobic conditions under certain periods of time. The growth and colonization of the straw by the fungi was expected to increase the availability of the lignocellulosic structure of the straw and thus positively affect the biogas potential. In addition also, the spent lignocellulosic material from the cultivation of edible fungi was investigated. We hypothesized that also growth of edible fungi could give a more accessible material and thus give higher biogas potential compared to the substrate before fungal growth.

  11. Effect of nitrogen oxide pretreatments on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Borrevik, R.K.; Wilke, C.R.; Brink, D.L.

    1978-09-01

    This work considers the effect of nitrogen oxide pretreatments on the subsequent enzymatic hydrolysis by Trichoderma viride cellulase of the cellulose occurring in wheat straw; Triticum Aestivum-L, em. Thell. In the pretreatment scheme the straw is first reacted with nitric oxide and air, and then extracted in aqueous solution. In this way, overall sugar yields increased from 17% for the case of no pretreatment to 70%. The glucose yield increased from 20 to 60%. The yield of glucose during enzymatic hydrolysis is dependent on the reaction time of the gas phase reaction. For a 24 hour reaction the yield is 60%, but drops to 45% for a reaction time of 2 hours. Xylose, a potentially valuable side product of the pretreatment, is obtained by dilute acid hydrolysis during the extraction stage in yields of 90 to 96%. In acidic media, the kinetics of both the rate of formation and destruction of xylose were found to follow the first-order rate laws reported in the literature. These were determined to be 4.5 (liter/gmole)(hr./sup -1/) and 0.03 hr./sup -1/, respectively. However, the rate of formation is much greater (20.4 (liter/gmole) (hr./sup -1/)) when the extraction liquor is recycled. The most likely explanation for this is that the increased total acidity of the recycled liquor compensates for diffusional limitations. A preliminary design and cost analysis of the pretreatment-hydrolysis scheme indicates that glucose can be produced at 10.86 cents per pound, exclusive of straw cost. The corresponding cost per pound of total sugars produced is 5.0 cents. Sensitivity analyses indicate that 42% of the pretreatment cost (excluding hydrolysis) can be attributed to nitric oxide production, and the high yield of sugar obtained is advantageous when considering the cost of straw.

  12. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  13. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  14. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    Science.gov (United States)

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  15. Predicted effects of mineral neutralization and bisulfate formation on hydrogen ion concentration for dilute sulfuric acid pretreatment.

    Science.gov (United States)

    Lloyd, Todd A; Wyman, Charles E

    2004-01-01

    Dilute acid and water-only hemicellulose hydrolysis are being examined as part of a multiinstitutional cooperative effort to evaluate the performance of leading cellulosic biomass pretreatment technologies on a common basis. Cellulosic biomass, such as agricultural residues and forest wastes, can have a significant mineral content. It has been shown that these minerals neutralize some of the acid during dilute acid pretreatment, reducing its effectiveness, and the higher solids loadings desired to minimize costs will require increased acid use to compensate. However, for sulfuric acid in particular, an equilibrium shift to formation of bisulfate during neutralization can further reduce hydrogen ion concentrations and compound the effect of neutralization. Because the equilibrium shift has a more pronounced effect at lower acid concentrations, additional acid is needed to compensate. Coupled with the effect of temperature on acid dissociation, these effects increase acid requirements to achieve a particular reaction rate unless minerals are removed prior to hydrolysis.

  16. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.

    Science.gov (United States)

    Zhou, Ping-Ping; Meng, Jiao; Bao, Jie

    2017-01-01

    The aim of this work is to study the citric acid fermentation by a robust strain Aspergillus niger SIIM M288 using corn stover feedstock after dry dilute sulfuric acid pretreatment and biodetoxification. Citric acid at 100.04g/L with the yield of 94.11% was obtained, which are comparable to the starch or sucrose based citric acid fermentation. No free wastewater was generated in the overall process from the pretreatment to citric acid fermentation. Abundant divalent metal ions as well as high titer of potassium, phosphate, and nitrogen were found in corn stover hydrolysate. Further addition of extra nutrients showed no impact on increasing citric acid formation except minimum nitrogen source was required. Various fermentation parameters were tested and only minimum regulation was required during the fermentation. This study provided a biorefining process for citric acid fermentation from lignocellulose feedstock with the maximum citric acid titer and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Study on the Pretreating Approaches for the Potato Straws

    Directory of Open Access Journals (Sweden)

    An Yumin

    2016-01-01

    Full Text Available This paper proposes an approach to pretreat the potato straws. Specifically, potato straws are handled using various kinds of chemical solutions, including HCI, H2SO4, NaOH and NaOH+H2O2, under different concentrations. For each kind of solution, particular indicators, such as the cellulose content as well as scarification ratio of the treated straws, are studied in the paper. Based on orthogonal experiments, the best pretreatment effect is obtained by using the solution of 4% NaOH under temperature of 60º Celsius, solid-to-liquid ratio of 1:10, and processing time of 6d.

  18. Osmotic dehydration - a pre-treatment for pineapple drying

    CSIR Research Space (South Africa)

    Lombard, GE

    2006-02-01

    Full Text Available Engineering, University College Cork, Ireland 1Email: glombard@csir.co.za INTRODUCTION Osmotic dehydration is widely used to remove part of the water content of fruit to obtain a product of intermediate moisture or as a pre-treatment (1). Osmotic.... Osmotic dehydration was considered as a pre-treatment for pineapple with the final aim of obtaining high quality dried fruit products. MATERIALS AND METHODS Pineapple cylinders of 2 cm in diameter and 1 cm thick were cut using a cork borer (Figure 1...

  19. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Mohagheghi Ali

    2011-09-01

    Full Text Available Abstract Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B' exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive

  20. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  1. 40 CFR 406.106 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Wheat Starch and Gluten Subcategory § 406.106... properties, controlled by this section, which may be discharged to a publicly owned treatment works by a new point source subject to the provisions of this subpart. Pollutant or pollutant property Pretreatment...

  2. Effect of seed collection times and pretreatment methods on ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... McDonald I, Omonhinmin AC, Ogboghodo IA (2002). Germination ecology of two species Tamarindus indica and Prosopis africana. Seed Technol. 24: 103-107. McDonald I, Omoruyi O (2003). Effect of seed pre-treatment on germination of two surface types of Dialium guianeense. Seed. Technol. 25: 41-44.

  3. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    Methods: RBCs were pre-treated with trehalose and saccharose, and then lyophilized and re-hydrated. ... trehalose and saccharose can combine with cell proteins ..... Food Sci. 2010; 31(09): 216-218. 12. Fang ZQ, Wang CF, Wei HR. Effects of mercury and selenium on Na+/K+-ATPase activity in Xiphophorus helleri Heckel.

  4. 40 CFR 403.6 - National pretreatment standards: Categorical standards.

    Science.gov (United States)

    2010-07-01

    .... In its application to the Control Authority, the Industrial User must provide engineering, production... categorical Pretreatment Standards pursuant to paragraph 8 of the NRDC v. Costle Consent Decree (12 ERC 1833... Authority, the Industrial User must provide engineering, production, sampling and analysis and such other...

  5. 40 CFR 426.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 426.16 Section 426.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Insulation Fiberglass Subcategory § 426.16...

  6. Pretreatment of chicken feather waste for improved biogas production.

    Science.gov (United States)

    Forgács, Gergely; Lundin, Magnus; Taherzadeh, Mohammad J; Sárvári Horváth, Ilona

    2013-04-01

    This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53-2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm(3)/kg VS(added), which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11-50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH(4) yield of 0.485 Nm(3)/kg VS(-1) d(-1) was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.

  7. Effects of Chloramphenicol Pretreatment on Xylazine/ketamine ...

    African Journals Online (AJOL)

    Keyword: Chloramphenicol, xylazine, ketamine, anaesthesia, cats. The effect of pretreatment with a single intramuscular (im) dose of chloramphenicol (10mg/kg) on the anaethesia induced with im injection of ketamine (25mg/kg) was investigated in five cats premedicated with im xylazine (1.0mg/kg) and atropine ...

  8. Alkaline pretreatment of Mexican pine residues for bioethanol ...

    African Journals Online (AJOL)

    The locally sourced residue samples of Pinus arizonica, Pinus cooperi, and Pinus durangensis from the state of Durango in Mexico were analyzed for optimal yield of ethanol production. The samples were mixed at an equal proportion using a particle size of 0.59 mm. Each individual mixture was pretreated with either ...

  9. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  10. Separations/pretreatment considerations for Hanford privatization phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; McGinnis, C.P.; Welch, T.D.

    1998-05-01

    The Tank Focus Area is funded to develop, demonstrate, and deploy technologies that will assist in the treatment and closure of its nuclear waste tanks. Pretreatment technologies developed to support the privatization effort by the Department of Energy are reviewed. Advancements in evaporation, solid-liquid separation, sludge treatment, solids controls, sodium management, and radionuclide removal are considered.

  11. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  12. 40 CFR 421.56 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... Refining Subcategory § 421.56 Pretreatment standards for new sources. Except as provided in 40 CFR 403.7.... The mass of wastewater pollutants in primary electrolytic copper refining process wastewater... .031 Copper .063 .030 Nickel .027 .018 (d) Subpart E—Casting Wet Air Pollution Control. PSNS Pollutant...

  13. Anaerobic digestion of yard waste with hydrothermal pretreatment.

    Science.gov (United States)

    Li, Wangliang; Zhang, Guangyi; Zhang, Zhikai; Xu, Guangwen

    2014-03-01

    The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79%, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.

  14. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  15. Coagulation and ultrafiltration in seawater reverse osmosis pretreatment

    NARCIS (Netherlands)

    Tabatabai, S.A.A.

    2014-01-01

    Seawater desalination is a globally expanding coastal industry with an installed capacity of over 80 million m3/day. Algal blooms pose a challenge to the operation of seawater reverse osmosis (SWRO) membranes and pre-treatment systems due to high concentrations of algal cells and algal organic

  16. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Directory of Open Access Journals (Sweden)

    Giora Rytwo

    2012-01-01

    Full Text Available Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a neutralization of the charges (“coagulation” and (b bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”. The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs, turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral, enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step.

  17. Pretreatment of lignocellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.; Hazewinkel, O.; Bakker, R.R.C.

    2006-01-01

    A biomass pretreatment process is being developed based on contacting lignocellulosic biomass with 70% sulfuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulfuric acid is partly recovered by anion-selective membranes

  18. Pre-treatment of biomasses using magnetised sulfonic acid catalysts

    Directory of Open Access Journals (Sweden)

    Yane Ansanay

    2017-06-01

    Full Text Available There is a significant interest in employing solid acid catalysts for pre-treatment of biomasses for subsequent hydrolysis into sugars, because solid acid catalysts facilitate reusability, high activity, and easier separation. Hence the present research investigated pretreatment of four lignocellulosic biomasses, namely Switchgrass (Panicum virgatum L ‘Alamo’, Gamagrass (Tripsacum dactyloides, Miscanthus (Miscanthus × giganteus and Triticale hay (Triticale hexaploide Lart. at 90°C for 2 h using three carbon-supported sulfonic acid catalysts. The catalysts were synthesized via impregnating p-Toluenesulfonic acid on carbon (regular and further impregnated with iron nitrate via two methods to obtain magnetic A and magnetic B catalysts. When tested as pre-treatment agents, a maximum total lignin reduction of 17.73±0.63% was observed for Triticale hay treated with magnetic A catalyst. Furthermore, maximum glucose yield after enzymatic hydrolysis was observed to be 203.47±5.09 mg g–1 (conversion of 65.07±1.63% from Switchgrass treated with magnetic A catalyst. When reusability of magnetised catalysts were tested, it was observed that magnetic A catalyst was consistent for Gamagrass, Miscanthus × Giganteus and Triticale hay, while magnetic B catalyst was found to maintain consistent yield for switchgrass feedstock. Our results suggested that magnetised solid acid catalyst could pre-treat various biomass stocks and also can potentially reduce the use of harsh chemicals and make bioenergy processes environment friendly.

  19. Influence of pretreatment of agriculture residues on phytase ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... production with maximum activity of 68 IU/ml in medium containing 1% rice bran on 11th day of fermentation. Addition of glucose up to 5% in fermentation medium containing 1% rice bran, enhanced phytase production. Pretreatment of agriculture residues with water to remove excess inorganic phosphate ...

  20. Effects of embryo induction media and pretreatments in isolated ...

    African Journals Online (AJOL)

    Isolated microspores of many plants can be induced in vitro to switch their developmental process from the gametophytic to a sporophytic pathway under appropriate conditions and produce haploid plants. This research reports the effects of cold pretreatment with or without either mannitol or chemical + heat and also the ...

  1. Effects of embryo induction media and pretreatments in isolated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-16

    Nov 16, 2009 ... Isolated microspores of many plants can be induced in vitro to switch their developmental process from the gametophytic to a sporophytic pathway under appropriate conditions and produce haploid plants. This research reports the effects of cold pretreatment with or without either mannitol or chemical + ...

  2. Sugar cane bagasse pretreatment: An attempt to enhance the ...

    African Journals Online (AJOL)

    +1.5%NaOH. The pretreatment of bagasse with 2.0% H2O2 along with 1.5% NaOH enhanced the biosynthesis of cellulases by H. insolens. Production rate was also optimized with different parameters like thickness of fermentation medium, ...

  3. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine ...

  4. Effect of lime pre-treatment mellowing duration on some ...

    African Journals Online (AJOL)

    The effect of lime pre-treatment duration on some geotechnical properties of shale treated with cement for use as flexible pavement material was studied. Atterberg's limits, compaction, California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were conducted on the natural shale and shale pre-treated ...

  5. Effect of pretreatments on seed viability during fruit development of ...

    African Journals Online (AJOL)

    Studies to identify the stage at which developing fruits of Irvingia gabonensis (var. excelsa and var. gabonensis), picked from standing trees and/or forest floors, attain maximum viability and germinability were conducted in two harvesting seasons in 2000 and 2001. Some pretreatment methods were used as a means of ...

  6. Effect of seed collection times and pretreatment methods on ...

    African Journals Online (AJOL)

    ... collection times and pretreatment methods on germination of Terminalia sericea Burch. ex DC. MG Likoswe, JP Njoloma, WF Mwase, CZ Chilima ... concentrated sulphuric acid (95%) for 3 and 4 h gave poorest germination (0%). However, in the second collection, use of concentrated sulphuric acid for 2 h gave highest ...

  7. Protein precipitation methods for sample pretreatment of grass pea ...

    African Journals Online (AJOL)

    Protein precipitation methods for sample pretreatment of grass pea extracts. Negussie Wodajo, Ghirma Moges, Theodros Solomon. Abstract. Bull. Chem. Soc. Ethiop. 1996, 10(2), 129-134. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics.

  8. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    Science.gov (United States)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.

  9. 40 CFR 428.66 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 428.66 Section 428.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded...

  10. The use of clay-polymer nanocomposites in wastewater pretreatment.

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges ("coagulation") and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent ("flocculation"). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as "coagoflocculants" for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step.

  11. Influence of surface pretreatment of fiber posts on cement delamination

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Objectives To evaluate the influence of post surface pretreatment on the delamination strength of different cements from a prefabricated FRC post tested in a three-point bending test. Methods Three cements were tested; RelyX Unicem, DC Core Automix, and Panavia F2.0. Per cement, 40 posts (D.T. Light

  12. 40 CFR 463.26 - Pretreatment for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment for new sources. 463.26 Section 463.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.26...

  13. 40 CFR 463.35 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources. 463.35 Section 463.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water...

  14. 40 CFR 463.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 463.36 Section 463.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water Subcategory § 463...

  15. 40 CFR 463.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 463.16 Section 463.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact Cooling and Heating Water...

  16. 40 CFR 463.25 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources. 463.25 Section 463.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water...

  17. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Abstract. Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water.

  18. Isoelectric focusing: Sample pretreatment – separation – hyphenation

    NARCIS (Netherlands)

    Silvertand, L.H.H.|info:eu-repo/dai/nl/304832871

    2009-01-01

    The three major goals of the research presented in this thesis are: • Investigation of electrophoretic sample pretreatment strategies. • Study and optimization of capillary isoelectric focusing for separation of proteins. • Hyphenation of isoelectric focusing to MS and iSPR. Chapter 2 gives an

  19. Effects of magnetic fields pretreatment of mungbean seeds on sprout ...

    African Journals Online (AJOL)

    The aim of this investigation was to determine the effect of magnetic field pretreatment of mungbean seeds on the yield and quality of sprout. The sprout elongation, biomass and nutrition ingredients (for example, concentration of soluble sugar, protein, vitamin C, etc.) were measured to test this effect of magnetic field.

  20. 40 CFR 417.86 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.86 Section 417.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps...

  1. 40 CFR 417.134 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.134 Section 417.134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Chlorosulfonic...

  2. 40 CFR 417.54 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.54 Section 417.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine...

  3. 40 CFR 417.46 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.46 Section 417.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine Concentration...

  4. 40 CFR 417.126 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.126 Section 417.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Sulfamic Acid Sulfation...

  5. 40 CFR 417.26 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.26 Section 417.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Fatty Acid Manufacturing by...

  6. 40 CFR 417.94 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.94 Section 417.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum Sulfonation...

  7. 40 CFR 417.124 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.124 Section 417.124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Sulfamic Acid...

  8. 40 CFR 417.156 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.156 Section 417.156 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Spray Dried...

  9. 40 CFR 417.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.16 Section 417.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing by Batch...

  10. 40 CFR 417.116 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...

  11. 40 CFR 417.104 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.104 Section 417.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Air-SO3 Sulfation...

  12. 40 CFR 417.76 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.76 Section 417.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Bar Soaps...

  13. 40 CFR 417.56 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.56 Section 417.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine Distillation...

  14. 40 CFR 417.96 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.96 Section 417.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum Sulfonation and...

  15. 40 CFR 417.14 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.14 Section 417.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing...

  16. 40 CFR 417.106 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.106 Section 417.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Air-SO3 Sulfation and...

  17. 40 CFR 417.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.36 Section 417.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing by Fatty...

  18. 40 CFR 417.34 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.34 Section 417.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing...

  19. 40 CFR 417.136 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.136 Section 417.136 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Chlorosulfonic Acid Sulfation...

  20. 40 CFR 417.44 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.44 Section 417.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine...

  1. 40 CFR 417.66 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.66 Section 417.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Soap Flakes...

  2. 40 CFR 417.114 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 417.114 Section 417.114 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and...

  3. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment.

    Science.gov (United States)

    Calabrò, Paolo S; Greco, Rosa; Evangelou, Alexandros; Komilis, Dimitrios

    2015-11-01

    The objective of the work was to assess the effect of mild alkaline pretreatment on the anaerobic biodegradability of tomato processing waste (TPW). Experiments were carried out in duplicate BMP bottles using a pretreatment contact time of 4 and 24 h and a 1% and 5% NaOH dosage. The cumulative methane production during a 30 d period was recorded and modelled. The alkaline pretreatment did not significantly affect methane production in any of the treatments in comparison to the control. The average methane production for all runs was 320 NmL/gVS. Based on first order kinetic modelling, the alkaline pretreatment was found to slow down the rate of methanogenesis, mainly in the two reactors with the highest NaOH dosage. The biodegradability of the substrates ranged from 0.75 to 0.82 and from 0.66 to 0.72 based on two different approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2017-03-01

    Full Text Available The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties. The acetone pretreatment of the bio-oil/epoxy mixture was found to improve the cross-linking potential and substitution rate based on its mechanical, chemical, and thermal properties. Specifically, the bio-oil was blended with epoxy resin at weight ratios ranging from 2:1 to 1:5 and were then cured. A higher bio-oil substitution rate was found to lower the shear bond strength of the bio-oil/epoxy resins. However, when an acetone pretreatment was used, it was possible to replace the bio-oil by as much as 50% while satisfying usage requirements. Extraction of the bio-oil/epoxy mixture with four different solvents demonstrated an improvement in cross-linking after acetone pretreatment. ATR-FTIR analysis confirmed that the polymer achieved a higher cross-linked structure. DSC and TGA curves showed improved thermal stability with the addition of the acetone pretreatment. UV-Vis characterization showed that some functional groups of the bio-oil to epoxy system were unreacted. Finally, when the resin mixture was utilized to bond wood, the acetone pretreatment coupled with precise tuning of the bio-oil:epoxy ratio was an effective method to control cross-linking while ensuring acceptable bond strength.

  5. Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates.

    Science.gov (United States)

    Peces, M; Astals, S; Mata-Alvarez, J

    2015-12-01

    The present study evaluates the effect of moisture in low-temperature and ultrasound pretreatment on lignocellulosic substrates anaerobic biodegradability, where brewer's spent grain was used as model substrate. Besides moisture content, low-temperature pretreatment was also evaluated in terms of temperature (60-80°C) and exposure time (12-72 h). Likewise, ultrasonication was also evaluated in terms of specific energy (1000-50,000 kJ kg TS(-1)). In addition, the effect of substrate particle size reduction by milling pretreatment was also considered. The results clearly demonstrated that substrate moisture (total solid concentration) is a significant parameter for pretreatment performance, although it has been rarely considered in pretreatment optimisation. Specifically, moisture optimisation increased the methane yield of brewer's spent grain by 6% for low-temperature pretreatment (60°C), and by 14% for ultrasound pretreatment (1000 kJ kg TS(-1)) towards the control (without pretreatment). In both pretreatments, the experimental optimum total solid concentration was 100 gTS kg(-1). Thus, lowering substrate moisture, a strategy suggested attaining energetic pretreatment feasibility, needs to be analysed as another pretreatment variable since it might have limited correlation. Finally, a preliminary energetic balance of the pretreatments under study showed that the extra methane production could not cover the energetic pretreatment expenses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimization of the dilute maleic acid pretreatment of wheat straw

    Directory of Open Access Journals (Sweden)

    Scott Elinor L

    2009-12-01

    Full Text Available Abstract Background In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1 glucose benefits from improved enzymatic digestibility of wheat straw solids; (2 xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3 maleic acid replenishment costs; (4 neutralization costs of pretreated material; (5 costs due to furfural production; and (6 heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables. Results When costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid, after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan, 17 €/Mg xylose benefits (from liquid: 80% of all xylan, 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible. Conclusions After the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid

  7. Thermochemical pretreatment of underutilized woody biomass for manufacturing wood composites

    Science.gov (United States)

    Pelaez Samaniego, Manuel Raul

    Prescribed fires, one method for reducing hazardous fuel loads from forest lands in the US, are limited by geographical, environmental, and social impacts. Mechanical operations are an alternative type of fuel treatment but these processes are constrained by the difficulty of economically harvesting and/or using large amounts of low-value woody biomass. Adoption and integration of new technologies into existing wood composite facilities offer better utilization of this material. A pretreatment that enables integration of technologies in a typical composite facility will aid with diversification of product portfolio (e.g. wood composites, fuel pellets, liquid fuels, chemicals). Hot water extraction (HWE) is an option for wood pretreatment. This work provides a fundamental understanding of the physicochemical changes to wood resulting from HWE, and how these changes impact processing and performance of composites. Specific objectives were to: 1) review literature on studies related to the manufacture of composites produced with thermally pretreated wood, 2) manufacture wood plastic composites (WPC) and particleboard using HWE wood and evaluate the impacts of pretreatment on product properties, 3) develop an understanding of the effect of HWE on lignin properties, specifically lignin at the cells surface level after migration from cell walls and middle lamella, 4) discern the influence of lignin on the fiber surface on processing WPCs, and, 5) investigate the effect of changing the pretreatment environment (inert gas instead of water) on lignin behavior. Results show that HWE enhances the resistance of both WPCs and particleboard to water with positive or no effect on mechanical properties. Reduction of hemicelluloses and lignin property changes are suggested as the main reasons for enhancing interaction between wood fiber and resins during composite processing. Lignin on the surface of particles after HWE interacts with thermoplastics during WPCs compounding, thus

  8. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    Science.gov (United States)

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk.

    Science.gov (United States)

    Ang, Teck Nam; Ngoh, Gek Cheng; Chua, Adeline Seak May

    2013-05-01

    The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimization using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimized with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimized condition (0.5% (w/v) HCl loading, 125 °C, 1.5 h) is relatively mild, and resulted in ~22.3mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization studies that involved FT-IR, XRD, SEM, and BET surface area determination showed that the pretreated rice husk consisted mainly of cellulose and lignin. Compared to untreated rice husk, pretreated rice husk possessed increased pore size and pore volume, which are expected to be beneficial for fungal growth during fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lignocellulose pretreatment severity – relating pH to biomatrix opening

    DEFF Research Database (Denmark)

    Pedersen, Mads; Meyer, Anne S.

    2010-01-01

    different pH values, temperatures, types of catalysts, and holding times. The consequences of the pretreatment on lignocellulosic biomass are described with special emphasis on the chemical alterations of the biomass during pretreatment, especially highlighting the significance of the pretreatment pH. We...... present a new illustration of the pretreatment effects encompassing the differential responses to the pH and temperature. A detailed evaluation of the use of severity factor calculations for pretreatment comparisons signifies that the multiple effects of different pretreatment factors on the subsequent...... the hydrolysis yields (glucose, xylose) and the pretreatment pH, but no correlation with the pretreatment temperature (90–200 °C). A better recognition and understanding of the factors affecting biomatrix opening, and use of more standardized evaluation protocols, will allow for the identification of new...

  12. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis,

  13. 40 CFR 403.10 - Development and submission of NPDES State pretreatment programs.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND... compliance with Pretreatment Standards; (iv) Seek civil and criminal penalties, and injunctive relief, for...

  14. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation...

  15. 40 CFR 437.15 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... and Recovery § 437.15 Pretreatment standards for existing sources (PSES). (a) Except as provided in 40... this subpart must achieve the following pretreatment standards: Standards for antimony, arsenic...

  16. Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Rahman, R. A.; Illias, R. M.

    2017-06-01

    Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value determination (R2) from ANOVA study was 0.9959. Overall, it can be concluded that addition of Sacchariseb C6 during enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.

  17. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  18. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes.

    Science.gov (United States)

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P

    2012-01-01

    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  19. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia

    2013-01-01

    .5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly...

  20. Turbidity-based monitoring of particle concentrations and flocculant requirement in wastewater pre-treatment

    NARCIS (Netherlands)

    Mels, A.R.; Spanjers, H.; Klapwijk, A.

    2004-01-01

    The removal of particulate organic material in the first step of wastewater treatment may result in significant savings of reactor volume and energy at wastewater treatment plants, because the organic loading to pursuing unit operations can be reduced. This article describes experiments into the

  1. Enhancing Enzymatic Digestibility of Alkaline Pretreated Banana Pseudostem for Sugar Production

    OpenAIRE

    Joo Choo Low; Rasmina Halis; U. K. M Shah; M. T. Paridah; Faizah Abood; Tukimin Tuhaila; M. I. Danial; Lanika Lakarim; Norhaslida Razali

    2015-01-01

    This study compares the efficacy of a soaking pretreatment with an alkaline solution for banana pseudostem prior to enzymatic hydrolysis. Banana pseudostem was pretreated by soaking in sodium hydroxide solutions at various concentrations and durations. The pretreatment more than doubled delignification but retained 82.09% of the holocellulose content and 73.74% of the cellulose content. The enzymatic (Trichoderma reesei) digestibility of pretreated banana pseudostem was found to have been enh...

  2. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues

    DEFF Research Database (Denmark)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Frankær, Christian Grundahl

    2017-01-01

    °C–210 °C), salinity of seawater (0 ppt–50 ppt), and catalysts (H2SO4, Na2CO3, and NaOH) were investigated. The results showed that pretreatment temperature exerted the largest influence on seawater-based pretreatment in terms of the enzymatic digestibility and fermentability of pretreated solids......-based pretreatment compared with Na2CO3 and NaOH....

  3. Implications of biomass pretreatment to cost and carbon emissions: case study of rice straw and Pennisetum in Taiwan.

    Science.gov (United States)

    Chiueh, Pei-Te; Lee, Kun-Chou; Syu, Fu-Sians; Lo, Shang-Lien

    2012-03-01

    The purpose of this study was to explore the impact of feedstock collection and torrefaction pretreatment on the efficiency of a biomass co-firing system. Considering the transformation of existing municipal solid waste incinerators, several scenarios in which biomass supply chains depend on centralised pretreatment and transportation alternatives are presented. The cost, net energy output, and greenhouse gas effects of these scenarios were analysed using a spreadsheet model. Based on the Taoyuan County case in Taiwan, the mitigation costs of carbon emissions for rice straw and Pennisetum are 77.0 $/Mg CO(2) and 63.8 $/Mg CO(2), respectively. Results indicate that transporting feedstock from its source to the pretreatment and co-firing stations contributes the most to logistical costs for both straw and Pennisetum, regardless of whether torrefaction was adopted. Nonetheless, torrefaction requires more demonstrated cases at various scales to obtain the technical and economic data required for further analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion.

    Science.gov (United States)

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2011-09-01

    Given that N-methylmorpholine-N-oxide (NMMO) is a promising alternative for the pretreatment of lignocelluloses, a novel process for ethanol and biogas production from wood was developed. The solvent, NMMO, is concentrated by multistage evaporation, and the wood is pretreated with the concentrated NMMO. Thereafter, ethanol is produced by the non-isothermal simultaneous saccharification and fermentation (NSSF) method, which is a rapid and efficient process. The wastewater is treated by upflow anaerobic sludge blanket (UASB) digester for rapid production of biogas. The process was simulated by Aspen plus®. Using mechanical vapor recompression for evaporators in the pretreatment and multi-pressure distillation columns, the energy requirements for the process were minimized. The economical feasibility of the developed biorefinery for five different plant capacities was studied by Aspen Icarus Process Evaluator. The base case was designed to utilize 200,000 tons of spruce wood per year and required M€ 58.3 as the total capital investment, while the production cost of ethanol is calculated to be €/l 0.44. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  6. Comparison of Physical Pretreatment Regimens to Enhance Protoporphyrin IX Uptake in Photodynamic Therapy

    DEFF Research Database (Denmark)

    Bay, Christiane; Lerche, Catharina Margrethe; Ferrick, Bradford

    2017-01-01

    Importance: Skin pretreatment is recommended for adequate penetration of topical photosensitizing agents and subsequent protoporphyrin IX (PPIX) accumulation in photodynamic therapy (PDT). Objective: To compare the relative potential of different physical pretreatments to enhance PPIX fluorescence...... indicate relatively enhanced PDT response by AFXL pretreatment in diseased skin. Trial Registration: clinicaltrials.gov Identifier: NCT02372370....

  7. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine

    Science.gov (United States)

    Haifeng Zhou; Tianqing Lan; Bruce S. Dien; Ronald E. Hector; J.Y. Zhu

    2014-01-01

    The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the...

  8. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  9. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine

    Science.gov (United States)

    The performances of 5 yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, ...

  10. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass

    OpenAIRE

    Eichorst, Stephanie A.; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A.; Singer, Steven W.

    2014-01-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liqui...

  11. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production

    Science.gov (United States)

    L. Shuai; Q. Yang; Junyong Zhu; F.C. Lu; P.J. Weimer; J. Ralph; X.L. Pan

    2010-01-01

    The performance of two pretreatment methods, sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) and dilute acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production at 180C for 30 min with a sulfuric acid loading of 5% on oven-dry wood and a 5:1 liquor to-wood ratio. SPORL was supplemented with 9% sodium...

  12. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated....... The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...

  13. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  14. Micro-Spectroscopic Imaging of Lignin-Carbohydrate Complexes in Plant Cell Walls and Their Migration During Biomass Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Zhao, Shuai; Wei, Hui; Tucker, Melvin P.; Johnson, David K.; Himmel, Michael E.; Mosier, Nathan S.; Meilan, Richard; Ding, Shi-You

    2015-04-27

    In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation of LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.

  15. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  17. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas.

    Science.gov (United States)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Brudecki, Grzegorz P; Cybulska, Iwona; Frankaer, Christian Grundahl; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-11-01

    The large water consumption (1.9-5.9 m(3) water per m(3) of biofuel) required by biomass processing plants has become an emerging concern, which is particularly critical in arid/semiarid regions. Seawater, as a widely available water source, could be an interesting option. This work was to study the technical feasibility of using seawater to replace freshwater in the pretreatment of date palm leaflets, a lignocellulosic biomass from arid regions, for bioethanol production. It was shown that leaflets pretreated with seawater exhibited lower cellulose crystallinity than those pretreated with freshwater. Pretreatment with seawater produced comparably digestible and fermentable solids to those obtained with freshwater. Moreover, no significant difference of inhibition to Saccharomyces cerevisiae was observed between liquids from pretreatment with seawater and freshwater. The results showed that seawater could be a promising alternative to freshwater for lignocellulose biorefineries in coastal and/or arid/semiarid areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Pretreatments of Wood Chips Prior to Alkaline Pulping : A Review of Pretreatment Alternatives, Chemical Aspects of the Resulting Liquors, and Pulping Outcomes

    OpenAIRE

    Lehto, Joni; Alén, Raimo

    2015-01-01

    The chemical industry is being forced to evaluate new strategies for more effective utilization of renewable feedstocks to diminish the use of fossil resources. In this literature review, the integration of both acidic and alkaline pretreatment phases of hardwood and softwood chips with chemical pulping is discussed. Depending on the pretreatment conditions, high-volume sulfur-free fractions with varying chemical compositions can be produced. In case of acidic pretreatments, the major product...

  19. Economic impact of NMMO pretreatment on ethanol and biogas production from pinewood.

    Science.gov (United States)

    Shafiei, Marzieh; Karimi, Keikhosro; Zilouei, Hamid; Taherzadeh, Mohammad J

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products including 25% value added tax (VAT) and selling and distribution expenses for scenarios 1 to 4 were, respectively, 1.40, 1.20, 1.24, and 1.04 €/l, which are lower than gasoline price. The profitability indexes for scenarios 1 to 4 were 1.14, 0.93, 1.16, and 0.96, respectively. Despite the lower manufacturing costs of biomethane, the profitability indexes of these processes were lower than those of the bioethanol processes, because of higher capital requirements. The results showed that taxing rule is an effective parameter on the economy of the biofuels. The gasoline equivalent prices of the biofuels were 15-37% lower than gasoline; however, 37% of the gasoline price contributes to energy and carbon dioxide tax which are not included in the prices of biofuels based on the Swedish taxation rules.

  20. Economic Impact of NMMO Pretreatment on Ethanol and Biogas Production from Pinewood

    Science.gov (United States)

    Zilouei, Hamid; Taherzadeh, Mohammad J.

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products including 25% value added tax (VAT) and selling and distribution expenses for scenarios 1 to 4 were, respectively, 1.40, 1.20, 1.24, and 1.04 €/l, which are lower than gasoline price. The profitability indexes for scenarios 1 to 4 were 1.14, 0.93, 1.16, and 0.96, respectively. Despite the lower manufacturing costs of biomethane, the profitability indexes of these processes were lower than those of the bioethanol processes, because of higher capital requirements. The results showed that taxing rule is an effective parameter on the economy of the biofuels. The gasoline equivalent prices of the biofuels were 15–37% lower than gasoline; however, 37% of the gasoline price contributes to energy and carbon dioxide tax which are not included in the prices of biofuels based on the Swedish taxation rules. PMID:25276777

  1. [Comparison of pretreatment methods for the simultaneous determination of diclazuril and toltrazuril residues in chicken tissues].

    Science.gov (United States)

    Shi, Zuhao; Ge, Qinglian; Lu, Junxian; Liu, Xuexian; Gong, Jiansen; Zhu, Liangqiang; Qi, Kezong; Chen, Dingding; Peng, Kaisong

    2009-05-01

    The effects of four pretreatment methods (acetonitrile extraction-evaporation concentration, acetonitrile extraction-solid phase extraction (SPE), matrix solid-phase dispersion (MSPD) extraction and MSPD-SPE) for the simultaneous analysis of diclazuril and toltrazuril residues in chicken tissues were compared. The average recovery of 70% for the former three methods as achieved. In comparison with other methods, the MSPD method saved more than 60% in time and solvent. So, MSPD as the sample pretreatment method, an MSPD-high performance liquid chromatography with ultraviolet detection (MSPD-HPLC/UV) method was established for the analysis. Under the optimal chromatographic conditions, the linear range was between 50 and 1,000 microg/kg. At the added levels of 50, 500, 1,000 ng/g, the recoveries of diclazuril and toltrazuril in chicken tissues ranged from 71.13% - 84.02% with the relative standard deviations (RSD) in the range of 3.76% - 12.11%, and the RSDs of intra- and interday analyses ranged from 3.70% - 6.77%. The detection limits of diclazuril and toltrazuril were less than 10 microg/kg. The quantitative limits of diclazuril and toltrazuril were less than 20 microg/kg. The method meet the requirements of the residue analysis on accuracy and precision.

  2. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    Science.gov (United States)

    Bokinsky, Gregory; Peralta-Yahya, Pamela P.; George, Anthe; Holmes, Bradley M.; Steen, Eric J.; Dietrich, Jeffrey; Soon Lee, Taek; Tullman-Ercek, Danielle; Voigt, Christopher A.; Simmons, Blake A.; Keasling, Jay D.

    2011-01-01

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  3. Thermal pretreatment and bioaugmentation improve methane yield of microalgal mix produced in thermophilic anaerobic digestate.

    Science.gov (United States)

    Lavrič, Lea; Cerar, Ana; Fanedl, Lijana; Lazar, Borut; Žitnik, Miha; Logar, Romana Marinšek

    2017-08-01

    Liquid fraction produced in anaerobic digestion (AD) of biodegradable waste can be treated on-site with microalgae, which can be recycled back as substrate to the biogas plant. For this research, a pilot high rate algal pond (HRAP) was set with connections to a full scale biogas plant that enabled the use of waste heat and CO2 from a combined heat and power gen-set (CHP). The microalgal mix produced in the thermophilic anaerobic digestate supernatant was tested as a substrate for biogas production in the thermophilic AD (i.e. untreated, bioaugmented with anaerobic bacteria Clostridium thermocellum, and thermally pretreated, respectively). The methane potential of the untreated microalgal mix was low (157.5 ± 18.7 mL CH4/g VS). However, after the thermal pretreatment of the microalgae, methane production increased by 62%, while in the bioaugmentation with C. thermocellum under thermophilic conditions (T = 55 °C) it was elevated by 12%. The outcome of our pilot trial suggests that microalgae produced in the thermophilic biogas digestate represent a prospective alternative AD feedstock. At the same time, microalgae reduce the digestate nitrogen and COD to the level sufficient for the outflow to meet the quality required by the sewage system (ammonia-nitrogen max 200 mg/L, nitrite max 10 mg/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.

    Science.gov (United States)

    Bokinsky, Gregory; Peralta-Yahya, Pamela P; George, Anthe; Holmes, Bradley M; Steen, Eric J; Dietrich, Jeffrey; Lee, Taek Soon; Tullman-Ercek, Danielle; Voigt, Christopher A; Simmons, Blake A; Keasling, Jay D

    2011-12-13

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.

  5. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide

    Directory of Open Access Journals (Sweden)

    Zhifang Qiu

    2015-07-01

    Full Text Available The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05–2% dimethyl sulfoxide (DMSO for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy.

  6. Social Pre-treatment Modulates Attention Allocation to Transient and Stable Object Properties

    Directory of Open Access Journals (Sweden)

    Katalin Oláh

    2016-10-01

    Full Text Available Increasing evidence suggests that ostensive-communicative signals in social learning situations enable observers to focus their attention on the intrinsic features of an object (e.g. color at the expense of ignoring transient object properties (e.g. location. Here we investigated whether off-line social cues, presented as social primes, have the same power to modulate attention allocation to stable and transient object properties as on-line ostensive-communicative cues. The first part of the experiment consisted of a pre-treatment phase, where adult male participants either received intensive social stimulation or were asked to perform non-social actions. Then, they participated in a change detection test, where they watched pairs of pictures depicting an array of five objects. On the second picture, a change occurred compared to the first picture. One object changed either its location (moving forward or backward or was replaced by another object, and participants were required to indicate where the change had happened. We found that participants detected the change more successfully if it had happened in the location of the object; however, this difference was reduced following a socially intense pre-treatment phase. The results are discussed in relation to the claims of the natural pedagogy theory.

  7. Economic Impact of NMMO Pretreatment on Ethanol and Biogas Production from Pinewood

    Directory of Open Access Journals (Sweden)

    Marzieh Shafiei

    2014-01-01

    Full Text Available Processes for ethanol and biogas (scenario 1 and biomethane (scenario 2 production from pinewood improved by N-methylmorpholine-N-oxide (NMMO pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3 and biomethane (scenario 4 production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products including 25% value added tax (VAT and selling and distribution expenses for scenarios 1 to 4 were, respectively, 1.40, 1.20, 1.24, and 1.04 €/l, which are lower than gasoline price. The profitability indexes for scenarios 1 to 4 were 1.14, 0.93, 1.16, and 0.96, respectively. Despite the lower manufacturing costs of biomethane, the profitability indexes of these processes were lower than those of the bioethanol processes, because of higher capital requirements. The results showed that taxing rule is an effective parameter on the economy of the biofuels. The gasoline equivalent prices of the biofuels were 15–37% lower than gasoline; however, 37% of the gasoline price contributes to energy and carbon dioxide tax which are not included in the prices of biofuels based on the Swedish taxation rules.

  8. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration.

    Science.gov (United States)

    Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin

    2017-01-01

    At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m-3, which is an improvement compared to the median footprint of 0.75 kWh·m-3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.

  9. Co-hydrolysis of hydrothermal and dilute acid pretreated populus slurries to support development of a high-throughput pretreatment system

    Directory of Open Access Journals (Sweden)

    DeMartini Jaclyn D

    2011-07-01

    Full Text Available Abstract Background The BioEnergy Science Center (BESC developed a high-throughput screening method to rapidly identify low-recalcitrance biomass variants. Because the customary separation and analysis of liquid and solids between pretreatment and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term 'co-hydrolysis' was developed. In this method, the solids and liquid in the pretreated biomass slurry are not separated, but instead hydrolysis is performed by adding enzymes to the whole pretreated slurry. The effects of pretreatment method, severity and solids loading on co-hydrolysis performance were investigated. Results For hydrothermal pretreatment at solids concentrations of 0.5 to 2%, high enzyme protein loadings of about 100 mg/g of substrate (glucan plus xylan in the original poplar wood achieved glucose and xylose yields for co-hydrolysis that were comparable with those for washed solids. In addition, although poplar wood sugar yields from co-hydrolysis at 2% solids concentrations fell short of those from hydrolysis of washed solids after dilute sulfuric acid pretreatment even at high enzyme loadings, pretreatment at 0.5% solids concentrations resulted in similar yields for all but the lowest enzyme loading. Conclusions Overall, the influence of severity on susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernable, showing co-hydrolysis to be a viable approach for identifying plant-pretreatment-enzyme combinations with substantial advantages for sugar production.

  10. Pretreatment Engineering Platform Phase 1 Final Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen BK; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John GH; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S. K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-12-23

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  11. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  12. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin.The highest ethanol yield obtained was 67% after fermenting the whole slurry...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  13. Carbohydrate degradation mechanisms and compounds from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, Helena

    functionalities are formed during biomass pretreatment, which gives possibilities for various chemical reactions to take place and hence formation of many new potential inhibitor compounds. This somehow overlooked contemplation formed the basis for the main hypothesis investigated in this work: Hypothesis 1...... two hypotheses were tested. Hypothesis 2). Formation of these inhibitor compounds can be prevented by protection of reactive chemical functionalities as revealed from their mechanisms for formation. Hypothesis 3) Process parameters influence the amount and type of reaction products (from hypothesis 1...... pretreated wheat straw after enzymatic treatment. It was found that formation of the oligophenolic degradation compounds were common across biomass sources as sugar cane bagasse and oil palm empty fruit bunches. These findings were in line with that the oligophenolic compounds arise from reactions involving...

  14. Recent applications of metal-organic frameworks in sample pretreatment.

    Science.gov (United States)

    Wang, Yonghua; Rui, Min; Lu, Guanghua

    2017-06-19

    Metal-organic frameworks are promising materials in diverse analytical applications especially in sample pretreatment by virtue of their diverse structure topology, tunable pore size, permanent nanoscale porosity, high surface area, and good thermostability. According to hydrostability, metal-organic frameworks are divided into moisture-sensitive and water-stable types. In the actual applications, both kinds of metal-organic frameworks are usually engineered into hybrid composites containing magnetite, silicon dioxide, graphene, or directly carbonized to metal-organic frameworks derived carbon. These metal-organic frameworks based materials show good extraction performance to environmental pollutants. This review provides a critical overview of the applications of metal-organic frameworks and their composites in sample pretreatment modes, that is, solid-phase extraction, magnetic solid-phase extraction, micro-solid-phase extraction, solid-phase microextraction, and stir bar solid extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chitosan pretreatment for cotton dyeing with black tea

    Science.gov (United States)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  16. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  17. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.

    Science.gov (United States)

    Parisutham, Vinuselvi; Kim, Tae Hyun; Lee, Sung Kuk

    2014-06-01

    Lignocelluloses are rich sugar treasures, which can be converted to useful commodities such as biofuel with the help of efficient combination of enzymes and microbes. Although several bioprocessing approaches have been proposed, biofuel production from lignocelluloses is limited because of economically infeasible technologies for pretreatment, saccharification and fermentation. Use of consolidated bioprocessing (CBP) microbes is the most promising method for the cost-effective production of biofuels. However, lignocelluloses are obtained from highly diverse environment and hence are heterogeneous in nature. Therefore, it is necessary to develop and integrate tailor-designed pretreatment processes and efficient microbes that can thrive on many different kinds of biomass. In this review, the progress towards the construction of consolidated bioprocessing microbes, which can efficiently convert heterogeneous lignocellulosic biomass to bioenergy, has been discussed; in addition, the potential and constraints of current bioprocessing technologies for cellulosic biofuel production have been discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Influence of surface pretreatment of fiber posts on cement delamination.

    Science.gov (United States)

    Jongsma, Leontine A; Kleverlaan, Cornelis J; Feilzer, Albert J

    2010-09-01

    To evaluate the influence of post surface pretreatment on the delamination strength of different cements from a prefabricated FRC post tested in a three-point bending test. Three cements were tested; RelyX Unicem, DC Core Automix, and Panavia F2.0. Per cement, 40 posts (D.T. Light Post Illusion size 3) were divided into four groups; no pretreatment (control), sandblasting, silanization, and sandblasting followed by silanization. A cement layer was applied to the posts using a standardized poly-oxy-methacrylate mold. The specimens were subjected to a three-point bending test recording the initial and catastrophic failure loads. Two-way ANOVA and Tukey post-hoc tests were used to analyze the differences between the variables. At the initial failure load, all specimens demonstrated delamination of the cement layer, therefore initial failure load was defined as delamination strength. With RelyX Unicem, none of the pretreatments showed significant differences. When using Panavia F2.0, silanization (735+/-51 MPa) resulted in higher initial failure values than sandblasting (600+/-118 MPa). When DC Core Automix was used, silanization (732+/-144 MPa) produced significantly higher initial failure values than the no pretreatment group (518+/-115 MPa) and the combined sandblasting and silanization group (560+/-223 MPa). Two failure types were observed; cohesive and adhesive failure. In the silanization groups, more cohesive failures were observed for all cements tested. Especially when non self-adhesive cements are used, silanization of fiber posts has a beneficial effect on cement delamination strength and failure type. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Improvement of Soybean Oil Solvent Extraction through Enzymatic Pretreatment

    OpenAIRE

    Grasso, F. V.; P. A. Montoya; Camusso, C. C.; Maroto, B. G.

    2012-01-01

    The purpose of this study is to evaluate multienzyme hydrolysis as a pretreatment option to improve soybean oil solvent extraction and its eventual adaptation to conventional processes. Enzymatic action causes the degradation of the cell structures that contain oil. Improvements in terms of extraction, yield, and extraction rate are expected to be achieved. Soybean flakes and collets were used as materials and hexane was used as a solvent. Temperature, pH, and incubation time were optimized a...

  20. Digestibility of Betung Bamboo Fiber Following Fungal Pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-10-01

    Full Text Available This research evaluated the effect of fungal pretreatment of betung bamboo fibers and enzymatic- and microwave-assisted hydrolysis on the reducing sugar yield. The enzymatic hydrolysis of the pretreated biomass was carried out with cellulase and 10 and 20 FPU/g of substrate in a shaking incubator at 50 °C and 150 rpm for 48 h. The sulfuric acid concentration used in the microwave-assisted acid hydrolysis was 1.0, 2.5, and 5%, either with or without the addition of activated carbon. Microwave irradiation (330 Watt was applied for 5–12.5 min. The yield of reducing sugar was better with the microwave-assisted acid hydrolysis, and the yield tended to increase with an increase in the irradiation time. Based on the dry weight of the initial biomass (bamboo, pretreatment with 5% inoculum loading resulted in a higher reducing sugar yield (17.06% than with 10% inoculum loading (14.54%. At a 1% acid concentration, the formation of brown compounds decreased, followed by a reduction in the reducing sugar yield. The addition of activated carbon at a 1% acid concentration seemed to be of no benefit with respect to the yield in the microwave-assisted acid hydrolysis. The pretreatment with the 5% inoculum loading for 12.5 min at 1% acid concentration resulted in the highest reducing sugar yield. Under these conditions, the yield was 6.3-fold that of the reducing sugar yield using 20 FPU/g of cellulase. The rate of bamboo hollocellulose hydrolysis reached 22.75% of the maximum theoretical reducing sugar reducing sugar of dry biomass.

  1. Pre-treatment of oil palm fronds biomass for gasification

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2017-01-01

    Full Text Available Oil Palm Fronds (OPF has been proven as one of the potential types of biomass feedstock for power generation. The low ash content and high calorific value are making OPF an attractive source for gasification. The objective of this study is to investigate the effects of pre-treatments of OPF residual on gasification. The pre-treatments included the briquetting process and extensive drying of OPF which are studied separately. In briquetting process, the OPF were mixed with some portions of paper as an additives, leaflets, and water, to form a soupy slurry. The extensive drying of OPF needs to cut down OPF in 4–6 cm particle size and left to dry in the oven at 150°C for 24 hours. Gasification process was carried out at the end of each of the pre-treated processes. It was found that the average gas composition obtained from briquetting process was 8.07%, 2.06%, 0.54%,and 11.02% for CO, H2, CH4, and CO2 respectively. A good composition of syngas was produced from extensive dried OPF, as 16.48%, 4.03%, 0.91%,and 11.15% for CO, H2, CH4, and CO2 contents respectively. It can be concluded that pre-treatments improved the physical characteristics of biomass. The bulk density of biomass can be increased by briquetting but the stability of the structure is depending on the composition of briquette formulation. Furthermore, the stability of gasification process also depended on briquette density, mechanical strength, and formulation.

  2. Effects of vitamins C and E pretreatments on cadmium- induced ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Animals were given single doses of vitamins C (1.5 mg/kg) and E (50 mg/kg) per oral and (0 - 8 mg Cd/kg ip) for 24 h. Animals were sacrificed and the serum ... effects of pretreatments with vitamins C and E on Cd-induced serum levels of the parameters were ... Furthermore, cadmium-induced toxicity is.

  3. Influence of dentin pretreatment on bond strength of universal adhesives

    OpenAIRE

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Prem...

  4. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...... xylan recovery of 81.82% was observed by the pretreatment with 10 g AA/kg RCS. The toxic test on liquors showed that the inhibition effect happened to Baker's yeast when the acetic acid used in the pretreatment was higher than 100 g/kg RCS. The WIS obtained from the pretreatment with 15 g and 30 g...

  5. Efficiency of pretreatments for optimal enzymatic saccharification of soybean fiber.

    Science.gov (United States)

    Karki, Bishnu; Maurer, Devin; Jung, Stephanie

    2011-06-01

    The effectiveness of several pretreatments [high-power ultrasound, sulfuric acid (H(2)SO(4)), sodium hydroxide (NaOH), and ammonium hydroxide (NH(3)OH)] to enhance glucose production from insoluble fractions recovered from enzyme-assisted aqueous extraction processing of extruded full-fat soybean flakes (FFSF) was investigated. Sonication of the insoluble fraction at 144 μm(pp (peak-to-peak)) for 30 and 60s did not improve the saccharification yield. The solid fractions recovered after pretreatment with H(2)SO(4) [1% (w/w), 90°C, 1.5h], NaOH [15% (w/w), 65°C, 17 h], and NH(3)OH [15% (w/w), 65°C, 17 h] showed significant lignin degradation, i.e., 81.9%, 71.2%, and 75.4%, respectively, when compared to the control (7.4%). NH(3)OH pretreatment resulted in the highest saccharification yield (63%) after 48 h of enzymatic saccharification. A treatment combining the extraction and saccharification steps and applied directly to the extruded FFSF, where oil extraction yield and saccharification yield reached 98% and 43%, respectively, was identified. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  7. Nanofiltration based water reclamation from tannery effluent following coagulation pretreatment.

    Science.gov (United States)

    Dasgupta, J; Mondal, D; Chakraborty, S; Sikder, J; Curcio, S; Arafat, H A

    2015-11-01

    Coagulation-nanofiltration based integrated treatment scheme was employed in the present study to maximize the removal of toxic Cr(VI) species from tannery effluents. The coagulation pretreatment step using aluminium sulphate hexadecahydrate (alum) was optimized by response surface methodology (RSM). A nanofiltration unit was integrated with this coagulation pre-treatment unit and the resulting flux decline and permeate quality were investigated. Herein, the coagulation was conducted under response surface-optimized operating conditions. The hybrid process demonstrated high chromium(VI) removal efficiency over 98%. Besides, fouling of two of the tested nanofiltration membranes (NF1 and NF3) was relatively mitigated after feed pretreatment. Nanofiltration permeation fluxes as high as 80-100L/m(2)h were thereby obtained. The resulting permeate stream quality post nanofiltration (NF3) was found to be suitable for effective reuse in tanneries, keeping the Cr(VI) concentration (0.13mg/L), Biochemical Oxygen Demand (BOD) (65mg/L), Chemical Oxygen Demand (COD) (142mg/L), Total Dissolved Solids (TDS) (108mg/L), Total Solids (TS) (86mg/L) and conductivity levels (14mho/cm) in perspective. The process water reclaiming ability of nanofiltration was thereby substantiated and the effectiveness of the proposed hybrid system was thus affirmed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  9. Tow steps biohydrogen production: biomass pretreatment and fermentation

    Science.gov (United States)

    Ma, C.; Yang, H. H.; Guo, L. J.

    2010-03-01

    This paper investigated the pretreatment of cornstalk and integrated dark-photo fermentation for hydrogen production. Five parameters of the pretreatment experiments, including NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase, were optimized through the L25 (5≙5) orthogonal test. The optimal NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase were 0.5wt%, 115 °C, 3 h, 0.08g/g cornstalk, 0.08g/g cornstalk, respectively. Under the optimal conditions, 0.31g glucose/g cornstalk was obtained. The two-step fermentation consisted of dark fermentation and photo fermentation. The pretreated cornstalk was used as the substrate for dark fermentation, with cow dung as the inoculum. Then the effluents of dark fermentation were employed as the substrate for photo fermentation by photosynthetic bacteria. H2 yield of dark fermentation was 116.7 mL/g cornstalk, with H2 concentration of 41%. After photo fermentation, the total H2 yield increased to 294 mL/g cornstalk.

  10. Lack of bioavailability of mebeverine even after pretreatment with pyridostigmine.

    Science.gov (United States)

    Sommers, D K; Snyman, J R; van Wyk, M; Eloff, J N

    1997-01-01

    After the oral administration of mebeverine to animal or human, measurable concentrations of the drug have never been found in the plasma. The ex vivo hydrolysis of mebeverine can be blocked by esterase inhibitors. In the present study, human volunteers were pretreated with pyridostigmine to attempt to improve the bioavailability of the parent drug. Following a single-blind, random design, 12 normal human volunteers received orally either placebo or 60 mg pyridostigmine, followed 2 h later by 405 mg mebeverine. Blood samples were drawn intermittently for 4 h and were spiked immediately with neostigmine in order to block ex vivo hydrolysis. Even after pretreatment with pyridostigmine, the plasma samples failed to reveal detectable concentrations of mebeverine. Pyridostigmine pretreatment mediated a significantly higher peak concentration of veratric acid, the acid moiety resulting from hydrolysis of mebeverine. As mebeverine seemingly undergoes complete presystemic hydrolysis, it seems unlikely that the effects of the drug could be mediated centrally. Furthermore, as it is unlikely that sufficient mebeverine traverses the intestine to exert a local effect on the colon (i.e., the time-course of veratric acid plasma levels does not support such a conclusion), the therapeutic effect of the drug, if any, has to be ascribed to an active metabolite. However, the hydrolysis products of mebeverine are not known to be pharmacologically active.

  11. Stimulation of Cellulases by Small Phenolic Compounds in Pretreated Stover.

    Science.gov (United States)

    Zhao, Junying; Chen, Hongzhang

    2014-04-09

    The effect of small phenolic compounds in pretreated stover on celluase activity is crucial but has not yet been fully elucidated. This work investigated the effects of both phenolic acid and phenolic aldehyde on cellulase activity. The model substances of small phenolic compounds identified in steam exploded corn stover were used to examine their individual effects on cellulase activity. It was found that phenolic aldehyde significantly inhibited cellulase activity at 0.05-8 g/L. However, phenolic acids might have a concentration-dependent effect on cellulase activity: significant inhibition at 0.05 g/L and slight stimulation at 2-4 g/L. Small phenolic compounds mixture might also have a concentration-dependent effect on cellulase activity: significant stimulation at 2-8 g/L and slight inhibition at 0.05-1 g/L. The small phenolic compounds in pretreated stover were proven to be able to significantly stimulate enzymatic hydrolysis of stover. On the basis of these results, it is proposed that the concentration-dependent effects of small phenolic compounds on cellulase activity should be considered while removing them after pretreatment.

  12. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Raw Water Quality and Pretreatment in Managed  Aquifer Recharge for Drinking Water Production in Finland

    Directory of Open Access Journals (Sweden)

    Petri Jokela

    2017-02-01

    Full Text Available The main objective of managed aquifer recharge (MAR in Finland is the removal of natural organic matter (NOM from surface waters. A typical MAR procedure consists of the infiltration of surface water into a Quaternary glaciofluvial esker with subsequent withdrawal of the MAR treated water from wells a few hundred meters downstream. The infiltrated water should have a residence time of at least approximately one month before withdrawal to provide sufficient time for the subsurface processes needed to break down or remove humic substances. Most of the Finnish MAR plants do not have pretreatment and raw water is infiltrated directly into the soil. The objectives of this paper are to present MAR experiences and to discuss the need for and choice of pretreatment. Data from basin, sprinkling, and well infiltration processes are presented. Total organic carbon (TOC concentrations of the raw waters presented here varied from 6.5 to 11 mg/L and after MAR the TOC concentrations of the abstracted waters were approximately 2 mg/L. The overall reduction of organic matter in the treatment (with or without pretreatment was 70%-85%. Mechanical pretreatment can be used for clogging prevention. Turbidity of the Finnish lakes used as raw water does not necessitate pretreatment in basin and sprinkling infiltration, however, pretreatment in well infiltration needs to be judged separately. River waters may have high turbidity requiring pretreatment. Biodegradation of NOM in the saturated groundwater zone consumes dissolved oxygen. Thus, a high NOM concentration may create conditions for dissolution of iron and manganese from the soil. These conditions may be avoided by the addition of chemical pretreatment. Raw waters with TOC content up to at least approximately 8 mg/L were infiltrated without any considerations of chemical pretreatment, which should be evaluated based on local conditions.

  14. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  15. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production.

    Science.gov (United States)

    Al-Mallahi, Jumana; Furuichi, Toru; Ishii, Kazuei

    2016-02-01

    The high methane gas production potential of two phase olive milling waste (2POMW) makes its application to biogas plants in business an economical process to increase the productivity of the plants. The objective of this study was to investigate the appropriate conditions for the codigestion of NaOH-pretreated 2POMW with food waste. NaOH pretreatment can increase the methane production by increasing the soluble chemical oxygen demand (sCOD), but it may cause inhibition because of higher levels of alkalinity, sodium ion, volatile fatty acids and long chain fatty acids (LCFAs). Therefore, the first experimental phase of this study aimed to investigate the effect of different mixing ratios of 2POMW to food waste. A continuous stirred tank reactor experiment with different mixing ratios of 3%, 4.3%, 5.7% and 8.3% (2POMW: food waste) was conducted. NaOH pretreatment in the range of 6-20% was used. A mixing ratio up to 4.3%, when 10% NaOH pretreatment was used, caused no inhibition and increased methane production by 445.9mL/g-VS(2POMW). For this mixing ratio an additional experimental phase was conducted with the 20% NaOH pretreatment as the 20% NaOH pretreatment had the highest sCOD. The methane gas production was increased by 503.6mL/g-VS(2POMW). However, pH adjustment was required for applying this concentration of the high alkalinity 20% NaOH-pretreated 2POMW. Therefore, we consider using 10% NaOH pretreatment in a mixing ratio of 4.3% to be more applicable. The increase in methane gas production was correlated to the oleic acid concentration inside the reactors. The high oleic acid concentration of 61.8mg/L for the 8.3% mixing ratio was responsible for the strong inhibition. This study showed that adjusting the appropriate mixing ratio of the NaOH-pretreated 2POMW could increase the electricity production of a reactor that regularly receives food waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic...... and lactic acid. Glucan recovery was less sensitive to the pretreatment conditions than xylan recovery. The pretreatment with acetic and lactic acid yielded the highest glucan recovery of 95.66%. The glucan recoveries of the other three pretreatments varied between 83.92% and 94.28%. Fermentability tests...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....

  17. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    Science.gov (United States)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-11-01

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pretreatment with fish oil attenuates heart ischaemia consequences in rats.

    Science.gov (United States)

    Lescano de Souza Junior, Alcione; Mancini Filho, Jorge; Pavan Torres, Rosângela; Irigoyen, Maria Cláudia; Curi, Rui

    2017-11-01

    What is the central question of this study? We investigated whether pretreatment with fish oil could prevent the major consequences of ischaemic injury to the heart. What is the main finding and its importance? Fish oil pretreatment attenuated the consequences of ischaemic injury as indicated by the small infarction area and the preservation of systolic function and coronary blood flow. These findings support the use of fish oil in order to reduce the impact of heart ischaemia. ω-3 Polyunsaturated fatty acid (ω-3 PUFA)-rich fish oil supplementation has protective effects on heart ischaemic injury. Left ventricular (LV) ischaemia was induced in rats by permanent ligation of the left descending coronary artery. Saline, fish oil or soybean oil was administered daily by gavage [3 g (kg body weight)-1 ] for 20 days before inducing ischaemia. Outcomes were assessed 24 h after left descending coronary artery ligation. Pretreatment with fish oil decreased the ω-6/ω-3 fatty acid ratio in the LV. A reduction in infarct size and in the intensity of ventricular systolic dysfunction was found in the fish oil group compared with the saline or soybean oil groups through echocardiographic evaluation. Before infarction, LV glycogen concentrations were decreased in the fish oil group compared with the saline group. Soybean oil pretreatment led to a further increase in the LV levels of CINC-2/αβ, IL-1β and TNF-α induced by the heart infarction. In heart-infarcted rats, fish oil pretreatment decreased creatine kinase and caspase-3 activities; prevented the decrease in the coronary blood flow; increased LV contents of ATP and lactate; increased the mRNA levels of iNOS, eNOS, HIF1α, GLUT1, VEGF-α and p53 in the LV as measured by RT-PCR; and did not change LV pro-inflammatory cytokine concentrations compared with the control group. Fish oil protected the heart from ischaemia, as indicated by the decrease in the heart infarction area and systolic dysfunction associated with

  19. Does diazepam pretreatment prevent succinylcholine-induced fasciculations?--a double-blind comparison of diazepam and tubocurarine pretreatments.

    Science.gov (United States)

    Erkola, O; Salmenperä, M; Tammisto, T

    1980-12-01

    To determine the effectiveness of diazepam pretreatment in preventing succinylcholine-induced fasciculations, 61 surgical patients were randomly allocated into three groups receiving either diazepam (0.05 mg/kg), d-tubocurarine (0.05 mg/kg) or saline in a double-blind fashion. Following the induction of anesthesia with fentanyl and thiopental, a bolus dose of succinylcholine (1 mg/kg was injected 5 minutes after the pretreatment drugs. Resulting fasciculations were then graded visually. Responses to electrical simulation of the ulnar nerve, somatic motor responses to laryngoscopy and endotracheal intubation, and changes in serum levels of potassium were also evaluated. Diazepam had no effect on frequency or intensity of succinylcholine fasciculations. Fasciculations were observed in 90% of the patients given placebo injections and in 95% of those given diazepam, but in only 16% of those given tubocurarine. Tubocurarine prolonged the onset and shortened the duration of the succinylcholine block and thus made intubation more difficult. Diazepam accelerated onset, but had no effect on duration of succinylcholine block. The twitch response following ulnar nerve stimulation disappeared after 84 seconds (p < 0.01 vs placebo) in patients given diazepam after 115 seconds in patients given tubocurarine, and after 106 seconds in those given placebo injections. The increase in serum potassium after succinylcholine was prevented by pretreatment with d-tubocurarine but not by diazepam.

  20. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  1. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Directory of Open Access Journals (Sweden)

    Pengyu Zhu

    2016-03-01

    Full Text Available Digital polymerase chain reaction (PCR has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ, sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO genome samples using commercial digital PCR detection systems.

  2. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    Science.gov (United States)

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Enhanced methane production from pig slurry with pulsed electric field pre-treatment.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2018-02-01

    Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.

  4. Phase I high-level waste pretreatment and feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, A.F.

    1996-02-05

    This document provides the preliminary planning basis for the U.S. Department of Energy (DOE) to provide a sufficient quantity of high-level waste feed to the privatization contractor during Phase I. By this analysis of candidate high-level waste feed sources, the initial quantity of high-level waste feed totals more than twice the minimum feed requirements. The flexibility of the current infrastructure within tank farms provides a variety of methods to transfer the feed to the privatization contractor`s site location. The amount and type of pretreatment (sludge washing) necessary for the Phase I processing can be tailored to support the demonstration goals without having a significant impact on glass volume (i.e., either inhibited water or caustic leaching can be used).

  5. NASA and ESA Collaboration on Hexavalent Chrome Alternatives - Pretreatments with Primers Screening Final Test Report

    Science.gov (United States)

    Rothgeb, Matthew J.; Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or Cr(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings. In the United States, Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium is carcinogenic and poses significant risk to human health. On May 5, 2011, amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. Subpart 252.223-7008 provides the contract clause prohibiting contractors and subcontractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts associated with supplies, maintenance and repair services, and construction materials. ESA faces its own increasingly stringent regulations within European directives such as Registration, Evaluation, Authorization and Restriction of Chemical (REACH) substances and the Restriction of Hazardous Substances Directive (RoHS) which have set a mid-2017 sunset date for hexavalent chromium. NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and

  6. Effect of Pre-treatment Education Programs on the Anxiety of Patients Receiving Radiotherapy: An Integrative Literature Review

    Directory of Open Access Journals (Sweden)

    Fatemeh Heshmati Nabavi

    2016-04-01

    Full Text Available Background: Stress and anxiety in cancer patients are caused by disease diagnosis, unfamiliar experiences, and therapy-related problems. In addition to the short duration of radiotherapy, receiving and understanding of the information about this treatment could be difficult for patients due to anxiety, fatigue, and mental pressure. Training of cancer patients about radiotherapy via educational programs could reduce pre-treatment anxiety. Aim: This systematic review aimed to integrate the information regarding the effects of pre-treatment educational training on the level of anxiety and distress symptoms of cancer patients receiving RT. Method: This systematic review was conducted to identify the studies comparing different methods of pre-treatment patient education before radiotherapy via searching in databases such as MEDLINE, PsycINFO, Web of Science, ClinicalKey, ProQuest, and PubMed. Selected studies included clinical reports on the effects of educational interventions on the anxiety of patients receiving radiotherapy. Excluded samples were commentaries and studies without intervention. Results: In total, we reviewed eight articles assessing the effect of educational interventions before radiotherapy on the anxiety of cancer patients. Educational interventions used in these studies included face-to-face consultation with a radiotherapist, group instructions with routine individual training using visual materials (e.g., brochures, booklets, videotapes, and PowerPoint presentations, group discussions, electronic instructions, written materials, and phone contact with a nurse. Implications for Practice: According our findings, pre-treatment education could reduce the anxiety of cancer patients before radiotherapy. These educational programs could be performed using written, visual, electronic, or face-to-face instructions. However, considering the condition of cancer patients and their treatment, selection of the appropriate training method

  7. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cervisiae without detoxification

    Science.gov (United States)

    S. Tian; X.L. Luo; X.S. Yang; J.Y. Zhu

    2010-01-01

    This study reports an ethanol yield of 270 L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before...

  8. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  9. Effect of fungal pre-treatment of poplar chips on its paper brightness reversion

    Directory of Open Access Journals (Sweden)

    Esmaeil Rasooly Garmaroody

    2017-02-01

    Full Text Available Unbleached Kraft pulp made from poplar chips, Pre-treated by Trametes versicolor in 1, 2 and 3 weeks (Bio-Kraft pulp, was used as raw material in this study. Mentioned pulp after each step of bleaching, in ECF method at DED sequence, characterized in the lignin content, and effective groups on the brightness reversion (Carbonyl, carboxyl and Hexenuronic acid. In order to evaluation of brightness reversion, 60 g/m2 standard handsheets made from above pulps treated in thermal and UV ageing and then measured its brightness. Results showed that by increasing in pre-treatment time, in all bleached treatments, lignin content increased excluding D1 step in 3-weeks pre-treatment; Carbonyl groups was the lowest content in 1-week pre-treatment (third step and 2-weeks pre-treatment (first step and carboxyl groups and hexenuronic acid decreased after 3 step sequence bleaching. Effect of thermal pre-treatment ageing on brightness reversion considerably more than UV treatment. Also, paper from pre-treated chips in 1 and 2 weeks had minimum brightness reversion and paper from 3-weeks fungal pre-treatment chips had maximum brightness reversion due to more carbonyl and Hex-A. In this respect, 2-weeks pre-treatment time confirmed for fungal pre-treatment.

  10. Pretreatment on Anaerobic Sludge for Enhancement of Biohydrogen Production from Cassava Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Franciele do Carmo Lamaison

    2014-02-01

    Full Text Available Methods for the enrichment of an anaerobic sludge with H2-producing bacteria have been compared by using cassava processing wastewater as substrate.The sludge was submitted to three different pretreatments: 1 heat pretreatment by boiling at 98 °C for 15 min., 2 heat pretreatment followed by sludge washout in a Continuous Stirring Tank Reactor (CSTR operated at a dilution rate (D of 0.021 h-1, and 3 sludge washout as the sole enrichment method. The pretreated sludge and the sludge without pretreatment (control were employed in the seeding of 4 batch bioreactors, in order to verify the volume and composition of the generated biogas. Maximum H2 production rates (Rm from the pretreated sludges, were estimated by the modified Gompertz model. Compared to the control, H2 production was ca. 4 times higher for the sludge submitted to the heat pretreatment only and for the sludge subjected to heat pretreatment combined with washout, and 10 times higher for washout. These findings demonstrated that the use of sludge washout as the sole sludge pretreatment method was the most effective in terms of H2 production, as compared to the heat and to the combined heat and washout pretreatments.

  11. Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos.

    Science.gov (United States)

    Lynch, Paul T; Siddika, Ayesha; Johnston, Jason W; Trigwell, Susan M; Mehra, Aradhana; Benelli, Carla; Lambardi, Maurizio; Benson, Erica E

    2011-07-01

    A three-day pretreatment of olive somatic embryos (SE) with 0.75 M sucrose, combined with cryoprotection (0.5M DMSO, 1M sucrose, 0.5M glycerol and 0.009 M proline) and controlled rate cooling, supported regrowth (as 34.6% fresh weight gain) and resumption of embryo development after cryopreservation. Pretreatment with mannitol or sorbitol did not support regrowth. Profiles of sugars, proline, antioxidant enzymes, Reactive oxygen species (ROS), secondary oxidation products and ethylene were constructed for the most successful (0.75 M) pretreatment series. Sucrose was the optimal pretreatment for supporting recovery, it also elevated glutathione reductase (GR) activity compared to controls, whereas superoxide dismutase (SOD), catalase and guaiacol peroxidase activities remained relatively unchanged. Superoxide dismutase activity was higher in SE pretreated with sucrose, compared with those pretreated with polyols; H(2)O(2) was enhanced in SE pretreated with sorbitol and sucrose compared to mannitol. The overall trend for ethylene and OH production revealed their levels were highest in SE pretreated with polyols albeit, for individual treatments this was not always the case. Generally, pretreatments did not significantly change embryo secondary oxidation profiles of ThioBarbituric Acid Reactive Substances (TBARS) and Schiff's bases. In combination these studies suggest oxidative processes may influence regrowth of cryopreserved olive SE and that optimal pretreatments could, in part, increase tolerance by an overall enhancement of endogenous antioxidants (particularly GR), proline and sugars. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.

    Science.gov (United States)

    Cara, Cristóbal; Ruiz, Encarnación; Oliva, José Miguel; Sáez, Felicia; Castro, Eulogio

    2008-04-01

    The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.

  13. Software requirements

    CERN Document Server

    Wiegers, Karl E

    2003-01-01

    Without formal, verifiable software requirements-and an effective system for managing them-the programs that developers think they've agreed to build often will not be the same products their customers are expecting. In SOFTWARE REQUIREMENTS, Second Edition, requirements engineering authority Karl Wiegers amplifies the best practices presented in his original award-winning text?now a mainstay for anyone participating in the software development process. In this book, you'll discover effective techniques for managing the requirements engineering process all the way through the development cy

  14. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments.

    Science.gov (United States)

    Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun

    2018-01-15

    Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.

  15. Kinetic studies of cellulose enzymatic hydrolysis from pretreated corn cob

    Science.gov (United States)

    Stevanie, Jeannie; Kartawiria, Irvan; Abimanyu, Haznan

    2017-01-01

    Successful utilization of corn cob biomass as raw material in bioethanol production is depending on the hydrolysis process where high level of β-cellulose is converted into glucose. Enzymatic hydrolysis is the common process for this purpose. This study is focusing on the evaluation of hydrolysis of pre-treated corn cob using Novozymes Cellic ® C-Tec2 and H-Tec2 enzymes to obtain the optimum reaction condition and its general reaction kinetics. The corn cob used was pretreated using 10% of NaOH solution. Hydrolysis reactions were conducted in 250 ml Erlenmeyer flask for 72 hour using mixture of C-Tec2 and H-Tec2 enzymes at the fixed ratio of 5:1 and glucose concentration were measured using HPLC. Reaction temperature of 40°C and quantity of 0.5 ml enzyme solution per gram substrate gives the highest reaction rate (0.0123 gram of glucose/gram sample.h) with the glucose yield being 0.089 g glucose/ g substrate. Total conversion of cellulose observed was 11.91 %. Corn cob hydrolysis using C-Tec2 and H-Tec2 enzymes also result in xylose (0.0202 g/g substrate), which can also contribute to bioethanol productivity in further fermentation process. The reaction is following zero order kinetics for the first 8 hours and reaches maximum yield within 10 hours; significantly shorter compared to previous studies of cellulosic material hydrolysis that may take up to 72 hour to complete. Prolonging the hydrolysis of pre-treated corn cob more than 24 hour gives no significant increase in glucose conversion and yield. Hydrolysis temperature range of 40°C to 60°C is in accordance with the manufacturer recommendation for the purpose; however the decrease of reaction rate is observable at temperature 50°C or higher.

  16. Pretreatment fasting plasma glucose modifies dietary weight loss maintenance success

    DEFF Research Database (Denmark)

    Hjorth, Mads Fiil; Due, Anette; Larsen, Thomas Meinert

    2017-01-01

    OBJECTIVE: Levels of fasting plasma glucose (FPG) and fasting insulin (FI) were studied as diet-specific prognostic markers for successful weight loss maintenance in participants with overweight. METHODS: After losing ≥ 8% of body weight, participants received one of three ad libitum diets for 6.......12 to -0.43]; P = 0.020). The addition of FI strengthened these associations. CONCLUSIONS: Slightly elevated pretreatment FPG determined success in dietary weight loss maintenance among overweight patients on ad libitum diets differing in macronutrient and fiber content....

  17. Removal of micropollutants during physicochemical pretreatment of Hospital Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.; Omil, F.; Lema, J. M.

    2009-07-01

    The fate and occurrence of micro-pollutants, such as pharmaceuticals, hormones or cosmetic ingredients, has attracted an increasing attention in environmental research. The main sources for such compounds in the environment include domestic sewage. hospital effluents and discharges from the pharmaceutical manufacturing industry. The aim of the presented work was to analyse the efficiency of coagulation-flocculation and flotation processes for the pre-treatment of hospital wastewaters, focusing on the removal of 12 Pharmaceutical and Personal Care Products (PPCPs), including musk fragrances, anti-epileptics, tranquillisers, anti-inflammatory drugs, antibiotics and one iodinated contras media. (Author)

  18. Novel pre-treatments to control bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Sichel, Cosima; Andre, Klaus

    2017-01-01

    Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today’s water treatment industry. Both the development of new advanced oxidation technologies, but also the enhancement of existing conventional technologies......-treatments to ozonation of ground water. Each oxidant and NH4+ were added in a single stage or separately prior to ozonation. To the best of our knowledge, this is the first study that has tested all the above-mentioned oxidants for the same water matrix. Based on our results, the most promising pre-treatments were MnO4...

  19. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  20. Investigating pretreatment methods for struvite precipitation in liquid dairy manure

    OpenAIRE

    Shen, Yanwen

    2010-01-01

    Phosphorus (P) recovery and re-use is very important today for sustainable nutrient cycling and water quality protection due to the declining global P reserves and increasingly stringent wastewater treatment regulations. P recovery as struvite (MgNH4PO4â ¢6H2O) is a promising technology because it can be used as a slow-release fertilizer. The objective of this study was to investigate different pretreatment methods to enhance struvite precipitation in dairy manure. Generally there are two...

  1. Microwave heating: A potential pretreating method for bamboo fiber extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available Microwave heating is proposed as a kind of pretreating methods for bamboo fiber extraction. Effect of various processing parameters, e. g. microwave initial-setting power, reaction temperature, irradiation time, and bath ratio (bamboo to water on bamboo powders was studied. Analysis of chemical components indicates that microwave assisted extraction is a mild treating method without obvious change of main constitutes of bamboo. The removal of polysaccharide by microwave treating resulted in loosening the structure and thus benefits hydrolysis of bamboo in subsequent.

  2. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries

    Directory of Open Access Journals (Sweden)

    Sironmani Palraj

    2016-02-01

    Full Text Available Waterborne epoxy coatings were prepared on aluminium (Al surfaces by cathodic electro-deposition on the pretreated surface of pickling, phosphating, chromating and anodizing. The electro-deposition experiments were done at two different voltages, 15 V and 25 V at room temperature in 10% epoxy coating formulations. Corrosion and thermal behavior of these coatings were investigated using electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The coating exhibits better corrosion resistance in anodized Al surface than the other. But, TGA studies show that the thermal stability is higher in anodized and chromated Al surfaces. The surface morphology of these coatings were analyzed by SEM and AFM studies.

  3. Energy requirements

    NARCIS (Netherlands)

    Hulzebos, Christian V.; Sauer, Pieter J. J.

    The determination of the appropriate energy and nutritional requirements of a newborn infant requires a clear goal of the energy and other compounds to be administered, valid methods to measure energy balance and body composition, and knowledge of the neonatal metabolic capacities. Providing an

  4. Anaerobic fermentation of biogas liquid pretreated maize straw by rumen microorganisms in vitro.

    Science.gov (United States)

    Jin, Wenyao; Xu, Xiaochen; Gao, Yang; Yang, Fenglin; Wang, Gang

    2014-02-01

    This study intended to investigate the effect of pretreatment of maize straw with biogas liquid on followed fermentation by rumen microorganisms in vitro. The multiple effects including treated time, temperature and dosage of biogas liquid in pretreatment on the followed fermentation performance were analyzed by orthogonal array. The optimum conditions of pretreatment were 9days, 25°C and 50% (v/w) dosage of biogas liquid, which were indicated by the corresponding crystallinity index, dry matter digestibility (DMD) and acetate limiting-step concentration were 57.5%, 73.76% and 1756mg/L, respectively. The ordering sequence of the influential factors for pretreatment was treated time > temperature > dosage of biogas liquid. The results of fermentation showed that the maize straw pretreated by biogas liquid was an efficient and economic pretreatment method of maize straw. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab

    2015-01-01

    Lignin is a major part of the recalcitrant fraction of lignocellulose and in nature its degradation occurs through oxidative enzymes along with microbes mediated oxidative chemical actions. Oxygen assisted wet-explosion pretreatment promotes lignin solubility and leads to an increase biodegradation...... of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  6. Comparison of Microwave and Ozonolysis Effect as Pretreatment on Sugarcane Bagasse Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N Eqra

    2015-03-01

    Full Text Available Bioethanol production from agricultural residues is one of the promising methods. Pretreatment is the most important step in this type of bioethanol production. In this study, the saccharification percentage of sugarcane bagasse was investigated after two types of pretreatments including ozone steaming and microwave. Microwave pretreatment was studied with two factors of microwave radiation (170, 450, and 850 w and microwave duration (2, 6, and 10 min. The ozonolysis (ozone steaming pretreatment was surveyed with two factors of moisture content of bagasse (30, 40, and 50% and ozonolysis time (1.5, 2.5, 3.5, and 4.5 hr. After hydrolysis, the Saccharification percentage of sugarcane bagasse increased to 57.2% and 67.06% with microwave and ozonolysis pretreatments, respectively; compare to 20.85% in non-ozonated bagasse. It can be concluded that the ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse.

  7. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, Charles [Univ. of California, Riverside, CA (United States); Balan, Venkatech [Michigan State Univ., East Lansing, MI (United States); Dale, Bruce E. [Michigan State Univ., East Lansing, MI (United States); Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Falls, Matthew [Texas A & M Univ., College Station, TX (United States); Hames, Bonnie [Ceres Corporation, Thousand Oaks, CA (United States); Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States); Ladisch, Michael R. [Purdue Univ., West Lafayette, IN (United States); Lee, Y. Y. [Auburn Univ., AL (United States); Mosier, Nathan [Purdue Univ., West Lafayette, IN (United States); Pallapolu, Venkata R. [Auburn Univ., AL (United States); Shi, Jian [Univ. of California, Riverside, CA (United States); Warner, Ryan E. [Genencor, Palo Alto, CA (United States)

    2011-06-16

    Dilute sulfuric acid (DA), sulfur dioxide (SO2), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facil-itated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzy-matic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments.

  8. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Li-Li Zuo

    2012-03-01

    Full Text Available To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  9. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  10. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    Full Text Available Abstract Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20% enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation

  11. Long-term bond strength of a self-adhesive resin cement to intraradicular dentin pretreated with chlorhexidine and ethanol

    OpenAIRE

    SANTOS, Mariah Carvalho Guimarães dos; AMARAL, Flávia Lucisano Botelho; Turssi,Cecília Pedroso; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2017-01-01

    Abstract Introduction Self-adhesive resin cements do not require prior preparation of the tooth surface, therefore dentin pretreatments may influence long-term bond strength. Objective To evaluate the influence of 100% ethanol (ET) and 2% chlorhexidine (CL) treatment of intraradicular dentin on the long-term bond strength (BS) of a self-adhesive resin cement (SRC). Material and method 80 bovine roots were restored with fiber posts and SRC (U200 3M/ESPE) and distributed into 4 groups accord...

  12. Vertically-aligned graphene flakes on nanoporous templates: morphology, thickness, and defect level control by pre-treatment.

    Science.gov (United States)

    Fang, Jinghua; Levchenko, Igor; Kumar, Shailesh; Seo, Donghan; Ostrikov, Kostya Ken

    2014-10-01

    Various morphologies of the vertically-aligned graphene flakes were fabricated on the nanoporous templates treated with metal ions in solutions, as well as coated with a thin gold layer and activated in the low-temperature Ar plasma. The thickness and level of structural defects in the graphene flakes could be effectively controlled by a proper selection of the pre-treatment method. We have also demonstrated that various combinations of the flake thickness and defect levels can be obtained, and the morphology and density of the graphene pattern can be effectively controlled. The result obtained could be of interest for various applications requiring fabrication of large graphene networks with controllable properties.

  13. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    Science.gov (United States)

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The design of a novel, environmentally improved cotton pre-treatment proces

    OpenAIRE

    Bouwhuis, G.H. (Gerrit)

    2011-01-01

    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic pre-treatment of cotton and catalytic bleaching formed the scientific basis for this work. The work of Agrawal on...

  15. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  16. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  17. Treatment of Neuropathic Pain with the Capsaicin 8% Patch: Is Pretreatment with Lidocaine Necessary?

    Science.gov (United States)

    Kern, Kai-Uwe; Nowack, Walburga; Poole, Chris

    2014-01-01

    The capsaicin 8% patch can effectively treat neuropathic pain, but application can cause discomfort or a burning sensation. Until March 2013, it was recommended that patients be pretreated with a topical anesthetic, for example lidocaine, before capsaicin patch application. However, speculation existed over the need for pretreatment and its effectiveness in alleviating treatment-associated discomfort. This article compares tolerability to and efficacy of the capsaicin patch in pretreated and non-pretreated patients. All patients received a single capsaicin patch application. Pretreated patients received a lidocaine plaster before and intravenous lidocaine and metamizole infusions during capsaicin patch application. Pain levels, assessed using a Numeric Rating Scale (NRS), were used to determine tolerability and efficacy. All patients (pretreated n = 32; non-pretreated n = 26) completed 100% of the intended capsaicin patch application duration. At the time of capsaicin patch removal, 69% of pretreated and 88% of non-pretreated patients reported an NRS score increase, which returned to baseline by 6 hours post-treatment. There was no significant difference in mean NRS score between patient groups at any time during or after capsaicin patch treatment. Response was similar between patient groups; capsaicin patch treatment provided rapid and significant pain reductions that were sustained over 12 weeks. The same proportion of pretreated and non-pretreated patients reported willingness to receive retreatment with the capsaicin patch. This analysis shows that the capsaicin 8% patch is generally tolerable, and the small discomfort associated with patch application is short-lived. Lidocaine pretreatment does not have a significant effect on tolerability, efficacy, or patient willingness to receive retreatment. PMID:24289500

  18. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  19. Pre-treatment of tannery sludge for sustainable landfilling.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-06-01

    The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production

    Science.gov (United States)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.

    2017-06-01

    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  1. Highly adhesive metal plating on Zylon fiber via iodine pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Fatema, Ummul Khair [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567 (Japan); Gotoh, Yasuo, E-mail: ygotohy@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567 (Japan)

    2011-11-01

    Highly adhesive metal plating was performed on poly(p-phenylene-2,6-benzobisoxazole) fiber named Zylon via iodine pretreatment followed by electroless plating. First, iodine components were selectively doped into the inner part of the fiber near the surface through iodine vapor exposure. The doped iodine was converted to palladium iodide particles by treating with palladium chloride solution. After the reduction of the iodide to metal palladium particles, electroless copper plating was conducted on the fiber. A uniform copper layer was deposited on the fiber surface and exhibited high durability in durability tests such as ultrasonic exposure, tape peeling-off, and corrosion in NaCl solution. This durability was attributed to the palladium particles formed at the fiber surface that served as an anchor for the plated layer as well as an electroless plating catalyst. The plated fibers also possessed electrical conductivity. Although the tensile strength of the Zylon fiber decreased from 5.8 to 4.9 GPa after undergoing the pretreatment and plating processes, the light shielding effect improved the light resistance of the plated fibers in terms of tensile properties. After 18 days of xenon lamp exposure, the plated fibers retained 74% of its initial strength, whereas that of untreated fibers decreased to 43%.

  2. The pretreatment social networks of women with alcohol dependence.

    Science.gov (United States)

    Manuel, Jennifer Knapp; McCrady, Barbara S; Epstein, Elizabeth E; Cook, Sharon; Tonigan, J Scott

    2007-11-01

    Research indicates that the social networks of women differ from those of men. Although studies indicate that social support greatly affects alcohol use, little attention has been paid to gender differences in this area. The objective of the current study is to examine the pretreatment social networks of women seeking conjoint treatment for an alcohol-use disorder. As part of a larger randomized clinical trial, 102 women in committed heterosexual relationships who were seeking treatment for an alcohol-use disorder at an outpatient clinic were interviewed before treatment entry. Participants completed the Important People and Activities Instrument to assess the size and composition of the women's social networks. Pretreatment drinking was assessed using the Timeline Followback interview. Participants in this study reported fairly large supportive networks. Drinking quantity and frequency in the 3 months before treatment were examined in light of social network connection. Women with moderate/heavy drinking partners reported more drinking days but drank fewer drinks per drinking day than women with light drinking/abstaining partners. In addition, we found a positive association between the number of drinkers in the social network and the participant percentage of drinking days. The main findings of this study were the significant interrelationships between moderate or heavy drinking among social network members and the drinking patterns of women with alcohol-use disorders.

  3. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  4. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  5. An improved pyrite pretreatment protocol for kinetic and isotopic studies

    Science.gov (United States)

    Mirzoyan, Natella; Kamyshny, Alexey; Halevy, Itay

    2014-05-01

    An improved pyrite pretreatment protocol for kinetic and isotopic studies Natella Mirzoyan1, Alexey Kamyshny Jr.2, Itay Halevy1 1Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel 2Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, and the microbiological processes involved. Pretreatment of pyrite for removal of oxidation impurities to prevent experimental artifacts and inaccuracies is often practiced. While numerous pyrite-cleaning methods have been used in experiments, a common pyrite pretreatment method, often used to investigate pyrite chemistry by the isotopic fractionations associated with it, includes several rinses by HCl, acetone and deionized water. Elemental sulfur (S0) is a common product of incomplete pyrite oxidation. Removal of S0 is desirable to avoid experimental biases associated with its participation in pyrite transformations, but is more complicated than the removal of sulfate. Although rinsing with an organic solvent is in part aimed at removing S0, to the best of our knowledge, the extraction efficiency of S0 in existing protocols has not been assessed. We have developed and tested a new protocol for elemental sulfur removal from the surface of pyrite by ultrasonication with warm acetone. Our data demonstrate the presence of large fractions of S0 on untreated pyrite particle surfaces, of which only approximately 60% was removed by the commonly used pretreatment method. The new protocol described here was found to be more efficient at S0 removal than the commonly used method

  6. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; Zeng, Guangming

    2015-07-01

    Alkaline condition (especially pH 10) has been demonstrated to be a promising method for short-chain fatty acid (SCFA) production from waste activated sludge anaerobic fermentation, because it can effectively inhibit the activities of methanogens. However, due to the limit of sludge solubilization rate, long fermentation time is required but SCFA yield is still limited. This paper reports a new pretreatment method for alkaline fermentation, i.e., using free nitrous acid (FNA) to pretreat sludge for 2 d, by which the fermentation time is remarkably shortened and meanwhile the SCFA production is significantly enhanced. Experimental results showed the highest SCFA production of 370.1 mg COD/g VSS (volatile suspended solids) was achieved at 1.54 mg FNA/L pretreatment integration with 2 d of pH 10 fermentation, which was 4.7- and 1.5-fold of that in the blank (uncontrolled) and sole pH 10 systems, respectively. The total time of this integration system was only 4 d, whereas the corresponding time was 15 d in the blank and 8 d in the sole pH 10 systems. The mechanism study showed that compared with pH 10, FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. After FNA pretreatment, pH 10 treatment (1 d) caused 38.0% higher substrate solubilization than the sole FNA, which indicated that FNA integration with pH 10 could cause positive synergy on sludge solubilization. It was also observed that this integration method benefited hydrolysis and acidification processes. Therefore, more SCFA was produced, but less fermentation time was required in the integrated system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    National Research Council Canada - National Science Library

    Karatzos, Sergios Kimon; Edye, Leslie Alan; Doherty, William Orlando Sinclair

    2012-01-01

    Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs...

  8. 40 CFR 439.16 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY Fermentation Products...: Pretreatment Standards (PSES) Regulated parameter Maximum daily 1 Maximum monthly average 1 Ammonia (as N) 2 84...

  9. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Peracetic acid-ionic liquid pretreatment to enhance enzymatic saccharification of lignocellulosic biomass.

    Science.gov (United States)

    Uju; Abe, Kojiro; Uemura, Nobuyuki; Oshima, Toyoji; Goto, Masahiro; Kamiya, Noriho

    2013-06-01

    To enhance enzymatic saccharification of pine biomass, the pretreatment reagents peracetic acid (PAA) and ionic liquid (IL) were validated in single reagent pretreatments or combination pretreatments with different sequences. In a 1h saccharification, 5-25% cellulose conversion was obtained from the single pretreatment of PAA or IL. In contrast, a marked enhancement in conversion rates was achieved by PAA-IL combination pretreatments (45-70%). The PAA followed by IL (PAA+IL) pretreatment sequence was the most effective for preparing an enzymatic digestible regenerated biomass with 250-fold higher glucose formation rates than untreated biomass and 2- to 12-fold higher than single pretreatments with PAA or IL alone. Structural analysis confirmed that this pretreatment resulted in biomass with highly porous structural fibers associated with the reduction of lignin content and acetyl groups. Using the PAA+IL sequence, biomass loading in the pretreatment step can be increased from 5% to 15% without significant decrease in cellulose conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  12. Evaluation of different lignocellulosic biomass pretreatments by phenotypic microarray-based metabolic analysis of fermenting yeast

    Directory of Open Access Journals (Sweden)

    Stuart Wilkinson

    2016-03-01

    Full Text Available Advanced generation biofuel production from lignocellulosic material (LCM was investigated.  A range of different thermo-chemical pre-treatments were evaluated with different LCM. The pre-treatments included; alkaline (5% NaOH at 50°C, acid (1% H2SO4 at 121°C and autohydrolytical methods (200°C aqueous based hydrothermal and were evaluated using samples of miscanthus, wheat-straw and willow. The liberation of sugars, presence of inhibitory compounds, and the degree of enhancement of enzymatic saccharification was accessed. The suitability of the pre-treatment generated hydrolysates (as bioethanol feedstocks for Saccharomyces cerevisiae was also accessed using a phenotypic microarray that measured yeast metabolic output. The use of the alkaline pre-treatment liberated more glucose and arabinose into both the pre-treatment generated hydrolysate and also the hydrolysate produced after enzymatic hydrolysis (when compared with other pre-treatments. However, hydrolysates derived from use of alkaline pre-treatments were shown to be unsuitable as a fermentation medium due to issues with colloidal stability (high viscosity.  Use of acid or autohydrolytical pre-treatments liberated high concentrations of monosaccharides regardless of the LCM used and the hydrolysates had good fermentation performance with measurable yeast metabolic output. Acid pre-treated wheat straw hydrolysates were then used as a model system for larger scale fermentations to confirm both the results of the phenotypic microarray and its validity as an effective high-throughput screening tool.

  13. Influence of Thermal and Bacterial Pretreatment of Microalgae on Biogas Production in Mesophilic and Thermophilic Conditions.

    Science.gov (United States)

    Vidmar, Beti; Marinšek Logar, Romana; Panjičko, Mario; Fanedl, Lijana

    2017-01-01

    Microalgae biomass has a great potential in search for new alternative energy sources. They can be used as a substrate for the biogas production in anaerobic digestion. When using microalgae, the efficiency of this process is hampered due to the resistant cell wall. In order to accelerate the hydrolysis of cell wall and increase the efficiency of biogas production we applied two different pretreatments - biological and thermal under mesophilic and thermophilic conditions. During biological pretreatment we incubated microalgae with anaerobic hydrolytic bacteria Pseudobutyrivibrio xylanivorans Mz5T. In thermal pretreatment we incubated microalgae at 90 °C. We also tested a combined thermal and biological pretreatment in which we incubated P. xylanivorans Mz5T with thermally pretreated microalgae. Thermal pretreatment in mesophilic and thermophilic process has increased methane production by 21% and 6%, respectively. Biological pretreatment of microalgae has increased methane production by 13%, but only under thermophilic conditions (pretreatment under mesophilic conditions showed no effect on methane production). Thermal-biological pretreatment increased methane production by 12% under thermophilic conditions and by 6% under mesophilic conditions.

  14. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  15. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)

    2010-12-15

    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  16. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    Science.gov (United States)

    Awafo, V. A.; Chahal, D. S.; Charbonneau, R.

    1995-09-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mild alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and γ-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. The highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P. sajor-caju was recorded

  17. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.

    Science.gov (United States)

    Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania

    2017-11-01

    Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H2SO4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2 = 0.5), indicating a role for other accessory enzymes.

  18. Low pre-diagnosis attrition but high pre-treatment attrition among patients with MDR-TB: An operational research from Chennai, India.

    Science.gov (United States)

    Shewade, Hemant Deepak; Nair, Dina; Klinton, Joel S; Parmar, Malik; Lavanya, J; Murali, Lakshmi; Gupta, Vivek; Tripathy, Jaya Prasad; Swaminathan, Soumya; Kumar, Ajay M V

    2017-12-01

    Worldwide, there's concern over high pre-diagnosis and pre-treatment attritions or delays in Multidrug resistant tuberculosis (MDR-TB) diagnosis and treatment pathway (DTP). We conducted this operational research among patients with presumptive MDR-TB in north and central Chennai, India to determine attrition and turnaround times (TAT) at various steps of DTP and factors associated with attrition. Study was conducted in Revised National Tuberculosis Control Programme setting. It was a retrospective cohort study involving record review of all patients with presumptive MDR-TB (eligible for DST) in 2014. Of 628 eligible for DST, 557 (88%) underwent DST and 74 (13%) patients were diagnosed as having MDR-TB. Pre-diagnosis and pre-treatment attrition was 11% (71/628) and 38% (28/74) respectively. TAT [median (IQR)] to test from eligibility for DST and initiate DR-TB treatment from diagnosis were 14 (9,27) and 18 (13,36) days respectively. Patients with smear negative TB and detected in first quarter of 2014 were less likely to undergo DST. Patients in first quarter of 2014 had significantly lower risk of pre-treatment attrition. There was high uptake of DST. However, urgent attention is required to reduce pre-treatment attrition, improve TAT to test from eligibility for DST and improve DST among patients with smear-negative TB. Copyright © 2017 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  19. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    Energy Technology Data Exchange (ETDEWEB)

    Awafo, V.A.; Chahal, D.S.; Charbonneau, R. [Universite du Quebec (Canada). Applied Microbiology Research Center

    1995-10-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mild alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and {gamma}-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. The highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P. sajor-caju was recorded. (author).

  20. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination

    KAUST Repository

    Almashharawi, Samir

    2013-01-01

    Conventional processes are widely used as pretreatment for reverse osmosis (RO) desalination technology since its development. However, these processes require a large footprint and have some limitation issues such as difficulty to maintain a consistent silt density index, coagulation control at low total suspended solids, and management of higher waste sludge. Recently, there has been a rapid growth in the use of low-pressure membranes as pretreatment for RO systems replacing the conventional processes. However, despite the numerous advantages of using this integrated membrane system mainly providing good and stable water quality to RO membranes, many issues have to be addressed. The primary limitation is membrane fouling which reduces the permeate flux; therefore, higher pumping intensity is required to maintain a consistent volume of product. This paper aims to optimize the permeation flux and cleaning frequency by providing high permeate quality. Different low-pressure polyethersulfone membranes with different pore sizes ranging from 0.1 lm to 50 kDa were tested. Eight different filtration configurations have been applied including the variation of coagulant doses aiming to control membrane fouling. Results showed that all the configurations with/without coagulation, provided permeate with excellent water quality which improves the stability of RO performance. However, more stable fluxes with less-energy consumption were achieved by using the 0.1 lm and 100 kDa membranes with 1 mg/L FeCl3 coagulation. The use of UF membranes, having tight pores, without coagulation also proved to be an excellent option for Red Sea water RO pretreatment. © 2013 Desalination Publications.

  1. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  2. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed...... that there was indeed potential to boost the enzyme activities in Celluclast (arising from Trichoderma reesei) by addition of small amounts of fermentation broth from fungal sources other than T. reesei at optimal reaction conditions for Celluclast, pH 5, 50 °C. The activity(ies) related to the boosting effect were...... indicated to arise from more efficient or different endoglucanase activities than those found in Celluclast. Evaluating of the extent of hydrolysis using the 4 major enzyme activities in Celluclast, which constituted a complete set of enzymes for hydrolysis of cellulose, showed that the most efficient...

  3. Pretreatment Mitochondrial Priming Correlates with Clinical Response to Cytotoxic Chemotherapy

    Science.gov (United States)

    Chonghaile, Triona Ni; Sarosiek, Kristopher A.; Vo, Thanh-Trang; Ryan, Jeremy A.; Tammareddi, Anupama; Moore, Victoria Del Gaizo; Deng, Jing; Anderson, Ken; Richardson, Paul; Tai, Yu-Tzu; Mitsiades, Constantine S.; Matulonis, Ursula A.; Drapkin, Ronny; Stone, Richard; DeAngelo, Daniel J.; McConkey, David J.; Sallan, Stephen E.; Silverman, Lewis; Hirsch, Michelle S.; Carrasco, Daniel Ruben; Letai, Anthony

    2011-01-01

    Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pre-treatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from pro-apoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents. PMID:22033517

  4. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  5. Simulation of the ozone pretreatment of wheat straw.

    Science.gov (United States)

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Raltitrexed combined with bevacizumab in heavily pretreated metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ke Cheng

    2013-01-01

    Full Text Available No standard chemotherapy regimen has been established for metastatic colorectal cancer (mCRC after progression on 5-fluorouracil, oxaliplatin, and irinotecan. Here, we report the combination of raltitrexed and bevacizumab as a salvage regimen for the treatment of three heavily pretreated patients with KRAS mutant mCRC. All three patients had stable disease (SD according to response evaluation criteria in solid tumors (RECIST criteria, progression free survival (PFS were 3.0, 3.2 months for the first two patients and have not been reached for over 5 months for the third patient and no severe adverse effect was observed. The combination of raltitrexed plus bevacizumab in mCRC seems worthy of further investigation.

  7. Predictors of pretreatment CA125 at ovarian cancer diagnosis

    DEFF Research Database (Denmark)

    Babic, Ana; Cramer, Daniel W; Kelemen, Linda E

    2017-01-01

    in CA125 between studies and linear regression to estimate the association between epidemiologic factors and tumor characteristics and pretreatment CA125 levels. RESULTS: In age-adjusted models, older age, history of pregnancy, history of tubal ligation, family history of breast cancer, and family......PURPOSE: Cancer antigen 125 (CA125) is a glycoprotein expressed by epithelial cells of several normal tissue types and overexpressed by several epithelial cancers. Serum CA125 levels are mostly used as an aid in the diagnosis of ovarian cancer patients, to monitor response to treatment and detect...... cancer recurrence. Besides tumor characteristics, CA125 levels are also influenced by several epidemiologic factors, such as age, parity, and oral contraceptive use. Identifying factors that influence CA125 levels in ovarian cancer patients could aid in the interpretation of CA125 values for individuals...

  8. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  9. Pretreatment of wood flour slurries prior to liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Vanasse, C.; Lemonnier, J.P.; Eugene, D.; Chornet, E.

    1988-02-01

    As a part of a solvolytic approach to wood fractionation and liquefaction known as UDES-S, a pretreatment stage has been developed using a fed batch technique to produce high solids content slurries. By using a combination of temperature and shear stress across homogenizing valves, wood flour slurries of poplar or aspen having concentrations of 20-32% by weight in both paraffin oil and ethylene glycol have been produced. Optical and scanning electron microscopy have shown that the recirculation loop and homogenizing valve cause structural degradation, defibration and defibrillation of the original particles as well as partial solubilization of the wood components. The maximum wood flour concentration, attainable before plugging was observed in the small scale system used, was just below 36% by weight. High concentration slurries are a prerequisite in order to obtain realistic reactor space velocities in biomass liquefaction processes. 12 refs., 9 figs.

  10. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  11. Pretreatment cardiometabolic status in youth with early-onset psychosis

    DEFF Research Database (Denmark)

    Jensen, Karsten G.; Correll, Christoph U.; Rudå, Ditte

    2017-01-01

    Objective: To describe pretreatment cardiometabolic constitution in children and adolescents with first-episode psychosis (FEP). Methods: Baseline cardiometabolic assessment was performed in youths aged 12-17 years with FEP entering the Tolerability and Efficacy of Antipsychotics (TEA) trial......: Comparing 113 youths with FEP (age ± SD = 15.74 ± 1.36 years, males = 30.1%, schizophrenia-spectrum disorders = 92.9%, antipsychoticnaive: n = 57) to 60 controls, patients had higher waist circumference (WC) zscores (1.13 ± 1.65 vs 0.42 ± 1.27, P =.018), cholesterol (4.10 ± 0.71 vs 3.79 ± 0.49 mmol/L, P...... cardiometabolic risk. Early age at onset predicted increased BMI and WC z scores, while diagnosis of schizophrenia and higher Clinical Global Impression-Severity score were associated with increased blood lipids. Conclusions: Youths with FEP had significantly greater WC and lipid abnormalities than matched...

  12. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  13. Macromolecular structure analysis and effective liquefaction pretreatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.; Yun, Y.; Lilly, W.D.; Leung, K.; Gates, T.; Otake, Y.; Deevi, S.C.

    1994-07-01

    This project was concerned with characterizing the changes in coal macromolecular structure, that are of significance for liquefaction pretreatments of coal. The macromolecular structure of the insoluble portion of coal is difficult to characterize. Techniques that do so indirectly (based upon, for example, NMR and FTIR characterizations of atomic linkages) are not particularly sensitive for this purpose. Techniques that characterize the elastic structure (such as solvent swelling) are much more sensitive to subtle changes in the network structure. It is for this reason that we focused upon these techniques. The overall objective involved identifying pretreatments that reduce the crosslinking (physical or chemical) of the network structure, and thus lead to materials that can be handled to a greater extent by traditional liquid-phase processing techniques. These techniques tend to be inherently more efficient at producing desirable products. This report is divided into seven chapters. Chapter II summarizes the main experimental approaches used throughout the project, and summarizes the main findings on the Argonne Premium coal samples. Chapter III considers synergistic effects of solvent pairs. It is divided into two subsections. The first is concerned with mixtures of CS{sub 2} with electron donor solvents. The second subsection is concerned with aromatic hydrocarbon - alcohol or hydrocarbon - alcohol mixtures, as might be of interest for preliquefaction delivery of catalysts into bituminous coals. Chapter IV deals with questions of how oxidation might influence the results that are obtained. Chapter V briefly details what conclusions may be drawn concerning the elastic behavior of coals, and the effects of thermal treatments on this behavior. Chapter VI is concerned with theories to describe the action of solvents that are capable of dissociating non-covalent crosslinks. Finally, Chapter VII discusses the practical implications of the study.

  14. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.

    Science.gov (United States)

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F

    2013-01-01

    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers.

  15. A review of wood thermal pretreatments to improve wood composite properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Raul. Espinoza-Herrera

    2013-01-01

    The objective of this paper is to review the published literature on improving properties of wood composites through thermal pretreatment of wood. Thermal pretreatment has been conducted in moist environments using hot water or steam at temperatures up to 180 and 230 ˚C, respectively, or in dry environments using inert gases at temperatures up to 240 ...

  16. The design of a novel environmentally improved, industrial cotton pre-treatment process

    NARCIS (Netherlands)

    Bouwhuis, Gerhard Herman; Bouwhuis, G.H.

    2011-01-01

    The scope of this thesis is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic

  17. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    quality. An experimental study of the influence of pretreatment on weld quality in RSW of AA1050 sheets with three thicknesses, comparing welding of as-received sheet with pretreated sheet by either pickling in NaOH or glass-blasting were investigated. Different weld settings were applied with low...

  18. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    Science.gov (United States)

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  19. Chemical pretreatment of Arundo donax L. for second-generation ethanol production

    Directory of Open Access Journals (Sweden)

    Juliana Silva Lemões

    2018-01-01

    Conclusion: Alkaline pretreatment was essential for obtaining high concentrations of glucose and xylose. The application of an alkaline pretreatment alone resulted in high glucose and xylose concentrations. This result is very significant as it allows a cost reduction by eliminating one step.

  20. Fundamental characteristics of microwave explosion pretreatment of wood. I, Properties of temperature development

    Science.gov (United States)

    Xian-jun Li; Ke-yang Lu; Lan-ying Lin; Yong-dong Zhou; Zhi-yong Cai; Feng Fu

    2010-01-01

    In this study, the effects of microwave radiation intensity, radiation time and initial wood moisture content (MC) on the properties of temperature development in Eucalyptus urophylla wood samples during the microwave explosion pretreatment have been investigated using a new microwave pretreatment equipment. The results show that 1) with the increase of microwave...

  1. Effects of Pretreatment on the Structure And Properties of Electroless Nickel Coatings

    DEFF Research Database (Denmark)

    Møller, Per; Deng, Hong

    1994-01-01

    The pretreatment process can significantly affect the corrosion resistance of electroless nickel (EN) coatings One of the most important reasons is that different pretreatment processes can give different surface morphologies of the substrate. The scanning electron microscope (SEM) and the scanni...

  2. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods.

    Science.gov (United States)

    Zhang, Qiuzhuo; Wei, Yan; Han, Hui; Weng, Chen

    2017-12-27

    This study investigated the possibility of enhancing bioethanol production by combined pretreatment methods for water hyacinth. Three different kinds of pretreatment methods, including microbial pretreatment, microbial combined dilute acid pretreatment, and microbial combined dilute alkaline pretreatment, were investigated for water hyacinth degradation. The results showed that microbial combined dilute acid pretreatment is the most effective method, resulting in the highest cellulose content (39.4 ± 2.8%) and reducing sugars production (430.66 mg·g-1). Scanning Electron Microscopy and Fourier Transform Infrared Spectrometer analysis indicated that the basic tissue of water hyacinth was significantly destroyed. Compared to the other previously reported pretreatment methods for water hyacinth, which did not append additional cellulase and microbes for hydrolysis process, the microbial combined dilute acid pretreatment of our research could achieve the highest reducing sugars. Moreover, the production of bioethanol could achieve 1.40 g·L-1 after fermentation, which could provide an extremely promising way for utilization of water hyacinth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biological pretreatment of rubberwood with Ceriporiopsis subvermispora for enzymatic hydrolysis and bioethanol production.

    Science.gov (United States)

    Nazarpour, Forough; Abdullah, Dzulkefly Kuang; Abdullah, Norhafizah; Motedayen, Nazila; Zamiri, Reza

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%). The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  4. Wet autoclave pretreatment for immunohistochemical demonstration of oestrogen receptors in routinely processed breast carcinoma tissue.

    Science.gov (United States)

    Bier, B; Bankfalvi, A; Grote, L; Blasius, S; Ofner, D; Böcker, W; Jasani, B; Schmid, K W

    1995-02-01

    The immunohistochemical demonstration of oestrogen receptor (OR) was performed on 32 randomly selected and routinely processed breast carcinomas after wet autoclave pretreatment of sections. The autoclave method was compared to the OR status found on frozen sections as well as to alternative pretreatment methods such as enzymatic predigestion and microwave irradiation. Using four different monoclonal antibody clones (H222, LH1, CC4-5, 1D5.26), the OR status was evaluated for each of the various pretreatment methods applied. All cases with a high OR content on frozen sections (n = 11) also showed a high OR status on wet autoclave-pretreated paraffin tissues using antibody clones 1D5.26 and CC4-5; in cases with low OR content on frozen sections, no false-negative cases were recorded using only the antibody 1D5.26 neither after wet autoclave nor microwave pretreatment. In addition, with this antibody, OR was detectable after autoclave pretreatment in two cases which were considered to be OR-negative even on frozen sections. When the primary antibody was omitted, no false-positive cases were observed after wet autoclave pretreatment. Thus, in our hands, wet autoclave pretreatment, in combination with the antibody 1D5.26, offers a highly sensitive method for the immunohistochemical demonstration of OR in routinely formalin-fixed, paraffin-embedded sections of breast carcinomas.

  5. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    Science.gov (United States)

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed,

  7. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.

    2016-01-01

    , enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas...

  8. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave c...

  9. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  10. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass

    Science.gov (United States)

    Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan. Li

    2013-01-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...

  11. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine

    Science.gov (United States)

    J.Y. Zhu; X.J. Pan; G.S. Wang; R. Gleisner

    2009-01-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of...

  12. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  13. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    Energy Technology Data Exchange (ETDEWEB)

    CONRAD EA

    2008-08-12

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel.

  14. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai

    2012-01-01

    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  15. New degradation compounds from lignocellulosic biomass pretreatment: routes for formation of potent oligophenolic enzyme inhibitors

    DEFF Research Database (Denmark)

    Rasmussen, H.; Tanner, David Ackland; Sørensen, H. R.

    2017-01-01

    In this study 26 new oligophenol cellulase inhibitors were discovered from wheat straw pretreatment liquors. By consideration of the reaction mechanisms for their formation it is proposed that these oligophenols are formed during hydrothermal biomass pretreatment by pentose self-condensation reac...

  16. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 ºC), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single...

  17. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  18. The design of a novel, environmentally improved cotton pre-treatment proces

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit)

    2011-01-01

    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These

  19. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal

    Science.gov (United States)

    The objective of this study was to determine the optimal pretreatment and fungal strain to reduce glucosinolates (GLS), fiber, and residual sugars while increasing the nutritional value of canola meal. Submerged incubation conditions were used to evaluate four pretreatment methods (extrusion, hot wa...

  20. Potential of filter-vermicomposter for household wastewater pre-treatment and sludge sanitisation on site.

    Science.gov (United States)

    Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R

    2007-01-01

    Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.

  1. Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tanmoy; Isern, Nancy G.; Sun, Jian; Wang, Eileen; Hull, Sarah; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-09-26

    A detailed study of chemical changes in lignin structure during the ionic liquid (IL) pretreatment process is not only pivotal for understanding and overcoming biomass recalcitrance during IL pretreatment, but also is necessary for designing new routes for lignin valorization. Chemical changes in lignin were systematically studied as a function of pretreatment temperature, time and type of IL used. Kraft lignin was used as the lignin source and common pretreatment conditions were employed using three different ILs of varying chemical structure in terms of acidic or basic character. The chemical changes in the lignin structure due to IL pretreatment processes were monitored using 1H-13C HSQC NMR, 31P NMR, elemental analysis, GPC, FT-IR, and the depolymerized products were analyzed using GC-MS. Although pretreatment in acidic IL, triethylammonium hydrogensulfate ([TEA][HSO4]) results in maximum decrease in β-aryl ether bond, maximum dehydration and recondensation pathways were also evident, with the net process showing a minimum decrease in the molecular weight of regenerated lignin. However, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) pretreatment yields a smaller decrease in the β-aryl ether content along with minimum evidence of recondensation, resulting in the maximum decrease in the molecular weight. Cholinium lysinate ([Ch][Lys]) pretreatment shows an intermediate result, with moderate depolymerization, dehydration and recondensation observed. The depolymerization products after IL pretreatment are found to be a function of the pretreatment temperature and the specific chemical nature of the IL used. At higher pretreatment temperature, [Ch][Lys] pretreatment yields guaiacol, [TEA][HSO4] yields guaiacylacetone, and [C2C1Im][OAc] yields both guaiacol and guaiacylacetone as major products. These results clearly indicate that the changes in lignin structure as well as the depolymerized product profile depend on the pretreatment conditions and the nature

  2. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    Science.gov (United States)

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  3. Pretreatment of poultry litter improves Bacillus thuringiensis-based biopesticides production.

    Science.gov (United States)

    Ozcan, Orhan; Icgen, Bulent; Ozcengiz, Gulay

    2010-04-01

    Pretreated poultry litter was used in batch cultures for the production of Bacillus thuringiensis (Bt)-based biopesticide of lepidoptera- and diptera-specific Cry1 and Cry2, diptera-specific Cry4Ba and Cry11Aa and coleoptera-specific Cry3Aa toxins by Bt subsp. kurstaki 81, subsp. israelensis HD500 and subsp. tenebrionis 3203, respectively. Bt kurstaki 81 showed improved growth and produced more toxin in this medium as compared to other subspecies. Base and acid hydrolysis were tested as the methods of substrate pretreatment. The use of poultry litter pretreated with 2N HCl yielded 94% more bioinsecticidal protein than 2N NaOH-pretreated poultry litter when Bt kurstaki 81 was cultured. With appropriate pretreatment, poultry litter demonstrated potential as a valuable raw material for a low-cost complex medium to produce Bt-based biopesticides. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production.

    Science.gov (United States)

    Liu, Shan; Xu, Fuqing; Ge, Xumeng; Li, Yebo

    2016-06-01

    Ensilage and fungal pretreatment of giant reed harvested from August through December were compared based on their effects on feedstock preservation, glucose yield, and subsequent methane production via anaerobic digestion (AD). Compared to fungal pretreatment, ensilage obtained lower total solids (Ensilage increased glucose and methane yields by 7-15% and 4-14%, respectively, for giant reed harvested from August through December. Fungal pretreatment failed for giant reed harvested in August and October with reduced glucose yields, and was effective for that harvested in November and December, with about 20% increases in glucose yield. However, hydrocarbon losses during fungal pretreatment offset the increased glucose yield, resulting in decreased methane yields by AD. In summary, ensilage was found to be more suitable than fungal pretreatment for giant reed storage and its methane production via AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    Science.gov (United States)

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a ......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes....

  7. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  8. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Daza Serna, L V; Orrego Alzate, C E; Cardona Alzate, C A

    2016-01-01

    One of the main drawbacks for using lignocellulosic biomass is related to its recalcitrance. The pretreatment of lignocellulosic biomass plays an important role for delignification and crystallinity reduction purposes. In this work rice husk (RH) was submitted to supercritical pretreatment at 80°C and 270 bar with the aim to determine the effect on lignin content, crystallinity as well as enzymatic digestibility. The yields obtained were compared with dilute sulfuric acid pretreatment as base case. Additionally a techno-economic and environmental comparison of the both pretreatment technologies was performed. The results show a lignin content reduction up to 90.6% for the sample with 75% moisture content using a water-ethanol mixture. The results for crystallinity and enzymatic digestibility demonstrated that no reductions were reached. Supercritical pretreatment presents the best economical and environmental performance considering the solvents and carbon dioxide recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  11. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-04-01

    Most biomass pretreatment processes for sugar production are run at low-solid concentration (carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Reid, Gregor [Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario (Canada); Canadian Research and Development Center for Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada)

    2008-08-15

    The effect of heat treatment at different temperatures on two types of inocula, activated sludge and anaerobically digested sludge, was investigated in batch cultures. Heat treatments were conducted at 65, 80 and 95 C for 30 min. The untreated inocula produced less amount of hydrogen than the pretreated inocula, with lactic acid as the main metabolite. The maximum yields of 2.3 and 1.6 mol H{sub 2}/mol glucose were achieved for the 65 C pretreated anaerobically digested and activated sludges, respectively. Approximately a 15% decrease in yield was observed with increasing pretreatment temperature from 65 to 95 C concomitant with an increase in butyrate/acetate ratio from 1.5 to 2.4 for anaerobically digested sludge. The increase of pretreatment temperature of activated sludge to 95 C suppressed the hydrogen production by lactic acid fermentation. DNA analysis of the microbial community showed that the elevated pretreatment temperatures reduced the species diversity. (author)

  13. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher......The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  14. Acute withdrawal-related hypophagia elicited by amphetamine is attenuated by pretreatment with selective dopamine D1 or D2 receptor antagonists in rats.

    Science.gov (United States)

    White, Wesley; Beyer, Jason D; White, Ilsun M

    2015-11-01

    After receiving 2.0mg/kg amphetamine, rats show two phases of reduced food intake, short-term hypophagia, during the first several hours after treatment, and longer-term hypophagia, approximately 19 to 26 h after treatment. The longer-term hypophagia may be an indicator of an acute withdrawal. This study assessed whether D1 and D2 receptor activation were important early events in the elicitation of longer-term hypophagia. Throughout a series of five-day tests, rats could lever press for food pellets for one-hour periods beginning every 3h. On test day 1, rats were given a saline pretreatment, and 15 min later they were given a saline treatment. On test day 3, they were given a pretreatment of either saline or a selective dopamine receptor antagonist, and 15 min later they were given a treatment of either saline or amphetamine (2.0mg/kg). In Experiment 1, pretreatments included 3, 12, 31, and 50 μg/kg of the selective D1 receptor antagonist SCH 23390. In Experiment 2, pretreatments included 25, 50, and 100 μg/kg of the selective D2 receptor antagonist eticlopride. Distance moved was monitored for the first 6h following pretreatment-treatment combinations to obtain an indirect behavioral measure of receptor blockade (antagonist attenuation of amphetamine hyperactivity). Food intake at each meal opportunity was monitored throughout each five day test. Patterns of food intake following day 1 saline-saline and day 3 pretreatment-treatment were compared. The combination saline-amphetamine produced short-term and longer-term hypophagia. Combinations involving antagonist-saline did not produce longer-term changes in food intake. Pretreatment with 12 to 50 μg/kg of SCH 23390 produced substantial blockade of amphetamine hyperactivity and prevented amphetamine-induced acute-withdrawal-related longer-term hypophagia. Eticlopride produced a partial blockade of longer-term hypophagia. Both D1 and D2 receptor activation are required for full expression of longer

  15. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries

    Directory of Open Access Journals (Sweden)

    Zongyuan Zhu

    2015-10-01

    Full Text Available Miscanthus is a major bioenergy crop in Europe and a potential feedstock for second generation biofuels. Thermochemical pretreatment is a significant step in the process of converting lignocellulosic biomass into fermentable sugars. In this work, microwave energy was applied to facilitate NaOH and H2SO4 pretreatments of Miscanthus. This was carried out at 180 ℃ in a monomode microwave cavity at 300 W. Our results show that H2SO4 pretreatment contributes to the breakdown of hemicelluloses and cellulose, leading to a high glucose yield. The maximum sugar yield from available carbohydrates during pretreatment is 75.3% (0.2 M H2SO4 20 Min, and glucose yield is 46.7% under these conditions. NaOH and water pretreatments tend to break down only hemicellulose in preference to cellulose, contributing to high xylose yield. Compared to conventional heating NaOH/H2SO4 pretreatment, 12 times higher sugar yield was obtained by using microwave assisted pretreatment within half the time. NaOH pretreatments lead to a significantly enhanced digestibility of the residue, because the effective removal of lignin and hemicellulose makes cellulose fibres more accessible to cellulases. Morphological study of biomass shows that the tightly packed fibres in the Miscanthus were dismantled and exposed under NaOH condition. We studied sugar degradation under microwave assisted H2SO4 conditions. The results shows that 6-8% biomass was converted into levulinic acid (LA during pretreatment, showing the possibility of using microwave technology to produce LA from biomass. The outcome of this work shows great potential for using microwave in the thermo-chemical pretreatment for biomass and also selective production of LA from biomass.

  16. Efficacy of tramadol and butorphanol pretreatment in reducing pain on propofol injection: A placebo-controlled randomized study

    Directory of Open Access Journals (Sweden)

    Arvinderpal Singh

    2016-01-01

    Conclusion: Pretreatment with both butorphanol and tramadol significantly reduced pain on propofol injection; however, they exhibited comparable efficacy among each other. Thus, either of these two drugs can be considered for pretreatment to reduce propofol injection pain.

  17. Corn fiber, cobs and stover: Enzyme-aided saccharification and co-fermentation after dilute acid pretreatment

    NARCIS (Netherlands)

    Eylen, van D.; Dongen, van F.E.M.; Kabel, M.A.; Bont, de J.A.M.

    2011-01-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and

  18. Pretreatment of Color Filter Wastewater towards Biodegradable by Fresnel-Lens-Assisted Solar TiO2 Photocatalysis

    Directory of Open Access Journals (Sweden)

    Wen-Shiuh Kuo

    2012-01-01

    Full Text Available The pretreatment of color filter wastewater towards biodegradable by Fresnel-lens-enhanced solar TiO2 photocatalytic process was investigated. The experimental design of response surface methodology (RSM was employed to assess the effect of critical process parameters (including initial pH, TiO2 dosage, and reaction time on pretreatment performance in terms of BOD5/COD, COD and TOC removal efficiency. Appropriate reaction conditions were established as an initial pH of 7.5, a TiO2 dosage of 1.5 g/L with a reaction time of 3 h for increasing the BOD5/COD ratio to 0.15, which implied that the treated wastewater would be possibly biodegradable. Meanwhile, the efficiency of COD and TOC removals reached 32.9% and 24.4%, respectively. With the enhancement of Fresnel lens, the required reaction time for improving the biodegradability of wastewater to 0.15 was 1 h only. Moreover, the efficiency of COD and TOC removals was promoted to 37.4% and 25.8%, respectively. This could be mainly due to the concentrated effect of Fresnel lens for solar energy, including an increase of 2 times of solar irradiation and a raising of 15–20°C of wastewater temperature. Consequently, solar TiO2 photocatalytic process with the use of a PMMA Fresnel lens could offer an economical and practical alternative for the pretreatment of industry wastewater containing diversified biorefractory pollutants with a high concentration of COD such as color filter wastewater.

  19. Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers

    Directory of Open Access Journals (Sweden)

    James A. Hutchinson

    2018-02-01

    Full Text Available Recent introduction of all-oral direct-acting antiviral (DAA treatment has revolutionized care of patients with chronic hepatitis C virus (HCV infection. Regrettably, the high cost of DAA treatment is burdensome for healthcare systems and may be prohibitive for some patients who would otherwise benefit. Understanding how patient-related factors influence individual responses to DAA treatment may lead to more efficient prescribing. In this observational study, patients with chronic HCV infection were comprehensively monitored by flow cytometry to identify pretreatment immunological variables that predicted HCV RNA negativity within 4 weeks of commencing DAA treatment. Twenty-three patients [genotype 1a (n = 10, 1b (n = 9, and 3 (n = 4] were treated with daclatasvir plus sofosbuvir (SOF (n = 15, ledipasvir plus SOF (n = 4, or ritonavir-boosted paritaprevir, ombitasvir, and dasabuvir (n = 4. DAA treatment most prominently altered the distribution of CD8+ memory T cell subsets. Knowing only pretreatment frequencies of CD3+ and naive CD8+ T cells allowed correct classification of 83% of patients as “fast” (HCV RNA-negative by 4 weeks or “slow” responders. In a prospective cohort, these parameters correctly classified 90% of patients. Slow responders exhibited higher frequencies of CD3+ T cells, CD8+ TEM cells, and CD5high CD27− CD57+ CD8+ chronically activated T cells, which is attributed to bystander hyperactivation of virus-non-specific CD8+ T cells. Taken together, non-specific, systemic CD8+ T cell activation predicted a longer time to viral clearance. This discovery allows pretreatment identification of individuals who may not require a full 12-week course of DAA therapy; in turn, this could lead to individualized prescribing and more efficient resource allocation.

  20. Study of Biogas Production Rate from Water Hyacinth by Hydrothermal Pretreatment with Buffalo Dung as a Starter

    OpenAIRE

    Teguh Kurniawan; Yuhelsa Putra; Dewi Murni

    2014-01-01

    In this paper we report the effects of hydrothermal pretreatment on biogas enhancement production rates from water hyacinth mixed with buffalo dung. The focus of the experiment was on the time of hydrothermal pretreatment and the ratio of water hyacinth with buffalo dung. The hydrothermal pretreated substrates were characterized by TDS, BOD and pH. The hydrothermal pretreatment of 60 minutes with the ratio of water hyacinth to buffalo dung 1:2 showed the highest biogas production rate at 7889...

  1. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation

    Science.gov (United States)

    T.Q. Lan; Roland Gleisner; J.Y. Zhu; Bruce S. Dien; Ronald E. Hector

    2012-01-01

    Lodgepole wood chips were pretreated by sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) at 25% solids loading and 180 °C for 20 min with sulfuric acid and sodium bisulfite charges of 2.2 and 8 wt/wt% on an oven-dry wood basis, respectively. The pretreated wood chips were disk-milled with pretreatment spent liquor and water, and the...

  2. AOM Characterization and Removal Efficiency Using Various SWRO Pretreatment Techniques

    KAUST Repository

    Namazi, Mohammed

    2017-12-01

    This study investigates the operation of dual media filter DMF during ambient and simulated algal bloom conditions, and the role of coagulation and dissolved air flotation (DAF) in mitigating the adverse effects of algal blooms on DMF performance. The study also highlights which AOM concentration as a function of biopolymer is critical to organic fouling in DMF pretreatment for Red Sea water desalination with RO. On the other hand, the present study has carried out another experiment on AOM fouling in comparison with bacterial organic matter (BOM) and humic organic matter (HOM) using two different pore sizes of UF ceramic membranes, 5 and 50 kDa. The main aim of this comparison is to examine fouling behavior and mechanism and removal efficiency. The study revealed that AOM can induce organic fouling in DMF during simulated algal bloom conditions at biopolymer concentrations as low as 0.2 mg C/L. DMF performance was strongly affected by AOM concentration as observed by flow rate decline through time. Liquid chromatography – organic carbon detection (LC-OCD) analysis showed higher removal rates of biopolymers than lower molecular weight fractions (i.e., humic substances, building blocks and low molecular weight neutrals) for all pretreatment scenarios. The study also indicated that while DMF performance was enhanced with coagulation and sedimentation, the most significant improvement in performance was observed for DMF operation preceded by coagulation and DAF. Hydraulic performance of DMF correlated well with biopolymers removal, with removal rates of 72%, 53% and 39%, for coagulation/DAF, coagulation/sedimentation, and no coagulation, respectively. For UF ceramic membranes, results showed that more TEP/organics were removed by the 5 kDa membranes compared to the 50 kDa membrane, which is accounted for lower MWCO. The UF 5 kDa membrane also showed low fouling formation than 50 kDa membrane for all of three types of organic matter tested. Analysis of the fouled

  3. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  4. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification

    Science.gov (United States)

    Jingzhi Zhang; Feng Gu; J.Y. Zhu; Ronald S. Zalesny Jr.

    2015-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated...

  5. Assessment of wet explosion as a pretreatment method to enhance methane production from agricultural residues and energy crops

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis

    2011-01-01

    L of methane per g of TS. Pre-treated straw and miscanthus gave lower methane yield compared to the methane obtained from the raw biomasses, while pre-treated willow yielded approximately 62% more methane than raw willow. Experimental results also showed that increased sugars release after pretreatment does...

  6. Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.; Bakker, R.R.; Vrije, de G.J.; Koukios, E.G.

    2011-01-01

    The production of fermentable substrates from barley straw under various process conditions was studied. Pretreatment included chemical pretreatment with dilute-acid followed by enzymatic hydrolysis; the pretreatment conditions were expressed in a combined severity factor, CS, which ranged in the

  7. Biodiesel: Small Scale Production and Quality Requirements

    Science.gov (United States)

    van Gerpen, Jon

    Biodiesel is produced by reacting vegetable oils or animal fats with alcohol in the presence of an alkaline catalyst. The resulting methyl esters, which are the biodiesel fuel, are separated from the by-product glycerin, and then washed with water and dehydrated to produce fuel that must meet standardized specifications. Degraded oils containing high levels of free fatty acids can also be converted to biodiesel, but pretreatment with acid-catalyzed esterification is required. The resulting fuel is suitable for use as a neat fuel in diesel engines or blended with conventional diesel fuel.

  8. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk.

    Science.gov (United States)

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand

    2011-01-01

    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  9. Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    Science.gov (United States)

    Ang, Teck Nam; Ngoh, Gek Cheng; Chua, Adeline Seak May; Lee, Min Gyu

    2012-09-07

    In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments.

  10. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  11. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Svensson, Sven-Erik; Prade, Thomas

    2014-01-01

    In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and etha......In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis...... and ethanol yields were also evaluated. Pretreatment with 1% sulfuric acid at 180 °C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp...... pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment and subsequent enzymatic hydrolysis and ethanol fermentation....

  12. Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-09-01

    In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in hemicellulose content. Galactose was found to be the predominant sugar in spent coffee waste. Results showed that sequential pretreatment yielded 350.12mg of reducing sugar/g of substrate, which was 1.7-fold higher than in native spent coffee waste (203.4mg/g of substrate). Furthermore, extensive delignification was achieved using sequential pretreatment strategy. XRD, FTIR, and DSC profiles of the pretreated substrates were studied to analyse the various changes incurred in sequentially pretreated spent coffee waste as opposed to native spent coffee waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, P.; Bakker, R. [Wageningen University and Research centre WUR, Food and Biobased Research WUR-FBR, Wageningen (Netherlands); Huijgen, W.J.J. [ECN Biomass, Coal and Environment, Petten (Netherlands); Bermudez Lopez, L. [Abengoa Bioenergia Nuevas Tecnologias ABNT (Spain)

    2010-09-15

    This literature review was performed within the BioSynergy project (2007-2010). BioSynergy is a European Integrated Project supported through the Sixth Framework Programme for Research and Technological Development (038994-SES6). BioSynergy stands for 'BIOmass for the market competitive and environmentally friendly SYNthesis of bio-products together with the production of secondary enERGY carriers through the biorefinery approach'. Within the BioSynergy project the overall goal of the pretreatment routes being developed is to convert raw lignocellulosic biomass into its composing sugars and lignin in a market competitive and environmentally sustainable way. This report reviews lignocellulose pretreatment in general as well as specific pretreatment technologies that are developed within the BioSynergy project including steam explosion (ABNT), mechanical/alkaline fractionation (WUR) and organosolv fractionation (ECN). In addition to these pretreatment technologies, other pretreatment technologies are studied within the BioSynergy project such as acetic/formic acid pretreatment and mild- and strong acid pretreatment.

  14. Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass.

    Science.gov (United States)

    Uju; Nakamoto, Aya; Shoda, Yasuhiro; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Ogino, Chiaki; Kamiya, Noriho

    2013-05-01

    The potential of 1-hexylpyridinium chloride ([Hpy][Cl]), to pretreat cellulosic feedstocks was investigated using microcrystalline cellulose (Avicel) and Bagasse at 80 °C or 100 °C. Short [Hpy][Cl] pretreatments, <30 min, at lower temperature accelerate subsequent enzymatic saccharification of Avicel. Over 95% conversion of pretreated Avicel to glucose was attained after 24h enzymatic saccharification under optimal conditions, whereas regenerated Bagasse showed 1-3-fold higher conversion than untreated biomass. FT-IR analysis of both Avicel and Bagasse samples pretreated with [Hpy][Cl] or 1-ethyl-3-methyimidazolium acetate ([Emim][OAc]) revealed that these ionic liquids behaved differently during pretreatment. [Hpy][Cl] pretreatment for an extended duration (180 min) released mono- and disaccharides without using cellulase enzymes, suggesting [Hpy][Cl] has capability for direct saccharification of cellulosic feedstocks. On the basis of the results obtained, [Hpy][Cl] pretreatment enhanced initial reaction rates in enzymatic saccharification by either crystalline polymorphic alteration of cellulose or partial degradation of the crystalline cellulosic fraction in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  16. Enhanced dark fermentative biohydrogen production from marine macroalgae Padina tetrastromatica by different pretreatment processes

    Directory of Open Access Journals (Sweden)

    M. Radha

    2017-03-01

    Full Text Available Marine macroalgae are promising substrates for biofuel production. Pretreating macroalgae with chemicals could remove microbial inhibitors and enhance the accessibility of the microorganisms involved in the process to the substrates leading to increased product yield. In the present study, Padina tetrastromatica a seaweed species was subjected to different chemical pretreatment in order to remove phenolic content and to enhance biohydrogen production. Different mineral acids (i.e., HCl, H2SO4, and HNO3 and bases (NaOH and KOH were applied for effective pretreatment of the seaweed. Dilute sulphuric acid treatment of seaweed resulted in the highest cumulative biohydrogen production of 78 ± 2.9 mL/0.05 g VS and reduced phenolic content to 1.6 ±0.072 mg gallic acid equivalent (GAE/g. Optimization of three variables for pretreatment (i.e., substrate concentration, acid concentration, and reaction time was examined by Response Surface Methodology. After the optimization of the pretreatment conditions, phenolic content was decreased to 0.06 mg GAE/g. and enhanced biohydrogen production was observed. Structural changes due to pretreatment was studied by FTIR and XRD analyses. The results clearly indicated that the dilute sulphuric acid pretreatment was effective in removing phenolic content and enhancing biohydrogen production.

  17. Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips

    Directory of Open Access Journals (Sweden)

    Aiqing Ren

    2018-01-01

    Full Text Available The objective of this study is to investigate the effects of pretreatments on the quality of vacuum-fried shiitake mushroom slices. Four different pretreatments addressed in this study were (1 blanching as control, (2 blanching and osmotic dehydration with maltodextrin (MD solution, (3 blanching, osmotic dehydration, and coating with sodium carboxymethyl cellulose (CMC, (4 blanching and osmotic dehydration, followed by freezing. All samples were pretreated and then fried in palm oil at 90°C with vacuum degree of −0.095 MPa for 30 min. The results showed that pretreatments significantly (p0.05 differences of fried chip in the texture among the four different pretreatments. The aw values of all the fried chips were less than 0.38, indicating that the products had a long shelf life. Therefore, the blanching, osmotic dehydration, and coating pretreatment before vacuum frying was the most suitable pretreatment for vacuum-fried shiitake mushroom chips.

  18. Exploring alternatives to reduce economical costs associated with FNA pre-treatment of waste activated sludge.

    Science.gov (United States)

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M

    2017-11-01

    Recent studies have shown the effectiveness of Free Nitrous Acid (FNA) pre-treatment in enhancing sludge biodegradability and improving its methane production potential. FNA is regarded as an environmental friendly pre-treatment which can be easily applied when a source of nitrite is present in wastewater treatment plants. However, when nitrite is not available and needs to be purchased, this treatment can become less attractive due to the costs associated to nitrite. In order to overcome this possible limitation, two different strategies to optimize the use of nitrite during FNA treatment were investigated: i) Recovering NO2(-) after the pre-treatment is completed; and ii) Concentrating the sludge before FNA pre-treatment. Results show that recovering NO2(-) from the pre-treated sludge is not suitable due to the loss of soluble organic matter present in the supernatant after the pre-treatment. However, concentrating the sludge before the pre-treatment seems a good strategy to optimize the use of nitrite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion.

    Directory of Open Access Journals (Sweden)

    Zilin Song

    Full Text Available Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH at concentrations of 1%, 2%, 3%, and 4% (w/w and three alkaline reagents (NaOH, Ca(OH2, and NH3·H2O at concentrations of 4%, 6%, 8%, and 10% (w/w were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS(-1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost.

  20. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    Science.gov (United States)

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510